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Abstract

Burgers equation is a classic model, which arises in numerous applications. At its very core, it is a simple con-
servation law, which serves as a toy model for various dynamics phenomena. In particular, it supports explicit
heteroclinic solutions, both fronts and backs. Their stability has been studied in detail. There has been substantial
interest in considering dispersive and/or diffusive modifications, which present novel dynamical paradigms in such
a simple setting. More specifically, the KdV-Burgers model has been shown to support unique fronts (not all of
them monotone!) with fixed values at +co. Many articles, among which [11], [9] and [10], have studied the ques-
tion of stability of monotone (or close to monotone) fronts. In a breakthrough paper [2], the authors have extended
these results in several different directions. They have considered a wider range of models. The fronts do not need
to be monotone but are subject of a spectral condition instead. Most importantly, the method allows for large per-
turbations, as long as the heteroclinic conditions at +co are met. That is, there is asymptotic attraction to the said
fronts or equivalently the limit set consists of one point. The purpose of this paper is to extend the results of [2] by
providing explicit algebraic rates of convergence as t — co. We bootstrap these results from the results in [2] using
additional energy estimates for two important examples, namely KdV-Burgers and the fractional Burgers problem.
These rates are likely not optimal, but we conjecture that they are algebraic nonetheless.

1. Introduction

The Burger’s equation
Uy — Uy + uny = 0,u(0,x) = ug(x) (1.1)

where u : Ry X R — R, is a particularly simple example of a conservation law in one spatial dimen-
sion. As a simple model, which resembles (both in its form as well as its behaviour) many distinguished
equations in mathematical physics, it is an ubiquitous object in the modern dynamical systems theory.
The Cauchy problem, along with many other properties, has been explored in the literature. In partic-
ular, and specifically for this model, the Cole—Hopf transformation has played an important role as it
transforms (1.1) into a linear problem. More specifically, the assignment u = —2** reduces (1.1) to the
linear heat equation for w, namely

We = Wy = 0,w(0,x) = ¢~ o 100D

In this way, one can write explicit solutions and derive particular properties of the conservation laws,
which are not transparent in the usual general implicit formulations.
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Along with the Burgers equation, related models have been analysed. The KdV-Burgers model
Up — Uy + Ully = Vidyyy, (1.2)

which describes, among other things, bores in viscous fluids [12], and weak plasma shocks propagating
transversely to a magnetic field. Many similar models were analysed recently, among them the following
general model [2],

U — Uy +utty = Lu. (1.3)

Here, £ is a multiplier operator, given by Z} (k) = I(k)f (k). Now, we must impose assumptions on L.
Namely, it is required that £ maps real-valued functions into real-valued functions, and also its quadratic
form is non-positive. That is, it satisfies

(Lf.f) =R /_OO 1(k)|f (k)|*dk < 0 (1.4)

L£[1]=0 (1.5)

The condition (1.5) can be alternatively stated as /[0] = 0 and [ is continuous at zero, but the form (1.5)
is more suitable in this context. Note that (1.3) incorporates (1.2), but includes much more. In fact,
we list several physically relevant cases: the KdV-Burgers, £ = vd,,,, the Benjamin—-Ono-Burgers,
L = 0,]0, the Hilbert-Burgers case L = H = 8,]|0,|”!, the fractional Burgers equation' with
L= - Zj’il aj(=0x)Y, 0 < a1 < ap < ... < anv < l,ag5 > 0, etc. All these could be of
interest.

Understanding of the long-time dynamics of such models is clearly important, and as it turns out a
challenging problem. As is usual in conservation laws, the standard background is starting with hete-
roclinic data with enough decay towards the limiting values at +co. To this end, assume that the initial
data u satisfies

lim uo(x) = us (1.6)

X—=*00

where u_ > u, are constants.

1.1. Galilean transformation: reductions and existence of fronts

Let us record two elementary properties of Equation (1.3). For the Burgers equation, i.e. the model (1.3)
with £ = 0, we have true invariances with respect to the Galilean transformation

u(t,x) =v(t,x —ct) +c,
as well as the scaling transformation
u— uy = (%, x),1> 0

These two transformations, in general, do not commute with the flow of (1.3), but they transform it into
a model of the same type, i.e. it still satisfies (1.4), (1.5). Since our goal is to understand the long-term

!For the definition of the fractional derivatives please consult Section 2 below.

https://doi.org/10.1017/jnw.2025.10013 Published online by Cambridge University Press


https://doi.org/10.1017/jnw.2025.10013

Journal of Nonlinear Waves 3

dynamics of heteroclinic initial data, we can use these transformations to our advantage as follows:
given us,u_ > uy, introduce ¢ = %, A =*=5* > 0 and a function v, so that
— Uy

u(t,x) = AU (X%, Ax — cA%t) +cA
Then, the function U will satisfy the equation®
U -U,+UU.=LU, (1.7)

where Z:g(k) = A1721(Ak)g(k), lim,_,z0 U(x) = 1. As we shall see, £; also satisfies the relevant
assumptions, (1.4), (1.5), so it will suffice to work with the model, where Uz = +1. Naturally, and
by the choice of the transformations, this corresponds to a case, where ¢ =0 as well. Thus, we restrict
our attention to the steady-state solutions of (1.3) with end values ¥1, which in this case are functions
¢ :R—-R,

~Pu+ PP =L lim H(x) = £1. (1.8)

The existence theory for such a problem is, of course, highly non-trivial. In fact, as in previous papers,
we shall make assumptions to this effect. We mention in this regard that for the KdV-Burger’s model,
the existence of such monotone ¢ was proved in [4, 5]. It is worth adding that these fronts are monotone
if and only if |v| < %, [4]. In addition, such solutions are unique (up to a translation), and if one specifies
the values u... In fact, in the case v = —%, there is the explicit formula’

6 12 12
u(t,x) = = [sech2 (x+ ?t) — 2tanh (x+ ?t) - 2] .

9]

See [7].

1.2. Asymptotic attraction towards heteroclinic fronts

We now review the literature regarding earlier asymptotic stability results. Pego [11] has shown that
the monotonic fronts are orbitally asymptotically stable. More specifically, he showed that any (small)
perturbation of the front converges to some translate of the front. In later works, Khodja [8] and
Naumkin—Shishmarev [9, 10] showed that the KdV—Burgers fronts are asymptotically stable, even for
some “slightly” non-monotonic fronts,i.e. v :0 < v — % << 1.

Next, we introduce the results of Barker—Bronski-Hur—Yang [2], which represents a real break-
through in the study of this problem. Specifically, the authors improved the aforementioned results
in at least three important directions. Firstly, they consider all (non-necessarily monotonic) fronts, sub-
ject to a natural and specific spectral condition,* see Theorem 1.1. Secondly, they extend the range of
applicability to a wide range of examples, driven by possibly a mixture of dissipative and/or dispersive
linear operators, subject to (1.4). Thirdly, and most impressively, they allow large data perturbations
for asymptotic attraction type of result vis-a-vis asymptotic stability. That is, as long as the initial data
approaches the fixed heteroclinics with good decay properties, and the fronts exist (with the prescribed
spectral condition), the solution will stay close to translates (defined dynamically) of the front, all in L?
norm.

We state the precise result below.

2Here note that the condition (1.5) is instrumental in establishing (1.7), as £ annihilates the constants.

3Unfortunately, for all other values of v, it does not seem likely that such an explicit formula exist, but our arguments herein are independent of
such formula.

4Which appears to be necessary.

https://doi.org/10.1017/jnw.2025.10013 Published online by Cambridge University Press


https://doi.org/10.1017/jnw.2025.10013

4 Milena Stanislavova and Atanas G. Stefanov

Theorem 1.1 (Barker-Bronski-Hur-Yang [2]). Suppose that L satisfies the dispersivity prop-
erty (1.4), while the front ¢ satisfies the profile equation (1.8) and in addition.

1m1mm=ih@¢MeLaml/u+um@umu<m. (1.9)
R

X—Fo00

Finally, assume that for some € € (0, 1), the Schrodinger operator
2 1 L.
He:=—(1-€)0; + §¢x has exactly one negative eigenvalue. (1.10)

Assume that g is a heteroclinic data, so that limy_z ug(x) = =1 and more precisely, uy(x) — ¢ €
L*(R). Then, there exists a continuous function xo(t) : Ry — R, so that the solution to (1.3) can be
written in the form

u(t,x) = ¢p(x —x0(2)) +v(t,x = x0(1)), (1.11)
so that t — ||v(t, )| 2(r) is @ monotonically decreasing function of time and

Tim [[v(t,)llr ) = 0,p € (2,0]. (1.12)

Let us record an energy estimate, which came up in the proof of Theorem 1.1. More precisely, and
under the assumptions of Theorem 1.1, and specifically (1.10), we have

aVII72 < =Clivell3. (1.13)

We shall make extensive use of (1.13) in the sequel, but note right away that the monotonicity of the
mapping ¢ — |[v(Z,)||2(r) is a direct consequence of it.
Next, a few remarks are in order.

(1) Note that the results in Theorem 1.1 do not require smallness of the perturbation u — ¢. In other
words, this is a strong asymptotic attraction result rather than a mere asymptotic stability result.

(2) Related to the previous point, this implies a rather strong uniqueness (up to the usual translation)
theorem for such fronts ¢. Namely, fronts ¢ with the properties (1.9), (1.10), if any, are unique. The
uniqueness result was certainly explored in the literature in certain contexts (see for example [7]
for the KdV—Burgers case), but not in the generality of the model (1.3).

(3) In the statement of Theorem 1.1, the particular values of the limits ¢. = lim,_,. ¢(x), are set to
be ¢. = F1 only out of convenience. Assuming that solutions exist for some other pair , subject to
¢+ ¢_ > ¢, one can retrace the proof in [2] to the same results, as stated in Theorem 1.1.

(4) Note that since f_ J:o ¢x(x)dx = -2, the Schrodinger operators H . do have negative spectrum, which
consists of eigenvalues. The condition (1.10) requires that the spectrum is minimal, in the sense that
it consists of only one eigenvalue.

(5) Related to the previous item, we note that the spectral condition (1.10) has been rigorously verified
in [2], for the (unique) monotone KdV-Burger’s fronts, i.e. for the case |v| < %. In the companion
paper [3], the authors further explored the validity of (1.10) beyond the monotone cases. In fact,
informal numerics show that (1.10) holds all the way up to |v| < 4.1, while rigorous numerics
confirm this up to |v| < 3.9.

1.3. Main result: pointwise decay for the KdV-Burgers equation

Our first result concerns the standard KdV-Burgers model. We bootstrap upon the results of [2] to obtain
pointwise in time bounds for various Lebesgue norms. The precise statement is below.
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Theorem 1.2 (Pointwise decay to the fronts for the KdV-Burgers model). For the KdV-Burgers
model, i.e. L = vy, under the assumptions of Theorem 1.1 and

/ luo (x) = ¢(x)[>(1 + |x])dx < o0, (1.14)
R
the decomposition (1.11) still holds, with

()2 < % (L15)

In addition, for every q € (1,2), there is a decay lim;_,« ||v(t,-)||zs = 0, and in fact for every § >0,
there exists C = Cg, so that

(2, e < Cst™ %0 1 < g < 2. (1.16)
For p> 2, the bound is
Iv(t, )l < Ct7,2 < p < co. (1.17)
Some important remarks to be made herein.

(1) While we do require a more localized data, see (1.14), we still allow such perturbations to be large.
(2) The decay rate (1.15) is faster, compared to the linear heat equation, where we only have
VO l2m) ~ ¢~ . This enhanced decay rate can be thought of as an anomalous dissipation of sorts,

caused by the non-trivial background around the front solution and the lack of edge resonance.

(3) The estimate (1.17) is obtained as an interpolation between the L> bounds (1.15) and the uniform
L* bound (1.12), obtained earlier in [2].

1.4. Main result: pointwise decay for the fractional Burgers equation

For clarity, we consider the fractional Burgers equation to be the evolution problem

N
u,—uxx+2aj(—6xx)q"u+uux=0, (1.18)
=1

subject to initial data u(0,x) = up(x). Clearly, the evolution of (1.18) preserves odd initial data. We
have the following, more precise than (1.12) result.

Theorem 1.3. Suppose that ¢ is an odd stationary front of the fractional Burger equation

N
et D a(~0:) Vb + dipy = 0, (1.19)
=1
where 0 < @y < az < ... < ay < 1,a; 2 0. In addition, we assume that ¢ satisfies ¢x, P, € L*(R)

and the spectral assumption (1.10).
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Suppose now that ug = ¢ + vy, where vg € L' N L?(R) is an odd function. Then, the solution u of
(1.3), with initial data vy can be written as

u(t,x) = ¢p(x) +v(t,x),
where for t > 2, one has the bounds

1
-5

7
In(z)\ 2
el < cuvonmu( ()) d<p<2 (1.20)
1() 277_12
t 7
(e, e < C(nt ) ,2<g< o0 (1.21)

Remarks.

* Note that as before, the perturbation vy may be large, as long as it is well-localized, i.e. vy €
L' nL*(R).

* Related to the previous item, it is worth noting that our proof fails under an assumption such as
vo € LY N L%, 1 < g. That is, we cannot establish the algebraic decay rates (for any p € (1,00]!) in
(1.20), (1.21), without assuming first that vy € L'(R). At this point, it is unclear whether this is a
technical obstacle or one indeed needs to require L' decay of the perturbation.

* As before, Theorem 1.3 provides a strong uniqueness property of the odd fronts ¢ satisfying (1.19).

* It is an open question whether or not the algebraic decay rates stated in (1.20) are sharp. While the
logarithmic corrections are most certainly not, one might wonder about the other bounds in (1.20),
(1.21).

* The assumption for existence of solution of (1.19), which in addition satisfies ¢y, ¢, € LZ(R)
and the spectral assumption (1.10) is a non-trivial one. In some earlier works, see for example
[1], stationary fronts were constructed for similar fractional KdV-Burger’s problems, but with a
non-trivial KdV term. The scheme in [1] can be applied to (1.19). More specifically, assume that
we have only one fractional term in (1.19), (=dy)® = D* 0<a< % Then, we look for solution
¢ 2 limys 00 p(x) = F1,

2ri¢
4m2E + (2P

¢ = ~Ox[~0u + D17 [xg] = K = [px0]. K(£) = (122)

It can be shown that |[K (x)| < Clx|~?72@) |x| >> 1. We conjecture that this equation is solvable
and the precise decay rate is inherited by ¢,, due to the integral formulation (1.22). That s |¢, (x)| <
Clx|~?729) |x| >> 1,and so ¢, € L' (R), whereas |¢,,(x)| < C|x|"329)|x| >> 1,etc. Insucha
way, ¢, will never satisfy the assumption® (1+|x|)¢,(x) € L'(R). On the other hand, the symmetric
operator He = —(1 — €) 0y + %qﬁx may still satisfy the assumption (1.10), which is the only one
used in the proof of Theorem 1.1.

We plan our paper as follows. In Section 2, we introduce some basic notations, as well as the Sobolev
embedding and various related interpolation inequalities. We introduce the notion of a diffusive semi-
group, as this allows us for an effective energy estimates for the fractional Burgers evolutionin L”, p > 1

norms. In Section 3, we prove Theorem 1.2. Specifically, for the case of the KdV-Burgers model,
1

we show enhanced energy estimates for the weighted norms ( fR [v(e, x)|2|x|dx) i, which allows us to

S Anditis possible that due to the slow decay of the potential ¢, the operator H  may have a complicated point spectrum, including accumulation
of e-values at zero.
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bootstrap the results of [2] to pointwise in time decay estimates for ||v(z, -)||;2. In Section 4, we prove
Theorem 1.3. More specifically, we use the integration by parts techniques of [6] to derive energy esti-
mates for ||v(¢,-)||zr,p > 1 and ultimately for p = 1. We again use in a critical way the energy estimate
(1.13) from [2], and in conjunction with the a priori estimates for ||v(t, -)||;.1, we conclude pointwise in
time decay for the solution norms.

2. Preliminaries

We shall use standard notations for the Lebesgue spaces L7, 1 < p < co. More generally, the Sobolev
spaces WX (R) for integer k, 1 < p < oo, are defined via the norms

k
Fllwse = WFllzr + >~ 19 llur
=1

2.1. Fourier transform, fractional Burger’s and the Bernstein inequality

We take the Fourier transform and its inverse in the form
j©= [rwermean g = [ feemea,
R R

In this notation, we have F(f) = —472£%F (£). More generally, we introduce the fractional operators
(—=0,)® as acting on Schwartz functions via the symbol (27]£|)>?. More precisely,

(=0 9f (£) = (2m|ED2F (&).

In fact, this allows one to introduce a companion spaces to W*”, where s > 0,1 < p < oo is not
necessarily an integer. More precisely, these are given by the norm

WFllwse = 1Nl + 11 (=0e) 3£l

These spaces are equivalent to the previously defined W*? for integer k. The Sobolev inequality in one
spatial dimension takes the simple form

llullzo) < Cllullwsr 1 <p <g<oco, 52

SR
|-

Next, we discuss Bernstein’s inequality, which is a relatively crude, but helpful form of Sobolev embed-
ding. Consider a function f : R” — R” and a set of finite Lebesgue measure A. Let f4 : fa(&) =

FE)xa(@). where ya() =4 - €4 Then, forall 1 < p < o,
0 x¢A
1_1
Wallze®ey < 1A "4 [ |l e (R7) - 2.1

An easy estimate, which follows immediately from Plancherel’s identity, is
3ufally < Cmin €1lfally. 1 < q < oo
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We will use the rough Fourier cutoff projections

fee 1 f<e(©) = F (X (—e.0)(€)s foe =f —fee.

We also need the Gagliardo—Nirenberg estimate (or the log-convexity of the map p — |[|f||,). More

precisely, forevery l < p<g<r<oo: é = g + 1—79’
1—
Fllg < I 112

Finally, there is the estimate, |[f||iw < CIf N2 l1f Nl 72, which will also be useful.

2.2. Diffusion semigroups

The notion of diffusive semigroups will play a role in our considerations. Shortly, we say that {7'(¢) };»0
is a Cy semigroup on a Banach space, if T(t) € B(X), T(t +s) = T(t)T(s), T(0) = Id and for every
f e X : lim_o [|T(1)f — fllx = O. It is standard that one can always associate with such objects a
generator L, a generally unbounded operator, which can be introduced on a domain D(L) = {f € X :

limy 04 % exists} as

()f -f

Lf = J € D(L).

t—>0+

Naturally, T(t)f € D(L) solves the X valued differential equation x’ = Lx,x(0) = f for any f € X, so
we informally denote it by T(¢) = '’

Definition 2.1. We say that a Cy semigroup on L*>(R"), T(t), is a diffusive semigroup, if T(t),t > 0 is
self-adjoint, and given by a probability density kernel, i.e.

T0FG) = [ pis=0f 0t € PR 20, [ pitids=1.

We observe that the generator L in such cases is necessarily a non-positive operator, since for all
t > 0 and a test function f, we have

(TWf.f) = / pex = F ) ()ddy <

1 1

< (/ 17z(x—y)lf(y)lzdxdy)2 (/pt(x—y)lf(x)lzdxdy - 711,

whence (Lf,f) < limsup,_,, w <0.
It is standard that the operator L = 0y is a generator of such semigroup. More generally, the frac-
tional Burgers operators L = — e 1aj( Ow)%,a; 2 0,0 < @1 < ...ay < 1 also generate diffusion

semigroups,® see for example [6]. An important property of such semigroups is the following.

Proposition 2.2 (6, Theorem 3.2). Assume that L generates a diffusive semigroup. Then, for all 1 <
p < oo, we have

/R ) FIFP2L(f)dx < 0. (2.2)

. . . . Pt —t(— @ . .
%Here the assumption a@; < 1is crucial, since it is well-known that the kernels of e 1(=0x)" are sign-changing, as soon as a > 1.
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If, in addition, 2 < p < oo, then
v [ g s [INTopEPar 23)
In particular, we have that foreach0 < @ < 1,2 < p < o0

/R n((—A)“f)f [FIP~2dx > 0. (2.4)

3. Attraction to fronts: the Burger-KdV model

We start by revisiting some of the results obtained in the proof of Theorem 1.1. Indeed, in the course of
the proof, the authors set xo(t) =y f_ o; ¢ (x)v(x)dx, with” v > 1. This is done to ensure that the rank-

one perturbation H,, = =0y + %(ﬁx +¥{¢x, -y, of the important linearized operator® H = —0,, + %(ﬁx
has the property H, > 0. Two important features of the construction are

t — ||v(z, -)||12‘2 is monotonically decreasing 3.D

t t
/0 Lo (s) s + /0 (s, ) ads < Clvol, (3.2)

We make substantial use of these two facts in our subsequent analysis. Next, we write the equation for
the residual v : u(x,t) = ¢(x — xo(1)) + v(¢,x — xo(¢)). This takes the form

Vi — Vyy — XoVx — X0Px + PV + vy + V0 + Vi = 0. 3.3)

We setup an energy estimate for v in the space Lf (R). More precisely, we shall show that

/ lv(t,x))|x|dx < C,t > 0.

)

Of course, the global solution v produced in [2] does not a priori live in the space L%(R), S0 one begins
by only formally setting the energy estimate for it. We will ignore the details of this justification, as
this is standard by considering instead a quantity of the form L D; [v(t,x)|?|x|¢ (x/N)dx for N >> 1 and

some smooth cutoff function . With these caveats, we proceed to bound the Lf (R) norm. Taking a dot
product of (3.3) with v|x|, we have

1
zﬁt/vz(t,x)l)ddx—/vxxle|dx—x0/vxv|x|dx—)'c0/¢xv|x|dx+/¢xvv|x|dx+
+/¢vxv|x|dx+/vvxv|x|dx+v/vxxxv|x|dx=0.

7But if one uses different values of ¢., the value of  must change according to y > ﬁ
8Recall that # has a negative e-value.
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We now proceed to estimate various terms, by keeping in mind the relation (3.2), which guides us about
the acceptable error terms. After integration by parts and algebraic manipulations, we have

—/vxxv|x|dx:/(vx)2|x|dx+/ vevsgn(x)dx > —vz(t,O) > —||v(t, -)||I%m,
. XO 2
xO/vxv|x|dx = —/ sgn(x)dx

2
%o f dovlxldx| < Clio()Iv(t, g,

1
“/ vwvlxldx| = 3 “/ visgn(x)dx

1 3
< Cllvee LIV,

< ClioIIv(1, )72 < ClioIIIv(z, )2

1 5
3 3 2 2
< Cllv( )l < CIVIE < Cllve ()L vl

Also,

/ P xldx > —v(t. ) e / 162 (Ol xldx = —Clv(z. ) 2w

Here, in addition to Sobolev embedding and Gagliardo—Nirenberg estimates, we used the bound
[[v(t,)|l;2 < C. Next,

‘/¢vxv|x|dx = —% (/ ¢x(x)v2(x)|x|dx+/ ¢(x)v2(t,x)sgn(x)dx) >
> —C||v(, )||12‘oo - %/ ¢(x)v2(t,x)sgn(x)dx

Now, note that —¢(x)sgn(x) > 0 for all x and also there exists A, so that —¢(x)sgn(x) > % for |x| > A.
This last statement follows from lim,_,. ¢(x) = F1. So, we further estimate

_%/¢(x)v2(t,x)sgn(x)dx>—%/

[x|>A

1 1[4 1
= Z/vz(t,x)dx—Z/ VA (1, x)dx > Z/v2(t,x)dx—c:||v(t,-)||§w,

A

()2 (1, x)sgn(x)dx > %/ VA (1,x)dx =

[x|>A

Finally, for the term f v/ v|x|dx, we have

“/ viv|x|dx

Putting it all together and estimating —||v(#, ')“iw > —Cllve(t, )|l 21lv(2, )|l 12, we obtain

< 2[v(0)[[vx(0)] + Cllva (2, )17,

z'% / (ve)sgn(x) — / Vovsgn(x)dx

1 1
30 / V(1) eldx + 5 / (t.x)dx < C(lo V()2 + V(2. 0)[[ve(r, 0)]) +
FCUIV (1 + et 2 G, e + e, N () 1)

We are almost ready to derive an estimate on the desired norms, except that it is hard to control |v,(z, 0)].
Indeed, the easiest way out would be to use the norm ||v,(t,-)||r~, for which we unfortunately lack a
priori estimates. Instead, we employ a simple averaging argument to reduce to the quantity ||vy (¢, -)|| 2,
for which we do have a priori bound, see (3.2).
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Indeed, instead of finding the bound for f v2(t, x)|x|dx, we might employ an estimate for f V2(t,x)|x—
aldx, where a € (-1, 1). Running through identical estimates, we arrive at

1
) / P10k - aldr+ 5 / (t.x)dx < C(lo IV )2 + V(@) Ive(r, a)]) +
FCUV (1 + et 2 1V, o + e, N () 1)

Integrating on the time interval (0, 7) brings about

1 1 t 13
z/vz(t,x)lx—aldx+z/ /vz(s,x)dxdssfvé(x)Ix—a|dx+/ [v(s,a)||vy(s,a)l|ds +
0 0

+C(/O o ()Iv(s, gz + v (s, 72 + veCs M2 lv(s, gz + v, -)IIL%ZIIV(S, -)Iliz)d&

Taking an average of the previous estimate, i.e. integrating the previous estimate f_ | - - -da, and in doing
so, recall the formula

1
/|x—a|da={ 2> o2+ ).

1 2+1 x| <1

This yields the estimate

%/vz(t,x)ledx+%'/0t/vz(s,x)dxdss/v%(x)(2|x|+1)dx+
1 pt
+[1/0 [v(s,a)||vy(s, a)|)dsda+

+ C/O (ko ()1 (s, Iz + v (s, 72 + e (s M2 lvCs, )z + (v, -)IIL%ZIIV(s, -)Ilfz]ds

Now, based on (3.2) and Holder’s inequality

/ oI lads < ( / ’ |fco<s>|2ds)z ( / t ||v(s,->||i2ds)2 < Clhl,z.

t
/ s, ) Pads < C.
0

/ ||vx(s,->||Lz||v(s,-)||dessC( / ||vx(s,->||iz)2( ) ||v<s,-)||§2)2scnvuLgx,
/ oo, M (s, )||2ds<( / e )||L2ds) ( / Iv(s. >||L2ds) < Clvl,
/ / (5. @) I, a>|da<( / e >||des) ( / Iv(s, >||L2ds)

All in all, we conclude that

IA

Clivlz..

1 3
/ v (t,x)|x|dx + §||v||i§ < Clvlly; +C. (3.4)
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We can hide ||v|| : on the right-hand side behind 5 ||v||2 . More precisely, by Young’s inequality, for

any choice of € > 0

1
6||v|| 2 +—e*3.

”V”LZ - 4 4

With an appropriately small choice of €, we enter this on the right-hand side of (3.4), which leads us to
the bound

sup /v2(r,x)|x|dx+/ vz, )7 pdt < C, (3.5)
0

0<t<T

for each 7 > 0. This bound has two important consequences. Firstly, using the Holder inequality, we
have that foreach 1 < p < 2,

/|v(x)|”dx='/| 1|v()c)|‘”dx+/|| l|v(x)|”dx£

: -5 :
§C||v||’L72+(/ vz(x)lxldx) (/ |x|zf’pdx) <G (/ |v|2(1+|x|)dx) :
|x|>1 [x|>1

for which we have good bounds from (3.5). It follows that for any p > 1, sup,, <T / [v(x)|P < C,. Note,

P

however, that the constant C,, blows up as p — 1+, due to lim,,_, . ( f 21 |x| " zp dx) = 400.

Secondly, by taking into account (3.1) and (3.5), we have that for each # > 0,
t oo
vt < [ vl < [l < ¢,

whence it follows that v obeys the bound ||v(z, -)||;2 < Ct~ 3, Interpolating this with the uniform bounds
for ||v(z,-)||r, 1 < p < 2, obtained just before, we have that for every ¢ > 0, there is C = C(6), so that

1
v, )l < c 9% 1< p<2.

4. Asymptotic attraction to odd fronts for the generalized Burgers model

In this section, we present an extension of the results in [2], when the fronts and the respective
perturbations are odd.

Now that £ = — Zjl\i 1 @;(=0,,) ¥ preserves the parity of the inputs, it is clear that if ug is odd, so is
vo = ug — ¢. Clearly, the evolution preserves the odd solutions, whence x — v(t,x) is odd for all 7 > 0.
Recall that by the construction in [2], the translation function x( was selected (see formula (20) there)
via the formula xy(7) = y{¢,v) = 0, since ¢, is even, while v is odd. It follows by Theorem 1.1 that for
this particular front and odd perturbations ug, u(t,x) = ¢(x) + v(t,x), where

Him [lv(z, )l = 0,2 <p < co. 4.1)

Recall that v also satisfies the energy estimate (1.13).
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We now aim to establish uniform estimates for the norm |[v(#,-)||1(r)- To this end, take arbitrary
large T and assume 0 < ¢ < T. Note that v satisfies

Vi—Vex — LV + v + ¢y + vy, = 0. 4.2)

For each p > 1, multiply (4.2) by v|[v|’~2 and integrate in x. We obtain,

1
/vtv|v|p72dx= —8t/ [v|Pdx,
p

Integration by parts yields for each p > 1,

/VVxV|V|p_2dx=/vxlvl”dxz—/V(lvlp)'dx=—p/vvxvlvl”_zdx,

whence
P=2 7, —
wev|v|P™%dx = 0.

By (2.4), we have the coercivity estimates

N
—/vxxv|v|P_2dx > 0,—/(£v)v|v|”_2dx= Zaj/((—ﬁm)afv)v|v|p_2dx > 0.
=1

Next,

/ pvevlvlP2dx = © / () dx = -1 / bulvPd.
p P

All in all, we get

(9;/|v|”dx+(p—1)/¢x|v|”dx$0.

Denoting My := supy,.r ||v(¢, ) ||, and integrating the above expression in (0, ), we obtain

/ Wt 0Pdx < ol + (p - 1) /0 /R 6.Vt 0P < [oll?, + (0 — DllgallTME.  (43)

Note that all the constants in (4.3) are written out explicitly. This allows us to take a limit p — 1+. We
obtain

v, iz < lvollzr, (4.4)

and this is valid for all 7' > 0, so (4.4) is a global estimate.
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This provides another important ingredient to the estimates (4.1), which we have borrowed from
Theorem 1.1. Fix € > 0. By Plancherel’s identity

1(1) = 15, )72 = e (670 + Vs e (8,113, = T<e (1) + I (1),
We now use (1.13) to conclude
O(I<e(t) + L (D)) < ~Clva (D2, < ~Clldwvs e (D2, < ~CEL (1),
It follows that
L (0)+CEL () +I. (1) <0.
Ce’t

Multiplying by e and integrating yields

t
SN (1) = 1o (0) + / ST _(s)ds < 0. (4.5)
0
However, integration by parts yields
' ce Ce? 2 [ oce 2 ' Ce?
—/ €L (s)ds = I (5)e“ | + Ce / el e (s)ds < 1..(0) +Ce / eI (s)ds.
0 0 0
Plugging this back in (4.5) and multiplying by e‘cez’, yields
t
Le(t) < 1(0)e € + Ce2 / CEEDI_ (s)ds < 1(0)eC€ + max I (s). (4.6)
0 <s<t
Now, we apply the Bernstein’s inequality for A = (—¢, €), and (4.4) to obtain
Tee(s) = [vee (5. )2aq) < Cellvis. )y g, < CellvollZ - @.7)
Adding I, (t) on both sides of (4.6) and using (4.7), we obtain

2 —Ce? 2 2 —Cie? 2
vz, )7, = 1(2) < e lvoll7, + Cellvoll;, < Cr(e™ " +€)lIvoll72py (4.8)

for some absolute constant Cq, i.e. independent on €, t.

This inequality is true for every fixed € >0, and every ¢, but since clearly the best strategy is to
optimize (4.8) in € given ¢, we should proceed with some care. To this end, fix large ¢+ >> 1, and
then select the unique € << 1 : ¢™© 1= Clearly, such choice of € is possible, let us compute its
asymptotic in terms of z. Since we need to solve,

€2 _ 1
In(e)  Cit’

e~,/@. 4.9)
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It follows that

VIn(?)
vz, )7, < C3 N Voll2ny (4.10)

We conclude that ||v(z, -)||;2 < Clvollz2nart ( In(t )) as stated. Interpolating between the bounds (4.10)
and (4.4), the Gagliardo-Nirenberg’s inequality now yields

-1

1 2
n(t)) , 1 <g<?2,

vz, Mz < Clivollz2np (

for intermediate values of g. While one can similarly interpolate with the bound (4.1), this will not be
a particularly good decay, especially near g = oo.

Instead, we use an alternative estimate based again on (1.13). Indeed from (3.2) and (1.13) , it is clear
that for every T >0

In(T)\?
)

/T lve(s, )IZds < V(T )7, < (

where the last estimate follows from the L? bounds (4.10), Also, for every T >> 1, we have that there
exists Ty € (T,2T), so that

2T o0 1
In(T) \?
(ol < [ ts s < [ oG MR < (2

In other words,

e (To, )12, <

Y0 [ (5P ads <c(1“(T°)) @.11)

To

O N\vJ

1
ln(i") ) fes o) Vln(To . A this point, we refer to the argument in [2], which

T2
establishes that starting with (4.11), we conclude

For large Ty, denote ¢ := (

ln(TO)); (4.12)

sup [[ve(1)]l 2 < €83 ~ (
To

>Toy

Since this can be done for at least one point T € (2%, 2¥*1), k >> 1, we obtain the bound

I (Dllzz < C( (’))

By Sobolev embedding, followed by the Gagliardo-Nirenberg’s inequality we conclude

7 1
In(z) |\ ™
Il < Iy )T

1
H2 4

< IIV(t,')II IIVA(t )II2 "< (
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