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A COMMUTATIVITY THEOREM FOR SEMIPRIME RINGS
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Abstract

It is shown that if R is a semiprime ring with 1 satisfying the property that, for each x, y e R, there exists a

positive integer n depending on v and y such that (\_v)* —x*>'*is central for k = n,n+ 1,H + 2 , then R is

commutative, thus generalizing a result of Kaya.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 70; secondary 16 A 12.

Kaya (1976) showed that if R is a primary ring (that is, R/J{R) is simple) or semiprime
ring with 1 satisfying the property that, for each x,yeR, there exists a positive
integer n depending on x and ysuch that(xy)k = xkykfor k = /),/; + l,n + 2, then R is
commutative, thus generalizing a theorem of Luh (1971), p. 211, who proved the
result fora fixed n'm the case when R is primary. Lighand Richoux( 1977) has proved
the result of Luh, for a fixed n, without assuming that R is primary. Recently Richoux
(to appear) has extended the Ligh-Richoux result to arbitrary n. In this note we
prove the result stated in the abstract, which generalizes Theorem 2(ii) of Kaya
(1976) for the semiprime ring case. However, it is not possible, by Example 2 of Luh
(1971), to replace semiprime ring by primary ring in our result.

We use the following notations :

Z(R) = the centre of R,

J(R) = the Jacobson radical of R,

[x, j ] = xv - yx.

For the sake of convenience, we label some properties of R as follows.
(A) For each x, ye R, there exists a positive integer H depending on x and y such

that ( x j f - x V e Z l R ) for k = n,n+l , / i + 2.
(B) For each x,yeR, xy + yxeZ(R).
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(C) For each x, y e R,

yx2 + x2 y + yx2 y + 2yxy = xy2 + y2 x + xy2 x + 2xyx.

LEMMA 1. If R is a semisimple ring satisfying (A), then R is commutative.

PROOF. The proof is based on standard technique given by Herstein (1961), p. 29
and Jacobson (1968), p. 220.

First we assume that R is a division ring satisfying (A). Let [(xyf — xky\z] = 0 for
all 2 e R. Replacing z by xy and yx, we get respectively,
(1) [x*-1/"1,^]=0

and

(2) [Ocy)*-xV,>*]=0.

Let k = n, n + 1, n + 2. Then from (1) and (2) we get

(3) [(xy)n,yx]=0,

(4) [(xy)"+1,yx]=0.

The last two equations provide us with xy2 x = yx2 y. Now R is commutative as a
part of the proof of Theorem 2.5 of Gupta (1970).

Next we assume R is a primitive ring satisfying (A). If R is not a division ring, then
D2 the ring of 2 x 2 matrices over some division ring D will be a homomorphic image
of subring of R and satisfies (A). But this is impossible as

Jo A
a n d y = (

fail to satisfy (A). Hence R must be a division ring and therefore is commutative.
Finally if/? is semisimple ring satisfying (A), then R is a subdirect sum of primitive

rings R, each of which, as a homomorphic image of R, satisfies (A) and hence is
commutative by the above discussion. Thus R is commutative.

We give the following lemma which will be used frequently in the subsequent
study.

LEMMA 2. Let Rbea prime ring and x / 0, y be elements ofR. Ifx and xy are in Z(R),
then y is in Z(R).

PROOF. Let x, xy be in Z(R). Then xyz = zxy = xzy for all zeR. From this we have
xR(yz — zy) = 0. Since R is a prime ring and x # 0 w e get zy = yz for all zeR. Thus y
is in Z(R).
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LEMMA 3. / / R is a semiprime ring of characteristic 2 satisfying (B), then R is
commutative.

PROOF. Let us assume that R is a prime ring satisfying (B). Replacing x by xy in (B),
we get that R is a commutative ring by an application of Lemma 2.

If R is a semiprime ring satisfying (B), then it is isomorphic to a subdirect sum of
prime rings Rx each of which, as a homomorphic image ofR, satifies (B) and hence is
commutative by the above part. Thus R is commutative.

LEMMA 4. If R is a semiprime ring satisfying (C), then R is commutative.

PROOF. It suffices to assume that R is a prime ring, using a similar argument as
given in the proof of Lemma 3. Replacing x by x + y in (C) and cancelling using (C),
we get

(5) (y +

Replacing x by xy and yx in (1), and adding the results we obtain

(6) (y + y

Adding (5) and (6), we have

(7) (y + y2K

for all x, yeR.
If the characteristic of R is not 2, then by a sublemma of Herstein (1969), p. 5, we

have

(8) y + y2eZ(R) for all yeR.

Replacing y by x + y in (8), we get

(9) xy + yx e Z(R) for all x, y e R.

Replacing x by xy in (9) and by Lemma 2, we obtain y e Z(R) unless xy + yx = 0 for
every x. If xy + yx = 0 for every x, then we replace x by y to get 2y2 = 0, which will
imply that y2 = 0. By (8) yeZ(R) for all yeR. Hence R is commutative.

If the characteristic of R is 2, then by (7), we have

(10) y2 + y4 eZ(R) for all yeR.

Replacing y by y2 in (10), we have

(11) y* + yseZ(R) for all yeR.

Adding (10) and (11), we obtain

(12) y
2+y8eZ(R) for all yeR.
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Again replacing y by y3 in (10), we get

(13) (y2 + y8) / e Z(R) for a\\yeR.

By Lemma 2, yAeZ{R) unless y2+ys = 0. If y*eZ(R\ then by (10) y2eZ(R). If
y2+y8 = 0, then it can be seen that y2 = 0 for all yeJ(R). Hence in either case
y2eZ(J(R)) for all yeJ(R). Let xeJ(R). Replacing y by x + y, we get
xy + yxeZ(J{R)). J(R) is commutative by Lemma 3.

Since R = R/J(R) is semisimple, it suffices to assume that R is a division ring, using
a similar argument as given in the proof of Lemma 1. By the argument of the above
paragraph, we have a2 e Z(R) unless a2 + a8 = 0. If a2 + a8 = 0, then a6 = 1 e Z{R).
In either case a6 e Z(R) for all a e R. R is commutative by Lemma 1 of Belluce and
others (1966). Now J(R) is commutative and xy - yx e J(R) for all x, y e R. By Lemma
1.5 of Herstein (1969) xy — yxeZ(R) for all x,yeR. R is commutative, again by
Lemma 1.5 of Herstein (1969).

THEOREM 1. If R is a semiprime ring with 1 satisfying (A), then R is commutative.

PROOF. Let x,yeJ(R). Then ((1 + x)(l +y)) - (1 +x)*(l +yfeZ(R), where
k = m, m + 1, m + 2. Since (1 + x) and (1 + y) are invertible, we use the argument of
Lemma 1 to obtain

(1 +x)(l +y)2(l+x) = (1 + v)(l +x)2 (1 +y).

Thus J{R) satisfies (C). By Lemma 4, J(R) is commutative. R/J(R) is semisimple and
satisfies (A), hence is commutative by Lemma 1. Now R is commutative as in the
proof of Lemma 4.

The author is thankful to the referees for their helpful suggestions.
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