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Abstract

The Fock-Bargmann—Hartogs domain D,,,,( ) := {(z,w) € C" x C" : [Iwll? < e‘“"z”z}, where u > 0, is
an unbounded strongly pseudoconvex domain with smooth real-analytic boundary. We compute the
weighted Bergman kernel of D,, () with respect to the weight (—p)®, where p(z, w) := |[w]/*> — eI and
a > —1. Then, for p € [1, o0), we show that the corresponding weighted Bergman projection Pp,,(,),(—p)
is unbounded on LP(D, (), (=p)*), except for the trivial case p = 2. This gives an example of an
unbounded strongly pseudoconvex domain whose ordinary Bergman projection is L” irregular when
p€[l,00)\ {2}, in contrast to the well-known positive L” regularity result on a bounded strongly
pseudoconvex domain.
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1. Introduction

1.1. Setup and problems. Let Q be a domain in C* and 7n(z) a nonnegative
measurable function on Q. For p € [1, +0), let L”(€, ) denote the set of all complex
measurable functions f with

l/p
( f If(z)l"n(z)dV(z)) < +oo,
Q

where dV(z) is the ordinary Lebesgue measure on Q. We call 7(z) a weight on Q and
LP(Q, n) the weighted L? space of Q. The norm on L?(Q, 1) is defined by

1/p
g = fg f@Ia@ave)

For p = 2, L*(Q, n) is a Hilbert space with the inner product
(f.8h = f f@8@n() dV().
Q
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The weighted Bergman space of Q with weight n is defined by
AP(Q, 1) := O(Q) N L7 (Q, 1),

where O(Q) is the space of all holomorphic functions on Q. Thus, A%(Q,n) is a
subspace of holomorphic functions in L*(€, 7). From [18], if 5 is continuous and
never vanishes inside Q, then A”(Q, ) is a closed subspace of L*(€, 1) and there is an
orthogonal projection, called the weighted Bergman projection,

Poy : LX(Q,n) — AX(Q, 7).

This projection is an integral operator with the weighted Bergman kernel, Kq ,(z, w),
that is,

PQJ]f(Z):ZLKQJ?(Z,W)f(W)T](W)dV(W).

When 7n(z) = 1, the weighted Bergman kernel Ko, and the weighted Bergman
projection Pq; degenerate to the ordinary Bergman kernel Kq and the ordinary
Bergman projection Py, respectively.

For an arbitrary domain Q ¢ C" and a continuous positive weight n on Q, the
corresponding weighted Bergman projection Pgq, is originally defined on LX(Q,n),
mapping onto the weighted Bergman space A*(2,7). The weighted Bergman
projection Pq;, on LP(Q,7n) means Pg, on the subspace LF(Q, 1) N L*(Q,n) of
LP(Q,n). Therefore, for any p € [1, o), when we say that the weighted Bergman
projection Pgq , is bounded on L?(,77), we mean that the weighted Bergman projection
Pq,, mapping LP(Q,n) N L*(Q, 1) onto AP(Q, 1) N L*(Q, n) is bounded.

Fixing a domain €2 and a positive continuous weight 7 on Q, we define the operator
norm of Pg, by

“PQ,nf”p,n
11l

It is easy to see that ||[Pq,ll>, = 1 in the case of p =2. A natural and interesting
question is to determine the range of p € (1, +c0) such that the weighted Bergman
projection Pg , is bounded on LP(,n), except for the trivial case p = 2. This is the
so-called L? regularity problem.

1Paslly = sup fe@mN Q. #0)

1.2. Background. The L” regularity of the (weighted) Bergman projection is of
fundamental importance. Even though two domains are biholomorphic equivalent, the
corresponding L? behaviour of the Bergman projection on these two domains may be
quite different. There are many papers considering this problem in different settings.
One of the most common is a bounded domain with various boundary conditions. For
example, positive L? regularity results have been obtained on the following domains
for all p € (1, +00) in the unweighted version.

*  Qis a bounded strongly pseudoconvex domain (see Lanzani and Stein [13] and
Phong and Stein [19]).
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% Q is a bounded, smooth and pseudoconvex domain of finite type in C? (see
McNeal [15]).

*  Q1is a bounded, smooth and convex domain of finite type in C" (see McNeal [16]
and McNeal and Stein [17]).

We refer to Charpentier and Dupain [5] and Huo [9] for positive results on other
bounded domains. There are examples of smoothly bounded pseudoconvex domains
where the L? boundedness does not hold on the full interval (1, +o0) (see Barrett
and Sahutoglu [1]). If the domain Q has a serious boundary singularity, in general,
there will be a restricted range of p for the L? boundedness of Py (see Chakrabarti
and Zeytuncu [4] and Edholm and McNeal [8]). There are also results giving the
L? boundedness of weighted Bergman projections with different types of weights on
bounded domains.

%  Consider the unit ball B” in C" (n > 1). Introduce w = (—p)* (@ > —1), where
p(z) = |lz|I> = 1 is the defining function of B". The weighted Bergman projection
Pgn, is bounded from LP(B", w) to AP(B", w) for any p € (1, +o0). This result
implies that the L” boundedness is independent of the parameter a (see Rudin
[20, Section 7.1]).

x  Consider the Hartogs triangle H in C2. Let w(2) := |22]* (s € R),z = (21, 22) € H.
Then the range of p for the L? boundedness of Py, is related to the power s (see
Chen [6]).

For more results on other bounded domains with exponential weights, we refer to
Culkovié¢ and Zeytuncu [7] and Zeytuncu [23].

There are very few results for the L? regularity problem on unbounded domains.
Krantz and Peloso [12] determined the L”-mapping properties of the Bergman
projection on unbounded, nonsmooth worm domains, facilitated by the fact that
the boundaries of these domains are Levi flat. Janson et al. [10] determined the
LP-mapping properties of the Bergman projection on L? space on C" with respect
to Gaussian weights 1,(z) = e~ Bommier-Hato et al. [3] gave criteria for
boundedness of the associated Bergman-type projections on L” space on C" with
respect to generalised Gaussian weights eI where m > 0.

In this paper, we focus on the L? regularity problem on the Fock-Bargmann—
Hartogs domain D, ,,( ) in C"*™. The behaviour of the (weighted) Bergman projection
on D, ,,(u) serves as a model for the unbounded case.

1.3. The Fock-Bargmann-Hartogs domain. For a given positive real number g,
the Fock—Bargmann—Hartogs domain D,, ,,( i) is a Hartogs domain over C" defined by

Do) = {(z,w) € T - |w]f? < e7#IF),

where || - || is the standard Hermitian norm. The domain is an unbounded,
inhomogeneous strongly pseudoconvex domain in C"™*™ with smooth real-analytic
boundary. Since each D, ,,(u) contains {(z,0) € C" x C"} = C”, this domain is not
hyperbolic in the sense of Kobayashi. Therefore, it cannot be biholomorphic to any

https://doi.org/10.1017/S0004972719001424 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719001424

[4] L? regularity of the weighted Bergman projection 285

bounded domain in C*"*™, For more information on the Fock-Bargmann—Hartogs
domain, see Bi et al. [2], Kim et al. [11], Tu and Wang [21] and Yamamori [22].

The Fock—Bargmann—Hartogs domain D,, ,,( 1) is defined as a domain in C"*" with
the fibre over C” being an m-dimensional ball. Under suitable conditions, we can relate
the weighted Bergman kernel of D, ,,(u) to the weighted Bergman kernel of the base
space C" and deduce the L” regular behaviour of the corresponding weighted Bergman
projections.

1.4. Main results. Let p(z, w) = [w|* — e (z, w) € Dy u( ). For -1 < a < oo,
the weighed Bergman space AZ(D,,,m( ), (—p)®) is defined by
A Dy 0, (=p)") 1= {f € ODyum(p) : f [fP(=p)"aV < oo}.
Dym( 1)
The Bergman kernel of A%(D,, (), (—p)®) is denoted by Kp, , (.(—p=- By applying a
theorem of Ligocka [14], Yamamori [22] gave an explicit expression of the Bergman
kernel of AZ(D,,,m( ). Following the method in Bi et al. [2], we give a formula for the
weighted Bergman kernel Kp,, (). (-p)-

TueoreMm 1.1. Let D, (1) be the Fock—Bargmann—Hartogs domain with the defining
function p(z, w) = |wl|*> - e*"”ZHZ, (z,w) € Dy (). Then, for a > —1, the Bergman
kernel of the weighted Hilbert space A*(D,, n(p), (—=p)®) can be expressed as

u" INa+m+k+ D(a+m+k)

qitm = INa+ DI'(k+1)

KD, () (—pye (X, ¥), (5,1)) = eHarmk(es) (g, k.

As an application of Theorem 1.1, we derive a key relation between the weighted
Bergman kernel Kp, ,().(-p)r Of Dy (1) and the weighted Bergman kernel Keo ., Of
the base space C" (see Lemma 2.4). We use this key relation to study the L? regularity
properties of the weighted Bergman projection Pp, ,(),(~p)e On Dy( ) and obtain the
following result.

Tueorem 1.2. Let Pp,,(u).(-p) be the weighted Bergman projection on D, () with
the weight (—p)®, where p(z, w) = |[w||> — e‘””z”z, (z,w) € Dy(p) and a > =1. Let
1 < p<oo. Then Pp,, (u),-p) is bounded on LP (D, (), (—=p)*) if and only if p = 2.

Remark 1.3. Setting @ = 0 in Theorem 1.2, we see that the ordinary Bergman
projection Pp, (. is bounded on LP(D,,,,(u)) if and only if p = 2.

Our proof of Theorem 1.2 employs the technique used by Cutkovié and Zeytuncu
[7] and Zeytuncu [23]. Since D, ,(u) is an unbounded domain and it cannot be
biholomorphic to any bounded domain in C**™, the Fock—Bargmann—Hartogs domain
D, ;,( 1) studied here is different from the bounded Hartogs domain €, in C2. We give
an example of an unbounded strongly pseudoconvex domain whose ordinary Bergman
projection is L7 irregular except for the trivial case p = 2.
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2. Preliminaries

Lemma 2.1. For a > —1, the following multiple integral exists:

1 1=371, x; mooya M [T T(g; + DI + 1)
dx, f (1 - x-) xdxy = = ’
j(; m 0 ; ! 1_[ i L@+ X", qi+m+1)

i=1

where g = (q1,...,qm) € (Ry)™. Here R, denotes the set of positive real numbers.

Proor. By computation,

-y 2)‘! m o M
f dxm f x,») l—[ x?i dx1

i=1

1- Z,zxr m 1- Z,le m
fdxm f ’if ( Zx, xl) 'dxl)dxz

=2

]’Z,‘:}xl m m (1/+q1+l
=B(g+1,a+ l)f dxm---f x?i(l x,)
0 0 1:2[ Z

i=

m—1
=B(gi+1,a+ 1)B(qg; + 1,a + g +2)---B(q,n+1,a+Zqi+m— 1)
i=1
T T(gi + DIa + 1)
ST+ X" gi+m+1)

Lemma 2.2. Forany p e N, g e N" and a > —1,

o [T= T'(pi + DITL Tgi + DI + 1)
L@ +m+ 1 +lgDlp(@ +m+ |gh)rn”

2
”prq“z,(_p)w =

where wi, |q|, ||z1’W‘1||2 (py are given by

m m
i 2 2 —ullzl? 2
wi=[wh dal= ) an 1w, = f 2P w9 P (e — i) dV(z, w)
i=1 i=1

Dy (1)

forw=(wy,...,wy)and q=(q1,-..,qm)

Proor. From the definition,
2 20 — 2 2
W5 (e = f "W (e I — [lwl)* dV (z, w).
Dy 1)

By setting z; = rje el (1 <j<n),w =ke®(1<l<m),

m a
_ n 2
IPW (e = Q)" PrelRar (et - N2 ) drdk,
(=p) ||k||2<67””'“2
k>0,r>0 =1
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where r = (ry,..., 1), k=(ki,...,kn). Now, by setting s; = ri2 (1<i<n)and
tj:kﬁ(lstm),

m a
P42 — ntm P iy i _ .
P will5 (e =7 frvl,j«-ﬂz?_w sPt (e i=1 i t;) dsat.
= .

ljZO,SiZO J=1

Let 7; = e# 21 %it;. Then

P1d112 _ _n+m
Wi, =7 f

®R"

m

[
P p—H(a+m+lg) X, si - | Adt
sPe ! ds‘fZ'j"_l?jd(l th) 1 dt.

7720 J=1
Since @ > —1, by Lemma 2.1,

" (g + DIN(@ + 1)
F(CX +m+1+ Z:i] ql) R,

_ _ntm

||prq”§‘(7p)n — P e H@tmHagh XLy si g ¢

Since .
f sle M@ g, = [u(a + m + g™ T(pi + 1),
0

we obtain
i Tpi + DITL T(gi + DI + 1)

_ n+m1li=1

IIZ”qulg (—p) = .
o [(a +m+ 1+ |ghlu@ + m + |g])]PHn

]

Let AP(C", n,) be the space of all entire functions f on C",n > 1, such that [f] is
integrable with respect to the Gaussian

—allzl?
2

na(Z) =e

where @ > 0, 1 < p < co. Equipped with the norm inherited from L% (C", 1), the spaces
AP(C", n,) become Banach spaces. In particular, A%(C",7,) is the Segal-Bargmann—
Fock space of quantum mechanics with parameter a. The function
n
Koy, (x,y) = (g) Y xyeC, (2.1)
/4

is the Bergman kernel for A%2(C", n,) (see [3] for further details).
The integral operator defined by

Pen gy, f(x) = fcn JO Koy, (X, (0 dV(y), xeC,

is the orthogonal projection in L*(C",7,) onto A*(C",n,). The operator Pcuy, is
bounded on L*(C", ,), but this turns out to be no longer the case for L?(C",7,) with
p # 2. Janson et al. proved the following assertions.

Tueorem 2.3 [10]. Suppose that @ € R, > 0,1 < p < oo satisfy fp > a. Then Pcny, is
bounded from LP(C",n,) into LP(C",n,), where 1]y = 4(Bp — )/ p*B2. In particular,
Pcuy,, is bounded on LP(C",n,) if and only if p = 2.
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Comparing the expression of the Bergman kernel in Theorem 1.1 and (2.1) gives
the following lemma.

Lemma 2.4. Let Kp,, (1.(-p) be the Bergman kernel for AZ(Dn,m(,u), (=p)%) and Kcny,
the Bergman kernel for A*(C",n,). Then

INa+m+1)

K —p) = K n € n.
Do w.(-py (%, 0), (5, 0)) Tt D) ke Mtarm (X5 8), X, 5€C

3. Proofs of the main results

Proor or THEOREM 1.1. Since {z"w?/||z?w||5,—p)} constitutes an orthonormal basis of
AZ(D,,,m( W), (=p)*dv) and the Fock—Bargmann—Hartogs domain D,, ,,( 1) is a Reinhardt
domain,

xPydsptd

xPY |,y lIsP 1o~ pye

Koo (@000 = ),

PpeEN geNm
By Lemma 2.1,

Kb, (. (—py (X, ), (5, 1))

T +m + 1+ gD[u(a + m + g™ —_
= > = - APy ISP
ot T T(pi + DI Tgi + D@ + 1)

1 Z b, S)F(Cl’ +m+ 1+ gDl +m+lgh]" —

H,
" g+ Dl + 1)

(3.1)

n+m
0 qum

where ¢(x, 5) = 3 e ([p(@ + m + |q|)]'1’|/1‘[;’=1 ['(p; + 1))x”sP. By an easy calculation,

[u(a + m + |g])]”! PSP = phlatmlaixs)

3.2)
pEN? ?:1 F(pi + 1)
Substituting (3.2) into (3.1),
KD, (0(—py2 (X, ), (5, 1))
_ Z ptarmsighes L@+ m + 1+ |gDlp(er +m + |q|)]nyqt_q7
e geN™ " T(gi + D@ + 1)
_ M Z Fla+m+1+|g)(a+m+|q)" Hatma (9 a7
v e JTE Dlgi + DEe + 1)
= fn‘:‘m I'a + ? +k Jlr 1{)(}{0 +1m + k)" pasmebies g,
T keN (@+ DI'k+1)
Proor oF Treorem 1.2. For a given p € [1, 00) \ {2}, by Theorem 2.3, Pcn,,..,, 18

unbounded on L”(C", n,(a+m)), Where n,qm) = e Ha@rmlil Therefore, there exists a
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sequence {f,(2)} in LP(C", nyq+m)) N L*(Cn, Nu(a+m)) sSuch that

p
| |PC" SMu(a+m) f;1 | |]7J];1(a+m)

P
n—oo ”fn”p,?]y(mm)

= oo, 3.3)
Define F,(z,w) = f,(z). Then

2
IFl = [ ARG = Py vz
Dy (1)

- f Iﬁz(z)l"e‘“"”z”z( f (1—e“”Z"anuz)“dV(w))dV<z).
Cn (w2 <eHll?

Let o be the rotation-invariant positive Borel measure on dB™, the surface of the unit
ball of complex dimension m, with o(0B™) = 1, and let w = v, { € 0B™. Then

oHlI /2
IFl e = [ Uh@Pe [T 2my @l - R drave)
Ccn 0
= mB(m,a + HV(B™) f [fu@IPe@mEE gy (z)
= mB(m, & + DV B fullpn (3.4)

where B(m, a + 1) is the beta function. Therefore, F,(z, w) € L7 (D, (1), (—p)®) for
any n. Next,

Pp,,.i-py Fn(z,0)

= fD‘ KD,,,m(;l),(—p)”((Z’ 0)’ (Sa t))Fn(Sa t)(_p(sa t))a/ dV(S, t)
(1

= f f” ot K20 (GO (D=l 0)” AV V)

eHlsI? /2

_ f ( f 2mV B2 dr
N Jo

X fa i KD, 0.y (2 0), (5, 7)) fu(s) (eI — r"‘)"d«r(@)dV(s)

oHlsI? /2

= f (sz(Bm)fn(S)f rzm_l(e_ﬂ”SHZ _ ’,,2)& dr
o 0
X j; . KDp,,.(w.(-py((z,0), (s, r{ ))da(g“))dV(s). (3.5)

Since Kp,,(u).(—p)2((z, w), (s, 1)) is antiholomorphic in 7, by the mean value property,

fﬂ .y Kp,,.(10.-p (2, 0), (5, r0)) do () = V(OB™)Kp,,, (), (-p((2, 0), (5,0)),  (3.6)
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where V(9B™) is the volume of 0B"™. Putting (3.6) into (3.5),

Pp, (.- Fn(z,0) = f (2mV(8B’")V(Bm)KDn,m(m,(—ma((Z’ 0), (5, 0D fu(s)
o sl
« f rzm—l(ef/tllﬂl2 _ r2)"‘dr) dv(s)
0
=mV(OB™)V(B™)B(m,a + 1)

X f Kb, (u(-py (2, 0), (5,0)) fu(s)e el gy 5y (3.7)
cn

Applying Lemma 2.4 to (3.7),

Pp, .-y Fa(2,0) = Cf Koo @ $)fu(s)e @I gys)
Cn

= CPer g Ja(2), (3.8)
where ¢ = mV(OB™)V(B™)B(m,a + DI'(a + m + 1)/7"T'(a + 1).
Next, we estimate the norm of Pp, (). (—pye F:

P
p(=p)*

T
- f 1P, 0(-pye Fu(z WP (€M — [w])* aVi(z, w)
Dyl

WP D, ). (~p) Full

:f f e Dot o Pz WP (e — 1wl ) aV(w) aV (2)
" wl? <eHE

o-H12l?
= f ( f 2mV (B e A — 2y ar
n 0
X f IPD, .. (—py Fn(z, r§)|pda'(§)) dV(z). (3.9)
ﬁB"I

Since Pp,,,(w).(-p)* Fn(z, w) is holomorphic in w, by the submean value property,

f IPD,,.10.~py Fu(2, rOI do(§) = V(OB™)|Pp,,, ), ~py Fn(z, O)IF. (3.10)
6 mn

Substituting (3.10) in (3.9) and invoking (3.8),

4

I1PD,,. .-y Enlly o

e+ /2

> fn ( jo\ 2mv(Bm)r2m—1(e—/J”Z||2 _ rz)aV(BBm)|PDM(#),(7p)aFn(Z, 0)|Pdr) dV(Z)
=mB(m,a + DV(@B"MVB™")’ | 1Per Fu@IPe@rmIEl gy (7
Cn

=mB(m,a + DHV(OB")V(B")c||Pcn gy gum Jall (3.11)

14
Polu(a+m) *
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By (3.4) and (3.11),

p p
”PD"*'”(”)’(_‘O)” Fn”]’a(_P)" > V(BBm)CP |IPCn’ﬂu(rH-m)f””p’nu(aﬂn)

p p
IFD A

(3.12)

Thus, by (3.3) and (3.12),

P
1D, 0. Fll o
1m 7 =
n—eo ||Fn||p,(_p)(r

This means that Pp, (.- is unbounded on LP(D,,,,( ), (—p)®) for p € [1, o0) \ {2}
and it follows that Pp,  (,(—py is bounded on LP(D,, (1), (=p)%) if and only if p = 2.
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