A STABILITY THEOREM
FOR THE NONLINEAR DIFFERENTIAL EQUATION
x"+p()g(x)h(x’) = 0

A. G. KARTSATOS1?
(Received 31 October 1967, revised 15 April 1968)

K. W. Chang generalizing a result of Lazer [3], proved in [4] the
following

THEOREM 1. Suppose that f:I - R, = (0, +), I = [t,, +o0),
ty = 0, is a non-decreasing function whose derivatives of orders < 3 exist and

are continuous on [ty, 4-00). Moreover, lim,, . f(!) = +-c0 and for some «,
152, and F = U=

L:m |F"" (¢)|dt < + oo
then every solution x(t) of the equation
(*) x'+f{t)e =0

tends to zero as t — - co.
Here we extend the above theorem to a nonlinear equation of the form:

(**) & +p(t)g(@)h(z") = .

As solutions of (**) we consider only functions z(¢) € C%¢,, -+ ),
ty = 0, which satisfy (**) on the whole interval [#,, 4 c0). By an oscillatory
solution of (**) we mean a solution with arbitrarily large zeros. We suppose
also that the only solution y(f) of (**) satisfying the initial conditions
y(@) =0, y'(a) =0 for any a =4, is the trivial solution y(¢) =0,
t e [ty, +o0).

We prove the following:

THEOREM 2. Consider (**) with the assumptions:

i) p: I >R, I="[t, +o0),t, =0, non-decreasing with continuous
derivatives of orders < 3 on [y, + o0). Moreover, lim,, , p(t) = + o0, and

1= 1P e <+,
(1]
with P(t) = [p(¢)]7V%, « a positive constant greater than 1;
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(ii) g: R+ R, g'(x) exisis and is continuous on R, xg(x) >0 for

x # 0, g(—x) = —g(x), and lim, , , ,G(x) = + o0, where
G() = [ g(u)du;

(iii) 2 : R — R, continuous, even and such that
(S)  2H(y)/(x—1)+p(#)(g*@)(y) —2G () —¢'@)y* = 0, (t,2,y) eIXR,
where H(y) = fo” wudu|h(u)
(H(y) s non-negative and finite valued); then if z(t) is a nontrivial solution
of (**), we have lim,, _x() = 0.

Proor. For the sake of completeness we shall give the whole proof of
the theorem, although the boundedness of the solutions can be traced in
Bihari’'s Theorem 1, in [17.

First we show that all solutions of (**) are bounded. In fact, by differ-
entiation of the function

(1) V=V =H(y®)+p@t)G(=()) (y(@) = 2'(t)
where z(t) is a solution of (**), we find
V'(0) = ' (0G(x(2)

=[P'OPOIVE)

which by integration from #, to ¢ (£ = ¢,) and application of a well known
inequality gives

(2)

V() S V) + [, 12/ ()p(6)IV (s)ds

and
o) V(o) S V) exp [ [2(s)/p(5)1ds
= V{t)[p@)/p )]
Thus, G(z(t)) = V(,)/p(t), and consequently, x(f) is bounded on
[to, + o).

Now we prove that all solutions of (**) are oscillatory. The proof is
by contradiction. Let z(¢), ¢ € [,, + o) be a solution of (**) which is non-
oscillatory. Then, since for every solution z(f) of (**), —x(f) is alsc a
solution, we may (and do) assume that z(f) >0, te [, +), { = ¢
It can be easily seen that (f) must be concave and strictly increasing on
[t;, +0) (2”(f) < 0), while its derivative has to be positive and strictly
decreasing on the same interval. Thus, if lim,,,  2(f) =4 (0 < 2 < +0),
then since lim, 2’ (f) = 0, given a positive number ¢ < min {g(4), 4(0)},
there exists a 4, = ¢, such that
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(4)

for every ¢t = ¢,. From (**) by use of (4) we get
2"(t) = —p()e(=())h(=' ()
(5) < —L[g( )—e][A(0)—e¢]
= —L* <0

where p(¢) = L for ¢ = ¢,. Obviously (5) implies z2(f) - — o0 as ¢ - -+ o0,
a contradiction. Thus, every solution of (**) is oscillatory.

To show the decrease of the amplitudes, let () be any solution of (**)
with 2'(a) = 2'(c) = 0 and z(b) = 0 where ¢, < a < b < c. Then after a
simple manipulation we obtain from (**):

o (y = — [2 H(yo) P O+ 7 gwdn,
—Ht = — [ HO)p' Olp*e))a— [ g(u)du

from which, by adding the corresponding sides we get

) [ By ) 001 = [ glu)du

Since g is an odd function, (7) implies that [z(c)| < |z(a)|, which proves
the decrease of the amplitudes. Now we are ready to show that all nontrivial
solutions of (**) tend to 0 as £ — 4 oo. In fact, let x = z(#) be a solution
of (**); then by differentiation of the function

(8) W = W(t) = 26(&) 2P| (a—1)+P"' )~ 2 v}y P'+4H (y) P/ (a—1)
where y = y(t) = 2’ (¢), we find
W' = W'(t) = 2G(x)P'" (¢)

(9) +2[2H (y)/ (x—1)+p () (8% (@)1 (y) —2G () ) —¢' ()y*] P’
< 2G(z) P (1)
which, by integration from £, to ¢ (¢ = ¢,) yields
(10) W) < W(t)+2 [, Gla(s) P (5)lds
< Wt)+2V /p )] f;j T P(s)lds = K (say).

Now, following Chang’s proof, since P’ is bounded as { — + o0, given
any e >0,let T = ¢, (T = T(¢)) be such that

(11) Kle < 2[P(T)]*%/(a—1)+P"(T), '(T) = 0.
Then, finally, G(z(f)) <e for every ¢=T. This implies that
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lim,, ., G((t)) = 0. Suppose now that there exists a sequence {¢,} such that
t, =t,lim,, ¢,=+o,andlim,_ . 2({) #0. Thenlim, , . G(=(t,)) >0,
a contradiction. Thus, lim,,_, #(t) = 0 and the theorem is proved.

REMARK 1. From (9) it turns out that we can replace the integral
condition on P’ by the condition P’’(f) < 0 fcr all large ¢. In fact,
this implies that P’’(¢) = 0 for all large ¢ (otherwise we would have
lim,, ., P(t) = —o0) so that P”(t) is bounded on some interval [¢, +4-0).

REMARK 2. The condition (S) in (iii) of Theorem 2, is quite artificial
and can be replaced by the following one:

(") g2(x)h(y) = 2G(x) forall (x,y)eR?
y(t) = 2’ (¢) is bounded for all solutions «(¢) of (**), and

jt+°°jp'(t)1dt < +oo.

In fact, if we take into account (S’), then from the first of (9) we obtain

W' (t) < 2G(x(2))| P (6)|41g' (= () ly2 ()| P (£)]
and

W) <K+ [l @)l OIP (01t < +oo.

The author expresses his thanks to the referee for his remarks.
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