
JFP 22 (1): 31–105, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000032 First published online 6 March 2012

31

Semantic subtyping with an SMT solver

GAVIN M. BIERMAN and ANDREW D. GORDON

Microsoft Research, Cambridge, UK

(e-mail:)gmb@microsoft.com, adg@microsoft.com)

CĂTĂLIN HRIŢCU

Saarland University and University of Pennyslvania, Philadelphia, PA, USA

(e-mail:)catalin.hritcu@gmail.com)

DAVID LANGWORTHY

Microsoft Corporation, Redmond, WA

(e-mail:)dlan@microsoft.com)

Abstract

We study a first-order functional language with the novel combination of the ideas of

refinement type (the subset of a type to satisfy a Boolean expression) and type-test (a Boolean

expression testing whether a value belongs to a type). Our core calculus can express a

rich variety of typing idioms; for example, intersection, union, negation, singleton, nullable,

variant, and algebraic types are all derivable. We formulate a semantics in which expressions

denote terms, and types are interpreted as first-order logic formulas. Subtyping is defined

as valid implication between the semantics of types. The formulas are interpreted in a

specific model that we axiomatize using standard first-order theories. On this basis, we

present a novel type-checking algorithm able to eliminate many dynamic tests and to detect

many errors statically. The key idea is to rely on a Satisfiability Modulo Theories solver to

compute subtyping efficiently. Moreover, using a satisfiability modulo theories solver allows

us to show the uniqueness of normal forms for non-deterministic expressions, provide precise

counterexamples when type-checking fails, detect empty types, and compute instances of types

statically and at run-time.

1 Introduction

This paper studies first-order functional programming in the presence of both

refinement types (types qualified by Boolean expressions) and type-tests (Boolean

expressions testing whether a value belongs to a type). The novel combination of

type-test and refinement types appears in a recent commercial functional language,

code-named M (Microsoft Corporation 2009), whose types correspond to relational

schemas, and whose expressions compile to SQL queries. Refinement types are used

to express SQL table constraints within a type system, and type-tests are useful

for processing relational data, for example, by discriminating dynamically between

different forms of union types. Still, although useful and extremely expressive,

the combination of type-test and refinement types is hard to type-check using

conventional syntax-driven subtyping rules. The preliminary implementation of M

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

32 G. M. Bierman et al.

uses such subtyping rules and has difficulty with certain sound idioms (such as uses

of singleton and union types). Hence, type safety is enforced by dynamic checks, or

not at all.

This paper studies the problem of type-checking code that uses type-tests and

refinements via a core calculus, named Dminor, whose syntax is a small subset of

M, and which is expressive enough to encode all the essential features of the full

M language. In the remainder of this section, we elaborate on the difficulties of

type-checking Dminor (and hence M), and outline our solution, which is to use

semantic subtyping rather than syntactic rules.

1.1 Programming with type-test and refinement

The core types of Dminor are structural types for scalars, unordered collections, and

records. (Following the database orientation of M, we refer to records as entities.)

We write S <: T for the subtype relation, which means that every value of type S

is also of type T .

Two central primitives of Dminor are the following:

• A refinement type, (x : T where e), consists of the values x of T satisfying the

Boolean expression e.

• A type-test expression, e in T , returns true or false depending on whether or

not the value of e belongs to type T .

As we shall see, many types are derivable from these primitive constructs and their

combination. For example, the singleton type [v], which contains just the value v,

is derived as the refinement type (x : Any where x == v), where Any is the type of

all values. The union type T | U, which contains the values of T together with the

values of U, is derived as (x : Any where (x in T) || (x in U)).

Here is a snippet from a typical Dminor (and M) program for processing a

domain specific language, a language of while-programs. The type is a union of

different sorts of statements, each of which is an entity with a kind field of singleton

type. (The snippet relies on an omitted – but similar – recursive type of arithmetic

expressions.)

type Statement =

{kind:["assignment"]; var: Text; rhs: Expression;} |
{kind:["while"]; test:Expression; body:Statement;} |
{kind:["if"]; test:Expression; tt:Statement; ff:Statement;} |
{kind:["seq"]; s1:Statement; s2:Statement;} |
{kind:["skip"];};

In languages influenced by HOPE (Burstall et al., 1980), such as ML and Haskell,

we would use the built-in notion of algebraic type to represent such statements.

But like many data formats, including relational databases, semi-structured data,

S-expressions, and JavaScript Object Notation (JSON) (Crockford, 2006), the data

structures of M and Dminor do not take as primitive the idea of data tagged with

data constructors. Instead, we need to follow an idiom such as shown above, of

taking the union of entity types that include explicit tags that are given distinct

singleton types.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 33

If y has type Statement, we may process such data as follows:

((y.kind == "assignment")? y.var : "NotAssign")

Intuitively, this code is type-safe because it checks the kind field before accessing

the var field, which is only present for assignment statements. More precisely, to

type-check the then-branch y.var at type Text, we have y : Statement (that is, a

union type encoded using refinements and type-test, which after expansion has the

form (x : Any where . . . || . . .)), know that y.kind == "assignment", and need to

decide [y] <: {var : Text; }. Subtyping should succeed, but clearly requires relatively

sophisticated symbolic computation, including case analysis and propagation of

equations. This is a typical example where syntax-driven rules for refinements and

type-test are inadequate (if one ignores the refinement in the definition of Statement,

then Any is not a subtype of {var : Text; }), and indeed this simple example cannot

be checked statically by the preliminary release of M. Our proposal is to delegate

the hard work to an external prover.

1.2 An opportunity: SMT as a platform

Over the past few years, there has been tremendous progress in the field of

Satisfiability Modulo Theories (SMT), that is, for (fragments of) first-order logic

(FOL) plus various standard theories such as equality, real and integer (linear)

arithmetic, bit vectors, and (extensional) arrays. Some of the leading systems

include CVC3 (Barrett & Tinelli, 2007), Yices (Dutertre & de Moura, 2006),

and Z3 (de Moura & Bjørner, 2008). There are common input formats such as

Simplify’s (Detlefs et al., 2005) unsorted S-expression syntax and the SMT-LIB

standard (Ranise & Tinelli, 2006) for sorted logic. Hence, FOL with standard theories

is emerging as a computing platform. Software written to generate problems in a

standard format can rely on a wide range of back-end solvers, which get better over

time due in part to healthy competition,1 and which may even be run in parallel

when sufficient cores are available. There are limitations, of course, as first-order

validity is undecidable even without any theories, so solvers may fail to terminate

within a reasonable time, but recent progress has been remarkable.

1.3 Semantic subtyping with an SMT solver

The central idea in this paper is a type-checking algorithm for Dminor that checks

subtyping by invoking an external SMT solver. To check whether S is a subtype of T ,

we construct first-order formulas F[[S]](x) and F[[T]](x), which hold when x belongs

to the type S and the type T , respectively, and ask the solver whether the formula

F[[S]](x)⇒ F[[T]](x) is valid, given any additional constraints known from the typing

environment. This technique is known as semantic subtyping (Aiken & Wimmers,

1993; Frisch et al., 2008), as opposed to the more common alternative, syntactic

1 Most important is the SMT-COMP (Barrett et al., 2008) competition held each year in conjunction
with CAV and in which more than a dozen SMT solvers contend.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

34 G. M. Bierman et al.

subtyping, which is to define syntax-driven rules for checking subtyping (Pierce,

2002).

The idea of using an external solver for type-checking with refinement types

is not new. Several recent type-checkers for functional languages, such as SAGE

(Flanagan, 2006; Knowles et al., 2007; Knowles & Flanagan, 2010), F7 (Bengtson

et al., 2008), Fine (Swamy et al., 2010), and Dsolve (Rondon et al., 2008), rely on

various SMT solvers. However, these systems all rely on syntactic subtyping, with

the solver being used as a subroutine to check constraints during subtyping.

To the best of our knowledge, our proposal to implement semantic subtyping by

calling an external SMT solver is new. Semantic subtyping nicely exploits the solver’s

ability to handle logical connectives efficiently; for example, we represent union and

intersection types as logical disjunctions and conjunctions. Hence, we avoid the

implementation effort of explicit propagation of constraints, and of syntax-driven

rules for union and intersection types (Pierce, 1991; Dunfield & Pfenning, 2004;

Dunfield, 2007). Moreover, we exploit the theories of equality, integer arithmetic,

extensional arrays (de Moura & Bjørner, 2009), and algebraic datatypes.

1.4 Contributions of the paper

1. Investigation of semantic subtyping for a core functional language with both

refinement types and type-test expressions (a novel combination, as far as we

know). We are surprised that so many typing constructs are derivable from

this combination.

2. Development of the theory, including both a declarative type assignment

relation, and algorithmic rules in the bidirectional style. Our correctness results

cover the core type assignment relation, the bidirectional rules, the algorithmic

purity check, and some logical optimizations.

3. An implementation based on checking semantic subtyping by constructing

proof obligations for an external SMT solver. The proof obligations are

interpreted in a model that is formalized in Coq and axiomatized using

standard first-order theories (equality, integers, datatypes, and extensional

arrays).

4. Devising a systematic way to use the SMT solver in order to show the

uniqueness of normal forms for non-deterministic expressions, provide precise

counterexamples when type-checking fails, detect empty types, and compute

instances of types. The latter enables a new form of declarative constraint

programming, where constraints arise from the interpretation of a type as a

formula.

1.5 Structure of the paper

Section 2 describes the formal syntax of Dminor together with a small-step

operational semantics, e→ e′, where e and e′ are expressions. We encode a series of

type idioms to illustrate the expressiveness of the language and its type system.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 35

Section 3 presents a logical semantics of pure expressions (those without side-

effects, including non-termination) and Dminor types. We require that expressions

used as refinements be pure so that they have a direct interpretation as predicates.

Each pure expression e is interpreted as a term R[[e]] and each type T is interpreted

as a FOL formula F[[T]](t), where t is a FOL term. The formulas are interpreted

in a specific model that we have formalized in Coq. Theorem 1 is a full abstraction

result: Two pure expressions have the same logical semantics just when they are

operationally equivalent.

Section 4 introduces a tractable property, algorithmic purity, for use in our typing

rules. Algorithmic purity is defined using a syntactic termination restriction together

with a confluence check that relies on the logical semantics. Theorem 2 shows that

our algorithmic purity check is indeed a sufficient condition for purity.

Section 5 presents the declarative type system for Dminor. The type assignment

relation has the form E � e : T , meaning that expression e has type T given typing

environment E. Theorem 3 concerns logical soundness of type assignment; if e is

assigned type T then formula F[[T]](R[[e]]) holds. Progress and preservation results

(Theorems 4 and 5) relate type assignment to the operational semantics, entailing

that well-typed expressions cannot go wrong.

Section 6 develops additional theory to justify our implementation techniques.

First, we present simpler variations of the translations R[[e]] and F[[T]](t), optimized

by the observation that during type-checking we only interpret well-typed expres-

sions, and so we need not track error values. Theorem 6 shows the soundness and

completeness of this optimization. Second, since the declarative rules of Section 5

are not directly algorithmic, we propose type-checking and synthesis algorithms

presented as bidirectional rules. Theorem 7 shows these are sound with respect to

type assignment.

Section 7 shows how to use the models produced by the SMT solver to provide

very precise counterexamples when type-checking fails and to find inhabitants of

types statically or dynamically. Section 8 reports some details of our implementation.

We survey related work in Section 9, before concluding in Section 10.

The appendixes describe our intended logical model of Dminor and its formal-

ization in Coq (Appendix A); report on the axiomatization of the model passed to

the SMT solver during type-checking (Appendix B); and provide detailed proofs

(Appendix C).

Our implementation, as well as sample code and listings of Dminor runs, the

Coq formalization of our model, and also a screencast comparing the effective-

ness of Dminor with the standard M type-checker are all available at http:

//research.microsoft.com/dminor/. A technical report (Bierman et al., 2010a)

describes how our type-checker may be used to check for systems configuration

errors. A preliminary abridged version of this work appears in a conference

proceedings (Bierman et al., 2010b). Although we have formalized our logical model,

and some other definitions, in Coq, our proofs are not in general mechanized in

Coq. We list the theorems proved in Coq in Section 8.

Finally, we report that the future of the M language, the inspiration for Dminor, is

rather uncertain at present. In a September 2010 blog posting (Box, 2010), Microsoft

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

36 G. M. Bierman et al.

announced that prototype software based on M would not be brought to market.

Whatever the future of the M language itself, our hope is that the concepts we have

developed in Dminor will be valuable in other settings.

2 Syntax and operational semantics

Dminor is a strict first-order functional language whose data include scalars, entities,

and collections; it has no mutable state, and its only side effects are non-termination

and non-determinism. This section describes (1) the syntax of expressions, types,

and global function definitions; (2) the operational semantics; (3) the definition of

pure expressions (those without side effects); and (4) some encodings to justify our

expressiveness claims.

The following example introduces the basic syntax of Dminor. An accumulate

expression is a fold over an unordered collection; to evaluate from x in e1 let y =

e2 accumulate e3, we first evaluate e1 to a collection v, evaluate e2 to an initial value

u0, and then compute a series of values ui for i ∈ 1..n by setting ui to the value

of e3{vi/x}{ui−1/y}, and eventually return un, where v1, . . . , vn are the items in the

collection v, in some arbitrary order.

NullableInt � Integer | [null]

removeNulls(xs : NullableInt∗) : Integer∗
{ from x in xs let a = ({}:Integer∗) accumulate (x!=null) ? (x :: a) : a }

The type NullableInt is defined as the union of Integer with the singleton type

containing only the value null. The type Integer∗ denotes a collection of values of type

Integer. We then define a function removeNulls that iterates over its input collection

and removes all null elements. As expected, executing removeNulls({1, null, 42, null})
produces {1, 42} (which denotes the same collection as {42, 1}).

Given that the collection xs contains elements of type NullableInt (xs : NullableInt∗),
that x is an element of xs, and the check that x != null, our type-checking algorithm

infers that on the if branch x : Integer, and therefore the result of the comprehension

is Integer∗, as declared by the function. If we remove the check that x != null, and

copy all elements with x :: a then type-checking fails, as expected.

2.1 Expressions and types

We observe the following syntactic conventions. We identify all phrases of syntax

(such as types and expressions) up to consistent renaming of bound variables. For

any phrase of syntax φ we write φ{e/x} for the outcome of a capture-avoiding

substitution of e for each free occurrence of x in φ. We write fv(φ) for the set of

variables occurring free in φ.

We assume some base types for integers, strings, and logical values, together

with constants for each of these types as well as a null value. We also assume an

assortment of primitive operators; they are all binary apart from negation !, which

is unary.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 37

Scalar types, constants, and operators

G ::= Integer | Text | Logical scalar type

K(Integer) = {i | integer i}
K(Text) = {s | string s}
K(Logical) = {true, false}
c ∈ K(Integer) ∪K(Text) ∪K(Logical) ∪ {null} scalar constants

⊕ ∈ {+,−,×, <,>,==, !,&&, ||} primitive operators

A value may be a simple value (an integer, string, Boolean, or null), a collection

(a finite multiset of values), or an entity (a finite set of fields, each consisting of a

value with a distinct label). (We follow M terminology, but entities would usually

be called records.)

Syntax of values

v ::= value

c scalar (or simple value)

{v1, . . . , vn} collection (multiset; unordered)

{�i ⇒ vi
i∈1..n} entity (�i distinct)

We identify values u and v, and write u = v when they are identical up to

reordering the items within collections or entities. While collections are unordered,

ordered lists can be encoded using nested entities (see Section 2.4).

Syntax of types

S, T ,U ::= type

Any the top type

G scalar type

T∗ collection type

{�:T } (single) entity type

(x : T where e) refinement type (scope of x is e)

All values have type Any, the top type. The values of a scalar type G are the

scalars in the set K(G) defined above. The values of type T∗ are collections of values

of type T . The values of type {�:T } are entities with (at least) a field � holding

values of type T . (We show in Section 2.4 how to define multi-field entity types as a

form of intersection type.) Finally, the values of a refinement type (x : T where e) are

the values v of type T such that the Boolean expression e{v/x} returns true. As a

convenient shorthand, we write T where e for the refinement type (value : T where e),

where the omitted variable defaults to value. For example, Integer where value > 0 is

the type of positive numbers.

Syntax of expressions

e ::= expression

x variable

c scalar constant

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

38 G. M. Bierman et al.

⊕(e1, . . . , en) operator application

e1?e2 : e3 conditional

let x = e1 in e2 let-expression (scope of x is e2)

e in T type-test

{�i ⇒ ei
i∈1..n} entity (�i distinct)

e.� field selection

{v1, . . . , vn} collection (multiset)

e1 :: e2 adding element e1 to collection e2

from x in e1

let y = e2 accumulate e3

iteration over collection

(scope of x and y is e3)

f(e1, . . . , en) function application

Variables, constants, operators, conditionals, and let-expressions are standard.

When ⊕ is binary, we often write e1 ⊕ e2 instead of ⊕(e1, e2). A type-test, e in T ,

returns a Boolean to indicate whether or not the value of e inhabits the type T .

The accumulate primitive can encode all the usual operations on collections:

counting the number of elements or the occurrences of a certain element, checking

membership, removing duplicates and elements, multiset union and difference, as

well as comprehensions in the style of the nested relational calculus (Buneman et al.,

1995). (The form bind x← e1 in e2 is the monadic bind for the multiset monad.)

Derived collection expressions

{e1, . . . , en} � e1 :: . . . :: en :: {}
e.Count � from x in e let y = 0 accumulate y + 1

e.Count(e2) � let z = e2 in (from x in e let y = 0 accumulate (x == z)?y + 1 : y)

e1 ∈ e2 � (e2.Count(e1) > 0)

e.Distinct � from x in e let y = {} accumulate (x ∈ y)?y : (x :: y)

e.Remove(e2) � let z = e2 in

(from x in e let y = {found = false, res = {}}
accumulate (x == z && !y.found)?{found = true, res = y.res}

: {found = y.found, res = x :: y.res}
).res

e1 ∪ e2 � from x in e1 let y = e2 accumulate x :: y

e1 \ e2 � from x in e2 let y = e1 accumulate y.Remove(x)

bind x← e1 in e2 � from x in e1 let y = {} accumulate e2 ∪ y

In example code, we often rely on the following derived syntax for from-where-select

expressions in LINQ style (Meijer et al., 2007). The expression from x in e1 where

e2 select e3 computes the collection e1, and returns the collection of items e3, for each

member x of e1 to satisfy the predicate e2.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 39

Derived LINQ queries

from x in e1 where e2 select e3 � from x in e1 let y = {} accumulate e2?(e3 :: y) : y

To complete the syntax of Dminor, we interpret types and expressions in the

context of a fixed collection of first-order, dependently typed, potentially recursive

function definitions. We assume for each expression f(e1, . . . , en) in a source program

that there is a corresponding function definition for f with arity n.

Function definitions: f(x1 : T1, . . . , xn : Tn) : U{e}
We assume a finite, global set of function definitions, each of which associates a

function name f with a dependent signature x1 : T1, . . . , xn : Tn → U, formal

parameters x1, . . . , xn, and a body e, such that fv(e) ⊆ {x1, . . . , xn} and fv(U) ⊆
{x1, . . . , xn}.

2.2 Operational semantics

We define a non-deterministic, potentially divergent, small-step reduction relation

e→ e′, together with a standard notion of expressions going wrong, to be prevented

by typing.

Each primitive operator is a partial function represented by a set of mappings of

the form ⊕(v1, . . . , vn)
→ v0, where each vi is a value. The == operator implements

syntactic equality, which for collections and entities is up to reordering of elements.

Apart from ==, the other operators only act on scalar values. For example, the

equations for + are (i + j)
→ i + j. The other operators are defined by similar

equations, and we omit the details.

Reduction contexts

R ::= reduction context

⊕(v1, . . . , vj−1, •, ei+1, . . . , en)

•?e2 : e3 | let x = • in e2 | • in T

{�i ⇒ vi
i∈1..j−1, �j ⇒ •, �i ⇒ ei

i∈j+1..n}
•.� | • :: e | v :: • | from x in • let y = e2 accumulate e3

f(v1, . . . , vi−1, •, ei+1, . . . , en)

Reduction rules for standard constructs

e→ e′ ⇒ R[e]→ R[e′]

⊕(v1, . . . , vn)→ v if ⊕(v1, . . . , vn)
→ v defined

true?e2 : e3 → e2

false?e2 : e3 → e3

let x = v in e2 → e2{v/x}
{�i ⇒ vi

i∈1..n}.�j → vj where j ∈ 1..n

v :: {v1, . . . , vn} → {v1, . . . , vn, v}
from x in {v1, . . . , vn} let y = e2 accumulate e3

→ let y = e2 in let y = e3{v1/x} in . . . let y = e3{vn/x} in y

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

40 G. M. Bierman et al.

f(v1, . . . , vn)→ e{v1/x1} . . . {vn/xn}
given function definition f(x1 : T1, . . . , xn : Tn) : U{e}

Reduction rules for type-test

v in Any→ true

v in G→
{

true if v ∈ K(G)

false otherwise

v in {�j : Tj} →
{

vj in Tj if v = {�i ⇒ vi
i∈1..n} ∧ j ∈ 1..n

false otherwise

v in T∗ →
{

v1 in T && . . . && vn in T if v = {v1, . . . , vn}
false otherwise

v in (x : T where e)→ v in T && e{v/x}

The reduction rules for type-test expressions, e in U, first reduce e to a value v

and then proceed by case analysis on the structure of the type U. In case U is a

refinement type (x : T where e) then v is a value of U if and only if v is a value of

type T and e{v/x} reduces to the value true.

The reduction relation would be deterministic were it not for the reduction rule for

accumulate expressions. (If the primitive syntax for collections was not {v1, . . . , vn}
but instead was {e1, . . . , en}, where the ei are not necessarily values, non-determinism

would also arise from the reduction of collections to values.) Since collections are

unordered, the rule applies for any permutation of {v1, . . . , vn}. For example, consider

the expression pick v1 v2 � from x in {v1, v2} let y = null accumulate x; we have both

pick true false→∗ true and pick true false→∗ false.

Next, we use reduction to define an evaluation relation that relates a closed

expression to its return values, or to Error, in case reduction gets stuck before

reaching a value.

Stuckness, results, and evaluation: e ⇓ r for closed e

Let e be stuck if and only if e is not a value and ¬∃e′.e→ e′.

r ::= Error | Return(v) results of evaluation

e ⇓ Return(v) if and only if e→∗ v
e ⇓ Error if and only if there is e′ such that e→∗ e′ and e′ is stuck.

Let closed expression e go wrong if and only if e ⇓ Error. For example, we have

that stuck ⇓ Error, where stuck � {}.� for some label �. In the presence of type-test

and refinement types, expressions can go wrong in unusual ways. For example, given

the refinement type T = (x : Any where stuck), any type-test v in T goes wrong. The

main goal of our type system is to ensure that no closed well-typed expression goes

wrong.

Encoding type-assertion

assert(e : T) � let x = e in ((x in T)?x : stuck)

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 41

Using type-tests we can easily encode type-assertions. The expression assert(e : T)

enforces that the result of the expression e is a value of type T . Operationally,

assert(e : T) returns the value of e if this is an element of T , and goes wrong

otherwise. Since our type system ensures that well-typed expressions do not go

wrong, it also ensures statically that type-assertions always succeed.

Calling a function with arguments that do not have their declared types does not

necessarily go wrong. Similarly, the operational semantics does not force functions

to return a result that matches the declared type. One can, however, use explicit

type-assertions to enforce that the declared types are respected by rewriting any

function definition f(x1 : T1, . . . , xn : Tn) : U{e} into f(x1 : T1, . . . , xn : Tn) :

U{(x1 in T1&& . . .&&xn in Tn)?assert(e : U) : stuck}. Our type system enforces in

any case that declared types are respected. This enables us to express pre- and

post-conditions of functions using refinement types.

2.3 Pure expressions and refinement types

A problem in languages with refinement types (x : T where e) is that the refinement

expression e, even though well-typed, may have effects, such as non-termination or

non-determinism, and so makes no sense as a Boolean condition. In Dminor calls

to recursive functions can cause divergence, and since collections are unordered,

iterating over them with accumulate may be non-deterministic as above.

To address this problem, we define the set of pure expressions, the ones that may

be used as refinements. The details below are little technical, but the gist is that pure

expressions must be terminating, have a unique result (which may be Error), and

must only call functions whose bodies are pure. The typing rule (Type Refine) in

Section 5 requires that for (x : T where e) to be well-formed, the expression e must be

pure and of type Logical (which guarantees that e yields true or false without getting

stuck). Checking for purity is undecidable, but we present sufficient conditions for

checking purity algorithmically in Section 4.

We assume that a subset of the function definitions is labeled-pure; we intend that

only these functions may be called from pure expressions. Let an expression e be

terminating if and only if there exists no unbounded sequence e → e1 → e2 →

Let a closed expression e be pure if and only if (1) e is terminating, (2) there exists

a unique result r such that e ⇓ r, (3) for every subexpression f(e1, . . . , en) of e, the

function f is labeled-pure, and (4) all subexpressions of e are pure. Let an arbitrary

expression e be pure if and only if eσ is pure for all closing substitutions σ that

assign a value to each free variable in e. Finally, we require that the body of every

labeled-pure function is a pure expression.

2.4 Derived types

We end this section by exploring the expressiveness of the primitive types introduced

above, and in particular of the combination of refinement types and dynamic type-

test. We show that the range of derivable types is rather wide. We begin with some

basic examples.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

42 G. M. Bierman et al.

Encoding of empty and singleton types

Empty � (x : Any where false)

[e] � (x : Any where x == e) (e pure, x /∈ fv(e))

The type Empty has no elements; it is a subtype of all other types. The singleton

type, [e], contains only the value of pure expression e (for example, type [null] consists

just of the null value).

Our calculus includes the operators of propositional logic on Boolean values. We

lift these operators to act on types as follows.

Encoding of union, intersection, and negation types

T | U � (x : Any where (x in T) || (x in U)) (x /∈ fv(T ,U))

T & U � (x : Any where (x in T) && (x in U))

!T � (x : Any where !(x in T))

A value of the union type, T | U, is a value of T or of U. A value of the

intersection type, T & U, is a value of both T and U. A value of the negation type,

!T , is a value that is not a value of T . We omit the details, but we could go in the

other direction too: Boolean operators are derivable from union, intersection, and

complement types.

Next, we define the types of simple values, collections, and entities. We rely on

the primitive types Integer, Text, and Logical, the primitive type constructor T∗ for

collections, and the fact that every proper value is either a scalar, a collection, or an

entity: so the type of entities is the complement of the union type General | Collection.

Encoding of supertypes

General � Integer | Text | Logical | [null]

Collection � Any∗
Entity � !(General | Collection)

(This encoding illustrates the power of types based on propositional logic, but is

fragile; if we were to extend the language with other primitive types, it would be

better to take Entity to be primitive too, rather than defining it as a complement.)

The primitive type of entities is unary: the type {� : T } is the set of entities

with a field � whose value belongs to T (and possibly other fields). As in

Forsythe (Reynolds, 1996), we derive multiple-field entity types as an intersection

type. One advantage of this approach is that it immediately entails width and depth

subtyping for entities.

Encoding of multiple-field entity types

{�i : Ti;
i∈1..n} � {�1 : T1} & . . . & {�n : Tn} (�i distinct, n > 0)

We can also derive closed entity types, which only contain entities with a fixed

set of labels, and therefore allow depth but not width subtyping. To do this we

constrain the multiple-field entity types above to additionally satisfy an eta law.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 43

Encoding of closed entity types

closed{�i : Ti;
i∈1..n} � (x : {�i : Ti;

i∈1..n} where x == {�i ⇒ x.�i
i∈1..n})

Pair types are just a special case of closed entity types. Given pair types, refinement

types, and type-test, we can also encode dependent pair types Σx : T . U, where x is

bound in U.

Encoding of pair types and dependent pair types

T ∗U � closed{fst : T ; snd : U; }
(Σx : T . U) � (p : T ∗ Any where let x = p.fst in (p.snd in U))

Sum types are obtained from union types by adding an additional Boolean tag;

variant types are a generalization.

Encoding of sum and variant types

T + U � ([true] ∗ T) | ([false] ∗U)

〈�1 : T1; . . . ; �n : Tn〉 � closed{�1 : T1} | . . . | closed{�n : Tn}

Recursive types can be encoded as Boolean recursive functions that dynamically

test whether a given value has the required type.

Encoding recursive types

μX.T � (x : Any where fμX.T (x)),where fv(T) = �
and fμX.T (x) is a new labeled-pure function defined by

fμX.T (x : Any) : Logical {x in T {(x : Any where fμX.T (x))/X}}

The usual contractivity condition is replaced by the requirement that fμX.T is

labeled-pure.

Using recursive, sum, and pair types we can encode any algebraic datatype. For

instance, the type of lists of elements of type T can be encoded as follows.

Encoding list types

ListT � μX. (T ∗ X) + [null]

In this encoding of lists, the cons-cell v :: u is represented by a couple of nested

entities {fst⇒ true, snd⇒ {fst⇒ v, snd⇒ u}}. More efficient representations can be

easily supported, for instance, μX. closed{hd : T , tl : X} | [null], for which a cons-cell

is a single entity: {hd⇒ v, tl⇒ u}.
Lists can be used to encode XML and JSON. Hence, Dminor can be viewed as a

richly typed functional notation for manipulating data in XML format. And while,

Document Type Definitions can be encoded as Dminor types, XML data can be

loaded into Dminor even if there is no prior schema. We map an XML element to

an entity, with a field to represent the name of the element, additional fields for any

attributes on the element, and a final field holding a list of all the items in the body

of the element.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

44 G. M. Bierman et al.

Next, we show how to derive entity types for the common situation where the

type of one field depends on the value of another. A dependent intersection type

(x : T & U) (Kopylov, 2003) is essentially the intersection of T and U, except that

the variable x is bound to the underlying value, with scope U. The type T cannot

mention x, but we can rely on x : T when checking well-formedness of U.

Encoding of dependent intersection types

(x : T & U) � (x : T where x in U)

With this construct, we can define entity types where the type of one field depends

on the value of another. For example, (p : {X : Integer} & {Y : (y : Integer where y <

p.X)}) is the type of points below the diagonal.

M allows the field names of previously defined fields to be used within the types

of subsequent fields. We can encode M’s dependent entity types as follows.

Encoding dependent entities

{� : T ; }U � (x : {� : T } & U{x.�/�}) where x �∈ fv(T ,U)

{�1 : T1; . . . ; �n : Tn; } � {�1 : T1; } . . . {�n : Tn; }Any

Our example type of points below the diagonal is written in M as follows (where

the field name X appears directly as an expression in the type of the field Y).

{X : Integer; Y : Integer where Y > X; }

Our encoding turns this M syntax into the following type, which is equivalent to the

more direct encoding given above.

(x1 : {X : Integer} & (x2 : {Y : Integer where Y > x1.X} & Any))

Kopylov, (2003) explains in detail the relationship between dependent intersection

and encodings of dependent entities (records).

To further illustrate the power of collection types combined with refinements, we

give types below that express universal and existential quantifications over the items

in a collection. Collection {v1, . . . , vn} : T∗ has type all(x : T)e if e{vi/x} for all

i ∈ 1..n, and, dually, it has type exists(x : T)e if e{vi/x} for some i ∈ 1..n.

Quantifying over collections

all(x : T)e � (x : T where e)∗ (e pure)

exists(x : T)e � T∗ & !(all(x : T)!e)

Curiously, a Boolean test for whether a value is a member of a collection need not

be primitive in the calculus; we can make use of the type exists(x : Any)(x == ei) of

collections that contain the item ei, as follows.

Collection membership as a type-test

Mem(ei, ec) � (ec in exists(x : Any)(x == ei)) (ei pure)

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 45

The Boolean expression Mem(ei, ec) holds just when the value of ei is a member of

the collection denoted by ec. (This example is to illustrate the expressiveness of the

type system; collection membership is definable more directly by using an accumulate

expression as shown in Section 2.1.)
The following dependent entity type consists of a collection of song titles Songs,

together with a default. The type includes the constraint that the default song is a
member of Songs.

{Songs: Text∗; Default: Text where Mem(value,Songs);}

3 Logical semantics

In this section we give a set-theoretic semantics for types and pure expressions.

Pure expressions are interpreted as first-order terms, while types are interpreted as

formulas in many-sorted FOL. These formulas are interpreted in a fixed model,

which we formalize in Coq. We represent a Dminor subtyping problem as a logical

implication, supply our SMT solver with a set of axioms that are true in our intended

model, and ask the solver to prove the validity of the implication. We use Coq to

state our model and to reason about the soundness of the axioms given to the SMT

solver, but semantic subtyping calls only the SMT solver, not Coq.

To represent the intended logical model formally, sets are encoded as Coq types,

and functions are encoded as Coq functions. We start by encoding scalars, values

and results, which were given as grammars in Section 2, as Coq types General, Value

and Result.

Model: scalars, values, and results

Inductive General : Type :=

| G Integer : Z →General

| G Text : string →General

| G Logical : bool →General

| G Null : General.

Inductive RawValue : Type :=

| G : General →RawValue

| E : list (string ∗ RawValue) →RawValue

| C : list RawValue →RawValue.

Definition Value := {x : RawValue | Normal x}.
Inductive Result : Type :=

| Error : Result

| Return : Value →Result.

Scalars and results are represented directly as Coq inductive types, while for values

additional care is needed to prevent duplicate labels in entities and to ensure that

the representation is canonical. Our Coq representation of values is explained in

detail in Appendix A (for example, we define Normal in Appendix A), but the precise

details are not relevant at this point. For the sake of readability, in this section we

continue to use the intuitive notation for values and results introduced in Section 2.

We define a predicate Proper that is true for results that are not Error, and a

function out V that returns the value inside if the result passed as argument is proper

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

46 G. M. Bierman et al.

and null otherwise (the functions in the model are total, so in cases like this we

return an arbitrary value).

Model: proper results

Definition Proper (res : Result) :=

match res with | Return v ⇒ true | Error ⇒ false end.

Definition out V (res : Result) : Value :=

match res with | Return v ⇒ v | Error ⇒ v null end.

Our semantics uses many-sorted FOL, and each sort is interpreted by a Coq type

of the same name. We write predicates as functions to sort bool (interpreted by

type bool in Coq), with truth values true and false – we let the context disambiguate

between the truth values in the model and the corresponding Dminor Boolean

values. We assume a collection of sorted function symbols whose interpretation in

the intended model is given below. Let t range over FOL terms; we write t : σ to

mean that term t has sort σ; if we omit the sort of a bound variable, it may be

assumed to be Value. Similarly, free variables have sort Value by default. If F is a

formula, let |= F means that F is valid in our intended model.

Our semantics consists of three translations:

• For any expression e that only calls labeled-pure functions, we have the FOL

term R[[e]] : Result.

• For any Dminor type T and FOL term t : Value, we have the FOL formula

F[[T]](t), which is valid in the intended model if and only if the value denoted

by t is a member of the type T .

• For type T and FOL term t : Value, we have the formula W[[T]](t), which

holds if and only if a type-test goes wrong when checking whether the

value denoted by t is a member of T . For instance, we have |= W[[(x :

Any where stuck)]](null)⇔ true, but |= W[[Any]](null)⇔ false.

The relations between translations

These three (mutually recursive) translations are defined below. We rely on

notations for let-binding within terms (let x = t in t′), and terms conditional on

formulas (if F then t else t′). These notations are supported directly by most SMT

solvers. They can be translated to pure FOL by introducing auxiliary definitions,

but we omit the details. Given these we candefine the monadic bind for propagating

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 47

errors as a simple notation. Notice that |= (Bind x ⇐ Return(v) in t) = t{v/x} and

|= (Bind x⇐ Error in t) = Error.

Notation: monadic bind for propagating errors

Bind x⇐ t1 in t2 � (if ¬Proper(t1) then Error else let x = out V(t1) in t2)

We begin by describing the semantics of some core types and expressions. The

semantics of refinement types F[[(x : T where e)]](t) relies on the result of evaluating

e with x bound to t. Remember, however, that operationally the type test v in (x :

T where e) evaluates to Error if e{v/x} evaluates to Error or to a value that is not

true or false. We use W[[(x : T where e)]](t) to record this fact, and we enforce that

R[[e in T]] returns Error if W[[T]](t) holds. Tracking type-tests going wrong is crucial

for our full-abstraction result.

Semantics: core types and expressions

F[[Any]](t) = true

W[[Any]](t) = false

F[[(x : T where e)]](t) = F[[T]](t) ∧ let x = t in (R[[e]] = Return(true))

W[[(x : T where e)]](t) = W[[T]](t) ∨
let x = t in (¬(R[[e]] = Return(false) ∨ R[[e]] = Return(true)))

R[[x]] = Return(x)

R[[e1?e2 : e3]] = Bind x⇐ R[[e1]] in

(if x = true then R[[e2]] else (if x = false then R[[e3]] else Error))

R[[let x = e1 in e2]] = Bind x⇐ R[[e1]] in R[[e2]]

R[[e in T]] = Bind x⇐ R[[e]] in (if W[[T]](x) then Error else

(if F[[T]](x) then Return(true) else Return(false)))

Next, we specify the semantics of scalar types and values. Function is G in the

model tests whether a value is a scalar or not, and if this is the case out G returns

this scalar. Similarly, functions is G Logical, is G Integer, and is G Text test whether

a scalar has the corresponding scalar type.

Model: testers for simple values

Definition In Logical v := (is G v) && is G Logical (out G v).

Definition In Integer v := (is G v) && is G Integer (out G v).

Definition In Text v := (is G v) && is G Text (out G v).

Semantics: scalar types, simple values, and operators

F[[Integer]](t) = In Integer(t)

F[[Text]](t) = In Text(t)

F[[Logical]](t) = In Logical(t)

R[[c]] = Return(c)

W[[G]](t) = false

R[[⊕(e1, . . . , en)]] = Bind x1 ⇐ R[[e1]] in . . .Bind xn ⇐ R[[en]] in

(if F[[T1]](x1) ∧ . . . ∧ F[[Tn]](xn) then Return(O⊕(x1, . . . , xn)) else Error)

where ⊕ : T1, . . . , Tn → T

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

48 G. M. Bierman et al.

The semantics of primitive operators on simple values is defined uniformly. We

state below the signature ⊕ : T1, . . . , Tn → T for each operator ⊕. We also name

a Coq function O⊕ to define the meaning of each operator. Then we define the

semantics R[[⊕(e1, . . . , en)]] of operator expressions. Each of the functions O⊕ is

defined in Appendix A.2.

Model: signatures (⊕ : T1, . . . , Tn → T) and semantics (O⊕)

+ : Integer, Integer→ Integer O+ = O Add

− : Integer, Integer→ Integer O− = O Minus

× : Integer, Integer→ Integer O× = O Mult

< : Integer, Integer→ Logical O< = O LT

> : Integer, Integer→ Logical O> = O GT

== : Any,Any→ Logical O== = O EQ

! : Logical→ Logical O! = O Not

&& : Logical, Logical→ Logical O&& = O And

|| : Logical, Logical→ Logical O|| = O Or

The semantics of an entity type {� : T } is the set of all values (denoted by t) that

are proper entities (Good E(t)) having the field � (v has field(�, t)), which contains a

value of type T (F[[T]](v dot(t, �))). The model functions v has field and v dot use

the Coq library function TheoryList.assoc to obtain the value associated with a given

key in a list of pairs. Similarly, a type-test of the form v in {� : T } goes wrong only

when v is an entity having a field � that contains a value v� for which the type-test

v� in T goes wrong. If v is not an entity having field � then the type-test v in {� : T }
will simply return false, and not go wrong. This is reflected in the definition of

W[[{� : T }]] below.

Model: functions and predicates on entities

Program Definition v has field (s : string) (v : Value) : bool :=

match TheoryList.assoc eq str dec s (out E v) with

| Some v ⇒ true | None ⇒ false end.

Program Definition v dot (s : string) (v : Value) : Value :=

match TheoryList.assoc eq str dec s (out E v) with

| Some v ⇒ v | None ⇒ v null end.

Semantics: entity types and expressions

F[[{� : T }]](t) = Good E(t) ∧ v has field(�, t) ∧ F[[T]](v dot(t, �))

W[[{� : T }]](t) = Good E(t) ∧ v has field(�, t) ∧W[[T]](v dot(t, �))

R[[{�i ⇒ ei
i∈1..n}]]=Bind x1 ⇐ in R[[e1]]. . .Bind xn ⇐ R[[en]] in Return({�i ⇒ xi

i∈1..n})
R[[e.�]] = Bind x⇐ R[[e]] in

(if is E(x) ∧ v has field(�, x) then Return(v dot(x, �)) else Error)

The semantics of from x in e1 let y = e2 accumulate e3 relies on a function

res accumulate that folds over a collection by applying a function of sort ClosureRes2,

and if no error occurs at any step it returns a value, otherwise it returns Error. If

the accumulate expression is pure, it produces the same result no matter what order

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 49

is used when folding. The model of the sort ClosureRes2 is the set of functions from

Value to Value to Result. We write the lambda-abstraction fun x y → R[[e3]] for such a

function. There are several standard techniques for representing lambda-abstractions

in FOL (Meng & Paulson, 2008). Our implementation generates a fresh function

symbol to represent each lambda-abstraction occurring in its input as a closure of

sort ClosureRes2.

Model: functions and predicates on collections

Program Definition v mem (v cv : Value) : bool :=

TheoryList.mem eq rval dec v (out C cv).

Program Definition v add (v cv : Value) : Value :=

(C (insert in sorted vb v (out C cv))).

Definition ClosureRes2 := Value →Value →Result.

Program Fixpoint res acc fold (f : ClosureRes2) (vb : VBag) (a : Result) {measure List.

length vb} : Result :=

match vb with

| nil ⇒ a

| v :: vb’ ⇒match a with Return va ⇒ res acc fold vb’ (f va v)

| Error ⇒Error end

end.

Definition res accumulate (f : ClosureRes2) (cv v : Value) : Result :=

if is C cv then res acc fold f (out C cv) (Return v) else Error.

The semantics of the collection type T∗ is the set of all values (denoted by

t) that are proper collections (Good C(t)) containing only elements of type T

(∀x.v mem(x, t) ⇒ F[[T]](x)). On the other hand, a type-test goes wrong for a

collection type T∗ if the value being tested is a proper collection containing some

value that causes evaluation to go wrong when testing whether it belongs to type

T . The F[[T∗]] and W[[T∗]] cases are the only ones in our semantics that generate

logical formulas containing first-order quantifiers.

Semantics: collection types and expressions

F[[T∗]](t) = Good C(t) ∧ (∀x.v mem(x, t)⇒ F[[T]](x)) x /∈ fv(T , t)

W[[T∗]](t) = Good C(t) ∧ (∃x.v mem(x, t) ∧W[[T]](x)) x /∈ fv(T , t)

R[[{v1, . . . , vn}]] = Return({v1, . . . , vn})
R[[e1 :: e2]] =

Bind x1 ⇐ R[[e1]] in Bind x2 ⇐ R[[e2]] in

(if is C(x2) then Return(v add(x1, x2)) else Error)

R[[from x in e1 let y = e2 accumulate e3]] =

Bind x1 ⇐ R[[e1]] in Bind x2 ⇐ R[[e2]] in

res accumulate((fun x y → R[[e3]]), x1, x2)

In order to give a semantics to function applications we recall that we only consider

expressions that only call labeled-pure functions, and that the body of a labeled-

pure function is itself a pure expression. For each labeled-pure function definition

f(x1 : T1, . . . , xn : Tn) : U{e}, the model of the symbol f is the total function f ∈

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

50 G. M. Bierman et al.

Valuen → Result such that f(v1, . . . , vn) is the result r such that e{v1/x1} . . . {vn/x1} ⇓ r.
(We know that there is a unique r such that e{v1/x1} . . . {vn/x1} ⇓ r because e is

pure.) Hence, the following holds by definition:

Lemma 1

If f(x1 : T1, . . . , xn : Tn) : U{e}, and e is pure, and e{v1/x1} . . . {vn/xn} ⇓ r then

|= f(v1, . . . , vn) = r.

Semantics: function application

R[[f(e1, . . . , en)]] = Bind x1 ⇐ R[[e1]] in . . .Bind xn ⇐ R[[en]] in f(x1, . . . , xn)

The operational semantics preserves the logical meaning of closed pure

expressions.

Lemma 2

For all closed pure expressions e and e′ if e→ e′ then |= R[[e]] = R[[e′]].

Moreover, we have a full abstraction result for this first-order language: the

equalities induced by the operational and logical semantics of closed pure expressions

coincide.

Theorem 1 (Full Abstraction)

For all closed pure expressions e and e′, |= R[[e]] = R[[e′]] if and only if for all r,

e ⇓ r ⇔ e′ ⇓ r.

The proofs of Lemma 2 and Theorem 1 are in Appendix C.1.

We calculate the semantics of some example types from Section 2.4.

Semantics of derived forms

|= R[[e1 == e2]] = Bind x1 ⇐ R[[e1]] in Bind x2 ⇐ R[[e2]] in Return(v logical(x1 = x2))

|= F[[Empty]](t)⇔ false

|= F[[[e]]](t)⇔ R[[e]] = Return(t)

|= ¬W[[T]](t) ∧ ¬W[[U]](t)⇒ (F[[T | U]](t)⇔ (F[[T]](t) ∨ F[[U]](t)))

|= ¬W[[T]](t) ∧ ¬W[[U]](t)⇒ (F[[T & U]](t)⇔ (F[[T]](t) ∧ F[[U]](t)))

|= ¬W[[T]](t)⇒ (F[[!T]](t)⇔ ¬F[[T]](t))

|=
∧

i∈1..n ¬W[[Ti]](v dot(t, �i))⇒ (F[[{�i : Ti
i∈1..n}]](t)⇔

Good E(t) ∧
∧

i∈1..n(v has field(�i, t) ∧ F[[Ti]](v dot(t, �i))))

|= ¬W[[U]](t)⇒ (F[[(s : T & U)]](t)⇔ F[[T]](t) ∧ let s = t in F[[U]](t))

4 Algorithmic purity check

Our definition of purity defined in Section 2.3 is undecidable, so in this section we

introduce a tractable property, algorithmic purity, on which we rely instead of purity

itself in the subsequent definitions of our type systems. Algorithmic purity is defined

in terms of a syntactic termination condition on function applications to avoid

divergence, and a restriction on accumulate expressions to avoid non-determinism.

We show, Theorem 2 below, that algorithmic purity implies purity.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 51

We call an expression e algorithmically pure if and only if the following three

conditions hold:

1. If e is a function application f(e1, . . . , en) then f is labeled-pure.

2. If e is of the form from x in e1 let y = e2 accumulate e3 then

|= R[[let y = e3{x1/x}{y1/y} in e3{x2/x}]] =

R[[let y = e3{x2/x}{y1/y} in e3{x1/x}]]

(where the variables x1, x2, and y1 do not appear free in e3).

3. All the proper subexpressions of e are algorithmically pure (including the ones

inside all refinement types contained by e).

Furthermore, we require that each labeled-pure function f has an algorithmically

pure body that only calls f (directly or indirectly) on structurally smaller arguments;

since termination-checking is not the focus of this paper, we omit the rather technical

details, which may be found elsewhere (Giesl, 1997).

Thus condition (1) enforces termination of algorithmically pure expressions: Only

labeled-pure functions can be called and if these functions are recursive, then

recursive calls can only be on syntactically smaller arguments. Condition (2) only

allows accumulates in an algorithmically pure expression if the order in which

the elements are processed is irrelevant for the final result. In general, we call

a (mathematical) function f : X × Y → Y order-irrelevant if f(x1, f(x2, y)) =

f(x2, f(x1, y)) for all x1, x2, and y. Enforcing that the semantics of the body of

accumulate expressions is an order-irrelevant function is a sufficient condition for

the uniqueness of evaluation results. We phrase this condition in terms of the logical

semantics and check it by using the SMT solver. Order-irrelevance is less restrictive

than conditions found in the literature such as associativity and commutativity

(Cohen, 2006; Leino & Monahan, 2009). If f is associative and commutative then f

is also order-irrelevant, but the converse fails in general.2 If f is order-irrelevant, its

two arguments need not even have the same type. For instance, none of the derived

collection expressions from Section 2.1 is either associative or commutative, and in

most of the cases the accumulator has a different type from the iterator.

Accumulate expressions are often useful inside refinements. For instance, as shown

in Section 2.1, the number of elements of collections can be computed using an

accumulate expression: from x in e let y = 0 accumulate y + 1. Showing that this

expression is algorithmically pure boils down to showing that f(x, y) = y + 1 is

order-irrelevant. More precisely, the (in this case trivial) proof obligation discharged

by the SMT solver has the following form:

|= Bind y ⇐ R[[y1 + 1]] in R[[y + 1]] = Bind y ⇐ R[[y1 + 1]] in R[[y + 1]]

where R[[x + y]] = (if In Integer(x) ∧ In Integer(y) then Return(O Add(x, y)) else Error)

2 The weaker order-irrelevance condition is sufficient in our setting because in an accumulate expression
non-determinism only arises from different orders in which the elements of a collection can be processed.
On the other hand, the execution model is more complicated for user-defined aggregate functions in a
database (Cohen, 2006), since the database management system can exploit true parallelism, to start
multiple threads of computation, which later have to be merged and their results combined.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

52 G. M. Bierman et al.

If instead we count only the number of occurrences of a particular element z

using from x in e let y = 0 accumulate (x == z)?y + 1 : y, we obtain the following

(more interesting) proof obligation:

|= Bind y ⇐ (if O EQ(x1, z) = true then R[[y1 + 1]] else Return(y1))

in (if O EQ(x2, z) = true then R[[y + 1]] else Return(y)) =

Bind y ⇐ (if O EQ(x2, z) = true then R[[y1 + 1]] else Return(y1))

in (if O EQ(x1, z) = true then R[[y + 1]] else Return(y))

We show that the algorithmic purity check is a sufficient condition for purity.

Theorem 2

If e is algorithmically pure, then e is pure.

Proof

The details are given in Appendix C.2. �

The logical semantics is defined using purity to handle the case of (labeled-pure)

function applications. Given the logical semantics, we obtain algorithmic purity,

a sufficient condition for purity. In the remainder of the paper we rely only on

algorithmic purity.

5 Declarative type system

In this section we give a non-algorithmic type assignment relation, and prove

preservation and progress properties relating it to the operational semantics. In the

next section, we present algorithmic rules – the basis of our type-checker – for

proving type assignment.

Each judgment of the type system is with respect to a typing environment E, of

the form x1 : T1, . . . , xn : Tn, which assigns a type to each variable in scope. We

write � for the empty environment, dom(E) to denote the set of variables defined by

a typing environment E, and F[[E]] for the logical interpretation of E.

Environments and their logical semantics

E ::= x1 : T1, . . . , xn : Tn type environments

dom(x1 : T1, . . . , xn : Tn) = {x1, . . . , xn}
F[[x1 : T1, . . . , xn : Tn]] � F[[T1]](x1) ∧ . . . ∧ F[[Tn]](xn)

Judgments of the declarative type system

E � � environment E is well-formed

E � T in E, type T is well-formed

E � T <: T ′ in E, type T is a subtype of T ′

E � e : T in E, expression e has type T

Global assumptions

For each function definition f(x1:T1, . . . , xn:Tn) : U{ef}
we assume that x1:T1, . . . , xn:Tn � ef : U.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 53

Rules of well-formed environments and types: E � �, E � T

(Env Empty)

� � �

(Env Var)

E � T x /∈ dom(E)

E, x : T � �

(Type Any)

E � �
E � Any

(Type Scalar)

E � �
E � G

(Type Collection)

E � T

E � T∗

(Type Entity)

E � T

E � {�:T }

(Type Refine)

E, x : T � e : Logical

e alg. pure

E � (x : T where e)

The subtype relation is defined as logical implication between the logical semantics

of well-formed types.

Rule of semantic subtyping

(Subtype)

E � T E � T ′ x /∈ dom(E) |= (F[[E]] ∧ F[[T]](x))⇒ F[[T ′]](x)

E � T <: T ′

Rules of type assignment: E � e : T

(Exp Singular Subsum)

E � e : T E � [e : T] <: T ′

E � e : T ′

(Exp Var)

E � � (x : T) ∈ E

E � x : T

(Exp Const)

E � �
E � c : Any

(Exp Eq)

E � e1 : T1 E � e2 : T2

E � e1 == e2 : Logical

(Exp Operator)

E � e1 : Ti · · ·E � en : Tn⊕ : T1, . . . , Tn → T ,⊕ �= (==)

E � ⊕(e1, . . . , en) : T

(Exp Cond)

E � e1 : Logical E, : Ok(e1) � e2 : T E, : Ok(!e1) � e3 : T

E � (e1?e2 : e3) : T

(Exp Let)

E � e1 : T E, x:T � e2 : U x /∈ fv(U)

E � let x = e1 in e2 : U

(Exp Test)

E � e : Any E � T

E � e in T : Logical

(Exp Entity)

E � ei : Ti ∀i ∈ 1..n E � �
E � {�i ⇒ ei

i∈1..n} : {�i:Ti
i∈1..n}

(Exp Dot)

E � e : {�:T }
E � e.� : T

(Exp Coll)

E � vi : T ∀i ∈ 1..n E � �
E � {v1, . . . , vn} : T∗

(Exp Add)

E � e1 : T E � e2 : T∗
E � (e1 :: e2) : T∗

(Exp Acc)

E � e1 : T∗ E � e2 : U E, x : T , y : U � e3 : U x, y /∈ fv(U)

E � from x in e1 let y = e2 accumulate e3 : U

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

54 G. M. Bierman et al.

(Exp App)

given f(x1:T1, . . . , xn:Tn) : U{ef}
E � T1 E � T2{e1/x1} · · ·E � Tn{e1/x1} · · · {en−1/xn−1} E � U{e1/x1} · · · {en/xn}
E � e1 : T1 E � e2 : T2{e1/x1} · · ·E � en : Tn{e1/x1} · · · {en−1/xn−1}

E � f(e1, . . . en) : U{e1/x1} · · · {en/xn}

For the sake of parsimony, the conclusion E � c : Any of the rule (Exp Const) says

only that a constant c is well-typed given that E is a well-formed environment. If

c ∈ K(G), the two alternative conclusions E � c : G and E � c : [c : G] are derivable

using (Exp Singular Subsum). (The algorithmic synthesis rule (Synth Const) yields

the latter.)

The rule (Exp Cond) records the appropriate test expression in the environment

when typing the branches. The actual value of a type Ok(e) is arbitrary, the point

is simply to record that condition e holds (Gordon & Jeffrey, 2002), provided e is

algorithmically pure. When e is not algorithmically pure, Ok(e) is equivalent to Any.

Typed singleton types and Ok types

[e : T] �

{
(x : T where x == e) (x /∈ fv(e)) if e alg. pure

T otherwise

Ok(e) �

{
(x : Any where e) (x /∈ fv(e)) if e alg. pure

Any otherwise

The rule (Exp Singular Subsum) can be seen as a combination of the following

conventional rules of subsumption and singleton introduction (Aspinall, 1994).

(Exp Subsum)

E � e : T E � T <: T ′

E � e : T ′

(Exp Singleton)

E � e : T

E � e : [e : T]

Both these rules are derivable from (Exp Singular Subsum). In fact, we can go

in the other direction too so that the type assignment relation would be unchanged

were we to replace (Exp Singular Subsum) with (Exp Subsum) and (Exp Singleton).

Still, the given presentation is simpler to work with because (Exp Singular Subsum)

is the only rule not determined by the structure of the expression being typed.

The rule (Exp Singular Subsum) depends on the relation E � [e : T] <: T ′,

which we refer to as singular subtyping. We illustrate (Exp Singular Subsum) and

singular subtyping with regard to (Exp Const). For example, to derive that E �
[42 : Any] <: Integer note that |= F[[[42 : Any]]](x) ⇔ x = 42 and hence |=
F[[[42 : Any]]](x)⇒ In Integer(x).

One might wonder why we have the separate rule (Exp Eq) for equality, rather

than allowing (Exp Operator) to derive E � e1 == e2 : Logical, relying on the

signature ==: Any,Any → Logical. The reason we cannot type-check e1 == e2 in

this way is because to type-check each ei at the type Any in general requires us to

use (Exp Singular Subsum), along with the fact that E � [ei : Ti] <: Any. When

ei is alg. pure, the syntax [ei : Ti] is short for (x : Ti where x == ei), which to be

well-formed requires us to type-check an equality x == ei. To break this circularity,

we provide the rule (Exp Eq) explicitly.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 55

In the rule (Exp App), the well-formedness conditions on the argument types

amount to requiring that the ei in a dependent function application f(e1, . . . en) is

algorithmically pure. To form, say, f(e) where e is impure, we can work around this

restriction by writing let x = e in f(x) instead.

The following soundness property relates type assignment to the logical semantics

of types and expressions. Point (1) is that the logical value of a well-typed expression

satisfies the interpretation of its type as a predicate. Point (2) is that evaluating a

type-test for a well-formed type cannot go wrong.

Theorem 3 (Logical Soundness)

1. If e is alg. pure and E � e : T then:

(a) |= F[[E]]⇒ Proper(R[[e]])

(b) |= F[[E]]⇒ F[[T]](out V(R[[e]]))

2. If E � U then |= F[[E]]⇒ ∀y.¬W[[U]](y), for y /∈ fv(U).

Proof

The details of this proof are given in Appendix C.3 �

We show the safety of our type system by proving the important preservation and

progress theorems (Wright & Felleisen, 1994). The details for both these proofs are

given in Appendix C.4.

Theorem 4 (Preservation)

If � � e : T and e→ e′ then � � e′ : T .

Theorem 5 (Progress)

If � � e : T and e is not a value then ∃e′. e→ e′.

We conclude this section by considering the typing of the removeNulls function

from Section 2, whose definition is as follows:

NullableInt � Integer | [null]

removeNulls(xs : NullableInt∗) : Integer∗
{ from x in xs let a = ({}:Integer∗) accumulate (x!=null) ? (x :: a) : a }

The power of the Dminor type system is demonstrated in the typing of the

conditional expression, i.e.

a: Integer∗, x: NullableInt � ((x!=null)? (x::a): a) : Integer∗

The typing derivation is as follows (where E is the typing environment

a: Integer∗, x: NullableInt, and ex is the expression x!=null):

Π1

E � x!=null : Logical

Π2

E, : Ok(ex) � (x::a) : Integer∗

(Exp Var)

E, : Ok(!ex) � a : Integer∗
(Exp Cond)

E � ((x!=null)? (x::a): a) : Integer∗
Derivation Π1 is trivial; derivation Π2 is as follows:

Π3

E, : Ok(ex) � x : Integer

(Exp Var)

E, : Ok(ex) � a : Integer∗
(Exp Add)

E, : Ok(ex) � (x::a) : Integer∗

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

56 G. M. Bierman et al.

Derivation Π3 is as follows:

(Exp Var)

E, : Ok(ex) � x : NullableInt

(Subtype)

E, : Ok(ex) � [x : NullableInt] <: Integer
(Exp Singular Subsum)

E, : Ok(ex) � x : Integer

As one might expect, the hard work has been delegated to semantic subtyping, i.e.

the verification of the following implication.

(F[[a: Integer∗, x: NullableInt, : Ok(ex)]] ∧ F[[[x : NullableInt]]](x))⇒ F[[Integer]](x)

The key step in verifying this implication involves the following fact about the

semantics of the Ok type introduced into the typing environment by the (Exp Cond)

rule (where e is any algorithmically pure expression):

F[[: Ok(e)]]

⇔ F[[Ok(e)]]()

⇔ F[[(z : Any where e)]]() z /∈ fv(e)

⇔ F[[Any]]() ∧ let z = in (R[[e]] = Return(true))

⇔ (R[[e]] = Return(true))

In our example e is the expression ex =x!=null and by the definition of the translation

R[[−]] we obtain that x �= null. By expanding the assumption that F[[NullableInt]](x)

this allows us to infer that F[[Integer]](x). By expanding the encoding of typed

singleton types in F[[[x : NullableInt]]](x) we deduce that x = x, which allows us to

prove the original implication.

6 Algorithmic aspects

6.1 Optimizing the logical semantics

We built our logical semantics in Section 3 independently of the type system, and

then defined our type system in Section 5 in terms of the logical semantics. Now

that we have our type system, we show how to optimize the logical semantics.

Our logical semantics propagates error values so as to match the stuck expressions

of our operational semantics. Tracking errors is important, but observe that when

we use our logical semantics during semantic subtyping, we only ever ask whether

well-formed types are related. Every expression occurring in a well-formed type is

itself well-typed, and so by Theorem 3 its logical semantics is a proper value, not

Error.

This suggests that when checking subtyping we can optimize the logical semantics

given the assumption that the expressions occurring within the two types are well-

typed. In particular, we can apply the following lemma to transform monadic

error-checking binds into ordinary lets.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 57

Lemma 3

If e alg. pure and E � e : T then |= F[[E]] ⇒ (Bind x ⇐ R[[e]] in t) = (let x =

out V(R[[e]]) in t).

Proof

By definition of notation, Bind x ⇐ R[[e]] in t is the term (if ¬Proper(R[[e]]) then

else Error)let x = out V(R[[e]]) in t. By Theorem 3, |= F[[E]] ⇒ Proper(R[[e]]). Hence

the result. �

The following tables present the optimized definitions used in our type-checker,

and the following theorem states their correctness with respect to the error-tracking

semantics of Section 3.

Optimized semantics of types: F′[[T]](t)

F′[[Any]](t) = true

F′[[Integer]](t) = In Integer(t)

F′[[Text]](t) = In Text(t)

F′[[Logical]](t) = In Logical(t)

F′[[{� : T }]](t) = Good E(t) ∧ v has field(�, t) ∧ F′[[T]](v dot(t, �))

F′[[T∗]](t) = Good C(t) ∧ (∀x.v mem(x, t)⇒ F′[[T]](x)) x /∈ fv(T , t)

F′[[(x : T where e)]](t) = F′[[T]](t) ∧ let x = t in V[[e]] = true x /∈ fv(T , t)

Optimized semantics of pure typed expressions: V[[e]]

V[[x]] = x

V[[c]] = c

V[[⊕(e1, . . . , en)]] = O⊕(V[[e1]], . . . ,V[[en]])

V[[e1?e2 : e3]] = (if V[[e1]] = true then V[[e2]] else V[[e3]])

V[[let x = e1 in e2]] = let x = V[[e1]] in V[[e2]]

V[[e in T]] = v logical(F′[[T]](V[[e]]))

V[[e : T]] = V[[e]]

V[[{�i ⇒ ei
i∈1..n}]] = {�i ⇒ V[[ei]]

i∈1..n}
V[[e.�]] = v dot(V[[e]], �)

V[[{v1, . . . , vn}]] = {v1, . . . , vn}
V[[e1 :: e2]] = v add(V[[e1]],V[[e2]])

V[[from x in e1 let y = e2 accumulate e3]] =

v accumulate((fun x y → V[[e3]]),V[[e1]],V[[e2]])

Optimized semantics of environments

F′[[x1 : T1, . . . , xn : Tn]] � F′[[T1]](x1) ∧ . . . ∧ F′[[Tn]](xn)

Theorem 6 (Soundness and Completeness of Optimized Semantics)

1. If E � � then |= F[[E]]⇔ F′[[E]].

2. If E � T and x /∈ dom(E) then:|= F′[[E]]⇒ (F[[T]](x)⇔ F′[[T]](x)).

3. If E � e : T then:|= F′[[E]]⇒ (R[[e]] = Return(V[[e]])).

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

58 G. M. Bierman et al.

Proof

The proof is by simultaneous induction on the derivations of E � � and E � T and

E � e : T , with appeal to Theorem 3 and Lemma 3. �

6.2 Bidirectional typing rules

The Dminor type-checker is implemented as a bidirectional type system

(Pierce & Turner, 2000). The key concept of bidirectional type systems is that

there are two typing relations, one for type checking and another for type synthesis.

The chief characteristic of these relations is that they are local in the sense that

type information is passed between adjacent nodes in the syntax tree. This is

an important feature, not least because it makes type error reporting easy –

a disadvantage of languages that use ML-style inference (Lerner et al., 2007).

Moreover, bidirectional type systems are simple to implement, predictable for

programmers, and expressive; for example, the type system for C� can be defined

as a bidirectional type system (Bierman et al., 2007), and several dependently typed

languages have bidirectional type systems (Knowles et al., 2007; Lovas & Pfenning,

2007).

Judgments of the algorithmic type system

E � e→ T in E, expression e synthesizes type T

E � e← T in E, expression e checks against type T

E � � environment E is alg. well-formed

E � T in E, type T is alg. well-formed

E � S <: T in E, type S is alg. a subtype of type T

The reader will recall that the rules characterizing well-formed environments and

types in Section 5 made use of the declarative typing relation in rule (Type Refine).

We thus need to define algorithmic versions of these rules that make use of the

bidirectional type system.

Rules of algorithmic well-formedness: E � �, E � T

(Alg. Env Empty)

� � �

(Alg. Env Var)

E � T x /∈ dom(E)

E, x : T � �
(Alg. Type Any)

E � �
E � Any

(Alg. Type Scalar)

E � �
E � G

(Alg. Type Collection)

E � T

E � T∗
(Alg. Type Entity)

E � T

E � {�:T }

(Alg. Type Refine)

E, x : T � e← Logical e alg. pure

E � (x : T where e)

We also make use of the optimized semantics from Section 6.1 to define the

algorithmic semantic subtyping rule.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 59

Rule of algorithmic semantic subtyping

(Alg. Subtype)

E � T x /∈ dom(E) |= (F′[[E]] ∧ F′[[T]](x))⇒ F′[[T ′]](x)

E � T <: T ′

Rules of type synthesis: E � e→ T

(Synth Var)

E � � (x : T) ∈ E

E � x→ [x : T]

(Synth Const)

E � �
E � c→ [c : typeof (c)]

(Synth Operator)

E � ei ← Ti ∀i ∈ 1..n ⊕ : T1, . . . , Tn → T

E � ⊕(e1, . . . , en)→ [⊕(e1, . . . , en):T]

(Synth Cond)

E � e1 ← Logical E, : Ok(e1) � e2 → T2 E, : Ok(!e1) � e3 → T3

E � (e1?e2 : e3)→ (if e1 then T2 else T3)

(Synth Let)

E � e1 → T1 E, x:T1 � e2 → T2 E � T2{e1/x}
E � let x = e1 in e2 → T2{e1/x}

(Synth Test)

E � e← Any E � T

E � e in T → [e in T : Logical]

(Synth Ascribe)

E � e← T

E � (eT)→ T

(Synth Entity)

E � e1 → T1 · · ·E � en → Tn E � �
E � {�i ⇒ ei

i∈1..n} → {�1:T1} & · · · & {�n:Tn}

(Synth Dot)

E � e→ T norm(T) = D D.� � U

E � e.�→ [e.� : U]

(Synth Coll)

E � vi → Ti ∀i ∈ 1..n E � �
E � {v1, . . . , vn} → (T1 | . . . | Tn)∗
(Synth Add)

E � e1 → T1 E � e2 → T2 norm(T2) = D2 D2.Items � U2

E � e1 :: e2 → ([e1 : T1] | U2)∗
(Synth Acc)

E � e1 → T1norm(T1) = D1 D1.Items � U1E � e2 → T2 E, x : U1, y : T2 � e3 ← T2

E � from x in e1 let y = e2 accumulate e3 → T2

(Synth App)

given f(x1:T1, . . . , xn:Tn) : U{ef}
E � T1E � T2{e1/x1} · · · E � Tn{e1/x1} · · · {en−1/xn−1} E � U{e1/x1} · · · {en/xn}
E � e1 ← T1 E � e2 ← T2{e1/x1} · · · E � en ← Tn{e1/x1} · · · {en−1/xn−1}

E � f(e1, . . . en)→ U{e1/x1} · · · {en/xn}

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

60 G. M. Bierman et al.

The rules (Synth Var) and (Synth Const) follow the work of Aspinall, (1994)

and yield singleton types for all variables and constants, where the function typeof

returns the type of a given constant; let typeof (c) = G if and only if c ∈ K(G).

Rule (Synth Entity) uses intersection types to encode multiple-field entity types (see

Section 2.4).

The (Synth Cond) rule synthesizes a type if e1 then T2 else T3, defined below, for

the conditional expression e1?e2 : e3. The synthesized type is the union of the two

types synthesized for the branches where we additionally record the test expression

in the type (if it is algorithmically pure), which allows for more precise typing.

Encoding of conditional types

if e then T else U �

{
(: T where e) | (: U where !e) if e alg. pure

T | U otherwise

The rule (Synth Let) faces the problem that the bound variable x should not

escape into the result type T2, and does so by substituting e1 for x in T2. In case

x ∈ fv(T2) and e1 is not pure, the rule does not apply, as the result type is not well-

defined. In this case, the programmer needs to insert a type-ascription to remove

the bound variable explicitly. Similarly, the rule (Synth App) for an application

f(e1, . . . , en) returns a type possibly containing the expressions e1, . . . , en. The rule

is not applicable if these expressions are impure and occur in the result type. The

programmer can work around this limitation by using a let-expression to compute

the value of any impure expression before making the call to f. In practice we

found that conversion to A-normal form can further improve the precision of our

algorithmic type system, since purity checking is then done at a finer granularity

and thus more singleton types are synthesized.

The (Synth Ascribe) rule allows the user to provide hints to the type-checker in

the form of type annotations (eT). Such type annotations are not part of the core

language and have no operational significance, and are necessary in case the type-

checker cannot infer the loop invariants of accumulate expressions. Although in the

current presentation monadic bind expressions (Buneman et al., 1995) are encoded

using accumulate (see Section 2.1), the Dminor type-checker infers loop invariants

for bind (and also for LINQ queries, Meijer et al., 2007) using an additional (Synth

Bind) rule, which exploits the encoding of collection quantifiers as refinement types

(see Section 2.4).

Inferring loop invariants for bind

(Synth Bind)

E � e1 → T1 norm(T1) = D1 D1.Items � U1

E, x:U1 � e2 → T2 norm(T2) = D2 D2.Items � U2

if E � U2 then T = U2, otherwise T = (y : Any where (e1 in exists(x : U1)(y in U2)))

E � (bind x← e1 in e2)→ T∗

As explained above, type annotations are also sometimes necessary for let expressions

and function applications.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 61

In several of the type synthesis rules we need to inspect components of intermediate

types. In simple type systems this is straightforward as one can rely on the syntactic

structure of types, but for rich type systems, such as the one of Dminor, this

is not possible. In other dependently typed languages, either the programmer is

required to insert casts to force the type into the appropriate syntactic shape (Xi &

Pfenning, 1999), or types are first executed until a normal form is reached (Aspinall

& Hofmann, 2005). Unfortunately, neither approach is acceptable in Dminor: the

former forces too many casts on the programmer, and the latter is not feasible

because refinements often refer to rather large data sets. One pragmatic possibility is

to attempt type normalization but place some ad hoc bound on evaluation (Knowles

et al., 2007). As an alternative, we define a disjunctive normal form (DNF) for

types, along with a normalization function, norm , for translating types into DNF,

and procedures for extracting type information from DNF types. In practice, this

approach works well.3

Disjunctive normal form types (DNF) and Normalization

D ::= R1 | . . . | Rn normal disjunction (Empty if n = 0)

R ::= x : C where e normal refined conjunction

C ::= A1 & . . . & An normal conjunction (Any if n = 0)

A ::= G | T∗ | {�:T } atomic type

norm(Any) � x : Any where true

norm(G) � x : G where true

norm(T∗) � x : T∗ where true

norm({�:T }) � x : {�:T } where true

norm(x : T where e) � |ni=1 ConjDD(xi : Ci where ei, normr(x : Ci where e))

where |ni=1 (xi : Ci where ei) = norm(T)

normr(x : C where x in T) � norm(C & T) where x �∈ fv(T)

normr(x : C where e1 || e2) � normr(x : C where e1) | normr(x : C where e2)

normr(x : C where e1 && e2) � ConjDD(normr(x : C where e1), normr(x : C where e2))

normr(x : C where e) � (x : C where e) otherwise

ConjDD((R1 | . . . | Rn), D) � ConjRD(R1, D) | . . . | ConjRD(Rn, D)

ConjRD(R, (R1 | . . . | Rn)) � ConjRR(R,R1) | . . . | ConjRR(R,Rn)

ConjRR(x1 : C1 where e1, x2 : C2 where e3) � y : C1 & C2 where e1{y/x1} && e2{y/x2}
where y �∈ fv(C1, C2, e1, e2)

Normalization is defined using two functions: norm , which normalizes a type, and

normr , which normalizes a refinement type based on the structure of the refinement

expression. We make use of helper functions to build DNF types, principally the

function, ConjDD , which returns in DNF the conjunction of two disjunction types.

3 A further alternative would be to embed the normalization process into subtyping (Castagna & Chen,
2001). We leave this for future work.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

62 G. M. Bierman et al.

We define partial functions to extract field and item types from normalized entity

and collection types, respectively.

Extraction of field type: D.� � U

(Field Disj)

Ri.� � Ui ∀i ∈ 1..n

(R1 | . . . | Rn).� � (U1 | . . . | Un)

(Field Refine)

C.� � U

(x : C where e).� � U

(Field Conj)

S = {Ui | Ai.� � Ui} �= �

(A1 & . . . & An).� � (& S)

(Field Atom)

{�:T }.� � T

The (Field Disj) rule requires that for every disjunct Ri there is a Ui such that

Ri.� � Ui. In contrast, the (Field Conj) rule requires only that there is at least one

conjunct Ai for which there is a Ui such that Ai.� � Ui.

Extraction of item type: D.Items � U

(Items Disj)

Ri.Items � Ui ∀i ∈ 1..n

(R1 | . . . | Rn).Items � (U1 | . . . | Un)

(Items Refine)

C.Items � U

(x : C where e).Items � U

(Items Conj)

S = {Ui | Ai.Items � Ui} �= �

(A1 & . . . & An).Items � (& S)

(Items Atom)

(T∗).Items � T

Rules of type checking: E � e← T

(Swap)

E � e→ T E � [e:T] <: T ′

E � e← T ′

(Check Cond)

E � e1 ← Logical E, : Ok(e1) � e2 ← T E, : Ok(!e1) � e3 ← T

E � e1?e2 : e3 ← T

(Check Let)

E � e1 → T E, x:T � e2 ← U x �∈ fv(U)

E � let x = e1 in e2 ← U

(Check Dot)

E � e← {� : T }
E � e.�← T

The (Swap) rule tests for singular subsumption. In our implementation we apply

this rule only if the expression to be type-checked is not a conditional, let-expression,

or a field selection. Typically (for example, Sage, Knowles et al., 2007), the type-

checking relation for a bidirectional type system consists of a single rule of the

form:

E � e→ S E � S <: T

E � e← T

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 63

However, we have found in practice that in the cases where the expression is

a conditional or a let-expression, we get better precision of type-checking by

following Pierce & Turner, (2000) and passing the type through to the subexpressions,

as shown in the (Check Cond) and (Check Let) rules. Similarly, we can pass through

an entity type in the (Check Dot) rule.

Theorem 7 (Soundness of Algorithmic Type System)

1. If E � � then E � �.
2. If E � T then E � T .

3. If E � S <: T and E � S then E � S <: T .

4. If E � e→ T then E � e : T .

5. If E � e← T then E � e : T .

Proof

The details of this proof are in Appendix C.5. �

7 Exploiting SMT models

SMT solvers, such as Z3, can produce a potential model in case they fail to prove

the validity of a proof obligation (that is, when they show the satisfiability of its

negation, or when they give up). In our case such models can be automatically

converted into assignments mapping program variables to Dminor values. Because

of the inherent incompleteness of the SMT solver4 and of the axiomatization we

feed to it, the obtained assignment is not guaranteed to be correct. However,

given a way to validate assignments, one can use the correct ones to provide very

precise counterexamples when type-checking fails, and to find inhabitants of types

statically or dynamically in a way that amounts to a new style of constraint logic

programming (Jaffar & Maher, 1994).

7.1 Precise counterexamples to type-checking

The type-checking algorithm from Section 6.2 crucially relies on subtyping, as in the

rule (Swap), and our algorithmic semantic subtyping relation E � T <: T ′ produces

proof obligations of the form

|= (F′[[E]] ∧ F′[[T]](x))⇒ F′[[T ′]](x)

for some fresh variable x. If the SMT solver fails to prove such an obligation, it

produces a potential model, from which we can extract an assignment σ mapping x

and all variables in E to Dminor values. To verify that σ is a valid counterexample,

we check the following three conditions:

1. E � T and E � T ′;

4 Other than background theories with a non-recursively enumerable set of logical consequences such as
integer arithmetic, other sources of incompleteness in SMT solvers are quantifiers (which are usually
heuristically instantiated) and user-defined time-outs. All these three sources of incompleteness affect
Dminor.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

64 G. M. Bierman et al.

2. (yσ in Uσ)→∗ true, for all (y : U) ∈ E;

3. (xσ in (T &!T ′)σ)→∗ true.

Condition (1) enforces that we only evaluate pure expressions, therefore ensuring

termination and confluence of the reduction. Condition (2) enforces that the values

for all variables in E have their corresponding (possibly dependent) types. Condition

(3) checks whether the value assigned to x by σ is an element of T but not an

element of T ′. If these three checks succeed, σ is a valid counterexample to typing

that we display to the user.

Since the type-checker is itself over-approximating, there is no guarantee that an

expression e that fails to type-check is going to get stuck when evaluated. The best

we might do is to evaluate eσ for a fixed number of steps, a fixed number of times

(remember that e can be non-deterministic), searching for a counterexample trace

we can additionally display to the user.

7.2 Finding elements of types statically

Type emptiness can be phrased in terms of subtyping as E � T <: Empty, or

equivalently |= ¬(F[[E]] ∧ F[[T]](x)) for some fresh x. We additionally check that

F[[E]] is satisfiable (and the model the SMT solver produces is a correct one) to

exclude the case that the environment is inconsistent and therefore any subtyping

judgment holds vacuously. Hence, we can detect empty types during type-checking

and issue a warning to the user if an empty type is found. This is useful, since one can

make mistakes when writing types containing complicated constraints. Moreover, if

the SMT solver cannot prove that a type is empty, we again obtain an assignment

σ, which we can validate as in Section 7.1. If validation succeeds, we know that xσ

is an element of Tσ, and we can display this information if the user hovers over a

type.

7.3 Finding elements of types dynamically

We can use the same technique to find elements of types dynamically. We augment

the calculus with a new primitive expression elementof T (not present in the M

language) which tries to find an inhabitant of T . If successful the expression returns

such a value, otherwise it returns null. (We can always choose T so that null is not

a member so that returning null unambiguously signals that no member of T was

found.)

Operational semantics for finding elements of types

elementof T → v where v in T →∗ true

elementof T → null

Finding elements of types is actually simpler to do dynamically than statically: at

run-time all variables inside types have already been substituted by values, so there

are fewer checks to perform.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 65

The outcome of elementof T is in general non-deterministic, and depends in

practice on the computational power and load of the system as well as on the

timeout used when calling the SMT solver. Because of this elementof T , expressions

are considered algorithmically impure, and therefore cannot appear inside types.

Typing rules for elementof

(Exp elementof)

E � T

E � elementof T : (T | [null])

(Synth elementof)

E � T

E � elementof T → (T | [null])

The new elementof T construct enables a form of constraint programming in

Dminor, in which we iteratively change the constraints inside types in order to

explore a large state space. For instance, the following recursive function computes

all correct configurations of a complex system when called with the empty collection

as argument. Correctness is specified by some type GoodConfig.

allGoodConfigs(avoid : GoodConfig∗) : GoodConfig∗ {
let m = elementof (GoodConfig where !(value in avoid)) in

(m == null) ? {} : (m :: (allGoodConfigs(m :: avoid)))

}

Programming in this purely declarative style can be appealing for rapid proto-

typing or other tasks where efficiency is not the main concern. One only needs to

specify what has to be computed in the form of a type. It is up to the SMT solver to

use the right decision procedures and heuristics to perform the computation. If this

fails or is too slow, one can instead implement the required functionality manually.

There is little productivity loss in this case since the types one has already written

will serve as specification for the code that needs to be written manually.

8 Implementation

Our prototype Dminor implementation is approximately 2,700 lines of F� code,

excluding the lexer and parser. Our type-checker implements the optimized logical

semantics from Section 6.1, and the bidirectional typing rules from Section 6.2. We

use Z3 (de Moura & Bjørner, 2008) to discharge the proof obligations generated by

semantic subtyping. Together with the proof obligations we feed to Z3 a 500 line

axiomatization of our intended model in SMT-LIB format (Ranise & Tinelli, 2006),

which uses the theories of integers, datatypes, and extensional arrays (see Appendix

B). Our Coq formalization is just over 4,000 lines of Coq, out of which the definition

of the intended model of Dminor and the proof of its well-definedness are about

2,000 lines (see Appendix A). The rest encompasses formalizations of our definitions

and mechanized versions of some of the proofs in the paper (Lemmas 12–14, 19, 22,

23, 43, 44, and Theorem 5).

We have tested our type-checker on a test suite consisting of about 130 files,

some type-correct and some type-incorrect, some hand-crafted by us and some

transliterated from the M preliminary release. Even without serious optimization

the type-checker is fast. Checking each of the 130 files in our test suite on a typical

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

66 G. M. Bierman et al.

laptop takes from under 1 second (for just startup and parsing) to around 3 seconds

(for type-checking a 175 lines long interpreter for while-programs – see Section 1.1 –

that discharges more than 300 proof obligations). Also, our experience with Z3 has

been very positive so far – while it is possible to craft subtyping tests that cannot

be efficiently checked,5 Z3 has performed very well on the idioms in our test suite.

Still, we cannot draw firm conclusions until we have studied bigger examples.

We have also implemented the techniques for exploiting SMT solver models

described in Section 7. We built a plugin for the Microsoft Intellipad text edi-

tor (Microsoft Corporation 2009) that displays precise counterexamples to typing,

flags empty types, and otherwise displays one element of each type defined in

the code. Moreover, our interpreter for Dminor supports elementof for dynamically

generating instances of types (Section 7.3). This works well for simple constraints

involving equalities, datatypes and simple arithmetic, and types that are not too

deeply nested. However, scaling this up to arbitrary Dminor types is a challenge that

will require additional work, as well as further progress in SMT solvers.

9 Related work

While Dminor’s combination of refinement types and type-tests is new and highly

expressive, it builds upon a large body of related work on advanced type systems.

Refinement types have their origins in early work in theorem proving systems and

specification languages, such as subset types in constructive type theory (Nordström

& Petersson, 1983), set comprehensions in VDM (Jones, 1986), and predicate

subtypes in PVS (Rushby et al., 1998). In PVS, constraints found when checking

predicate subtypes become proof obligations to be proved interactively. More

recently, Sozeau, (2006) extends Coq with subset types; as in PVS the proofs

of subset type membership have to be constructed using tactics.

Pratt, (1983) argued for a semantic notion of “predicate types,” where objects

intrinsically belong to many types. His proposed language, Viron, has an early

notion of refinement type. Freeman & Pfenning, (1991) extended ML with a form

of refinement type, and Xi & Pfenning, (1999) considered applications of dependent

types in an extension of ML. In both of these systems, decidability of type checking is

maintained by restricting which expressions can appear in types. Lovas & Pfenning,

(2007) presented a bidirectional refinement type system for LF, where a restriction

on expressions leads to an expressive yet decidable type system.

Other work has combined refinement types with syntactic subtyping

(Bengtson et al., 2008; Rondon et al., 2008) but none includes type-test in the

refinement language. Closest to our type system is the work of Flanagan (2006) on

hybrid types and Sage (Knowles et al., 2007). SAGE also uses an SMT solver to

check the validity of refinements but not for subtyping (checked by traditional

syntactic techniques), and does not allow type-test expressions in refinements.

However, Sage supports a dynamic type and employs a particular form of hybrid

5 Z3 gets at most 1 second for each proof obligation by default.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 67

type-checking (Flanagan, 2006; Knowles & Flanagan, 2010) that allows particular

expressions to have their type-check deferred until run-time. The idea of hybrid types

is to strike a balance between runtime checking of contracts as in Eiffel (Meyer, 1992)

and Racket (Findler & Felleisen, 2002), and static typing. Compared with purely

static typing, this can reduce the number of false alarms generated by type-checking.

In spite of early work on semantic subtyping by Aiken & Wimmers, (1993)

and Damm, (1994), most programming and query languages instead use a syntactic

notion of subtyping. This syntactic approach is typically formalized by an inductively

or co-inductively defined set of rules (Pierce, 2002). Unfortunately, deriving an

algorithm from such a set of rules can be difficult, especially for advanced features

such as intersection and union types (Dunfield & Pfenning, 2004; Dunfield, 2007).

Although by definition semi-structured data (such as from the SSD model

(Abiteboul et al., 2000) or, more recently, XML and JSON) has no schema,

Buneman & Pierce, (1999) show that it can be checked using a flexible enough

type system. They propose a combination of collection types, record types, and

untagged union types, along with a sophisticated notion of structural subtyping,

including certain distributivity axioms.

The introduction of XML and XML query languages led to renewed (practical)

interest in semantic subtyping. In the context of XML documents, there is a natural

generalization of document type definitions where the structures in XML documents

can be described using regular expression types. These types capture and generalize

regular expression notation (such as *, ?, and |) and subtyping becomes inclusion

between the sets of documents denoted by two regular expression types.6 Hosoya

and Pierce (2003) first defined such a type system for XML (Hosoya et al., 2000) and

an XML-processing language, XDuce, based on this type system. Frisch et al., (2008)

extended semantic subtyping to function types and propositional types, with type-

test, resulting in the language CDuce (Benzaken et al., 2003). (An excellent overview

of the use of semantic subtyping in the context of querying XML documents was

given by Castagna, 2005.) In the end, the XQuery working group resorted to a

more conventional pure named type system (Siméon & Wadler, 2003) with a simpler

notion of subtyping based on ordinary regular expression inclusion (as opposed

to XDuce’s use of tree regular expressions). Neither XDuce nor CDuce provides

general refinement types, and their subtype algorithm is purpose-built. Genevès

et al., (2007) consider a related problem of XML path containment. They translate

XPath expressions and XML regular tree types into a particular logic and hence

containment becomes implication. They use binary decision diagrams to check

satisfiability; however, their type system does not provide general refinement types.

CDuce allows expressions to be pattern-matched against types and statically

detects if a pattern-matching expression is non-exhaustive or a branch is unreachable.

If this is the case, a counterexample XML document is generated that exhibits the

problem. CDuce can also generate a counterexample document when subtyping

fails, and issues warnings if empty types are detected. These tasks are much simpler

6 More precisely, regular expression types correspond exactly to tree automata and thus subtyping
reduces to the inclusion problem between tree automata.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

68 G. M. Bierman et al.

in CDuce than they are in our setting, since we additionally have to deal with

general refinement types. In particular, the models produced by the SMT solver are

not guaranteed to be real counterexamples, so we perform additional validation as

explained in Section 7.

Complete functional synthesis (Kuncak et al., 2010) is a recent technique closely

related to our elementof expressions. It involves generating specialized decision

procedures to find concrete values that satisfy predicates expressed as Boolean

expressions in a predictable way, while our elementof expressions find concrete values

that satisfy predicates expressed as refinement types by calling an SMT solver. It

would be interesting to investigate whether we can compile elementof expressions

into code implementing specialized decision procedures following the techniques of

Kuncak et al. (2010).

X10 (Saraswat et al., 2008) is an object-oriented language that supports refinement

types. A class C can be refined with a constraint c on the immutable state of C,

resulting in a type written C(:c). The base language supports only simple equality

constraints but further constraints can be added and multiple constraint solvers

can be integrated into a compiler. In comparison with Dminor, X10 uses a mixture

of semantic and syntactic subtyping, while its constraint language (Saraswat et al.,

2008, Section 2.11) does not support type-test expressions.

Soft typing systems (Cartwright & Fagan, 1991; Aiken et al., 1994; Wright &

Cartwright, 1997) infer types that represent program invariants, including shapes

of S-expressions, but are not value-dependent. Typed Scheme (Tobin-Hochstadt &

Felleisen, 2008, 2010) makes use of shallow type-test expressions, union types and

notions of visible and latent predicates to type-check Scheme programs. Typed

Scheme records information from previous conditional expressions in a similar way

as we do in our rule (Exp Cond). It would be interesting to see if these idioms can be

internalized in the Dminor type system using refinements – preliminary experiments

are encouraging: Dminor can already handle all the first-order challenge examples

introduced in the paper of Tobin-Hochstadt & Felleisen, (2010). We list our type-

checked translation of some of these examples below.

f(x:Integer | Text) : Integer {
(x in Integer) ? (x + 1) : string length(x) }

g(x : Integer | Text | Logical) : Any {
(let temp = (x in Integer) in

((temp) ? temp :(x in Text)))

?f(x)

:0 }

h(input : (Integer | Text), extra : {fst: Any; snd: Any;}) : Integer {
((input in Integer) && (extra.fst in Integer)) ?

(input + extra.fst)

: ((extra.fst in Integer) ?

(string length(input) + extra.fst)

: 0) }

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 69

More recently, Greenberg et al., (2010) have considered the use of refinement types

combined with dynamic checks and first-class blame as a higher order contracts

language in the sense of Findler & Felleisen, (2002). It remains for future work

to similarly consider an extension of Dminor with first-class blame as a contracts

language. Some other prior work on dependent type systems has specifically targeted

correct access to union types in COBOL (Komondoor et al., 2005) and in C (Jhala

et al., 2007).

PADS (Fisher et al., 2006) develops a type theory for ad hoc data formats, such

as system traces, together with a rich range of tools for learning such formats

and integrating into existing programming languages. The PADS type theory has

refinement types, dependent pairs, and intersection types, but no type-test. There is

a syntactic notion of type equivalence, but not subtyping. Dminor would be a useful

language for programming transformations on data parsed using PADS, as our type

system would enforce the constraints in PADS specifications, and hence guarantee

statically that transformed data remain well-formed. Existing interfaces of PADS to

C or to OCaml do not offer this guarantee.

DVerify (Backes et al., 2011) is a recent tool that verifies Dminor programs by

translating them into a standard while language and then using Boogie (Barnett

et al., 2005) for generating verification conditions. DVerify directly uses our logical

semantics from Section 3 to generate assertions in the while-program that faithfully

represent the typing constraints in the original Dminor program. Experimental evi-

dence suggests that DVerify achieves very similar precision and efficiency compared

to our prototype type-checker.

We do not consider type inference for Dminor; we assume that all function

definitions have explicit type signatures. There has been considerable recent progress

in inference algorithms for refinement types (Rondon et al., 2008; Kawaguchi et al.,

2009; Unno & Kobayashi, 2009; Terauchi, 2010; Jhala et al., 2011), some of which

may be applicable to inferring type signatures for Dminor functions.

SMT solvers are widely used to find concrete inputs to imperative programs by

using forms of symbolic execution (King, 1976). Our use of an SMT solver to find

concrete values of types is in the same spirit. Both ideas amount to asking the SMT

solver to find concrete counterexamples to formulas. To relate these approaches,

it would be interesting for future work to consider a symbolic execution of our

operational semantics for type-test, and to compare the resulting formulas with our

direct interpretation of refinement types as formulas.

10 Conclusions

We have described Dminor, a simple, first-order functional language for data

processing that features an especially expressive type system. The novel combination

of refinement types and type-test allows us to encode a rich variety of typing idioms;

for example, intersection, union, negation, singleton, nullable, variant, and algebraic

types are all derivable.

The main contribution of this paper is a technique to type-check Dminor programs

statically: We combine the use of a bidirectional type system with the use of an

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

70 G. M. Bierman et al.

SMT solver to perform semantic subtyping. Previous type systems have either devised

special purpose algorithms for semantic subtyping, or used theorem provers only for

refinement types. As far as we are aware, our use of an SMT solver to determine

Dminor’s very general notion of semantic subtyping is novel. We have implemented

our type system in F� using the Z3 SMT solver. We consider that SMT solvers are

now of sufficient maturity that they can realistically be thought of as a platform

upon which many applications may be built, including expressive type systems.

Our type-checker, like all static analyzers, has the potential to generate false

negatives, that is, rejecting programs as type incorrect that are, in fact, type correct.

As any SMT solver is incomplete for the first-order theories that we are interested in,

it is possible that the solver is unable to determine an answer to a logical statement.

Sage (Flanagan, 2006; Knowles et al., 2007) avoids these problems by catching these

cases and inserting a cast so that the test is performed again at run-time. This has

a pleasant effect of not penalizing the developer for any possible incompleteness of

an SMT solver. The techniques used in Sage should apply to Dminor without any

great difficulty.

We leave as future work the project of adding support for first-class functions; one

direction is to generalize the mixture of syntactic and semantic subtyping introduced

by Calcagno et al., (2005).

Finally, the implications of this work go beyond the core calculus Dminor. PADS,

JSON, and M, for example, show the significance of programming languages for

first-order data. Our work establishes the usefulness of combining refinement types

and dynamic type-tests when programming with first-order data, and the viability

of statically type-checking such programs with the aid of an SMT solver.

Appendix A Mechanized definition of the intended model

In our logical semantics from Section 3 and its optimized version from Section 6.1,

the semantics of a Dminor type is a FOL formula that is interpreted in a specific

model. In this section we present the formal definition of this model in the Coq

proof assistant (TypiCal Project, 2009). Sorts are encoded as Coq types, and function

symbols are interpreted as Coq functions. We focus only on the interpretation of the

types and function symbols used by the optimized logical semantics from Section 6.1.

The formalization of the intended Dminor model is valuable for two main reasons.

First, the formalization ensures that the model is properly defined. The recursive

functions in the model are checked by Coq to be total and terminating. In addition,

we have proved in Coq that all functions preserve the logical invariants of the types

on which they operate. For instance the FOL sort Value is interpreted as the Coq

subset (Sozeau, 2006) type {x : RawValue | Normal x}, which required us to prove

that all functions in the model only produce values in normal form (from values in

normal form).

Second, having a natural model that is defined independently of the axioms

that are fed to the SMT solver (see Appendix B) allows us to reason about the

soundness of these axioms with respect to the model. The soundness of the axioms

is not always obvious, since the axioms are meant to have good performance in the

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 71

SMT solver rather than to be easy to trust by a human. Proving soundness in a

standard model of axioms provided to an automated prover is not new, of course;

it was done for instance by Böhme et al., (2008), who proved in Isabelle/HOL that

the axiomatization underlying their verification method for C code is correct. The

Boyer–Moore family of theorem provers (Boyer et al., 1995) allows both writing

logical definitions for models and executing them efficiently (Greve et al., 2008).

Appendix A.1 Values

We first define scalars (sort General) and “raw” values as inductive types. Entities

are represented as lists of string-raw-value pairs, while collections are represented

as lists of raw values.

Model: Raw values

Inductive General : Type :=

| G Integer : Z →General

| G Text : string →General

| G Logical : bool →General

| G Null : General.

Inductive RawValue : Type :=

| G : General →RawValue

| E : list (string ∗ RawValue) →RawValue

| C : list RawValue →RawValue.

This representation is not canonical, that is, multiple representations for the same

value exist, which means we cannot use syntactic equality to compare raw values.

Instead of working directly with raw values, we only consider raw values that are

in a normal form. Entities in normal form are sorted by their field name (a string),

and do not contain duplicate field names. Collections in normal form are sorted

with respect to a total order on raw values (this order is arbitrary but fixed; this

order is irrelevant for the semantics of pure expressions). The main advantage of

using values in normal form is that FOL equality can be interpreted as syntactic

equality, as is usual for FOL models.7

Model: Sorted string-value maps and value bags

Definition leAll (x : A) (ys : list A) := forall y, In y ys → le x y.

Inductive Sorted: list A →Prop :=

| Sorted nil: Sorted nil

| Sorted cons: forall hd tl, leAll hd tl →Sorted tl →Sorted (hd :: tl).

7 If we had gone with a more complicated interpretation of equality, we would have needed to restrict the
interpretation of function symbols to equality-respecting functions, since the interpretation of equality
needs to be a congruence.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

72 G. M. Bierman et al.

Definition le sv (sv1 sv2 : (string ∗ RawValue)) : Prop :=

match sv1, sv2 with

(s1,), (s2,) ⇒ cmp str s1 s2 = Lt ∨ cmp str s1 s2 = Eq

end.

Definition Sorted svm (svm : list (string ∗ RawValue)) : Prop :=

Sorted le sv svm.

Definition le rval (v1 v2 : RawValue) : Prop :=

cmp rval v1 v2 = Lt ∨ cmp rval v1 v2 = Eq.

Definition Sorted vb (vb : list RawValue) : Prop := Sorted le rval vb.

Model: Normal values

Inductive Normal : RawValue →Prop :=

| normal G : forall g, Normal (G g)

| normal E : forall svm,

NoDup (fst (split svm)) →
Sorted svm svm →
IndAll Normal (snd (split svm)) →

Normal (E svm)

| normal C : forall vb,

Sorted vb vb → IndAll Normal vb →Normal (C vb).

We define the Coq type Value (the interpretation of the FOL sort Value) as the

subset (Sozeau, 2006) of RawValue for which the Normal predicate holds. The sorts

SVMap and VBag are interpreted by similar Coq subset types. The elements of SVMap

are association lists, lists of key/value pairs; the three conditions in the definition

of SVMap require that the list of keys contain no duplicates (so that it forms a finite

map), the list of keys is ordered (so that it is in normal form), and each of the

contained values is itself in normal form.

Model: Coq types interpreting FOL sorts

Definition Value := {x : RawValue | Normal x}.
Definition SVMap :=

{svm : list (string ∗ RawValue) | NoDup (fst (split svm))

∧Sorted svm svm ∧ IndAll Normal (snd (split svm)) }.
Definition VBag :=

{vb : list RawValue | Sorted vb vb ∧ IndAll Normal vb}.

We define testers and accessors for values and scalars in the usual way. For

instance, is E checks whether its argument is an entity, and if this is the case out E

can be used to obtain the association list corresponding to the entity.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 73

Model: Testers and accessors

Program Definition is E (v : Value) : bool :=

match v with | E ⇒ true | ⇒ false end.

Program Definition out E (v : Value) : SVMap :=

match v with | E svm ⇒ svm | ⇒ nil end.

When the argument to out E is not an entity the function returns the empty

association list. This choice is arbitrary, but it is necessary that all the functions in

the model are total. The testers and accessors for the other constructors are defined

in the same way, and for the sake of brevity we omit their definitions here. For

collections and entities we further wrap the testers to permit more flexibility in the

way they are axiomatized.

Model: Good entities and collections

Definition Good C := is C.

Definition Good E := is E.

Appendix A.2 Operations on simple values

The functions In Logical, In Integer, and In Text test whether a value is in the

corresponding scalar type.

Model: Testers for simple values

Definition In Logical v := (is G v) && is G Logical (out G v).

Definition In Integer v := (is G v) && is G Integer (out G v).

Definition In Text v := (is G v) && is G Text (out G v).

We also define shorthand notation for constructing simple values.

Model: Constructors for simple values

Program Definition v tt : Value := G (G Logical true).

Program Definition v ff : Value := G (G Logical false).

Program Definition v logical (b : bool) : Value := G (G Logical b).

Program Definition v int i : Value := G (G Integer i).

Program Definition v text s : Value := G (G Text s).

Program Definition v null : Value := G (G Null).

The operations on simple values are straightforward and are implemented directly

by their Coq counterparts.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

74 G. M. Bierman et al.

Model: Operators on simple values

Definition O Sum v1 v2 :=

v int (Zplus (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O Minus v1 v2 :=

v int (Zminus (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O Mult v1 v2 :=

v int (Zmult (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O GT v1 v2 :=

match Zcompare (of G Integer(out G v1)) (of G Integer(out G v2))

with Gt ⇒ v tt | ⇒ v ff end.

Definition O LT v1 v2 :=

match Zcompare (of G Integer(out G v1)) (of G Integer(out G v2))

with Lt ⇒ v tt | ⇒ v ff end.

Definition O EQ v1 v2 := v logical (syn beq val v1 v2).

Definition O Not v := v logical (negb (of G Logical (out G v))).

Definition O And v1 v2 := v logical (andb (of G Logical (out G v1))

(of G Logical (out G v2))).

Definition O Or v1 v2 := v logical (orb (of G Logical (out G v1))

(of G Logical (out G v2))).

Appendix A.3 Operations on entities

The model provides two operations for creating entities: v eempty creates an empty

entity, and v eupdate creates a new entity from an existing one by updating one field.

If the updated field already exists in the original entity then the value of this field

will be lost in the new entity. The implementation of v eupdate uses an auxiliary

function update in sorted svm that implements insertion sorting for association lists.

If the key to be added is, however, already present in the association list, then

update in sorted svm additionally removes the old entry. The v eupdate operation

does not correspond to any Dminor construct (although it would be easy to add

functional entity updates to Dminor) but it allows us to construct entity values in an

abstract way (without caring how they are implemented – for example, lists versus

arrays).

Model: Creating entities

Program Definition v eempty : Value := E nil.

Program Definition v eupdate (s : string) (v e : Value) : Value :=

E (update in sorted svm (s, v) (out E e)).

The two basic operations on entities are: v has field that tests whether an entity

has a certain field, and v dot that given an entity that has a certain field selects

the value of this field. Functions v has field and v dot use the Coq library function

TheoryList.assoc to obtain the value associated with a given key in a list of pairs.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 75

Model: Basic operations on entities

Program Definition v has field (s : string) (v : Value) : bool :=

match TheoryList.assoc eq str dec s (out E v) with

| Some v ⇒ true | None ⇒ false end.

Program Definition v dot (s : string) (v : Value) : Value :=

match TheoryList.assoc eq str dec s (out E v) with

| Some v ⇒ v | None ⇒ v null end.

Appendix A.4 Operations on collections

The constant v zero represents the empty collection. The boolean function v mem

tests whether a value is present in a collection using the TheoryList.mem function

from the Coq standard library. The function v add adds an element to a collection

using an auxiliary function insert in sorted vb, which implements insertion sorting

for collections. In turn v add is used to define v add many, which adds i instances of

a given value to a collection.

Model: Functions and predicates on collection

Program Definition v zero : Value := C nil.

Program Definition v mem (v cv : Value) : bool :=

TheoryList.mem eq rval dec v (out C cv).

Program Definition v add (v cv : Value) : Value :=

(C (insert in sorted vb v (out C cv))).

Fixpoint v add many’ (v : Value) (n : nat) (cv : Value) : Value :=

match n with 0 ⇒ cv | S n’ ⇒ v add many’ v n’ (v add v cv) end.

Definition v add many (v : Value) (i : Z) (cv : Value) : Value :=

v add many’ v (Zabs nat i) cv.

Definition Closure2 := Value →Value →Value.

Definition v apply2 (c : Closure2) v1 v2 := c v1 v2.

Program Fixpoint v acc fold (f : Closure2) (vb : VBag) (a : Value)

{measure List.length vb} : Value :=

match vb with nil ⇒ a | v :: vb’ ⇒ v acc fold vb’ (f a v) end.

Definition v accumulate (clos:Closure2) c := v acc fold clos (out C c).

Finally, v accumulate implements folding over the elements of a collection using

the fixed order on raw values. For the semantics of pure expressions, the order

cannot influence the final result.

Appendix B Axiomatization of the Dminor model

We axiomatize the model of Dminor in sorted FOL extended with the background

theories of equality, integer arithmetic, algebraic datatypes, and extensional arrays.

We only axiomatize the parts of the model that are relevant for the optimized logical

semantics in Section 6.1.

In the following we report all the relevant parts of this axiomatization, di-

rectly imported from our implementation (file DminorFoundationSmtLib.smt in the

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

76 G. M. Bierman et al.

Dminor release). We use the standard SMT-LIB 1.2 format (Ranise & Tinelli, 2006)

supported by all recent SMT solvers, together with Z3-specific (de Moura & Bjørner,

2008) extensions for algebraic datatypes and arrays (de Moura & Bjørner, 2009).

We leave it as future work to prove formally that these axioms are properties of

the model from Appendix A.

Appendix B.1 An overview on Z3 arrays

We use arrays in our axiomatization to represent collections (multisets) and entities

(maps). An array is a function with finite support from one sort (the domain) into

another (the range). The domain can be infinite, but the array can differ from

a default element only on a finite subset of the domain. As a simple illustrative

example (which is not part of our axiomatization for Dminor), we can define an

array from integers to Booleans, which basically represent a set of integers using its

characteristic function.

Defining an array sort representing sets of integers in Z3

:define sorts ((IntSetArray (Array Int bool)))

The basic theory of arrays was introduced by McCarthy (1962) and characterizes

functions store and select, using the following two axioms:

∀a, i, v. select(store(a, i, v), i) = v

∀a, i, j, v. i = j ∨ select(store(a, i, v), j) = select(a, j)

These axioms can be written in Z3 syntax (for our array sort IntSetArray above) as

follows:

The basic theory of arrays in Z3 syntax

:assumption (forall (a IntSetArray) (i Int) (v bool)

(= (select (store a i v) i) v))

:assumption (forall (a IntSetArray) (i Int) (j Int) (v bool)

(or (= i j) (= (select (store a i v) j) (select a j))))

One additional property that is often desirable is extensionality that two arrays

are equal when they agree on all elements.

Extensionality of arrays in Z3 syntax

:assumption (forall (a1 IntSetArray) (a2 IntSetArray)

(implies (forall (i Int) (= (select a1 i) (select a2 i))) (= a1 a2)))

The select and store function symbols can, for instance, be used to implement a

predicate set contains that checks whether an integer is an element of a set, and a

function set remove to remove an element from a set.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 77

Set membership and removing an element from a set

:extrafuns ((set contains IntSetArray Int bool)

(set remove IntSetArray Int IntSetArray))

:assumption (forall (a IntSetArray) (i Int)

(= (set contains a i) (select a i)) :pat{ (set contains a i) })
:assumption (forall (a IntSetArray) (i Int)

(= (set remove a i) (store a i false)) :pat{ (set remove a i) })

In the axioms above we use quantifier patterns (de Moura & Bjørner, 2007;

Leino & Monahan, 2009) to restrict the number of quantifier instantiations. So the

SMT solver will replace set remove by a store, but not the other way around. Such

careful fine-tuning allows one to choose the right trade-off between performance

and completeness. More general quantifier patterns lead to more instantiations of

the axioms, which can be expensive and can lead to non-termination. On the other

hand, too specific patterns can prevent the SMT solver from even trying to prove

useful proof obligations.

Instead of relying directly on the axioms above, Z3 provides an efficient saturation

procedure for the extensional array theory as well as a powerful extension called

combinatory array logic (de Moura & Bjørner, 2009). The extension defines three

new combinators, const, default, and map[f], which satisfy the following axioms.

Combinatory array logic operations in Z3 syntax

:assumption (forall (i Int) (v bool)

(= (select (const[IntSetArray] v) i) v))

:assumption (forall (v Bool) (= (default (const[IntSetArray] v)) v))

:assumption (forall (a IntSetArray) (i Int) (v bool)

(= (default (store a i v)) (default a)))

:extrafuns ((f bool bool bool))

:assumption (forall (a1 IntSetArray) (a2 IntSetArray) (i Int)

(= (select (map[f] a1 a2) i) (f (select a1 i) (select a2 i)))

For example, we can use these new combinators for defining a constant set empty

representing an empty set, a predicate set finite capturing the finiteness of sets, and

a function set union that computes the union of two sets.

Additional operations on sets

:extrafuns ((set empty IntSetArray) (set finite IntSetArray bool)

(set union IntSetArray IntSetArray IntSetArray))

:assumption (set empty = const[IntSetArray] false)

:assumption (forall (a IntSetArray)

(equiv (set finite a) (= (default a) false)) : pat{ (set finite a) })
:assumption (forall (a1 IntSetArray) (a2 IntSetArray)

(= (set union a1 a2) (map[and] a1 a2)) :pat{ (set union a1 a2) })

In Z3 all the array axioms above are built-in (so they should not be added

manually) and are efficiently implemented (de Moura & Bjørner, 2009).

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

78 G. M. Bierman et al.

Appendix B.2 Values

We begin our axiomatization of Dminor by defining simple values. For strings and

the labels of entities we define a new sort named String. The semantics of sorted

FOL ensures that this sort is non-empty and disjoint from all other sorts. Since

strings and labels are constants and we have no operation on them, we do not

further constrain this sort.

The sort General is defined as an algebraic datatype with four constructors:

G Integer taking a (built-in) integer as argument, G Text taking a String, G Logical

taking a (built-in) boolean, and the constant G Null.

Simple values

:extrasorts (String)

:datatypes ((General

(G Integer (of G Integer Int))

(G Text (of G Text String))

(G Logical (of G Logical bool))

G Null))

This declaration implicitly defines three accessor functions, named of G Integer,

of G Text, and of G Logical, which are inverses to G Integer, G Text, and G Logical.

Given an argument of the form (G Integer i), the function of G Integer returns i;

of G Text and of G Logical act similarly. In addition, the declaration implicitly defines

tester functions by adding the is prefix to the names of each constructor, so

(is G Integer g) tests whether g is of the form (G Integer i), and similarly for is G Text,

is G Logical and is G Null.

Values are also defined as a datatype. We use extensional arrays to represent enti-

ties and collections. However, since Z3 syntactically restricts arrays from appearing

inside datatypes, and since we need to restrict the arrays so that they represent only

finite maps and bags, we use two new (abstract) sorts SVMap and VBag instead. The

sort SVMap is then constrained to be isomorphic to the arrays from Strings to Values

for which a finiteness condition holds, while VBag is required to be isomorphic

to the arrays from Values to non-negative Ints, again with an additional finiteness

condition.8

Values

:extrasorts (SVMap VBag)

:datatypes ((Value

(G (out G General)) ;; simple value (scalar)

(E (out E SVMap)) ;; entity: finite map from String to Value

(C (out C VBag)))) ;; collection: finite multiset of Value

8 Because of this additional indirection, our axiomatization of sort Value captures not only the values
of Dminor but also infinite values that contain themselves (for example, a collection that has itself
as an element). This is sound, since if a property can be proved of this larger set of values then it
also holds for the actual values. In practice it happens very rarely that the SMT solver manages to
falsify a property by constructing a cyclic value; still, our code to process a Z3 model and extract a
counterexample (see Section 7) keeps track of cycles and aborts if one is encountered.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 79

Since arrays can in general be infinite, we further restrict the set of values to

contain only finite collections and entities using the predicates Good C and Good E

(defined below).

Good values

:assumption (forall (v Value)

(implies (Good v)

(and (implies (is C v) (Good C v))

(implies (is E v) (Good E v))))

:pat{ (Good v) })

Appendix B.3 Operations on simple values

We define several functions that test whether a value is a Boolean (In Logical), an

integer (In Integer), or a string (In Text). These functions are trivial to implement

because Z3 already provides testers for datatypes.

Testers for simple values

:assumption (forall (v Value)

(iff (In Logical v) (and (is G v) (is G Logical (out G v))))

:pat { (In Logical v) })
:assumption (forall (v Value)

(iff (In Integer v) (and (is G v) (is G Integer (out G v))))

:pat { (In Integer v) })
:assumption (forall (v Value)

(iff (In Text v) (and (is G v) (is G Text (out G v))))

:pat { (In Text v) })

We also define more convenient constructors for simple values.

Constructors for simple values

:assumption (= v tt (G(G Logical true)))

:assumption (= v ff (G(G Logical false)))

:assumption (forall (b bool) (= (v logical b) (G(G Logical b)))

:pat { (v logical b) })
:assumption (= v null (G(G Null)))

:assumption (forall (n Int) (= (v int n) (G(G Integer n)))

:pat { (v int n) } :pat { (G(G Integer n)) })

:assumption (forall (s String) (= (v text s) (G(G Text s)))

:pat { (v text s) } :pat { (G(G Text s)) })

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

80 G. M. Bierman et al.

The operators on integers and Booleans are easy to define using the built-in

SMT-LIB functions.

Operators on simple values

:assumption (forall (i1 Int) (i2 Int)

(= (O Sum (v int i1) (v int i2)) (v int (+ i1 i2)))

:pat { (O Sum (v int i1) (v int i2)) })
:assumption (forall (v1 Value) (v2 Value)

(= (O EQ v1 v2) (ite (= v1 v2) v tt v ff))

:pat { (O EQ v1 v2) })
:assumption (forall (v Value)

(= (O Not v) (ite (not (= v v tt)) v tt v ff))

:pat { (O Not v) })
:assumption (forall (v1 Value) (v2 Value)

(= (O And v1 v2) (ite (and (= v1 v tt) (= v2 v tt)) v tt v ff))

:pat{ (O And v1 v2) })
:assumption (forall (v1 Value) (v2 Value)

(= (O Or v1 v2) (ite (or (= v1 v tt) (= v2 v tt)) v tt v ff))

:pat{ (O Or v1 v2) })

We omit the definitions for O NE, O Minus, O Mult, O GT, and O LT, which follow the

same pattern.

Appendix B.4 Operations on entities

Entities

:datatypes ((ValueOption

NoValue

(SomeValue (of SomeValue Value))))

:define sorts ((SVMapArray (Array String ValueOption)))

:extrafuns ((alpham SVMap SVMapArray)

(betam SVMapArray SVMap))

We represent entities as arrays from strings to the datatype ValueOption, which

contains Values as well as a special NoValue marker. We call such an array finite

(FiniteE) if it has NoValue as the default element. We use the functions alpham and

betam as the witnesses of isomorphism between the abstract sort SVMap and the

finite part of the array sort SVMapArray. The axiomatization of entities uses these

witness functions intensively.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 81

Operations on entities

;; SVMap and the finite arrays in SVMapArray are isomorphic

:assumption (forall (am SVMapArray)

(implies (FiniteE am) (= (alpham (betam am)) am)))

:assumption (forall (svm SVMap)

(and (FiniteE (alpham svm)) (= (betam (alpham svm)) svm)))

:assumption (forall (svm SVMapArray) (iff (FiniteE svm)

(= (default svm) NoValue)) :pat{ (FiniteE svm) })

:assumption (forall (v Value)

(iff (Good E v) (and (is E v) (FiniteE (alpham (out E v)))))

:pat{ (Good E v) })

:assumption (= v eempty (E (betam (const[SVMapArray] NoValue))))

:assumption (forall (l String) (v Value) (svm SVMap)

(= (v eupdate l v (E svm))

(E (betam (store (alpham svm) l (SomeValue v)))))

:pat{ (v eupdate l v (E svm)) })

:assumption (forall (l String) (svm SVMap)

(iff (v has field l (E svm)) (not(= (select (alpham svm) l) NoValue)))

:pat { (v has field l (E svm)) }) ;;:pat (select (alpham svm) l)

:assumption (forall (l String) (svm SVMap)

(= (v dot l (E svm)) (of SomeValue (select (alpham svm) l)))

:pat { (v dot l (E svm)) }) ;; :pat (select (alpham svm) l)

Appendix B.5 Operations on collections

Collections

:define sorts ((VBagArray (Array Value Int)))

:extrafuns ((alphab VBag VBagArray)

(betab VBagArray VBag))

We represent collections as arrays from Values to integers. We call such a collection

good (Good C) when it is finite (default value of the array is zero) and the cardinality

of the elements is non-negative. Good collections correspond to finite multisets over

values. We use the functions alphab and betab to define an isomorphism between

the abstract sort VBag and the good collections in VBagArray.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

82 G. M. Bierman et al.

Constraints on bags

;; VBag and the finite and positive arrays in VBagArray are isomorphic

:assumption (forall (ab VBagArray)

(implies (and (Finite ab) (Positive ab)) (= (alphab (betab ab)) ab))

:pat{ (alphab (betab ab)) })
:assumption (forall (vb VBag)

(and (Finite (alphab vb)) (Positive (alphab vb))

(= (betab (alphab vb)) vb))

:pat{ (betab (alphab vb)) })

;; Good collections are finite and positive

:assumption (forall (v Value)

(iff (Good C v)

(and (is C v)

(Finite (alphab (out C v)))

(Positive (alphab (out C v)))))

:pat{ (Good C v) })

;; Finiteness of bags

:assumption (forall (a VBagArray)

(iff (Finite a) (= (default a) 0))

:pat{ (Finite a) })

;; Only positive indices in bags

:assumption (forall (a VBagArray)

(iff (Positive a) (forall (v Value) (>= (select a v) 0)

:pat{ (select a v) })) :pat{ (Positive a) })

Closures

:extrasorts (Closure2)

:extrafuns ((v apply2 Closure2 Value Value Value))

For axiomatizing v accumulate we use an abstract sort for closures of two

arguments (Closure2). The v apply2 operation defines how each of the closures

behaves on its arguments. When giving semantics to an expression from x in e1 let y =

e2 accumulate e3, a fresh closure is generated for e2 (called f e2 below), and the

following axiom is added for it:

:extrafuns ((f e2 Closure2))

:assumption (forall (x y Value)

(= (apply2 f e2 x y) V[[e2]]) :pat{(apply2 f e2 x y)})

The v apply2 function is used in the second axiom for v accumulate.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 83

Operations on collections

:assumption (= v zero (C (betab (const[VBagArray] 0))))

:assumption (forall (v Value) (vb VBag)

(iff (v mem v (C vb)) (> (select (alphab vb) v) 0))

:pat { (v mem v (C vb)) }
:pat{ (select (alphab vb) v)})

:assumption (forall (v Value) (i Int) (vb VBag)

(= (v add many v i (C vb))

(C (betab (store (alphab vb) v (+ i (select (alphab vb) v))))))

:pat{ (v add many v i (C vb)) })

:assumption (forall (v Value) (vs Value)

(= (v add v vs) (v add many v 1 vs)) :pat{ (v add v vs) })

;; v accumulate iterates using an order-preserving function

:assumption (forall (clos Closure2) (initial Value)

(= (v accumulate clos v zero initial) initial)

:pat{ (v accumulate clos v zero initial) })

:assumption (forall (clos Closure2) (initial Value) (v Value) (vs Value)

(= (v accumulate clos (v add v vs) initial)

(v accumulate clos vs (v apply2 clos v initial)))

:pat { (v accumulate clos (v add v vs) initial) })

Appendix C Proofs

It is immediate from the definition of purity in Section 2.3 that purity is preserved

by small-step reduction. This property is used in the proof of Theorem 1.

Lemma 4 (Reduction Preserves Purity)

If e is pure and e→ e′ then e′ is pure.

Appendix C.1 Relating operational and logical semantics

In this section we develop proofs for Lemma 2 and Theorem 1 (Full Abstraction)

from Section 3.

We begin with a direct inductive definition of the relation e ⇓ r; that is, an

error-tracking big-step operational semantics.

Evaluation semantics: e ⇓ r

(Eval Const)

c ⇓ Return(c)

(Eval Operator 1)

ei ⇓ Return(vi) ∀i ∈ 1..j − 1 ej ⇓ Error j ∈ 1..n

⊕ (e1, . . . , en) ⇓ Error

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

84 G. M. Bierman et al.

(Eval Operator 2)

ei ⇓ Return(vi) i ∈ 1..n ¬∃v.(⊕(v1, . . . , vn)
→ v)

⊕ (e1, . . . , en) ⇓ Error

(Eval Operator 3)

ei ⇓ Return(vi) ∀i ∈ 1..n ⊕ (v1, . . . , vn)
→ v

⊕ (e1, . . . , en) ⇓ Return(v)

(Eval Cond 1)

e1 ⇓ r r /∈ {Return(true),Return(false)}
e1?etrue : efalse ⇓ Error

(Eval Cond 2)

e1 ⇓ Return(b) b ∈ {true, false} eb ⇓ r
e1?etrue : efalse ⇓ r

(Eval Let 1)

e1 ⇓ Error

let x = e1 in e2 ⇓ Error

(Eval Let 2)

e1 ⇓ Return(v) e2{v/x} ⇓ r
let x = e1 in e2 ⇓ r

(Eval Entity 1)

ei ⇓ Return(vi) ∀i ∈ 1..j − 1 ej ⇓ Error j ∈ 1..n

{�i ⇒ ei
i∈1..n} ⇓ Error

(Eval Entity 2)

ei ⇓ Return(vi) ∀i ∈ 1..n

{�i ⇒ ei
i∈1..n} ⇓ Return({�i ⇒ vi

i∈1..n})
(Eval Dot 1)

e ⇓ r ¬∃v1, . . . , vn.(r = Return({�i ⇒ vi
i∈1..n}) ∧ j ∈ 1..n)

e.�j ⇓ Error

(Eval Dot 2)

e ⇓ Return({�i ⇒ vi
i∈1..n}) j ∈ 1..n

e.�j ⇓ Return(vj)

(Eval Collection)

{v1, . . . , vn} ⇓ Return({v1, . . . , vn})

(Eval Add 1)

e1 ⇓ Error

e1 :: e2 ⇓ Error

(Eval Add 2)

e1 ⇓ Return(v) e2 ⇓ r ¬∃v1, . . . , vn.(r = Return({v1, . . . , vn}))
e1 :: e2 ⇓ Error

(Eval Add 3)

e1 ⇓ Return(v) e2 ⇓ Return({v1, . . . , vn})
e1 :: e2 ⇓ Return({v, v1, . . . , vn})

(Eval Appl 1)

ei ⇓ Return(vi) ∀i ∈ 1..j − 1 ej ⇓ Error j ∈ 1..n

f(e1, . . . , en) ⇓ Error

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 85

(Eval Appl 2)

ei ⇓ Return(vi) ∀i ∈ 1..n e{v1/x1} . . . {vn/xn} ⇓ r
given function definition f(x1 : T1, . . . , xn : Tn) : U{e}

f(e1, . . . , en) ⇓ r
(Eval Accum 1)

e1 ⇓ r ¬∃v1, . . . , vn.(r = Return({v1, . . . , vn}))
from x in e1 let y = e2 accumulate e3 ⇓ Error

(Eval Accum 2)

e1 ⇓ Return({v1, . . . , vn})
let y = e2 in let y = e3{v1/x} in . . . let y = e3{vn/x} in y ⇓ r

from x in e1 let y = e2 accumulate e3 ⇓ r
(Test Wrong)

e ⇓ Error

e in T ⇓ Error

(Test Any)

e ⇓ Return(v)

e in Any ⇓ Return(true)

(Test G 1)

e ⇓ Return(v) v ∈ K(G)

e in G ⇓ Return(true)

(Test G 2)

e ⇓ Return(v) v /∈ K(G)

e in G ⇓ Return(false)

(Test Entity 1)

e ⇓ Return(v) v = {�i ⇒ vi
i∈1..n} ∧ j ∈ 1..n vj in Tj ⇓ r

e in {�j : Tj} ⇓ r
(Test Entity 2)

e ⇓ r ¬∃v1, . . . , vn.(r = Return({�i ⇒ vi
i∈1..n}) ∧ j ∈ 1..n)

e in {�j : Tj} ⇓ Return(false)

(Test Collection 1)

e ⇓ Return(v) ¬∃v1, . . . , vn.(v = {v1, . . . , vn})
e in T∗ ⇓ Return(false)

(Test Collection 2)

e ⇓ Return({v1, . . . , vn}) v1 in T && . . . && vn in T ⇓ r
e in T∗ ⇓ r

(Test Refine)

e1 ⇓ Return(v) v in T && e2{v/x} ⇓ r
e1 in (x : T where e2) ⇓ r

Lemma 5

If v is a value then v ⇓ Return(v).

Proof

By induction on the structure of v. �

Lemma 6

Suppose e is closed. If e→ e′ and e′ ⇓ r then e ⇓ r.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

86 G. M. Bierman et al.

Proof

By induction on the derivation of e′ ⇓ r, with a case analysis of the reduction e→ e′.

We omit the details. �

Lemma 7

If e is closed and stuck then e ⇓ Error.

Proof

By induction on the structure of e. We omit the details. �

By the following lemma, we obtain an independent definition of the relation e ⇓ r
in terms of the reduction relation and stuckness. This is the definition used in Section

2. The equivalent inductive definition given in this section is convenient for proofs.

Lemma 8

Suppose that e is closed.

1. e ⇓ Return(v) if and only if e→∗ v.

2. e ⇓ Error if and only if there is e′ with e→∗ e′ and e′ is stuck.

Proof

The forwards direction follow by straightforward inductions on the derivations of

e ⇓ Return(v) and e ⇓ Error.

For the reverse direction of (1), we have e = e1 → . . .→ en → v. By Lemma 5, we

have v ⇓ Return(v). By repeated applications of Lemma 6, we have ei ⇓ Return(v) for

each i from n down to 1, and indeed ei ⇓ Return(v).

For the reverse direction of (2), suppose there is e′ such that e = e1 → . . .→ en = e′

and e′ is stuck. By Lemma 7, we have en ⇓ Error. By repeated applications of

Lemma 6, we have ei ⇓ Error for each i from n down to 1, and indeed e ⇓ Error. �

Lemma 9

Suppose ⊕ : T1, . . . , Tn → T .

1. If |= F[[Ti]](vi) for each i ∈ 1..n then there is v such that ⊕(v1, . . . , vn)
→ v.

2. If ⊕(v1, . . . , vn)
→ v then |= F[[Ti]](vi) for each i ∈ 1..n, and |= F[[T]](v) and

|= O⊕(v1, . . . , vn) = v.

The following applies to each operator apart from equality ==. As mentioned

previously, equality is defined on any pair of closed values.

Lemma 10

If ⊕ : G1, . . . , Gn → G then dom(⊕) = K(G1)× . . .×K(Gn).

Our semantics has the following substitution property.

Lemma 11

1. For all values v and all expressions e that only call labeled-pure functions,

|= R[[e]]{v/x} = R[[e{v/x}]]

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 87

2. For all types T , values v, and FOL terms t:

|= F[[T]](t){v/x} ⇔ F[[T {v/x}]](t{v/x})

3. For all types T , values v, and FOL terms t:

|= W[[T]](t){v/x} ⇔W[[T {v/x}]](t{v/x})

Proof

By simultaneous induction on the structure of e and T . �

We would like to show that if a closed pure expression evaluates a result then

that is the result of the expression according to the logical semantics (if e ⇓ r then

|= R[[e]] = r). Intuitively this proof should proceed by induction on the structure

of the derivation of e ⇓ r. This works for all cases other than (Eval Accum 2),

so it is instructive to observe a failed proof attempt. In this case we know that

e = from x in e1 let y = e2 accumulate e3, e1 ⇓ Return({v1, . . . , vn}), and let y =

e2 in let y = e3{v1/x} in . . . let y = e3{vn/x} in y ⇓ r, for some arbitrary ordering

v1, . . . , vn. So the induction hypothesis gives us that R[[e1]] = Return({v1, . . . , vn}) and

Bind y ⇐ R[[e2]] in R[[let y = e3{v1/x} in . . . let y = e3{vn/x} in y]] = r. We need to

show that R[[from x in e1 let y = e2 accumulate e3]] = r. By purity we know that for any

permutation of v1, . . . , vn, including the canonical one used by the model vi1 , . . . , vin
we have let y = e2 in let y = e3{vi1/x} in . . . let y = e3{vin/x} in y ⇓ r. However, we

cannot apply the induction hypothesis to this (possibly) different permutation.

In order to obtain a strong enough induction hypothesis in the accumulate case,

we define an auxiliary judgment e ⇓D r, which has the same rules as e ⇓ r, with the

exception of (Eval Accum 2) that is replaced by the following rule:

Auxiliary evaluation relation: e ⇓D r

(Eval Accum D)

e1 ⇓D Return({v1, . . . , vn})
∀k. vik1 , . . . , vikn is a permutation of v1, . . . , vn

let y = e2 in let y = e3{vik1/x} in . . . let y = e3{vikn/x} in y ⇓D rk

from x in e1 let y = e2 accumulate e3 ⇓D rj

The new rule (Eval Accum D) does not pick an arbitrary ordering from the start

but instead it evaluates using all orderings and only in the end picks one of the

results. It is very easy to show that if e ⇓D r then also e ⇓ r.

Lemma 12

If e is closed and e ⇓D r then also e ⇓ r.

Proof

By induction on the structure of the derivation of e ⇓D r. �

If e is additionally pure then also the implication in the other direction holds.

Lemma 13

If e is closed and pure and e ⇓ r then e ⇓D r.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

88 G. M. Bierman et al.

Proof

By induction on the structure of the derivation of e ⇓ r. The proof uses the fact that

pure expressions have to terminate on all paths. �

Lemma 14

For closed and pure e and r, if e ⇓D r then |= R[[e]] = r.

Proof

The proof is by induction on the derivation of e ⇓D r. Notice that the purity

assumption arises explicitly in the case (Eval Accum D), as well as (Eval Appl 2)

for function calls, which also uses Lemma 1. We list these two representative cases

of the proof but omit other details.

(Eval Appl 2)

ei ⇓ Return(vi) ∀i ∈ 1..n e{v1/x1} . . . {vn/xn} ⇓ r
given function definition f(x1 : T1, . . . , xn : Tn) : U{e}

f(e1, . . . , en) ⇓ r

By induction hypothesis, we have |= R[[ei]] = Return(vi) for each i ∈ 1..n. Since

f(e1, . . . , en) is pure, it must be that f is a pure-labeled function, and therefore its

body e is pure. Hence, by Lemma 1, the definition f(x1 : T1, . . . , xn : Tn) : U{e}
and e are pure and e{v1/x1} . . . {vn/xn} ⇓ r imply |= f(v1, . . . , vn) = r. We calculate

as follows:

|= R[[f(e1, . . . , en)]]

= Bind x1 ⇐ R[[e1]] in . . .Bind xn ⇐ R[[en]] in

f(x1, . . . , xn)

= Bind x1 ⇐ Return(v1) in . . .Bind xn ⇐ Return(vn) in

f(x1, . . . , xn)

= f(v1, . . . , vn)

= r

(Eval Accum D)

e1 ⇓D Return({v1, . . . , vn})
∀k. vik1 , . . . , vikn is a permutation of v1, . . . , vn

let y = e2 in let y = e3{vik1/x} in . . . let y = e3{vikn/x} in y ⇓D rk

from x in e1 let y = e2 accumulate e3 ⇓D rj

The induction hypothesis gives us that R[[e1]] = Return({v1, . . . , vn}) and for any

vik1 , . . . , vikn permutation of v1, . . . , vn Bind y ⇐ R[[e2]] in R[[let y = e3{vik1/x} in

. . . let y = e3{vikn/x} in y]] = rk . We choose this to be the canonical permuta-

tion used by the model vic1 , . . . , vicn and obtain a result rc for which let y =

e2 in let y = e3{vic1/x} in . . . let y = e3{vicn/x} in y ⇓D rc. From Lemma 12 by point

(2) in the definition of purity, we obtain rc = rj . We can thus calculate as follows:

|= R[[from x in e1 let y = e2 accumulate e3]]

= res accumulate((fun x y → R[[e3]]), v, v
′)

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 89

= Bind y ⇐ R[[e2]] in

R[[let y = e3{vic1/x} in . . . let y = e3{vicn/x} in y]]

= rc = rj

The omitted cases proceed similarly. �

Lemma 15

For closed and pure e and r, if e ⇓ r then |= R[[e]] = r.

Proof

Immediate from Lemmas 13 and 14. �

Restatement of Lemma 2

For all closed and pure e and e′, if e→ e′ then |= R[[e]] = R[[e′]].

Proof

Suppose e→ e′. By Lemma 4, since e is pure, so is e′. By point (2) of the definition

of purity, there exists a unique result r such that e′ ⇓ r. By Lemma 6, e → e′ and

e′ ⇓ r imply e ⇓ r. By Lemma 15, we have both |= R[[e′]] = r and |= R[[e]] = r. By

transitivity, |= R[[e]] = R[[e′]]. �

Restatement of Theorem 1 (Full Abstraction)

For all closed pure expressions e and e′, we have |= R[[e]] = R[[e′]] if and only if, for

all r, e ⇓ r ⇔ e′ ⇓ r.

Proof

Since e and e′ are closed and pure, by point (2) of the definition of purity there

exist unique results r and r′ such that e ⇓ r and e′ ⇓ r′. By Lemma 15, we have

|= R[[e]] = r and |= R[[e′]] = r′. Given these facts, we have |= R[[e]] = R[[e′]] if and

only if r = r′ if and only if for all r′′, e ⇓ r′′ ⇔ e′ ⇓ r′′. �

Appendix C.2 Algorithmic purity implies purity

Here we develop the proof for Theorem 2 from Section 4, which shows that

algorithmic purity implies purity. We start with a series of useful lemmas.

Lemma 16

Values are algorithmically pure.

Proof

This is straightforward since none of the restrictions required for algorithmic purity

applies to values. �

Lemma 17

If e is algorithmically pure, so is e{v/x} for any v.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

90 G. M. Bierman et al.

Proof

By induction on the structure of e. The variable base case x is handled by Lemma 16.

The function application case is straightforward since substitution only applies to

function arguments, and not to function bodies. In the accumulate case we have

|= R[[let y = e3{x1/x}{y1/y} in e3{x2/x}]] = R[[let y = e3{x2/x}{y1/y} in e3{x1/x}]]

and need to show the following, where we may assume that the bound variable y is

distinct from x.

|= R[[let y = e3{v/x}{x1/x}{y1/y} in e3{v/x}{x2/x}]] =

R[[let y = e3{v/x}{x2/x}{y1/y} in e3{v/x}{x1/x}]]

This equation follows from Lemma 11 together with the substitution property of

the logic (remember that in FOL free variables are implicitly universally quantified).

Condition (3) in the definition of algorithmic purity follows directly by the induction

hypothesis. �

Lemma 18

If e is algorithmically pure, so is eσ for any value substitution σ.

Proof

Since e only has finitely many free variables, we only need to consider non-empty

finite substitutions of the form σ = {v0/x0} . . . {vn/xn}. The proof proceeds by

induction on n, using Lemma 17 in the inductive case. �

Lemma 19

If e is algorithmically pure and e→ e′ then e′ is also algorithmically pure.

Proof

By induction on the derivation of e → e′, using the following equivalent inductive

formulation of algorithmic purity.

Reformulation of algorithmic purity: � T pure � e pure

� Any pure always

� G pure always

� T∗ pure, if � T pure

� {�:T } pure, if � T pure

� (x : T where e) pure, if � T pure and � e pure

� x pure always

� c pure always

� ⊕(e1, . . . , en) pure, if � ei pure for each i ∈ 1..n

� e1?e2 : e3 pure, if � ei pure for each i ∈ 1..3

� let x = e1 in e2 pure, if � e1 pure and � e2 pure

� e in T pure, if � e pure and � T pure

� {�i ⇒ ei
i∈1..n} pure, if � ei pure for each i ∈ 1..n

� e.� pure if � e pure

� {v1, . . . , vn} pure always

� e1 :: e2 pure if � e1 pure and � e2 pure

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 91

� from x in e1 let y = e2 accumulate e3 pure

if � e1 pure and � e2 pure and � e3 pure

and |= R[[let y = e3{x1/x}{y1/y} in e3{x2/x}]] =

R[[let y = e3{x2/x}{y1/y} in e3{x1/x}]]
(where the variables x1, x2, and y1 do not appear free in e3)

� f(e1, . . . , en) pure if � ei pure for each i ∈ 1..n and f is labeled-pure

The rest of the proof is routine and was mechanized in Coq. �

We show that the reduction relation is terminating on algorithmically pure

expressions.

Lemma 20

All reduction sequences starting from closed algorithmically pure expressions are

finite.

Proof sketch

Recursive functions have to decrease the size of their arguments on each recursive

call, which guarantees their termination. The only other source of repetitive compu-

tation is accumulate expressions. But collections are finite and the accumulates are

immediately inlined, so this will again always terminate. �

Lemma 21

If e is closed and algorithmically pure then there exists (at least) a result r so that

e ⇓ r.

Proof

Immediate from Lemma 20. �

The most important step for showing the uniqueness of evaluation results for

algorithmically pure expressions is to show that the result of evaluating such

expressions coincides with the result provided by the logical semantics.

Lemma 22

For all closed and algorithmically pure expressions e and for all results r, if e ⇓ r
then |= R[[e]] = r.

Proof

By induction on the structure of the derivation of e ⇓ r, with appeal to the big-step

semantics in Appendix C.1. �

Lemma 23

If e is closed and algorithmically pure and e ⇓ r1, and e ⇓ r2 then r1 = r2.

Proof

By Lemma 22 we have |= R[[e]] = r1 and |= R[[e]] = r2. By transitivity it follows that

|= r1 = r2, which directly implies that r1 = r2. �

Lemma 24 (Subexpressions and Substitution)

For all value substitutions σ, if e′ is a subexpression of eσ then there exists e′′ so

that e′′ is a subexpression of e and e′ = e′′σ.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

92 G. M. Bierman et al.

Restatement of Theorem 2

If e is algorithmically pure then e is pure.

Proof

We prove the following more general statement by mutual induction on e and T :

a. If e is algorithmically pure then e is pure.

b. For all T , if e is a subexpression of T and e is algorithmically pure then e is

pure.

For proving a., by definition, e is pure if and only if for any value substitution σ

each of the following four properties hold:

1. eσ is terminating,

2. there exists a unique result r such that eσ ⇓ r,
3. for every subexpression f(e1, . . . , en) of eσ, the function f is labeled-pure, and

4. all subexpressions of eσ are pure.

Let σ be an arbitrary value substitution. By Lemma 18 we have that eσ is

algorithmically pure. The first three properties can be proved immediately without

using the induction hypothesis. Property (1) follows from Lemma 20. Property (2)

follows from Lemmas 21 and 23. Property (3) is immediate from the definition of

algorithmic purity.

The only property that uses the induction hypothesis is Property (4): all subex-

pressions of eσ are pure. Let e′ be an arbitrary subexpression of eσ. By Lemma 24

we have that there exists e′′ so that e′′ is a subexpression of e and e′ = e′′σ. We

need to prove that e′′σ is pure, and we do this by case analysis on e. All cases

follow immediately by applying the induction hypothesis. The only exception is

when e = e0 in T and e′′ is a subexpression of T , but there we can use b.. The

proof of b. is also simple, by case analysis on the T , and uses the main induction

hypothesis when T is a refinement type (x : T0 where e0) and e′′ is a subexpression

of e0. �

Appendix C.3 Logical soundness

Here we develop the proof for Theorem 3 that relates type assignment to the logical

semantics of types and expressions. We start with a series of useful lemmas.

Lemma 25 (Transitivity of Semantic Subtyping)

If E � T <: T ′ and E � T ′ <: T ′′ then E � T <: T ′′.

Proof

By expanding definitions. �

Lemma 26

If e is alg. pure then: |= F[[Ok(e)]](t)⇔ (R[[e]] = Return(true)).

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 93

Proof

We have:

|= F[[Ok(e)]](t)

⇔ F[[(x : Any where e)]](t) x /∈ fv(e)

⇔ F[[Any]](t) ∧ let x = t in (R[[e]] = Return(true))

⇔ (R[[e]] = Return(true))

�

Lemma 27

If e is alg. pure then: |= F[[[e : T]]](t)⇔ F[[T]](t) ∧ (R[[e]] = Return(t)).

Proof

We have:

|= F[[[e : T]]](t)

⇔ F[[(x : T where x == e)]](t) x /∈ fv(e)

⇔ F[[T]](t) ∧ let x = t in (R[[x == e]] = Return(true))

⇔ F[[T]](t) ∧
(Bind y ⇐ R[[e]] in Return(v logical(t = y))) = Return(true)

⇔ F[[T]](t) ∧ (R[[e]] = Return(t))

�

The following lemma characterizes singular subtyping in terms of the logical

semantics.

Lemma 28 (Singular Subtyping)

Suppose E � e : T and E � T ′ and x /∈ dom(E).

1. If e is alg. pure then

E � [e : T] <: T ′ iff |= F[[E]] ∧ F[[T]](out V(R[[e]])) =⇒ F[[T ′]](out V(R[[e]]))

2. If e is not alg. pure then

E � [e : T] <: T ′ iff |= F[[E]] ∧ F[[T]](x) =⇒ F[[T ′]](x)

Proof

In case (1), we have

E � [e : T] <: T ′

iff |= (F[[E]] ∧ F[[[e : T]]](x))⇒ F[[T ′]](x)

iff |= (F[[E]] ∧ F[[T]](x) ∧ (R[[e]] = Return(x))⇒ F[[T ′]](x)

iff |= (F[[E]] ∧ F[[T]](x) ∧ (out V(R[[e]]) = x)⇒ F[[T ′]](x)

iff |= (F[[E]] ∧ F[[T]](out V(R[[e]]))⇒ F[[T ′]](out V(R[[e]]))

In case (2), [e : T] = T , and the calculation is immediate. �

By the following lemma, singular subtyping is transitive, and hence we have that

any derivation of a type assignment can be seen as one instance of a structural rule

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

94 G. M. Bierman et al.

plus one instance of (Exp Singular Subsum). This observation is useful, for example,

in proving type preservation, Theorem 4.

Lemma 29 (Transitivity of Singular Subtyping)

If E � [e : T] <: T ′ and E � [e : T ′] <: T ′′ then E � [e : T] <: T ′′.

Proof

An easy application of Lemma 28. �

We can now prove the logical soundness of the type system.

Restatement of Theorem 3 (Logical Soundness)

1. If e is alg. pure and E � e : T then

a. |= F[[E]]⇒ Proper(R[[e]])

b. |= F[[E]]⇒ F[[T]](out V(R[[e]]))

2. If E � U then |= F[[E]]⇒ ∀y.¬W[[U]](y), for y /∈ fv(U).

Proof

By mutual induction on the derivation of judgments. A detailed argument appears

in the technical report.

�

Appendix C.4 Preservation and progress

Here we develop proofs of Theorems 4 and 5 that imply the safety of our declarative

type system from Section 5.

We have the following basic properties.

Lemma 30 (Implied Judgments)

1. If E � T then E � � and fv(T) ⊆ dom(E).

2. If E � T <: T ′ then E � T and E � T ′.

3. If E � e : T then E � T and fv(e) ⊆ dom(E).

Proof

By simultaneous induction on the derivations of each judgment. �

Lemma 31 (All Values Typable)

For any v we have E � v : Any.

Proof

By induction on the structure of v. �

Lemma 32 (Weakening)

Suppose E, x : T ′ � � and x /∈ dom(E ′).

1. If E,E ′ � � then E, x : T ′, E ′ � �.
2. If E,E ′ � T then E, x : T ′, E ′ � T .

3. If E,E ′ � S <: T then E, x : T ′, E ′ � S <: T .

4. If E,E ′ � e : T then E, x : T ′, E ′ � e : T .

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 95

Proof

The proof is by simultaneous induction on the derivation of the judgments E,E ′ � �
and E,E ′ � T and E,E ′ � S <: T and E,E ′ � e : T . �

Lemma 33 (Bound Weakening)

Suppose E � T <: T ′.

1. If E, x : T ′, E ′ � � then E, x : T ,E ′ � �.
2. If E, x : T ′, E ′ � S then E, x : T ,E ′ � S .

3. If E, x : T ′, E ′ � S <: S ′ then E, x : T ,E ′ � S <: S ′.

4. If E, x : T ′, E ′ � e : S then E, x : T ,E ′ � e : S .

Proof

By simultaneous induction on derivations. �

Lemma 34 (Semantic Substitution)

1. For all e′, x, alg. pure e so that E � e : V we have that

|= F[[E]]⇒ R[[e′]]{out V(R[[e]])/x} = R[[e′{e/x}]];
2. For all T , t, alg. pure e so that E � e : V we have that

a. |= F[[E]]⇒ F[[T]](t){out V(R[[e]])/x} ⇔ F[[T {e/x}]](t{e/x});
b. |= F[[E]]⇒W[[T]](y){out V(R[[e]])/x} ⇔W[[T {e/x}]](t{e/x}).

Proof

By mutual induction on the structure of e′ and T . A detailed argument appears in

the technical report. �

Lemma 35

For all E, E ′, alg. pure e, x, if E � e : T then

|= F[[E]]⇒ F[[E ′]]{out V(R[[e]])/x} ⇔ F[[E ′{e/x}]]

Proof

By induction on the structure of E ′, with appeal to Lemma 34. �

Lemma 36 (Lookup)

If E � � and (x : T) ∈ E and (x : T ′) ∈ E then T = T ′.

Proof

If E � � all the entries in E are for distinct variables. �

Lemma 37 (Substitution)

Suppose E � e′ : T ′ and e′ alg. pure.

1. If E, x : T ′, E ′ � � then E,E ′{e′/x} � �.
2. If E, x : T ′, E ′ � T then E,E ′{e′/x} � T {e′/x}.
3. If E, x : T ′, E ′ � S <: T then E,E ′{e′/x} � S{e′/x} <: T {e′/x}.
4. If E, x : T ′, E ′ � e : T then E,E ′{e′/x} � e{e′/x} : T {e′/x}.

Proof

The proof is by simultaneous induction on the derivation of the judgments. A

detailed argument appears in the technical report. �

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

96 G. M. Bierman et al.

Lemma 38

1. If � � e : T , � � e′ : T , e→ e′ and e is alg. pure then � � [e′ : T] <: [e : T].

2. If � � e : Logical, � � e′ : Logical, e→ e′ then � � Ok(e′) <: Ok(e).

Proof

1. From Lemma 19 we have that e′ is also alg. pure. We have that F[[[e′ : T]]](x)

holds iff F[[T]](x) ∧ (R[[e′]] = Return(x)). By Lemma 2 this is equivalent to

F[[T]](x) ∧ (R[[e]] = Return(x)), which is equivalent to F[[[e : T]]](x).

2. We proceed by considering e.

Case e is alg. pure. From Lemma 19 we have that e′ is also alg. pure. We have

that F[[Ok(e′)]](x) holds iff F[[Any]](x) ∧ (R[[e′]] = Return(x)). By Lemma 2

this is equivalent to F[[Any]](x) ∧ (R[[e]] = Return(x)), which is equivalent to

F[[Ok(e)]](x).

Case e is not alg. pure. By definition Ok(e) is Any, and so our property holds

as Any is the top type.

�

Another useful lemma relates subtyping with reduction via substitution.

Lemma 39

If � � e : U, � � e′ : U, e→ e′ and e is alg. pure then � � T {e/x} <: T {e′/x} and

� � T {e′/x} <: T {e/x}.

Proof

Assume F[[T {e/x}]](t) for some term t. Then by Lemma 34, F[[T {e/x}]](t) holds just

if F[[T]](t){out V(R[[e]])/x}. By Lemma 2 this is equivalent to F[[T]](t){out V(R[[e′]])/x}.
Again by Lemma 34 this holds if and only if F[[T {e′/x}]](t), as e′ is alg. pure by

Lemma 19. �

Before we proceed to the preservation theorem, we first need some inversion

lemmas for entity and collection types.

Lemma 40 (Entity Type Inversion)

1. If E � {�i ⇒ vi
i∈1..n} : {�i : Ti

i∈1..n} then E � vi : Ti, for i ∈ 1..n.

2. If E � {�i ⇒ vi
i∈1..n} : Any then E � vi : Any, for i ∈ 1..n.

Lemma 41 (Collection Type Inversion)

1. If E � {v1, . . . , vn} : T∗ then E � vi : T , for i ∈ 1..n.

2. If E � {v1, . . . , vn} : Any then E � vi : Any, for i ∈ 1..n.

We also need the following lemma, which captures the intuition that if we know

that a value inhabits a type, then assuming that it does not inhabit that type leads

to a degenerative subtype relation.

Lemma 42

If E � v : T then E, : Ok(!v in T) � U <: V , for any types U,V such that E � U

and E � V .

Restatement of Theorem 4 (Preservation)

If � � e : T and e→ e′ then � � e′ : T .

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 97

Proof

By induction on the derivation of � � e : T . A detailed argument appears in the

technical report. �

Lemma 43 (Canonical Forms)

1. If � � v : Integer then v = i for some integer i.

2. If � � v : Text then v = s for some string s.

3. If � � v : Logical then v = true or v = false.

4. If � � v : T∗ then v = {v1, . . . , vn} for some values v1, . . . , vn where � � vi : T

for all i.

5. If � � v : {� : T } then v = {�i ⇒ vi
i∈1..n} for some values v1, . . . , vn and field

names �1, . . . , �n so that � = �i for some i, and additionally � � vi : T .

Proof

All parts of the lemma are proved by first applying part (1) (a) of Theorem 3

to the typing derivation of v. For instance for (3) we obtain that |= F[[�]] ⇒
F[[Logical]](out V(Return(v))). This is equivalent to |= In Logical(v), which gives us that

v = true or v = false by the definition of In Logical in the model. The other cases

proceed in exactly the same way. �

Lemma 44 (Progress for Type-tests)

For all types T and values v, ∃e. v in T → e.

Proof

By induction on the structure of T using the reduction rules for type-tests. �

Restatement of Theorem 5 (Progress)

If � � e : T and e is not a value then ∃e′. e→ e′.

Proof

By induction on the derivation of � � e : T using Lemma 44 in the (Exp Test) case.

The (Exp Operator), (Exp Cond), (Exp Dot), (Exp Add), and (Exp Acc) cases use

Lemma 43. �

Appendix C.5 Soundness of the algorithmic type system

In this section we present the soundness proof for the algorithmic type system from

Section 6.2.

The key property of type normalization is that it preserves the semantics of types.

First we state the following properties of the helper functions that are used in type

normalization.

Lemma 45 (Soundness of Helper Functions)

1. If E � R1 and E � R2 then E � R1 & R2 <: ConjRR(R1, R2) and E �
ConjRR(R1, R2) <: R1 & R2.

2. If E � R1 and E � D1 then E � R1 & D1 <: ConjRD(R1, D1) and E �
ConjRD(R1, D1) <: R1 & D1.

3. If E � D1 and E � D2 then E � D1 & D2 <: ConjDD(D1, D2) and E �
ConjDD(D1, D2) <: D1 & D2.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

98 G. M. Bierman et al.

Before we proceed to the soundness of type normalization, we state some properties

of semantic subtyping that are immediate by definition.

Lemma 46

1. If E � S , E � T and E � S <: T then E � (x : S where e) <: (x : T where e).

2. E � (x : T1 & T2 where e) <: (x : T1 where e) & (x : T2 where e).

3. E � (x1 : (x2 : T where e2) where e1) <: (x1 : T where e1) & (x2 : T where e2).

Lemma 47 (Soundness of Type Normalization)

1. If E � T and norm(T) = D then D is a normal type with E � T <: D.

2. If E � (x : C where e) and normr(x : C where e) = D then E � (x : C where e) <:

D.

Proof

Proof by mutual induction on T and e. Most of the cases are routine, here we give

just two.

Case T is of the form (x : T where e). We have that norm(T) =|ni=1 (xi : Ci where ei)

and by induction on T , E � T <:|ni=1 (xi : Ci where ei). By part (1) of Lemma 46

we have that E � (x : T where e) <: (x :|ni=1 (xi : Ci where ei) where e). By part (2) of

Lemma 46 we have that E � (x : T where e) <: (|ni=1 (x : (xi : Ci where ei) where e)).

By part (3) of Lemma 46 we have that E � (x : T where e) <: (|ni=1 ((xi :

Ci where ei) & (x : Ci where e))). We also have by mutual induction E � (x :

Ci where e) <: normr(x : Ci where e), so we can deduce that E � (x : T where e) <:

(|ni=1 ((xi : Ci where ei) & (normr(x : Ci where e)))). By Lemma 45 we can conclude

E � (x : T where e) <: (|ni=1 ConjDD(xi : Ci where ei, normr(x : Ci where e))) as

required.

Case e is of the form x in T . We have by definition that normr(x : C where (x in T))

= norm(C & T). By mutual induction we have that E � (C & T) <: norm(C & T).

We assume F[[E]] and we have that F[[x : C where (x in T)]](t) is equal to the

following by expanding definitions:

F[[C]](t) ∧ let x = t in (R[[x in T]] = Return(true))

By further expansion and Theorem 3 this is equivalent to

F[[C]](t) ∧ let x = t in

((if F[[T]](x) then Return(true) else Return(false)) = Return(true)),

which is clearly equivalent to F[[C]](t) ∧ F[[T]](t), which by Theorem 3 and the

meaning of E � (C & T) <: norm(C & T) allows us to deduce F[[norm(C & T)]](t)

as required. �

Lemma 48 (Soundness of Field Type Extraction)

1. If E � A and A.� � U then E � A <: {�:U}.
2. If E � C and C.� � U then E � C <: {�:U}.
3. If E � R and R.� � U then E � R <: {�:U}.
4. If E � D and D.� � U then E � D <: {�:U}.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 99

Proof

All parts follow from expanding definitions; here we consider part (3). If E � R

and R.� � U then it must be the case that R is of the form (x : C where e), and

C.� � U. By part (2) we know that E � C <: {� : U}. We know that for any type

C with E � C that E � (x : C where e) <: C , and so by transitivity (Lemma 25) we

can conclude E � (x : C where e) <: {�:U}. �

Lemma 49 (Soundness of Item Type Extraction)

1. If E � A and A.Items � U then E � A <: U∗.
2. If E � C and C.Items � U then E � C <: U∗.
3. If E � R and R.Items � U then E � R <: U∗.
4. If E � D and D.Items � U then E � D <: U∗.

Proof

Similar to the proof of the previous lemma; we omit the details. �

Lemma 50 (Synthesis Checkable)

If E � e→ T then E � e← T .

Proof

By (Swap) and reflexivity of singular subtyping. �

Restatement of Theorem 7 (Soundness of Algorithmic Type System)

1. If E � � then E � �.
2. If E � T then E � T .

3. If E � S <: T and E � S then E � S <: T .

4. If E � e→ T then E � e : T .

5. If E � e← T then E � e : T .

Proof

By simultaneous induction over the derivations. For space reasons we give just the

more interesting cases.

Part (4): (Synth Dot)

E � e→ T norm(T) = D D.� � U

E � e.�→ [e.� : U]

By induction hypothesis we have that E � e : T . From Lemma 47 we have

that E � T <: D, and from Lemma 48 we have that E � D <: {�:U}. By

transitivity (Lemma 25) and the derived rule (Exp Subsum) we can conclude that

E � e : {�:U}. From rule (Exp Dot) we deduce that E � e.� : U, and by the

derived rule (Exp Singleton) we have E � e.� : [e.� : U] as required.

Part (4): (Synth Add)

E � e1 → T1 E � e2 → T2 norm(T2) = D2 D2.Items � U2

E � e1 :: e2 → ([e1 : T1] | U2)∗

By induction hypothesis we have both E � e1 : T1 and E � e2 : T2. It is simple to

show that E � [e1 : T1] <: ([e1 : T1] | U2) and so by rule (Exp Singular Subsum)

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

100 G. M. Bierman et al.

we can derive E � e1 : ([e1 : T1] | U2). From Lemma 47 we have that E � T2 <: D2

and from Lemma 49 we have that E � D2 <: U2∗. By transitivity (Lemma 25)

and the derived rule (Exp Subsum) we can conclude that E � e2 : U2∗. It is simple

to show that E � U2∗ <: ([e1 : T1] | U2)∗ and by the derived rule (Exp Subsum)

we can conclude that E � e2 : ([e1 : T1] | U2)∗. From rule (Exp Add) we deduce

E � e1 :: e2 : ([e1 : T1] | U2)∗ as required.

Part (5): (Swap)

E � e→ T E � [e:T] <: T ′

E � e← T ′

By (simultaneous) induction hypothesis we have that E � e : T and E � [e:T] <:

T ′. By rule (Exp Singular Subsum) we have E � e : T ′ as required. �

Appendix C.6 Exploiting SMT models correct

In this section we show that the operational checks we use to validate the models

produced by the SMT solver are correct (Lemmas 51 and 52), and that the elementof

construct does indeed return a value of the requested type or null (Lemma 54).

Lemma 51

If the three checks from Section 7.1 succeed then E �� T <: T ′.

Proof

By inverting rule (Subtype), it suffices to show that �|= (F[[E]] ∧ F[[T]](x))⇒ F[[T ′]](x).

Since our intended model is not inconsistent, it suffices to show that

|= ∃x, y1, . . . , yn,F[[U1]](y1) ∧ . . .F[[Un]](yn) ∧ F[[T]](x) ∧ ¬F[[T ′]](x).

From conditions (1) and (2) by Lemma 2 it follows that |= R[[yiσ in Uiσ]] = true

for all i ∈ 1..n. After unfolding the definitions, this implies that |= F[[Uiσ]](yiσ)

for all i ∈ 1..n. In a similar way, from conditions (1) and (3) by Lemma 2 we

have that |= F[[(T &!T ′)σ]](xσ), or equivalently that |= F[[Tσ]](xσ)∧¬F[[T ′σ]](xσ).

Instantiating the existential variables with the values given by σ completes the

proof. �

Lemma 52

If the three checks in Section 7.1 succeed for T ′ = Empty then � � xσ : Tσ and

� � yσ : Uσ for all (y : U) ∈ E.

Proof

Since xσ and yσ for all y ∈ dom(E) are values, by Lemma 31 and (Exp Singular

Subsum) it suffices to show that � � [xσ] <: Tσ and � � [yσ] <: Uσ for all

y : U ∈ E. By (Subtype) it suffices to show that |= F[[Tσ]](xσ) and |= F[[Uσ]](yσ)

for all y : U ∈ E. These follow from the corresponding checks by Lemma 2 and

basic reasoning in FOL. �

Lemma 53

If E � T then the expression v in T is algorithmically pure.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 101

Lemma 54

If elementof T → v and � � T then � � v : T | [null].

Proof

By Lemma 53 we have that v in T is pure. By the reduction relation for elementof T

we have that either v = null, in which case the conclusion is immediate, or we know

that v in T →∗ true, which allows us to apply Lemma 52 for E = � and obtain

� � v : T . �

Acknowledgments

We thank Nikolaj Bjørner for his invaluable help in using Z3. James Margetson

helped with F� programming issues. Paul Anderson, Ioannis Baltopoulos, Johannes

Borgström, Nate Foster, Tim Harris, Ranjit Jhala, and Thorsten Tarrach commented

on drafts. Discussions with Martı́n Abadi, Cliff Jones, Christoph Koch, Benjamin

Pierce, and Dominique Unruh were useful, as were the comments of anonymous

reviewers. Cătălin Hriţcu was supported by a fellowship from Microsoft Research

and the International Max Planck Research School for Computer Science.

References

Abiteboul, S., Buneman, P. & Suciu, D. (2000) Data on the Web. San Fransisco, CA: Morgan

Kaufmann.
Aiken, A. & Wimmers, E. (1993) Type inclusion constraints and type inference. In the

Proceedings of ICFP 03 , the Eighth ACM SIGPLAN International Conference on Functional

Programming, ACM, New York, USA.
Aiken, A., Wimmers, E. L. & Lakshman, T. K. (1994) Soft typing with conditional types.

In the Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), ACM, New York, USA.
Aspinall, D. 1994 Subtyping with singleton types. In the Proceedings of CSL, LNCS vol. 933.

Heidelberg, Germany: Springer.
Aspinall, D. & Hofmann, M. (2005) Dependent types. In Advanced Topics in Types and

Programming Languages, chapter 2. Cambridge, MA: MIT Press.
Backes, M., Hriţcu, C. & Tarrach, T. (2011) Automatically verifying typing constraints for a

data processing language. In the Proceedings of CPP, the 11th Generative Approaches to

Second Language Acquisition Conference (GASLA 2011). Somerville, MA: CPP.
Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B. & Leino, K. R. M. 2005 Boogie:

A modular reusable verifier for object-oriented programs. In the Proceedings of FMCO,

Amsterdam, The Netherlands, LNCS vol. 4111.
Barrett, C., Deters, M., Oliveras, A. & Stump, A. (2008) Design and results of the 3rd Annual

SMT Competition (SMT-COMP 2007). Int. J. Artif. Intell. Tools. 17(4), 569–606.
Barrett, C. & Tinelli, C. (2007) CVC3. In the Proceedings of CAV, Berlin, Germany, LNCS

vol. 4590.
Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A. D. & Maffeis, S. (2008) Refinement

types for secure implementations. In the Proceedings of CSF, Pittsburgh, PA, USA.
Benzaken, V., Castagna, G. & Frisch, A. (2003) CDuce: An XML-friendly general purpose

language. In the Proceedings of the Eighth ACM SIGPLAN International Conference on

Functional Programming (ICFP), Uppsala, Sweden.
Bierman, G. M., Gordon, A. D., Hriţcu, C. & Langworthy, D. (2010a) Semantic Subtyping

with an SMT Solver. Technical Report MSR-TR-2010-99, Microsoft Research, Redmond,

WA.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

102 G. M. Bierman et al.

Bierman, G. M., Gordon, A. D., Hriţcu, C. & Langworthy, D. (2010b) Semantic subtyping with

an SMT solver. In the Proceedings of the 15th ACM SIGPLAN International Conference

on Functional Programming (ICFP), Baltimore, MD, USA.

Bierman, G. M., Meijer, E. & Torgersen, M. (2007) Lost in translation: Formalizing proposed

extensions to C�. In the Proceedings of the 15th ACM SIGPLAN International Conference

on Functional Programming (OOPSLA), Baltimore, MD, USA .

Böhme, S., Leino, K. R. M. & Wolff, B. (2008) HOL-Boogie – an interactive prover for the

Boogie program-verifier. In the Proceedings of TPHOLs, Montreal, Canada, LNCS vol.

5170.

Box, D. (2010) Update on SQL Server Modeling CTP (Repository/Modeling Services,

“Quadrant” and “M”). Accessed September 22, 2010. Blog available at http://blogs.

msdn.com/b/modelcitizen

Boyer, R. S., Kaufmann, M. & Moore, J. S. (1995) The Boyer-Moore theorem prover and its

interactive enhancement. Comput. Math. Appl. 29(2), 27–62.

Buneman, P., Naqvi, S., Tannen, V. & Wong, L. (1995) Principles of programming with

complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48.

Buneman, P. & Pierce, B. C. (1999) Union types for semi-structured data. In the Proceedings

of DBPL, Kinloch Rannoch, Scotland, UK, LNCS vol. 1949.

Burstall, R. M., MacQueen, D. B. & Sannella, D. (1980) HOPE: An experimental applicative

language. In the Proceedings of LISP Conference, Stanford, CA, USA.

Calcagno, C., Cardelli, L. & Gordon, A. D. (2005) Deciding validity in a spatial logic for

trees. J. Funct. Program. 15, 543–572.

Cartwright, R. & Fagan, M. (1991) Soft typing. In the Proceedings of PLDI, Toronto, Ontario,

Canada.

Castagna, G. (2005) Patterns and types for querying XML documents. In the Proceedings of

DBPL, Trondheim, Norway, LNCS vol. 3774.

Castagna, G. & Chen, G. (2001) Dependent types with subtyping and late-bound overloading.

Inf. Comput. 168(1), 1–67.

Cohen, S. (2006) User-defined aggregate functions: Bridging theory and practice. In the

Proceedings of SIGMOD, Chicago, IL, USA.

Crockford, D. (2006) The Application/Json Media Type for JavaScript Object Notation

(JSON). RFC 4627. Reston, VA: The Internet Society.

Damm, F. (1994) Subtyping with union types, intersection types and recursive types. In the

Proceedings of TACS, Sendai, Japan.

de Moura, L. M. & Bjørner, N. (2007) Efficient E-matching for SMT solvers. In the Proceedings

of CADE-21, Bremen, Germany, LNCS vol. 4603. Heidelberg, Germany: Springer, pp. 183–

198.

de Moura, L. M. & Bjørner, N. (2008) Z3: An efficient SMT solver. In the Proceedings of

TACAS, Budapest, Hungary.

de Moura, L. M. & Bjørner, N. (2009) Generalized, efficient array decision procedures. In

Proceedings of FMCAD, Austin, TX, USA.

Detlefs, D., Nelson, G. & Saxe, J. B. (2005) Simplify: A theorem prover for program checking.

J. ACM. 52(3), 365–473.

Dunfield, J. (Aug. 2007) A Unified System of Type Refinements. PhD. thesis, CMU-CS-07-129,

Carnegie Mellon University, Pittsburgh, PA.

Dunfield, J. & Pfenning, F. (2004) Tridirectional typechecking. In the Proceedings of the

31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL,

Venice, Italy.

Dutertre, B. & de Moura, L. M.. The YICES SMT solver. Accessed February 27, 2012.

Available at: http://yices.csl.sri.com/tool-paper.pdf, 2006.

Findler, R. & Felleisen, M. (2002) Contracts for higher-order functions. In the Proceedings

of the SeventhACM SIGPLAN International Conference on Functional Programming (ICFP

’02), Pittsburgh, PA, USA.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 103

Fisher, K., Mandelbaum, Y. & Walker, D. (2006) The next 700 data description languages.

In the Proceedings of the Symposium on Principles of Programming Languages (POPL),

Charleston, SC.
Flanagan, C. (2006) Hybrid-type checking. In the Proceedings of the Symposium on Principles

of Programming Languages (POPL), Charleston, SC.
Freeman, T. & Pfenning, F. (1991) Refinement types for ML. In the Proceedings of the ACM

SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI),

Toronto, Ontario, Canada.
Frisch, A., Castagna, G. & Benzaken, V. (2008) Semantic subtyping: Dealing set-theoretically

with function, union, intersection, and negation types. J. ACM 55(4), 19:1–19:64.
Genevès, P., Layäıda, N. & Schmitt, A. (2007) Efficient static analysis of XML paths and

types. In the Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language

Design and Implementation (PLDI), San Diego, CA, USA.
Giesl, J. (1997) Termination of nested and mutually recursive algorithms. J. Autom. Reasoning

19, 1–29.
Gordon, A. D. & Jeffrey, A. (2002) Typing one-to-one and one-to-many correspondences in

security protocols. In the Proceedings of ISSS, Kyoto, Japan.
Greenberg, M., Pierce, B. & Weirich, S. (2010) Contracts made manifest. In the Proceedings

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), Madrid, Spain.
Greve, D. A., Kaufmann, M., Manolios, P., Moore, J. S., Ray, S., Ruiz-Reina, J.-L., Sumners, R.,

Vroon, D. & Wilding, M. (2008) Efficient execution in an automated reasoning environment.

J. Funct. Program. 18(1), 15–46.
Hosoya, H. & Pierce, B. (2003) XDuce: A statically typed XML processing language. ACM

Trans. Internet Technol. 3(2), 117–148.
Hosoya, H., Vouillon, J. & Pierce, B. (2000) Regular expression types for XML. In

the Proceedings of the Fifth ACM SIGPLAN International Conference on Functional

Programming (ICFP), Montreal, Canada.
Jaffar, J. & Maher, M. J. (1994) Constraint logic programming: A survey. J. Log. Algebr.

Program. 19(20), 503–581.
Jhala, R., Majumdar, R. & Rybalchenko, A. (2011) HMC: Verifying functional programs

using abstract interpreters. In the Proceedings of CAV, Snowbird, UT, USA. DBLP, pp.

470–485.
Jhala, R., Majumdar, R. & Xu, R.-G. (2007) State of the union: Type inference via Craig

interpolation. In the Proceedings of TACAS, Braga, Portugal.
Jones, C. (1986) Systematic Software Development Using VDM. Upper Saddle River, NJ:

Prentice-Hall.
Kawaguchi, M., Rondon, P. M. & Jhala, R. (2009) Type-based data structure verification. In

the Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Dublin, Ireland. New York: ACM, pp. 304–315.
King, J. C. (1976) Symbolic execution and program testing. Commun. ACM. 19, 385–394.
Knowles, K., Tomb, A., Gronski, J., Freund, S. & Flanagan, C. (2007) Sage: Unified Hybrid

Checking for First-Class Types, General Refinement Types and Dynamic. Technical Report,

UCSC, Santa Cruz, CA.
Knowles, K. W. & Flanagan, C. (2010) Hybrid type checking. ACM TOPLAS 32(2), 6:1–6:34.
Komondoor, R., Ramalingam, G., Chandra, S. & Field, J. (2005) Dependent types for program

understanding. In the Proceedings of the Eleventh International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), Edinburgh, UK.
Kopylov, A. (2003) Dependent intersection: A new way of defining records in type theory. In

the Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS), Ottawa,

Canada.
Kuncak, V., Mayer, M., Piskac, R. & Suter, P. (2010) Complete functional synthesis. In the

Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). New York: ACM, pp. 316–329.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

104 G. M. Bierman et al.

Leino, K. R. M. & Monahan, R. (2009) Reasoning about comprehensions with first-order

SMT solvers. In the Proceedings of the ACM Symposium on Applied Computing (SAC),

Honolulu, HI, USA.

Lerner, B., Flower, M., Grossman, D. & Chambers, C. (2007) Searching for type-error

messages. In the Proceedings of PLDI, San Diego, CA, USA.

Lovas, W. & Pfenning, F. (2007) A bidirectional refinement type system for LF. In the

Proceedings of LFMTP, Bremen, Germany.

McCarthy, J. (1962) Towards a mathematical science of computation. In the Proceedings of

IFIP Congress, Munich, Germany.

Meijer, E., Beckman, B. & Bierman, G. M. (2007) LINQ: Reconciling objects, relations and

XML in the .NET framework. In the Proceedings of SIGMOD, Beijing, China.

Meng, J. & Paulson, L. C. (2008) Translating higher-order problems to first-order clauses. J.

Autom. Reasoning 40(1), 35–60.

Meyer, B. 1992 Eiffel: The Language. Upper Saddle River, NJ: Prentice Hall.

Microsoft Corporation (Oct. 2009) The Microsoft Code Name “M” Modeling Language

Specification Version 0.5. Preliminary implementation available as part of the SQL Server

Modeling CTP (November 2009). Redmond, WA: Microsoft Corp.

Nordström, B. & Petersson, K. (1983) Types and specifications. In the Proceedings of IFIP,

Paris, France.

Pierce, B. C. (1991) Programming with Intersection Types, Union Types, and Polymorphism.

Technical Report CMU-CS-91-106, Carnegie Mellon University, Pittsburgh, PA.

Pierce, B. C. (2002) Types and Programming Languages. Cambridge, MA: MIT Press.

Pierce, B. C. & Turner, D. N. (2000) Local type inference. ACM Trans. Program. Lang. Syst.

22(1), 1–44.

Pratt, V. (1983) Five paradigm shifts in programming language design and their realization

in Viron, a dataflow programming environment. In the Proceedings of POPL, Austin, TX,

USA.

Ranise, S. & Tinelli, C. (2006) The SMT-LIB Standard: Version 1.2. Technical Report,

Department. of Computer Science, The University of Iowa, Iowa.

Reynolds, J. C. (1996) Design of the programming language Forsythe. In Algol-Like

Languages, O’Hearn, P. W. & Tennant, R. D. (eds), chapter 8. Basel, Switzerland: Birkhäser,

pp. 173–234.

Rondon, P., Kawaguchi, M. & Jhala, R. (2008) Liquid types. In the Proceedings of PLDI,

Tucson, AZ, USA.

Rushby, J., Owre, S. & Shankar, N. (1998) Subtypes for specifications: Predicate subtyping in

PVS. IEEE Trans. Softw. Eng. 24(9), 709–720.

Saraswat, V., Nystrom, N., Palsberg, J. & Grothoff, C. (2008) Constrained types for object-

oriented languages. In the Proceedings of OOPSLA, Nashville, TN, USA.

Siméon, J. & Wadler, P. (2003) The essence of XML. In the Proceedings of POPL, New

Orleans, USA.

Sozeau, M. (2006) Subset coercions in Coq. In the Proceedings of TYPES, Nottingham, UK,

LNCS vol. 4502.

Swamy, N., Chen, J. & Chugh, R. (2010) Enforcing stateful authorization and information

flow policies in Fine. In the Proceedings of ESOP, Paphos, Cyprus.

Terauchi, T. (2010) Dependent types from counterexamples. In the Proceedings of POPL,

Madrid, Spain.

Tobin-Hochstadt, S. & Felleisen, M. (2008) The design and implementation of Typed

Scheme. In the Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), San Francisco, CA, USA.

Tobin-Hochstadt, S. & Felleisen, M. (2010) Logical types for untyped languages. In

the Proceedings of the 15th ACM SIGPLAN International Conference on Functional

Programming (ICFP), Baltimore, MD, USA.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

Semantic subtyping with an SMT solver 105

TypiCal Project 2009 The Coq Proof Assistant. Version 8.2. Accessed February 27, 2012.

Available at: http://coq.inria.fr.

Unno, H. & Kobayashi, N. (2009) Dependent type inference with interpolants. In the

Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Practice

of Declarative Programming (PPDP), Coimbra, Portugal.

Wright, A. K. & Cartwright, R. (1997) A practical soft type system for scheme. ACM TOPLAS

19, 87–152.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94.

Xi, H. & Pfenning, F. (1999) Dependent types in practical programming. In the Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), San Antonio, TX, USA.

https://doi.org/10.1017/S0956796812000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000032

