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The set E of idempotents of a semigroup S can be partially ordered by defining
e :£ / i f and only if ef = fe = e (e,fe E). If E = {et: i = i = 0, 1, • • •} and under
this ordering

e o > e l > e 2 - - - ,

then we call S an co-semigroup. Munn [10] has given a complete classification
of simple regular co-semigroups in terms of groups and group homomorphisms.
Let A0(S) denote the set of congruences on a simple regular co-semigroup S
consisting of those congruences which either are idempotent-separating or are
group congruences on S. It is evident that ^ ( S ) is a sublattice of the lattice of all
congruences on S.

In this paper we determine a necessary and sufficient condition for the
sublattice A0(S) to be modular.

If we further restrict S and insist that it be bisimple then A0(S) becomes the
full lattice of congruences on S (Munn [9]). For this case Munn [9] has determined
a necessary and sufficient condition for A0(S) to be modular. Our work generalizes
Munn's theorem from bisimple co-semigroups to simple regular co-semigroups.
Many of the results in this paper are straightforward generalizations of results
given by Munn for the bisimple case. Whenever possible Munn's results are used
in obtaining our generalizations.

For notation and definitions not given in this paper the reader is referred to
Clifford and Preston [1] and [2].

1. Preliminary results

Following Munn [10], let d be a positive integer and let {G;: i = 0, 1, • • •,
d— 1} be a set of pairwise disjoint groups. Let yd-1 be a homomorphism of Gd-1

into Go and let 7f be a homomorphism of Gt into <jj+1 (i = 0, 1, • • •, d—2). Thus

') This research was carried out at Monash University while the author held a Common-
wealth Postgraduate Award.
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462 G. R. Baird [2]

we have a sequence
yo Vi yd - 2 ya~t

Denote by N the set of non-negative integers. For ne N denote by n (mod d) the
integer equivalent to n modulo d, belonging to N, and less than d. Define

for n e N. For (m, n)e NxNand m < n write

and for all n e iV let an, „ denote the identity automorphism of Gn (mod,,). Let S be
the set of all ordered triples (m, at, n), where m, n e N, 0 ^ i ̂  rf— 1 and a, e G>
Define a multiplication in S as follows:

(m, af, n) • (/;, fty,?) = (m + p-/>An, (a;aa>w)(6yav>w), q + n-pAn),

wherep/\n = min {/>, «}, M = nd+i, v = /></+./ and w = max {M, U}. Denote the
groupoid so formed by S(d; Go, • • •, Gi-l; y0, • • •, yd-i) or, more compactly,
by S(d; Gt; y;). Then, as was shown in [10], S(d; Gt; yt) is a simple regular co-
semigroup and any simple regular co-semigroup is isomorphic to a semigroup

S(d;Gt; yt).
For 0 ^ / | ( / - l put St = {(m, at, n):m,neN, at e Gt}. St is a bisimple

subsemigroup of S; further

s= U $•
0^>gd-l

It is evident that a M + d is an endomorphism of Gt. In the terminology of Reilly
[11], S^SiGi,*^).

For ne N and / = 0, 1, • • •, d-1 write e" = (n, et, n), where e-t is the identity
of the group G;. The elements e" are the idempotents of S(d; Gt; yt) and we have

e°0 > e° > • • • > ed
0_! > e\ > e\ > • • • > e j _ t > e2

0 > • • \

The semigroup S(d; Gt; yf) is in fact an inverse semigroup with identity e%.
Further, (m,ai,n)~l = (n,a^l,m).

Put B = {(m,ei,n):m,neN,0 ^ i ̂  d-l}. B is a subsemigroup of
S(</; (?;, y,). We note that B is uniquely determined by the number d. When
d = \, B becomes the bicyclic semigroup.

A congruence p on a semigroup S is called idempotent-separating if each
congruence class contains at most one idempotent of S. Lallement [5] has proved
that a congruence on a regular semigroup is idempotent-separating if and only
if it is contained in Green's equivalence 2tf'. From the definition of multiplication
in S(d; G(; yt) it is easy to show that the equivalence J f on a simple regular co-
semigroup is given by:

((m, ai, n), (p, bj, q)) e J f if and only if i = j , m = p and n = q.

This result will be used frequently. In fact <?f is a congruence, as we now prove.
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LEMMA 1.1. (cf. Munn [10], Theorem 2.1). Let S = S(d; G;; y,). Then je
is a congruence on S and S/Jtf' = B.

PROOF. The mapping G of S onto B denned by (m, at, n)9 = (m, et, n) is a
homomorphism. Further ((m, at, n), (p, bj, q)) e J f if and only if (m, euri) =
(p, ejt q); hence 9 o Q~l = Jf and the result follows.

A congruence p on a semigroup 5" is called a group congruence if S/p is a
group. The following lemma provides a characterization of the minimum group
congruence a on an inverse semigroup.

LEMMA 1.2. (Munn [6], Theorem 1). Let S be an inverse semigroup and let a
relation a be defined on S by the rule that (x, y) e a if and only if ex = ey for some
idempotent e in S (or, equivalently, if and only if xf' = yf for some idempotent f
in S). Then a is a group congruence on S. Furthermore, a congruence p on S is a
group congruence if and only if a <= p and so S/p is isomorphic with some quotient
group of S/a.

Let A0(S) denote the set of congruences on a simple regular co-semigroup S
consisting of those congruences which either are idempotent-separating or are
group congruences on S.

Evidently A0(S) is a sublattice of the lattice A(S) of all congruences on S.
For «,|?£ A(S) and a ^ p, define

[a,jS]= { l e / l ( S ) : a c l c | j } ;

[a, fi\ is a sublattice of A(S). Then [i, =5f ] is the set of all idempotent-separating
congruences on S and [a, S x S] is the set of all group congruences on S. Thus

A0(S)=[i,3tp]u[tr,SxSl

A lattice U is modular if and only if for any elements a, /?, y e 77,

a ^ P implies a v (/? A y) = P A (a v y).

It is well known that the lattice of normal subgroups of a group is modular
(see for instance Hall [3]); hence [a, SxS] is modular since it is isomorphic to
the lattice of congruences on the group S/a. Munn [7] has proved that for regular
semigroups the lattice of all congruences contained in Green's equivalence 2^C
is modular. Hence [/, J f ] is modular,

2. Idempotent-separating congruences

Let S = S(d; Gt; yt) be a simple regular co-semigroup. Put G = Go x Gj x
• • • x Gd-t, the cartesian product of Gt, i = 0, 1, • • •, d— 1. A subset A of G
will be called y-admissible if it satisfies the following three conditions:
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(i) A = Ao xAt x • • • xAd-t, for some Ai c Gt, i = 0, 1, • • •, d—l,

(ii) A, «3 G,, for i = 0, 1, • • -, d-1, and

(iii) ^j-iy,,-.! c ^ 0 and A^i ^ ^ i + i , for i = 0, 1, • • -, d-2.

A subset A of G will be called normal if it satisfies (i) and (ii) above.
We have already noted that a.Ui+d is an endomorphism of G,, for i = 0,

1, •• •, d—l. Munn [9] defines a subgroup At of Gt to be <xhi+d-admissible if (i)
^(*g G; and (ii) Aiai>i+d £ ^4;. Suppose that ,4 = AoxArx • • • x ^ d - i is a
y-admissible subset of G. Then it is easily verified that A% is aljf+d-admissible for
i = 0, 1, ••;d-l.

V A = AoxAiX • • • xAd^x and 5 = Box5t x • • • x B d - 1 are normal
subsets of G, we define

A\/B = AoBoxA1B1x • • • xAd_lBd-1 and

AAB = AonBoxA1nBlx ••• xAd-t n 5,i_i.

We shall often write 4̂2? = 4̂ v ̂ . It is clear that ^45 and Ai\B are again
normal subsets of G. Let r denote the set of y-admissible subsets of G. It is easily
checked that the property (iii) above is preserved under the operations of union
(v ) and intersection ( A ). Thus F is a sublattice of the lattice of normal subsets
of G.

Since the lattice of normal subgroups of a group is modular it follows that
the lattice of normal subsets of G is modular, since the direct product of modular
lattices is modular. Further, a sublattice of a modular lattice is modular and hence
the lattice F of y-admissible subsets of G is modular.

For any congruence X on S we define a subset Ak of G as follows:

Ax = A% x A\ x • • • x Ad_!, where

Af = {at e G; : (0, a,,0) € e°A}, i = 0, 1, • • •, d-1.

Evidently Ax = Ax**, since the Jf-class containing e° is {(0, a,, 0) e S : a-, e G j .

LEMMA 2.1. For any congruence X on S(d; Gt; A,) 4̂A w a y-admissible subset
ofG.

PROOF. Put /f; = {(0, af, 0 ) e S : ate G,}; ff,- is a subgroup of 5. Set

Aj = X n (jyf x //•,•). Then Af is a congruence on Ht and so e?A is a normal subgroup
of//;. Now G; is isomorphic to Ht under the mapping at -*• (0, af, 0) and it follows
that Af is a normal subgroup of Gf. Thus ,4f is a normal subgroup of G,- (i = 0,
1, • • •, d—l), since our argument is independent of/.

Suppose fl; e ^f and assume i ¥= d— 1. Put x = (0, a;, 0). Then (x, e°) e X
and so

that is,
((0,aiyi,0),e°+1)eX;
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hence cr.-y,- e ̂ 4f+ x. On the other hand, if / = d— 1, put x = (0, ad_i,0) and
y = (0, e0, 1). Then (JC, e°d_ t ) e 2 and so

But

yxy'1 = (0, a ^ y ^ ^ O )

andye°-ty'1 = e°- Hence flj-^j-ie^J. Thus Ak is y-admissible.

LEMMA 2.2. (i) Le? 1 fee an idempotent-separating congruence on S(d; G{; Xt).

((w, a(, n), (p, b}, q)) e X if and only ifi=j,m=p,n — q and afbjl e Af.

(ii) Let A = AoxAtx ••• xAd-l be a y-admissible subset of G. Then the
relation

X = {((m,ai,n),(p,bj,q))eSxS:i =j,m = p,n = qandafij1 e At}

is an idempotent-separating congruence on S(d; Gt; yt). Furthermore, Ax = A.
The proof of lemma 2.2 is a straightforward computation and is omitted. It

follows that there exists a one-to-one correspondence between the idempotent-
separating congruences of S and the y-admissible subsets of G. Furthermore,
X £ X' if and only if AK £ Ax'.

By the above remark the mapping <j> : [i, J^] -*• F given by X<j> = Ax, which
is onto by lemma 2.2 (ii), is a lattice isomorphism. This affords us a direct proof
of the fact that [i, Jf] is modular, since we have noted that F is a modular lattice.

Let A be a y-admissible subset of G. We define a mapping yd-i\A of Gd-tl
Ad-t into Go/Ao as follows:

(a((_1^lJ_1)(y<,_1|^) = (aj-^-^Ao, for all aa-iAj-^Gj-JAa-i.

Further, for / = 0, 1, • • •, d— 2, we define a mapping y(\A of GJAi into Gt+1/Ai+1

as follows:
i, f o r a 1 1 Mi

That these mappings are well defined is a consequence of the y-admissibility
of A. It is immediate that y^A is a homomorphism for i — 0, 1, • • •, d— 1. For
n £ N define yn[̂ 4 = yn(mod<i)M- F° r (w> «)G NxN and m < n write

and for all «eiv* let an,nM denote the identity automorphism of Gn(modi)IAn(moii).
Further, if we assume that m = pd+ i and n = qd+j, then

THEOREM 2.1. Let X be an idempotent-separating congruence on S(d; Gt; y{).
Then

SjX s S(d; GJAi; yt\A
x).
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PROOF. Consider the mapping 9 of S onto S(d; GJA\\ yt\A
x) defined by

(m,ai,n)6 = (m, atAf, n).

Then 0 is a homomorphism. Further (m, at,n)9 = (p,bj,q)6 if and only if
i=j,m=p,n=q and atAf = bjA). By lemma 2.2 (i) these equations hold if
and only if {{m, at, n), {p, bj, q))e X. Hence 6 o 9~l = X which gives the result.

Let ker a" i+d denote the kernel of the endomorphism a" i+d of A,, for
i = 0, 1, • • •, d-1 and n = 1, 2, • • -. Put Kf = ker a? 1+(/, AT; = (J"= 1 /iff and
# = KoxKxx • • • xKd-t.

LEMMA 2.3. Let a be the minimal group congruence on S = S(d; Gt; yf).
Then A™* = A" = K.

PROOF. We have noted earlier that A"** = A". Let at e ^f. Then ((0, au 0),
e°) e a and so, by Lemma 1.2, there exists e™ such that eJ(O, at, 0) = ejef. We
may suppose without loss of generality that m > 0. Hence (w, ataUmil+j, m) =
ej and so aicciymd+j = e,-; it follows that (a;ai)in<,+J.)aJ>(,+i = cf. Thus a , e ^ j .

Conversely, let ate Kt. Then a;a™ j + d = e; for some w, and so ef (0, a i ; 0) =
e?e°. Hence, by lemma 1.2, ((0, ah 0), e?) e <r; that is, at e A?. We conclude that
A" = Ki (i = 0, 1, • • •, d-1), and the result follows.

COROLLARY 2.1. Let S = S(J; (?;; y,).

Corollary 2.1 follows immediately from theorem 2.1.

3. Group congruences

We begin this section with a general result about inverse semigroups with
identity.

LEMMA 3.1. (Munn [9], Lemma 4 (ii)). Let p be a group congruence on an
inverse semigroup S with identity e. Then (x, y)ep if and only ifxy'1 e ep.

Let A = AoxAiX • • • xAi_l be a y-admissible subset of G. Then, as was
noted earlier, At is a ai;i+<radmissible subgroup of Gt, for i = 0, 1, • • •, d— 1.
Following Munn [9], we define rad^,-, the radical of At relative to the endo-
morphism aiii+(,, as follows:

rad At = {at €Gt:at a" i+d e At for some n}.

Using these radicals we define the radical of A, Rad A, as follows:

Rad A = rad^40xrad Atx • • • xrad Ad_t.

Rad A is a normal subset of G, since each rad A t *3 Gt (Munn [9]). In fact Rad A
is a y-admissible subset of G, as we now show. Let a, e rad At, that is, let
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a,<x" 1+d e At for some n,
and so

But

Thus Rad ,4 e T.
Again, directly generalizing Munn's procedure in [9], we denote the y-admis-

sible set {(e0, e,, • • •, ed_1)} by 1. Then Rad 1 = K. Hence it follows that
A" = Rad 1. Put r* = {AsT :RadA = A}.

That the following properties hold for Rad follows immediately from Munn's
lemma 2 in [9], where it is shown that the analogous properties hold for rad in
each component (j, of G.

(i) A <= Rad A,
(ii) A c A' implies that Rad A s Rad A',
(iii) Rad (Rad A) = Rad A,
(iv) A Rad 1 c Rad A,

(v) Rad (,4 Rad 1) = Rad A.

Properties (i), (ii) and (iii) imply that Rad is a closure operator on the set
of y-admissible subsets of G.

The next lemma follows from and generalizes Munn's lemma 4 (i) in [9].

LEMMA 3.2. Let p e [a, SxS]. Then A" e T*.

PROOF. p\St is a group congruence on St. Hence rad A? = A? by Munn's
lemma 4 (i) in [9]. Thus Rad A" = A" and A" e T* as required.

We now fix our attention on the sublattice [<r, ffvJf], and begin by deter-
mining the congruence a v Jf\ Note that the restriction to each St gives Munn and
Reilly's determination of a v 34? on a bisimple cu-semigroup [8].

LEMMA 3.3. Let S = S(d; Gt; y,). Then

((m,ai,n), (p, bj, q)) e a v Jf if and only if m-n = p-q.

PROOF. Let x = (w, af, n) and j> = (p, bj, q). Suppose that (x, y)e erv Jf.
Then since < 7 v / = ( r o / o ( r (Howie [4], Theorem 3.9) there exist u, v in S
such that (x, u) e a, (u,v)eJf, and (j;, j)e<r. Let u= (m',gk,ri) and z; =
(/>', A,, #'). Since (*, u)e a there exists, by lemma 1.2, an idempotent er

s such that
er

sx = er
su, and we can assume without loss of generality that r ^ m, m'. Hence

we have that r+n—m =r+n'—m' and som—n=m' — ri. Similarly, since (v, y)e<r
wehave/> — q = p' — q'. Butm'— p' =ri — q'since (w, v) e Jf. Hence m — n =p — q.

Conversely, let x and y be such that m — n = p — q. We may assume that
m ^ p. Suppose m < p or m = p and j ^ i. Then
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epjx = (p, ej,p)(m, at,n)

, q)

and so (epx, y) e Jf. But (x, epjx) e a since epj is idempotent. Hence (x, y) e <r o Jf
£ <T V .3f.

Suppose now that m = p and 7 < j . Then

efj' = (P,ei,p){p,bj,q)

= (P, b<xpd+j,Pd+i,q)

and so (efy, JC) e Jf. But (y, efy) e a since ef is idempotent. Hence (x,y)ea o

COROLLARY 3.1. 5/crv J f s Z, w/iere Z denotes the integers.

PROOF. Consider the mapping 0 : S -> Z defined by (m, a,-, M)0 = m—n.
The mapping 0 is a homomorphism and it follows that 6 o 9~l = cr v =3̂ .

L E M M A 3.4. ( i ) Let pe[a,av Jf]. Then

e%p = {(m,ai,m)eS :me N,a{e A,,Q ^ i ^ rf-1}.

(ii) Let p, p' e[a,av J f ]. 7%e« p ^ p' z/anrf on/y if A" £ /4P'.

PROOF, (i) Since p is a group congruence, (e°,e°)ep for 0 ̂  i ̂  ^—1.
Hence

= (J
and our result follows from Munn [9] lemma 5(i).

(ii) If p c p' then clearly ylp c ^4P'. Suppose conversely that A" s ^p'.
Then by (i), e£p - eoP'- L e t ix>y)eP- Then x j " 1 ee^p by lemma 3.1. Hence
xy~l e e%p' and so (x, y) ep, again by lemma 3.1. We conclude thatp £ p'.

We now prove a partial converse to lemma 3.2 which generalizes Munn's
lemma 5 (iii) in [9].

LEMMA 3.5. Let Ae F*. Then there exists T in [a, <7V

PROOF. For x = (w, a{, n) and j = (p, bj, q) in S write

\\xy\\ = aja^b,"1^,,, , ,

where u = nd+i, v = qd+j and w = max {u, v}. Define

^ = {(*> y) e S x S : x = (m, af, n), y = (p, bj, q),

m — n = p — q and ||x_y|| e Ak for some fc}.
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We shall show that T is a congruence on S with the desired property. It is
straightforward to show that T is reflexive and symmetric.

Let now x = (/w,«,,«), y = (p,bj,q) and z = (r, ck, s). Suppose (x,y)ex
and (y, z)e x. Thenm — n = p — qandp — q = r — sandsom — n = r—s. To prove
that x is transitive it remains to show that \\xz\\ e At, for some /. We may assume
without loss of generality that n < s or n = s and i 5S k. We now proceed by
cases.

CASE (i): q < n or q = n and j ^ i.

Then ||xz|| = atoM+t>s
1

j "'j)aqd + j,sd + kCk

j a )(b<X C

l.sd+kKPj

<X )

e Ak, since \\xy\\ e Ah \\yz\\ e Ak and A is y-admissible.

Hence (x, z ) e x.

CASE (ii): n < q < s or n = q and i ^ j or q = s andj ^ k.

Then | |xz| | = ai<xnd+Usd+kck~
l

- sd + k Ck

, sd + kCk

j,sd+k "j aqd +j, sd + kck

6 Ak, since \\xy\\ e y4y, H ẑH e Ak and 4̂ is y-admissible.

Hence (x, z) e x.

CASE (iii): s < q or s = q and k ^ y.

Then ||xz||as<I+Jt >gd+Jt- = (a A,,-H

t a sd+t , qd + j

b c K

e ^4y, since \\xy\\ e Aj and | | jz | | e /4y.

Hence ||xz||aSJ+fc)9(/+J.aJ+1,^ e Ak, that is lkz||a^V+V e Ak. Now Rad ^ = A and
so ||xz|| e j4fc. Hence (x, z) e T. We conclude that x is an equivalence relation on S.

That x is left and right compatible follows from computations similar to those
above and they are left to the reader.
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It follows from lemma 3.3 and the definition of T that x e [a, a v 3tf\. It also
follows from the definition of x that Az = A.

We note here that Munn's proof of lemma 5 (iii) in [9] can be generalized to
give an alternative proof of our lemma 3.5 by making use of the closed self-
conjugate subsemigroup of S.

M = {(m,ai,m) : m eN, at e At, 0 ^ / g d-\}

Then x = {(x, y) E SX S : xy~l e M} is a congruence on S and A = AT.

Partially ordering F* by inclusion we obtain from Lemma 3.5 and lemma 3.4

( " ) t h a t I* st lev*].

Now [a, a v J f ] is a modular lattice since it is a sublattice of the modular
lattice [a, S x S]. We conclude that F* is a modular lattice.

4. The main result

We are now in a position to generalize Munn's argument to the present
situation and prove an analogue of his main theorem in [9], viz.

THEOREM 4.1. Let S be a simple regular co-semigroup. Then the sublattice
A0(S) is modular, if and only if R&d A = A Rad 1 for all A in F.

To establish this result we establish the analogues of lemmas 8, 9 and 10 of
[9]. To do this we need two preliminary lemmas which generalize Munn's lemmas
6 and 7 of [9].

LEMMA 4.1. Let X e [i, 3P] andp e [a, a v J f ]. Then

(i) Xvpe [a,ovJP] and A = Rad (AXAP), and
(ii) lApe [i, 3e]andA^p = AXAA".

LEMMA 4.2. Alv° = Rad Ax for any I in [i, J f ].
To prove lemma 4.1 and 4.2 it suffices to note that Munn's argument in lemma

6 and lemma 7 can be applied in a co-ordinatewise fashion to the present situation.

The next three lemmas are the analogues of lemmas 8, 9 and 10 of [9].

LEMMA 4.3. Let A0{S) be modular and let AeF. Then Rad A = A Rad 1.

LEMMA 4.4. Let Rad A = A Rad 1 for all AeF. Then [i, Jf] u [a,<rvJf]
is modular.

LEMMA 4.5. Let [i, Jf] u [a, CTV J f ] be modular. Then A0(S) is modular.

To prove lemmas 4.3 and 4.4 we argue as Munn does in his lemmas 8 and 9
using the preceeding generalized lemmas. The proof of lemma 4.5 is identical to
Munn's proof of lemma 10.

Theorem 4.1 now follows from lemmas 4.3, 4.4 and 4.5.
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