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Abstract. The aim of the present paper is the classification of real hypersurfaces
M equipped with the condition Al = lA, l = R(., ξ )ξ, restricted in a subspace of the
tangent space TpM of M at a point p. This class is large and difficult to classify, therefore
a second condition is imposed: (∇ξ l)X = ω(X)ξ + ψ(X)lX , where ω(X), ψ(X) are 1-
forms. The last condition is studied for the first time and is much weaker than ∇ξ l = 0
which has been studied so far. The Jacobi Structure Operator satisfying this weaker
condition can be called generalized ξ -parallel Jacobi Structure Operator.
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1. Introduction. An n-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called complex space form, which is denoted by
Mn(c). A complete and simply connected complex space form is a projective space �Pn

if c > 0, a hyperbolic space �Hn if c < 0, or a Euclidean space �n if c = 0. The induced
almost contact metric structure of a real hypersurface M of Mn(c) will be denoted by
(φ, ξ, η, g).

Real hypersurfaces in �Pn which are homogeneous, were classified by R. Takagi
[12]. The same author classified real hypersurfaces in �Pn, with constant principal
curvatures in [13]. Berndt gave the equivalent result for Hopf hypersurfaces in �Hn

[1] where he divided real hypersurfaces into four model spaces, named A0, A1, A2

and B. Analytic lists of constant principal curvatures can be found in the previously
mentioned references as well as in [7, 9]. Real hypersurfaces of type A1 and A2 in
�Pn and of type A0, A1 and A2 in �Hn are said to be hypersurfaces of type A for
simplicity and appear quite often in classification theorems. Real hypersurfaces of
type A1 in �Hn are divided into types A1,0 and A1,1 [7]. Finally we mention that real
hypersurfaces satisfying φA = Aφ, in �Pn and �Hn were classified by Okumura [10],
and Montiel and Romero [8] respectively. For more information and examples on real
hypersurfaces, we refer to [9].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an
important role in the study of differential geometry. It satisfies a well-known differential
equation which inspires Jacobi operators. For any vector field X , the Jacobi operator
is defined by RX : RX (Y ) = R(Y, X)X , where R denotes the curvature tensor and Y is a
vector field on M. RX is a self-adjoint endomorphism in the tangent space of M, and is
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related to the Jacobi differential equation, which is given by ∇γ́ (∇γ́ Y ) + R(Y, γ́ )γ́ = 0
along a geodesic γ on M, where γ́ denotes the velocity vector along γ on M. In a
real hypersurface M of a complex space form Mn(c), c �= 0, the Jacobi operator on M
with respect to the structure vector field ξ , is called the structure Jacobi operator and
is denoted by lX = Rξ (X) = R(X, ξ )ξ . Conditions including this operator, generate
larger classes than the conditions including the Riemannian tensor R(X, Y )Z. So,
operator l has been studied by quite a few authors and under several conditions.

In 2007, Ki, Pérez, Santos and Suh [6] classified real hypersurfaces in complex
space forms with ξ -parallel Ricci tensor and structure Jacobi operator. Cho and Ki in
[3] classified the real hypersurfaces whose structure Jacobi operator is symmetric along
the Reeb flow ξ and commutes with the shape operator A.

In the present paper we classify real hypersurfaces M satisfying the condition
lA = Al, restricted in the subspace � = ker(η) of TpM for every point p ∈ M, where
ker(η) consists of all vectors fields orthogonal to the Reeb flow ξ . This class is quite large
and rather difficult to be classified, therefore a second condition had to be imposed:
(∇ξ l)X = ω(X)ξ + ψ(X)lX , where ω(X), ψ(X) are 1-forms. This condition is much
weaker than the condition ∇ξ l = 0 that has been used so far [3, 4, 5, 6]. Therefore a
larger class is produced. In particular, the following theorem is proved:

THEOREM 1.1. Let M be a real hypersurface of a complex space form Mn(c), n > 2
(c �= 0), satisfying

lAX = AlX, ∀X ∈ �, (1.1)

and

(∇ξ l)X = ω(X)ξ + ψ(X)lX, (1.2)

for every vector field X ∈ TM, where ω(X), ψ(X) are 1-forms. Then M is a Hopf
hypersurface. Furthermore, if η(Aξ ) �= 0 then M is of type A.

The Jacobi Structure Operator satisfying (1.2) will be called generalized ξ -parallel
Jacobi Structure Operator.

2. Preliminaries. In this section, we explain explicitly the notions that were
mentioned in Section 1, as well as the notions that will appear in the paper. We
also give a series of equations that will be our basic tools in our calculations and
conclusions.

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an almost
complex structure J and a Hermitian metric tensor G. Then for any vector fields X
and Y on Mn(c), the following relations hold: J2X = −X , G(JX, JY ) = G(X, Y ),
∇̃J = 0, where ∇̃ denotes the Riemannian connection of G of Mn.

Let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and denote by
N a unit normal vector field on a neighbourhood of a point in M2n−1 (from now on
we shall write M instead of M2n−1). For any vector field X tangent to M we have
JX = φX + η(X)N, where φX is the tangent component of JX , η(X)N is the normal
component, and ξ = −JN, η(X) = g(X, ξ ), g = G|M .
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By properties of the almost complex structure J and the definitions of η and g, the
following relations hold [2]:

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φξ = 0, η(ξ ) = 1, (2.1)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), g(X, φY ) = −g(φX, Y ). (2.2)

The above relations define an almost contact metric structure on M which is denoted by
(φ, ξ, g, η). Furthermore, let A be the shape operator in the direction of N, and denote
by ∇ the Riemannian connection of g on M. Then, A is symmetric and the following
equations are satisfied:

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ. (2.3)

As the ambient space Mn(c) is of constant holomorphic sectional curvature c, the
equations of Gauss and Codazzi are respectively given by:

R(X, Y )Z = c
4

[g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

− 2g(φX, Y )φZ] + g(AY, Z)AX − g(AX, Z)AY, (2.4)

(∇X A)Y − (∇Y A)X = c
4

[η(X)φY − η(Y )φX − 2g(φX, Y )ξ ]. (2.5)

The tangent space TpM, for every point p ∈ M, is decomposed as following:

TpM = �⊥ ⊕ �,

where � = ker(η) = {X ∈ TpM : η(X) = 0}.
The subspace ker(η) is more usually referred as � and called holomorphic

distribution of M at p. Based on the decomposition of TpM, by virtue of (2.3), we
decompose the vector field Aξ in the following way:

Aξ = αξ + βU, (2.6)

where β = |φ∇ξ ξ |, α is a smooth function on M and U = − 1
β
φ∇ξ ξ ∈ ker(η), provided

that β �= 0.
If the vector field Aξ is expressed as Aξ = αξ , then ξ is called principal vector

f ield.
Finally, differentiation will be denoted by ( ). All manifolds, vector fields, etc., of

this paper are assumed to be connected and of class C∞.

3. Auxiliary lemmas and relations. In this section, we will be working in the
set N = {p ∈ M : β �= 0 in a neighbourhood around p}. By putting X = ξ in (1.2),
combined with (2.3) and (2.6), we obtain βlφU = −ω(ξ )ξ . The inner product of the
last equation with ξ yields lφU = 0 which is analysed from (2.4) and (2.6) giving
(4αA + c)φU = 0. From the last equation, it follows that α �= 0 in N.

LEMMA 3.1. Let M be a real hypersurface of a complex space form Mn(c), n > 2
(c �= 0), satisfying (1.1) and (1.2). Then, the following relations hold in N:
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AU =
(

β2

α
− c

4α

)
U + βξ, AφU = − c

4α
φU. (3.1)

∇ξ ξ = βφU, ∇Uξ =
(

β2

α
− c

4α

)
φU, ∇φUξ = c

4α
U. (3.2)

∇ξ U = W1, ∇U U = W2, ∇φU U + c
4α

ξ = W3. (3.3)

∇ξφU = φW1 − βξ, ∇UφU = φW2 +
(

c
4α

− β2

α

)
ξ, ∇φUφU = φW3. (3.4)

where W1, W2, W3 are vector fields orthogonal to U, ξ .

Proof. From (2.4), we get

lX = c
4

[X − η(X)ξ ] + αAX − g(AX, ξ )Aξ, (3.5)

which, for X = U yields

lU = c
4

U + αAU − βAξ. (3.6)

The scalar product of (3.6) with U yields

g(AU, U) = γ

α
− c

4α
+ β2

α
, (3.7)

where γ = g(lU, U). We have already shown in the beginning of this section that
lφU = 0 ⇒ AφU = − c

4α
φU holds. Therefore

g(AU, φU) = g(AφU, U) = 0. (3.8)

From (3.7), (3.8) and g(AU, ξ ) = g(Aξ, U) = β we obtain AU = ( γ

α
+ β2

α
−

c
4α

)U + βξ + λW , where W is a vector field satisfying W⊥{U, φU, ξ}. Combining
the decomposition of AU with (2.6) and (3.6), we obtain lU = γ U + αλW .

Summarizing the results so far, we have proved the following:

lU = γ U + αλW, lφU = 0, (3.9)

AU =
(

γ

α
+ β2

α
− c

4α

)
U + βξ + λW, AφU = − c

4α
φU. (3.10)

Condition (1.1) yields the next calculations: AlU = lAU ⇒ g(AlU, ξ ) = g(lAU, ξ ) ⇒
g(lU, Aξ ) = 0, since l is symmetric and lξ = 0. Expanding g(lU, Aξ ) = 0 with the aid
of (2.6) and (3.9), we obtain γ = 0. Now, we expand AlU = lAU with the aid of γ = 0
and (3.5), obtaining λ = 0. So, from the conclusions of this paragraph and (3.10), we
have proved (3.1).

From equation (3.1) and relation (2.3) for X = ξ , X = U , X = φU , we obtain
(3.2). Next, we remind of the rule

Xg(Y, Z) = g(∇X Y, Z) + g(Y,∇X Z). (3.11)

We define W1 = ∇ξ U . By virtue of (3.11) for X = Z = ξ , Y = U and for X = ξ ,
Y = Z = U , it is shown respectively ∇ξ U⊥ξ and ∇ξ U⊥U . In a similar way, we
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define W2 = ∇U U . Equation (3.11) for X = Y = Z = U and X = Z = U , Y = ξ

yields respectively ∇U U⊥U and ∇U U⊥ξ . Finally, (3.11) for X = φU , Y = Z = U
and X = φU , Y = U , Z = ξ (with the aid of (3.2)) yields respectively ∇φU U⊥U and
g(∇φU U, ξ ) = − c

4α
. Therefore, we define W3 = ∇φU U + c

4α
ξ and (3.3) has been proved.

In order to prove (3.4), we use the second of (1.3) with the following combinations: (i)
X = ξ , Y = U , (ii) X = Y = U , (iii) X = φU , Y = U , and make use of (2.6), (3.1),
(3.3). �

In order to proceed with the rest of the paper, the following functions are defined:

κ1 = g(W1, φU), κ2 = g(W2, φU), κ3 = g(W3, φU). (3.12)

LEMMA 3.2. Let M be a real hypersurface of a complex space form Mn(c), n > 2
(c �= 0), satisfying (1.1) and (1.2). Then, the following relations hold in N:

AW1 = − c
4α

W1, AφW1 = − c
4α

φW1 − κ1β

α
Aξ.

Proof. From (1.2), we obtain (∇ξ l)U = ω(U)ξ + ψ(U)lU . The previous relation
is analysed by virtue of (3.9), γ = δ = λ = 0 and Lemma 3.1, giving lW1 = −ω(U)ξ .
The inner product of the last equation with ξ yields ω(U) = 0 which means lW1 = 0,
which is expanded from (3.5) giving AW1 = − c

4α
W1.

In a similar way, (1.2) yields (∇ξ l)φU = ω(φU)ξ + ψ(φU)lφU . The last equation is
developed by virtue of (3.9), ε = δ = μ = 0 and Lemma 3.1, giving lφW1 = −ω(φU)ξ ,
whose inner product with ξ yields ω(φU) = 0. This means lφW1 = 0, which is expanded
from (3.5) giving AφW1 = − c

4α
φW1 − κ1β

α
Aξ . �

LEMMA 3.3. Let M be a real hypersurface of a complex space form Mn(c), n > 2
(c �= 0), satisfying (1.1) and (1.2). Then, in N we have κ1 = −4α and κ2 = −4β +

c
4αβ

( c
4α

− β2

α
).

Proof. Putting X = U , Y = ξ in (2.5), we obtain

(∇U A)ξ − (∇ξ A)U = − c
4
φU.

Combining the last equation with (2.6) and Lemmas 3.1, 3.2 it follows :

(Uα)ξ + (Uβ)U + βW2 +
(

− c
4α

+ β2

α

)
c

4α
φU

−ξ

(
− c

4α
+ β2

α

)
U − β2

α
W1 − (ξβ)ξ = 0.

Taking the scalar products of the last relation with ξ and U respectively, we obtain

(Uα) = (ξβ), (3.13)

and

(Uβ) =
(

ξ

(
β2

α
− c

4α

))
. (3.14)
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Combining the last three equations, we have

c
4α

(
c

4α
− β2

α

)
φU + β2

α
W1 − βW2 = 0. (3.15)

Putting X = φU , Y = ξ in (2.5), we obtain

(∇φU A)ξ − (∇ξ A)φU = c
4

U,

which is expanded with the aid of Lemmas 3.1, 3.2 and (2.6), resulting to[
3βc
4α

+ αβ + κ1β − (φUα)
]

ξ (3.16)

−
[

(φUβ) + c
4α

(
c

4α
− β2

α

)
− β2 − κ1

β2

α

]
U + c

4α2
(ξα)φU − βW3 = 0.

By taking the scalar products of (3.16) with ξ , U , φU and making use of (3.12),
we acquire respectively

(φUα) = 3βc
4α

+ αβ + κ1β, (3.17)

(φUβ) = c
4α

(
β2

α
− c

4α

)
+ β2 + κ1

β2

α
. (3.18)

βκ3 = c
4α2

(ξα). (3.19)

Relation (∇U A)φU − (∇φU A)U = − c
2ξ holds due to (2.5). It is further analysed using

Lemmas 3.1, 3.2 leading to

c
4α2

(Uα)φU +
[

c
2α

(
β2

α
− c

4α

)
+ β2 − (φUβ)

]
ξ

+
[
−3βc

4α
+ β3

α
+

(
φU

(
c

4α
− β2

α

))]
U − c

4α
φW2 − AφW2

+ AW3 +
(

c
4α

− β2

α

)
W3 = 0. (3.20)

The scalar product of (3.20) with U , combined with Lemma 3.1, (3.12) and the
symmetry of A, yields

κ2β
2

α
− 3βc

4α
+ β3

α
+ φU

(
c

4α
− β2

α

)
= 0.

The above equation is modified, first, by expanding the term φU( c
4α

− β2

α
) and then,

by replacing the terms (φUα), (φUβ) from (3.17), (3.18). The result is

κ2β − κ1
β2

α
− c

4α

(
c

4α
− β2

α

)
− c − κ1

c
4α

= 0. (3.21)
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On the other hand, the scalar product of (3.15) with φU , because of (3.12), yields

κ2β − κ1
β2

α
− c

4α

(
c

4α
− β2

α

)
= 0. (3.22)

From (3.21) and (3.22), we obtain κ1 = −4α, κ2 = −4β + c
4αβ

( c
4α

− β2

α
). �

The scalar product of (3.15) with φW1 yields:

g(φW1, W2) = g(W1, φW2) = 0. (3.23)

4. The set N is the empty set. In this section, we prove that N = ∅. In order to
do that, we need the following lemma:

LEMMA 4.1. Let M be a real hypersurface of a complex space form Mn(c), n > 2
(c �= 0) satisfying (1.1) and (1.2) in N. Then, κ3 = 0 holds in N.

Proof. Taking the scalar product of (3.20) with φU , because of Lemma 3.1, (3.12)
and the symmetry of A, we get (Uα) = 4αβ2

c κ3. Combining the last equation with (3.13)
and (3.14), we have

(Uα) = (ξβ) = 4αβ2

c
κ3, (ξα) = 4α2β

c
κ3, (Uβ) = β

(
4β2

c
+ 1

)
κ3. (4.1)

By making use of (2.5) for X = φW2, Y = ξ and using (2.3), (2.6), we obtain

(φW2α)ξ + αφAφW2 + (φW2β)U + β∇φW2 U

− AφAφW2 − ∇ξ AφW2 + A∇ξφW2 = c
4

W2.

The scalar product with ξ , due to (2.2), (2.3), (2.6), (3.11), (3.12), (3.23), (3.1) the
symmetry of A and Lemmas 3.1, 3.3, implies

(φW2α) = βκ3

(16αβ2

c
+ β2

α
− c

4α

)
. (4.2)

From (3.16)–(3.18) and (4.1), it is shown W3 = κ3φU , which is combined with (3.17)
and Lemma (3.3) giving

(W3α) = 3β
( c

4α
− α

)
κ3. (4.3)

In a similar way, equation (2.5) yields (∇φW1 A)U − (∇U A)φW1 = 0,which by virtue of
Lemma 3.1 is further developed as

(
φW1

(
β2

α
− c

4α

))
U +

(
β2

α
− c

4α

)
∇φW1 U

+ (φW1β)ξ + βφAφW1 − A∇φW1 U − ∇U AφW1 + A∇UφW1 = 0.
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The scalar product of the last equation with ξ by using Lemmas 3.1, 3.3, (2.3), (2.6),
(3.11), (3.12) leads to

(φW1β) = 4αβκ3

(
1 + 4β2

c

)
. (4.4)

By virtue of Lemma 3.3 and (3.17). (4.1), we have

[φU, U ]α = (
φU(Uα)

) + 3αβ

c

[
8β2 + c − c2

4α2

]
κ3.

On the other hand from Lemmas 3.1, 3.3 and (4.1)–(4.3), we obtain:

[φU, U ]α = (∇φU U − ∇UφU)α = αβ

c

(
−12β2 + c2

α2
− 5c − β2

α2
c
)

κ3.

The last two equations imply

(
φU(Uα)

) = 2β

(
7c
8α

− 18αβ2

c
− 4α − β2

2α

)
κ3. (4.5)

Following a similar way, from the action of [φU, ξ ] on β we calculate (φU(ξβ)
)
.

In particular, we expand the derivative [φU, ξ ]β = φU(ξβ) − ξ (φUβ) by virtue of
Lemma 3.3 and (3.18), (4.1), and then calculate the same derivative, from relation
[φU, ξ ]β = (∇φUξ − ∇ξφU)β, with the aid of Lemmas 3.1, 3.3, (4.1), (4.4). The final
result is

(
φU(ξβ)

) = 2β

(
3c
8α

− 18αβ2

c
− 2α + β2

2α

)
κ3. (4.6)

Because of (3.13), the relations (4.5) and (4.6) yield( c
2

− 2α2 − β2
)

κ3 = 0. (4.7)

Let us assume there exists a point p ∈ N at which κ3 �= 0. Then, there exists a
neighbourhood V1 of p such that κ3 �= 0 in V1. Therefore, (4.7) yields 2α2 + β2 = c

2 ,
which is differentiated along ξ , with the aid of (4.1) and κ3 �= 0, giving 2α2 + β2 = 0
which is a contradiction. This means there are no points of N where κ3 �= 0 and so
κ3 = 0 holds in N. �

From Lemma 4.1 and (4.1) we have (Uα) = (ξα) = 0 ⇒ [U, ξ ]α = 0. But the last
equation, because of Lemmas 3.1, 3.3 yields(

β2

α
− c

4α

)
(φUα) − (W1α) = 0. (4.8)

Using the same Lemmas and relations, we prove [U, ξ ]β = 0 and(
β2

α
− c

4α

)
(φUβ) − (W1β) = 0. (4.9)
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Furthermore, from (2.5) for X = W1, Y = ξ , taking the scalar product with ξ and
U , using the Lemmas 3.1, 3.3 we have respectively

(W1α) = β|W1|2 − 3βc − 4α2β. (4.10)

(W1β) = c
(

c
4α

− β2

α

)
+ β2

α
|W1|2 − 4αβ2. (4.11)

Relations (3.17), (4.8), (4.10) and Lemma 3.3 lead to

β

α

(
β2

α
− c

4α

) (
3βc
4α

− 3αβ

)
+ 3β2c

α
= β2

α
|W1|2 − 4αβ2, (4.12)

while relations (3.18), (4.9), (4.11) and Lemma 3.3 lead to

(
β2

α
− c

4α

) [
c

4α

(
β2

α
− c

4α

)
− 3β2

]
− c

(
c

4α
− β2

α

)
= β2

α
|W1|2 − 4αβ2. (4.13)

We equate the left sides of (4.12) and (4.13) and then modify this new equation by

subtracting −3β2
(

β2

α
− c

4α

)
from both sides. The result is

c
4α

(
β2

α
− c

4α

)[
2β2

α
+ c

4α
)
]

+ 3β2c
α

+ c
(

c
4α

− β2

α

)
= 0,

which is multiplied by 4α3

c , giving

(
β2 − c

4

) (
β2 + c

8

)
= −4α2β2 − α2c

2
= −4α2

(
β2 + c

8

)
. (4.14)

If we had c
8 = −β2 < 0 at some point of M, then the same would hold in a

neighbourhood of this point. In this case, by differentiation of c
8 = −β2 along φU

in this neighbourhood and by virtue of (3.18), Lemma 3.3, we would get c = 4α2 > 0
which is a contradiction. Therefore, c

8 �= −β2 and (4.14) yields

β2 + 4α2 = c
4
. (4.15)

We differentiate (4.15) along φU and make use of (3.17), (3.18), (4.15), Lemma 3.3,
obtaining β2 + 4α2 = 2c

3 which contradicts (4.15). Therefore, we have a contradiction
in N and N is the empty set. Thus, M is a Hopf hypersurface. �

5. Proof of Theorem 1.1. Since M is Hopf, we have Aξ = αξ and α is constant
[9]. The scalar product of condition (1.2) with ξ , due to the symmetry of l, lξ = 0 ,
(3.11) and ∇ξ ξ = φAξ = αφξ = 0, yields ω(X) = 0 ∀X ∈ TM and so condition (1.2)
becomes

(∇ξ l)X = ψ(X)lX.
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In addition, replacing the vector field X with 2X in the above relation and due to the
linearity of ψ, l, we have

(∇ξ l)X = 2ψ(X)lX.

The above two equations hold for every X ∈ � and therefore we obtain ψ(X)lX =
0,∀X ∈ �. However l cannot be locally zero [11], which means ψ(X) = 0 ∀X ∈ �. The
last equation and (∇ξ l)ξ = 0, reform (1.2) as (∇ξ l)X = 0, which is further analysed
leading to α(∇ξ A)X = 0.

Next, we recall the following equation which holds in every Hopf hypersurface [9]:

AφAX − α

2
(Aφ + φA)X − c

4
φX = 0. (5.1)

Relation α(∇X A)ξ − α(∇ξ A)X = −α c
4φX holds ∀X ∈ � due to (2.5). It is combined

with α(∇ξ A)X = 0 and further developed, giving α2φAX = αAφAX − α c
4φX . The

right term of this equality is replaced from (5.1) resulting to

α(φA − Aφ)X = 0, ∀X ∈ D. (5.2)

From (5.2) and (φA − Aφ)ξ = 0, we obtain α = 0 or M is of type A [8, 10] and the
theorem is proved.

Finally, we give two propositions.

PROPOSITION 5.1. Every Hopf hypersurface satisfies (1.1).

Proof. If M is Hopf, then (2.4) yields lX = (αA + c
4 )X , ∀X ∈ D. By virtue of the

last equation, we have lAX = AlX . �
PROPOSITION 5.2. Every real hypersurface of type A satisfies (1.2) with ω(X) = 0

and ψ(X) = 0. Every Hopf hypersurface with α = 0 satisfies the same condition.

Proof. Let M be of type A and X ∈ D a principal vector field with principal
curvature λ, and α the principal curvature of ξ . (2.4) yields lX = (αA + c

4 )X , ∀X ∈ D.
Furthermore, in a real hypersurface of type A we have λ2 = αλ + c

4 , thus from the last
two equations we have lX = λ2X , which is used to show (∇ξ l)X = 0. The last equation
and (∇ξ l)ξ = ∇ξ lξ − l∇ξ ξ = 0 show that real hypersurfaces of type A satisfy (1.2) with
ω = ψ = 0.

If M is Hopf with α = 0 then (2.4) yields lX = c
4 X for every X ∈ D. Therefore,

(∇ξ l)X = 0 holds. In addition we have (∇ξ l)ξ = 0, thus (∇ξ l)X = 0 holds for
every X . �
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