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ON VANISHING OF THE TWISTED RATIONAL DE RHAM
COHOMOLOGY ASSOCIATED WITH HYPERGEOMETRIC
FUNCTIONS

MICHITAKE KITA
Introduction

Recent development in hypergeometric functions in several variables has
made the importance of studying twisted rational de Rham cohomology clear to
many specialists. Roughly speaking, a hypergeometric function in our sense is the

integral of a product of complex powers of polynomials P;(u,,...,u,) f Udu, N

- Ndu,, U= HP]D‘", integration being taken over some cycle. So we are led
naturally to consider the twisted rational de Rham cohomology, which is a direct
generalization of the usual de Rham cohomology to multivalued case. Thus it will
be useful to give the exposition of twisted de Rham cohomology, which is neces-
sary to the study of hypergeometric functions and this paper aims at the point. In
the paper, we shall consider also the logarithmic complex, which is a very impor-
tant subcomplex of the twisted rational de Rham complex and is quasi-
isomorphic to the complex in many good cases. We explain the content of the pap-
er in more details; Let D be the divisor of C” defined by II P; and set w = dU/U.
In §1 and §2 we shall show some basic properties of logarithmic forms that are
necessary to our later applications. In 83 we shall treat the case where each P; is
homogeneous and show acyclicity of the twisted de Rham complex under the condi-
tion 2 a, deg P; & Z. To go further to inhomogeneous case, we introduce in §4
the degree fritration on the logarithmic complex and compare the associated graded
complex with the complex (2°(D), Vz) where D is the divisor defined by the
homogeneous part P; of P, and @ = X a;dP;/P,. Using acyclicity of homogeneous
case and the standard argument of filtered complex, in 85, we shall prove the
vanishing theorem for twisted rational de Rham cohomology under a certain reg-
ularity conditions. In case each P; is linear and the arrangement {P; = 0}, <;,, is
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m gemeral position, the integral f Udu, N\ -+ N du, has been studied in some

special cases and the studies of P. Appell, E. Picard and G. Lauricella are classic-
al. Since the integral is a multivalued holomorphic function on an open set of the
complex Grassmann manifold G + 1, m + 1) of (# + 1)-dimensional sub-
spaces of a complex (s + 1)-dimensional vector space, we call, after the naming
of [MSY], the integral the hypergeometric function of type (w + 1, m + 1). To
know the basic properties of the hypergeometric function, in the last section we
shall study the degree filtration on £ (log D) and the structure of the associated
graded complex in great detail, which leads to determination of the structure of
H"(Q (log D), V,). By using the structure of Grf!)'(log D), we can unify the
study [Ao] of twisted rational de Rham cohomology in irregular singular case and
the recent study [O-T)] of arrangements and Milnor fibers. This unification enables
us to determine the structure of the cohomology in many interesting cases, which
will be described in our forthcoming paper [AKOT].

Acknowledgement. The author would like to express his sincere gratitude to
Professors J. Kaneko and T. Yamazaki who communicated their results to him in
their private letters.

§1. Preliminaries on twisted rational de Rham complexes

1.1. Let C" be a complex #-dimensional affine space with coordinates # =
(#y,...,u,) and let P;(u), 1 < j < m, be non-constant polynomials in #,,...,u,.
We set

Q°(C" : space of polynomial p-forms,

Uw) := 11 P,(w)”,
j=1

D : the divisor defined by P := P,*-- P,
X :=C"— D : a complex affine manifold,

m dP;
w:=dU/U= 2 a P.] : an integrable holomorphic 1-form on X,

j=1 i
d : the exterior differentiation on C”,
V,:=d + w A : covariant differentiation with respect to w,
£, : complex local system on X of solutions of V, b =0,
Q% (% D) : space of rational p-forms with poles along D.
As is shown in [R-T], in the case of arrangement of hyperplanes which is not
normal crossing, the exterior algebra generated by dP;/P;, 1 < j < m, over the
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affine coordinate ring of X is smaller than the complex of logarithmic forms in the
sense of K. Saito. Since this gap is essential in our later application in §6, we be-
gin by reviewing the definition of logarithmic forms in the sense of Saito:

DerNITION ([S1]). A rational p-form ¢ € 2°(* D) is called a logarithmic
p-form along D if Pp and dP A ¢ are polynomial forms. We denote by
Q° (log D) the space of logarithmic p-forms along D.

1.2. Simple computations show that £ (% D) is closed under the exterior

. . . ... dP; . .
differentiation and exterior products with P 1 <7< m, and hence it is also
j

closed under the covariant differentiation V,. Therefore (2 (* D), V,) is a com-
plex whose cohomology is denoted by H”(2 (% D), v, for p=0,1,.... The
Grothendiek-Deligue comparison theorem asserts, in our case, that there exists a
canonical isomorphism

H'(X,¢,) =H'(Q(%D), V,)

for p=0,1,..., where H* (X, ¥£,) is cohomology of X with coefficients in the
local system %,

By the definition of logarithmic forms and simple computations, we can see
easily that 2 (log D) is closed under the exterior differentiation and the exterior

. dP, . o .
product with P , 1 <7< m, and hence it is closed under the covariant
j

differentiation V,. Therefore the logarithmic complex (2 (log D), V,) is a sub-
complex of the twisted rational de Rham complex (2°(* D), V,); the cohomology
of the logarithmic complex is written as H”(2 (log D), V,). We shall study in
§85 and 6 when the natural inclusion (2 (log D), V,) — (2°(% D), V,) induces
an isomorphism of the cohomology of these complexes.

1.3. For the later application in §6, we prove a property of logarithmic
forms.

Lemma 1.3.1.  We suppose that the polynomials P; and P; are relatively prime for
i#jand that a; # 1 for 1 < j < m; then ¢ € 2" (% D) is logarithmic along D if
and only if

0 €52 C and Vyp € 52" (C).
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Proof. We set ¢ = B/P, B € 2°(C") ; then we have

_ 1 ” dP; ]
Fop =5 (d8+ 5 @~ DB AB
n dP; PHL iy , . .
and hence 21 (¢, — 1) T; A B € Q7 (C"). Since P;'s are relatively prime, each
i
_ dP; . . p+1 n .
summand (@, = 1) =5~ A B is in 277 (C"). By assumption, &; # 1 and hence
dP, o
P~j A B € 2"(C"), which means that ¢ is logarithmic along D.

J
§2. The de Rham-Saito division lemma and a representation of logarithmic
forms

For a proof of vanishing of twisted de Rham cohomology, we will explicitly

j

d
write down logarithmic p-forms along D as a sum of exterior products of P
i

(1 £j < m) and polynomial forms. To the end we shall prepare some algebraic
tools whose explanations are found in standard textbooks on commutative algeb-
ras.

2.1. Let A be a noetherian commutative ring and let a be an ideal of A. A
sequence of elements fj,..., f, in a is said to be regular if f; is a non-zero-divisor
of A and f, is a non-zero-divisor of A/(f,,...,fi_y) for 2 < i<t Then the
a-depth of A is defined as the maximal length g of regular sequence f,...,f; in a
and denoted by depth, A.

Let M be a free A-module of rank # whose free basis is e, ..., ¢,. We denote
by A’M the p-th exterior power of M ; Notice that A’M=A and A7'M = 0. Let
w@y,. .., ®, be elements of M ; then w; A -+ A w, can be written as

o, N AN, = > a;

-iei/\”'/\eif a;
r 1 r
1< <eee<ip,<n

1 1o iy

We denote by a the ideal of A generated by the coefficients Ay ..ip 1< <
<1, < n and set

Z'i={oe A M|w, A ANw, A ¢=0},
H :=2"/2 w,ANANT'M;
k=1

then we have
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LemMAa 2.1.1. (The de Rham-Saito division lemma, [deR], [S2]).
(1) There exists an integer v > 0 such that CH® =0 for p = 0,.. . .
(2) H =0 for 0 < p < depth A.

2.2. Let P,() be non-constant homogeneous polynomials in #,,. . .,u, and by
abusing notations we denote by (dP; A -+ AdP,, P,,...,P,) the ideal of

polynomial ring Clu,,...,u,] generated by P

= — Jprc ot
a;,....P,) . . ) . (0P,
5,154 <---<i <m of the Jacobian matrix ( "),13/{
0u,...,u;)

ou,
< 7,1 < i< n Notice that the minors are the coefficients of dP; A --+ A dP,
with respect to the basis du, A -+ Adu;, 1 <4, < -+ <, <m:

_ o, ...
del/\ “ee /\def:i<§<, W

Pj, and the minors

du; N\ - N du

t,'
We make the following assumption:

AssumpTioN 2.2.1. (1) For 1 £ » < min{m, n — 1}, the algebraic set defined
by the ideal (dl‘_’j1 VANRERIVAN dpjr, 13]»1,. . .,Pj,) is either empty or of dimension 0. In
algebraic words,

(1) height @P; A -+ ANdP,, P,,....P) > n.
(2) P,,...,P; form a regular sequence in Clu,,...,u,] for 1 < s < min{m, n}.

Under our assumption, we obtain the following Lemma, which is essential in
the proof of Proposition 2.2.3 below.

LemMa 2.2.2.  We suppose Assumption 2.2.1. Let v +p < n — 1 and let ¢ be a
polynomial p-form such that

dP, N+ NdP, N$p=0 (modP,,....P,);
then

¢$=0 (moddP,,...,dP

1y

Proof. We set

= Cluy,...,u,l,

= (P, N - NdP,, P,,....P,),
:=B/P,,....P,),

I=I/(I_’,1, .. .,ij) : an ideal of A,

2 o~
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7w : B— A ; the canonical homomorphism.

Then we have I = 7~ '(a) and hence B/I = A/a. By virtue of Lemma 2.1.1,
it suffices to show that either a = A or depth A = n — 7. We divide into two
cases. In case I = B, we have a = A and hence part (i) of Lemma 2.1.1 gives
H? =0 for p=0,...,n In case I # B, by Assumption we get height I = »n. On
the other hand, it is known (see [M], p. 105) that

(2.2.1) depth,A = inf{depth A_ | m € V(a)}

where V(a) is the set of prime ideals m such that a € m and A, is the localiza-
tion of A at a prime ideal m. Since height I = n, we have dmA/a =dimB/I =
0 and hence m is a maximal ideal of A. We set n:= 7~ () ; then n is a maximal
ideal of B and we have that B, is an #-dimensional regular local ring and

(2.2.2) A, =B /P,... P)B,.

Since by assumption l_’jl,. .. ,Pj, is a B-regular sequence, it is also a B, -regular
sequence ane hence we can be conclude that A, is a Cohen-Macaulay local ring.
This implies that

depth A, = dim A,
=dim B, — 7 (by (2.2.2) and [M], p. 105)
=n—r7,

and hence by (2.2.1), we get depth A =n — 7.

Remark. Our first proof ((K-N]) was rather complicated; the proof here is due
to T. Yamazaki, who kindly communicated it to the author ([Ya]).

ProrosiTioN 2.2.3 (Representation theorem for logarithmic forms). Let P,-(u),
1 <5 < m, be polynomials satisfying Assumption 2.2.1. Let 0 < p < n ~— 2 be an in-
teger and let ¢ be a polynomial p-form such that

(2.2.3) dP; N ¢ =0 (mod P) for 1 <7< m.

Then ¢ can be written in the form

_ - m dP,
(2.2.4) ¢=Pl-~Pm{¢O+ 2___L/\¢j+...
=1 P;

dP, dp,
. + Z *’_A/\ /\Tngbjl...j’}
1<jj<oee<jp<m le Pjp
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where §;...; is a polymomial (p — v)-form for 1 <j < -+ <j,<m and
v=20,...,p.

Proof. We shall prove Proposition 2.2.3 by induction on the number m of
polynomials }_’j, 1<j<mIncasem =1 by (2.23),0<p<n—2 and Lemma
2.2.2, we have

¢ =0 (mod dP,, P).

Hence ¢ can be written as
_ _ _ dpP
(/’:P1¢o+dP1/\¢’1=P1{¢o+ pl /\§b1]
1
where ¢, € Q°(C™ and o, € Q"7'(C", which shows that Proposition 2.2.3
holds for m = 1. We assume Proposition 2.2.3 is true for m; let ¢ € 2°(C")
such that dP; A ¢ =0 (mod P)) for 1 < j < m + 1. By induction, ¢ can be writ-
ten in the form (2.2.4). Let N be the largest integer for which there exists some
®;,..iy ¥ 0/in (2.2.4). By induction on N, we shall show that ¢ can be written in

the form
_ o m+1 dP
(2.2.5) </)=P1---Pum+1[ro+Z SSAT T
i=1 Pj
dP, dP,
O YN )

1<j)<eee<yp<m+1 le ip

In case N =0, we have ¢ = P, -+ P,,¢b,. Since dP,,.; N\ ¢ =0 (mod P,,, ), we
get

P - P,dP,, A ¢$,=0 (modP,,).

Since 0 < p < n — 2, Assumption 2.2.1, (2) implies that {P;; P,.,} form a reg-
ular sequence for 1 < j < m and hence Lemma 2.2.2 yields ¢, = 0 (mod dP,,,,,
P,.). Thus ¢, can be written in the form

=P, a+dP, AB acQ(C), B Q(C
and hence

¢:P1"'Pm+1{a’+ip%i/\ﬁl,

m+1

which means that Proposition 2.2.3 holds for N = 0. Suppose the statement is
true for N — 1 and we shall show that it holds for N. For simplicity we focus our
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attention on the index (1,..., N); by definition of N, ¢,...; = 0 for v 2 N+ 1
and hence (2.2.4) yields

¢ — Py, PdP, A - ANdPy A ..y, =0 (mod P, -+ Py).

Since N < p <#n — 2, Assumption 2.2.1, (2) implies that {P,...,Py, P,, P,.}}
form a regular sequence for N+ 1 < j < m. Using dP,,,, A ¢ =0 (mod P,,,,),
we have

dP, A -+ NdPy N dP,, N ¢,..y=0(mod P, ..., Py, P,.).
Since ¢y...x € 2°7V(C") and N < p < n — 2, Lemma 2.2.2 yields
(/)1...]\7 = O (mOddPIy. ..y dPN’ dpm+1, Pl!' .oy PN’ Pm+1)

and hence we can write ¢;...y as

M=

Groon =

7

Il

] Pfal---N;/' + Pm+1a1---N;m+1
N — -

+ 21 dPJ A tBl---N;/‘ + de+1 A Bl---N;m+1»
=

Q. € 277NCY, Bryy € Q7TVTHE.

By the same reasoning we have

N _ -
(2.2.6) (ph"‘jzv = z ijajl,.,]wk + P,,,,rlar,-l.,.,-w,,+1
N _ -
+ kz_:l dPJ',, A le---j,v;j,, + de+1 A le---/N;er
Qoyiie € Q7NC, By, € 277HCY.

Substituting (2.2.6) into (2.2.4), we get

e ap
c2n ¢=P P> = %

v=0 1<jj<eee<gy<m

J Jy
o dP; dP, N
+ B, P, ChN N (S Pay
1<j;<oe<iy<m Py P, g=1 VTN

+ Pm+1aj,"'jN;m+1>]
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dp, b,y
il /R Nt /'R, (Z dP;, N Bj...jpyi
k=1 o

71 in

+P P

1<j1<ee<jiy<m

+ d}_’m+1 N .le---fn;m“)}'

Notice that the last term in the right hand side in (2.2.7) reduces to

_ _ dpP; ap; _
J Pm{ ' —L AN AN=EAAP,, N ,le,,,jmm,rl}‘
1</ 1<eee<yy<Sm N PfN
We set
_ _ dpP, dp,
(2.2.8) 77=¢—P1”'Pm+1[ z I RAREA —N/\aj.--f~m+1
1<j<ene<iy<m+l Py P v
dp, P,  dP
+ Z ‘_A/\/\__]N —_w/\ﬁ]] -m+1}'
1<y <eee<iy<m Ph Pfu Pm+1 Lo
Using (2.2.7), we can write 1 in the form
_ _ (A=l dP, dP
(2.2.9) )7=P1"'Pm{2 > —BA A —]”/\ﬂj...,},
v=0 1<ji<ee<ip<m Py Piu v

Myporry, € 27T,

By (2.2.8) and dP; A ¢ =0 (mod P,), 1 < j < m + 1, we see that dP, A =0
(mod Pj) for 1 <7 < m + 1. This, together with (2.2.9), means that 7 satisfies
the assumption of induction and hence it is written in the form

_ o B m+1 dp] N
22100 =P B P+t X LA+
1=1 Pj
dP, dP,
+ > A /\T’LAﬁh...,,]
1<j1<eee<yp<m+l i Pjp

Substituting (2.2.10) into (2.2.8), we see that ¢ can be written in the form (2.2.5).
This completes induction.

Remark. A logarithmic p-form ¢, (0 < p < n — 2) is, by definition, written

- " ar; " .
as @ = ¢ /P where ¢ € 2°(C"), which satisfies -P—] A¢e N for 1 <

)
< m. Hence ¢ satisfies the condition in Proposition 2.2.3. Therefore ¢ is written

in the form of the second factor of the right hand side of (2.2.4). Notice that ¢ has
not logarithmic pole along the hyperplane at infinity.
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§3. Acyclicity of the twisted rational de Rham complex in homogeneous case

3.1. Let I3 (#), 1 <7 < m, be homogeneous polynomials in u = (u,,...,u,)
and let D be the divisors defined by P ; we set

Z D, Uw = il P,(w)*,

j=1

w——dU/U V-=d+ a,.

As is explained in 1.2, the logarithmic complex (2 (log D), V) with poles along
D is a subcomplex of the twisted rational de Rham complex (2 (* D), V5). To
compute cohomology of these complexes, we shall introduce some operators acting

0
on them. Let v = Z U; = ou, be the Euler vector field on C* and we set as follows:
j=1

1, : the interior product with respect to v,
L, the Lie differentiation with respect to v,
A - the exterior product of @.

It is easily checked that exterior differentiation d, 1,, L, and @, act on the com-
plexes 2 (% D) and 2°(log D) and hence V- also acts on them. Recall that d and
i, are skew-derivations of 2 (% D) of degree + 1 and — 1, respectively; L, isa
derivation of 2 (% D) of degree 0.

3.2. In the following we summarize the fundamental relations among the
operators defined in the previous subsection:

(1) The commutation relations:

321 [L,d=o0, [L,i]l=0 I[L,a@d=0, [L,V]1=0;

(2) The homotopy formula of H. Cartan:
dei, +t,,d=1L,

which gives rise to the homotopy formula for V:

(3.2.2) V;;,°iv + iu° Vg, = L,, + 2 ljaj
j=1
__n dp 5
where @ = 2. &;—" and we have set [, = deg P,.
j=1 j
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3.3. Let g(u) be a homogeneous polynomial of degree u. Since L,(g) = ug
and L,(du,) = du,, we have

L,Ggwdu, N - Ndu) = (u+pgwdu, N - A du,,.

Thus a polynomial p-form ¢ € 27(C") is said to be homogeneous of degree y if
L,(¢) = p¢ holds. Notice that when ¢ has the form
§b = Z (»bil---i, (u)du,-l JAYRREIVAN dui,y
1<i<eee<ty<n
¢ is homogeneous of degree g if and only if each (,b,»l,,_,-p(u) is a homogeneous
polynomial of degree ¢ — p. We shall extend the definition of degree to rational
p-forms £2°(* D) with poles along D. First notice that L,(1/P) = —1/P for
deg P = I A rational p-form ¢ € 2°(* D) can be written as ¢ = 8/P" for some
positive integer k and some polynomial p-form B ; then ¢ is said to be
homogeneous of degree u (¢ € Z) if B is of homogeneous of degree u + kl. It is
easily checked that this definition is independent of the choice of expression of
@ as B/P" and it is characterized by the relation L,(¢) = pe. We denote by
Q’(*D)u the subspace of Q7 (% D) consisting all homogeneous p-forms of degree
4, which is the eigenspace of L, belonging to the eigenvalue g. £ (% D) is decom-
posed into the direct sum of eigenspaces of L, :
Q*(xD) = @ Q' (xD),.
ueZ
Since L, acts on the subspace 2”(log D) of Q°(* D), by setting 2”(log D), :=
2’ (log D) N Q°(* D), we have
2’(log D) = @ 2°(og D),.

ueZ

3.4. By the commutation relation (3.2.1), the operators d, i,, @, and Vj
act on eigenspaces 2 (*D), and £2°(log D), and hence (2 (*D),, V3 and
(2°(%D),, V;) are subcomplexes of (2°(*D), Vz) and (2 (logD), V3),

respectively. Summiag up, we have

(Q'(%D), V;) = © (2'(%D),, V),

uHezZ

(2 (og D), Vz) = @ (2°(og D), V3).

ueZ

Notice that the homotopy formula (3.2.2) for V3 holds for these subcomplexes.
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Since [L,, Vz] = 0, the above decompositions induce the following ones on a
cohomology level:

(3.4.1) H’ (Q(%D), V;) = @ H (2 (*D),, V),
UeZ

(3.4.2) H’ (2 (log D), Vz) = @ H* (2 (log D), V).
UEZ

Using the above decompositions and (3.2.2), we obtain

TueoreM 3.4.1. (1) If S, La, & Z, then H (' (% D),, Vz) =0 for all p

j=1"%j"%j

and hence H* (2 (% D), V2) = 0 for all p.
@ IF Xt La,#1,1—1,1—2,..., then H (2" (log D),, Vz) =0 for all p
and hence H*(Q (log D), V5) = 0 for all p.

Proof. Let ¢ be in Q27 (% D)u such that Vz ¢ = 0; then by (3.2.2) and
L,(p) = o, we get

Vi) = (u+ :Zl L.

Since 2 L, & Z, we have y + 22 L,a; # 0 and hence

0= il 455

which shows H’ (2 (%D),, V3) = 0. Similarly the second statement is proved.

§4. Filtration on a logarithmic complex (2 (log D), V,)

Let P;(u), 1 < j < m, be non-zero polynomials in # = (u,,..., #,) of which
the homogeneous part of maximal degree is denoted by P,—(u) and we set [;:=
deg P]- for 1 < j < m. We will keep using the notations listed in 1.1 and 3.1.

4.1. We define an increasing filtration on the logarithmic complex
2'(log D). To the end, let ¢ be in 2”(log D); then by definition, ¢ is written as
© = a/P where a € 2°(C"). We may formally consider the degree of 1/P as
— 1= — X7 I, and hence we say that ¢ is of degree ¢ if dega = p + L

DEFINITION.  Let F#.Qp(log D) be the space of logarithmic p-forms ¢ with
poles along D such that deg ¢ < p. Then the family of subspaces Fﬂ.Qp(log D),
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¢ = — I+ p, defines an increasing filtration F on 27 (log D).

To show that the filtration F, is compatible with the covariant differentiation
V,. we first observe that F. is compatible with the exterior differentiation d. In

fact, let ¢ = a/P € FﬂQP(log D) ; then a € 2°(CY, dega <p+ 1 and % A

a=:8€ Q"C". Since dp = (da — B)/P and da — B € Q*7(C") of degree

m dP; dP;
<u+1 we have dp € F,2" " (log D). Since w = 2 P] and T] is a
i

i

logarithmic 1-form of degree 0, we get w A ¢ € F, .Q“l(log D). Hence we obtain
V,F,2"(log D) € F,Q"" (log D),

which means that F. and V,, are compatible. This shows that (F,2 (log D), V,),
(= — 1 are a family of subcomplexes of the logarithmic complex (2 (log D),
V,) which defines a filtration on 2 (log D). Let

Gr, 2 (log D) := F,Q (log D)/F,_,2" (log D)

be the associated graded complex to the filtered complex (F.2 (logD),
V,) equipped with the differential Grﬂp( V,) induced by V,,.

4.2. We shall compare the associated graded complex (GrIIF.Q'(log D),
Gri (V,)) with the subcomplex (2 (log D),, V3) of (2 (log D), V;) consisting
of homogeneous logarithmic forms of degree g introduced in 3.3. To the end we
define the canonical linear mapping

or: Gr, 2" (log D) = 2’ (log D),

as follows: let @ € Fu.Qp(log D): then o =a/P,a€ Q'(C") and a <y + 1L
We denote by @& the homogeneous part of a of degree ¢+ [ and set ¢ := a/pP;
then we see easily ¢ € Q' (log ]._))u. We define the mapping 05 as sending ¢ mod
Fﬂ_l.Qp(log D) to @ ; then by the definition of , it is clear that 05 is well-defined
and injective. Moreover o;f’s induce a morphism of complexes:

o,: (Gr; Q2 (log D), Gr, (V,)) — (2 (log D), V3).
For let ¢ € FﬂQP(log D) and set [¢] := ¢ mod Fﬂ_lQp(log D) and ¢:=
o ([¢]) ; then
dp
Vaeoh([p]) = dp + = o P, A

j

https://doi.org/10.1017/50027763000004955 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004955

68 MICHITAKE KITA

dP,
(do+Za,—="N @)
Pf

=0, Gry (V) ([g]).

4.3. We set
N’(log D), := 2°(log D), /Im &,
Since 0: is injective, we have a short exact sequence of complexes:
(4.3.1) 0— G, (log D) — 2 (log D), — N (log D), — 0.

For the complex N (log D), we have the following

LemMa 4.3.1. If Assumption 2.2.1. holds for the homogeneous parts Pj of P,
1 <7< m, then 05 is an isomorphism for p = n — 1 and hence N’ (log D) =0 for
pFn—1

Proof. 1t suffices to show 05 is surjective for p#mn—1 Let ¢ €
2 (log D),, 0 <p<n—2; then we have that p = &/P where & € 27T is

ap ‘
homogeneous of degree g+ [ and I—’J ANae RNCH for 1 <7< m By
i
Proposition 2.2.3, we can write & as follows:

= ~ mn dP;
a=P P, [a0+ =L Aa,+ -
i=1 P;
ap; dp;
'+ Z _JlA...ATJLaj“'j}
1<jp<eer<ip<m le Pj,, e

where we may suppose that each &; ...; is a homogeneous polynomial p—v-
form of degree p. Setting

m dP,
o=+ &P Adt
dP, dP;
N —]L/\“'/\—*ZLC—Z- iy
1§j1<z'"<jp le PJ, j1vetdp

we have a” (¢ mod F”_I.QIJ (log D)) = @.

n 1 n n
For p = n, Lemma 4.3.1 follows from £2"(og D) = ?Q (Cc", 2"(log D) =
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1 " B o
) £2™(C") and the definition of the filtration F,.

§5. Vanishing theorem for twisted rational de Rham cohomology
In this section we shall assume that Assumption 2.2.1 holds for the

homogeneous parts Pj of P,for 1 <j < m.

51. If X7 La;#1,1—1,..., then by Theorem 3.4.1, (2), we have
H? (2 (log D)”, Vz) = 0 and hence by passing to long exact sequence of cohomo-
logies of (4.3.1), we obtain

(5.1.1) H" ' (N (log D)) = H"(Gr, 2 (log D), Gr, (V,)).
From Lemma 4.3.1, it follows that
(5.1.2) H?(Gr, Q2 (log D), Gr, (V,)) =0 forp # n,
which yields the following

THEOREM 5.1.1. Under Assumption 2.2.1 on the homogeneous parts P i of P,
1<j<m ifZi Loy, #1,1—1,..., then

H’(Q (ogD), V) =0 for p* n.

Proof Let ¢ € 2°(log D), p # n such that V, 9 =0 and deg ¢ = p. We

denote by [¢] the class of ¢ modulo F,_ 2°(log D) : [¢p] € Gr, 2"(log D). Since

Grf(Vw)([go]) = 0, by (5.1.2), we see that there exists ¢, € Fu.QP_l(log D) such
that

0,1 :=¢— V0, €F,_ 02" (logD).

Notice that Fqu(log D) =0 for u<p—1 Since V,p0,, = V,0 — Vi,(/}u =0,
the similar computations apply to ¢,_;; continuing these computations, we get
¢, € F,Q"'(log D) for p — I < v < y such that

u
¢~ 2 Vw¢u = FD—I—I‘Qp (lOg D)
y=p—I

By the remark above, we have

o= 5 Vb=V, (2 o),

v=p—I y=p-I
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which shows the vanishing of H? (2" (log D), V,) for p # n.

5.2. To show the vanishing of cohomology HP(Q'(*D), V,) for p # n, we
first observe that 2 (kD) = US_, P7*Q (log D) and that (P™*Q (log D), V,) is
a subcomplex of the twisted rational de Rham complex (2 (% D), V,). For let

(jfj A ¢ € 2" (log D).
j

¢ = ¢/P* ¢ € Q"(logD); then by 1.2, we have d¢,

On the other hand, since

V,o= P"‘[d¢ + ;%1 (a, — k) ‘gj" A ¢],

we get V, ¢ € P7*Q""(log D), which means that (P2 (log D), V,) is a com-
plex. We consider the isomorphism

er: 2" (log D)
¢

P*0Q"(log D)
¢/P"

and set
il dP,;
wlk) 1= X (a; = k) 5"
i=1 i

then the above computation implies that the following diagram commutes:

»

&
2" (log D) : > P7*0’(log D)
Vw(k) Vw
EP+1
2" (log D) £ > P*Q"'log D)

This shows that ei, 0 <p<wn induces an isomorphism of complexes ¢, :
(2 (og D), V) = (P™*Q2 (og D), V,) and hence we get

(5.2.1) H’ (2 (ogD), V,,,) — H (PT*Q (og D), V).

By Theorem 5.1.1, if X-, L(a; — k) # 1, 1 —1,..., then the left hand side of
(5.2.1) vanishes for p # n. Therefore if = La; & Z, then H (P™*Q (log D), V,)
=0 for k=1,2,... . Since (@ (xD), V,) = U;_, (P*Q (log D), V,), we
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obtain the following theorem:
THEOREM 5.2.1. Suppose that Asswmption 2.2.1 holds for the homogeneous part
Poof P, 1<j<m If X Lia, € Z, then
H(Q'(*D), V,) =0 for p+n,
and hence
H*X,2)=0 for p+n,
where X = C" — D and £, is the complex local system consisting of horizontal sec-

tions of V.

5.3. In the two dimensional case, we can show the vanishing theorem under
a somewhat weaker assumption.
If 2 La,#1,1—1,..., then by (5.1.1) and (5.1.2), we have

H’(Gr 2 (log D), Gr, (V) =0,
(5.3.1) H*(Gri 2 (log D), Gr. (V,)) = H (N(log D),).

We set P = 131 s Pm and suppose that the homogeneuos polynomial P is without
multiple irreducible factors. Notice that P = P, -+ P,, is also without multiple irre-
ducible factors. In this case, we have 2°(log D) = 2°(log D) = Clu,, u,). In fact,
let f € 2°(log D); then by the definition of logarithmic form, we have a := Pf €

dP
Clu,, u,] and g,du, + g,du,:= pac 2'(CY, g, g, € Clu,, u,). Notice that
oP oP .
under our assumption, P, Tu. are relatively prime. Since R Pg; for 1= 1,2,

by the remark, we see that P divides a. Hence from the definition of the filtration
F,, it follows

F,2°(log D) = {polynomials of degree < y}.
Similarly we see
.Qo(log D)u = {homogeneous polynomials of degree #}.

Therefore we have G?’:Qo(log D) = 2°(log D), and hence N'(log D), =0,
which implies by (5.3.1) that

H'(GriQ (log D), Gri(V,) =0 forp=0,1.

The same reasoning as the one in 5.1 and 5.2 gives the following
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TueorREM 5.3.1. Let P;(u,, u,) be polynomials in two variables u, and u,. If
Z;’;l Lo, & Z and the product P,- - - P,, of homogeneous part P]- of P, 1 <7< m, is

without multiple irveducible factor, then

H (Q(*D), V,) =0 for p#2.

ProBLEM. Theorem 5.3.1 shows that our assumption 2.2.1 is too strong in
order to prove the vanishing theorem for twisted rational de Rham cohomology. It
is preferable to find some conditions which are easily checked and weaker than

Assumption 2.2.1.

5.4.

ExampLe. It is known (See [Kal], [Kitl]) that Appell’s hypergeometric func-
tion F, admits an integral representation of the following form:

(5.4.1) ff uluy (1 — uy, — ) (wyu, — 2,0, — xu,) " du,dus,.

If we take u,, #,, 1 — u, — u,, u,u, — x4, — T,u, as our P, P,, P,, P, respec-
tively, then P,P,P,P, = (u,u,)*(— u, — u,) and hence it has multiple factors.

u, =0

Uy — TyUgU; — Ty, = 0

Uy, =

Fig. 5.1.
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If we choose the line #, — #;, — #, = 0 as the line at infinity and make the
following change of coordinates

—u, —u,

v:———————— v:——
Vol w2l —u —uy

then (5.4.1) is rewritten in the following form:
(5.4.2) [ [ 1Q,ww)¥av, A do,

where @, = v, @, = 1,, @, =1 — v, — v,
. 2 2 o5 _ _
Q=xv, +x,v, — 20, + (1 — 2, — )v,v, — L0y, B, = ay, B, = a,
Bs=—oay,—a,—a,— 2a,— 3, B, = a,

It is clear that H;l Qj has no multiple factors, provided x, and x, are generic in
this case, by Theorem 5.3.1, the twisted cohomology H” (X, #,) vanishes for p =
0, 1, although the condinion of Theorem 5.3.1 is not satisfied for the integral
(5.4.1).

Remark. This example is due to J. Kaneko [Ka 2] who kindly communicated it
to the author.

§6. Arrangements, of hyperplanes in general position

In this section we will apply our results obtained so far to arrangements of
hyperplanes in general position to get some basic properties essential to the study
of the hypergeometric functions of type (# + 1, m + 1). Throughout the section
we assume m = #n + 1.

6.1. Let
Pw) =z, +txu + - +x,u, 1<j5<m,

be linear polynomials. We call the arrangement of the hyperplanes D; = {Pj = 0},
1 <7 < m, is in general position if any (# + 1) X (% + 1)-minor of the matrix

1 x()l ...... xOm
(6 . 1 . 1 ) 0 ‘z;ll ...... xlm
O xnl ...... xnm
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is not zero. Then any # X # minor of the matrix

Ty e T,
(6.1.2) :

Ty e Z,,
is non-zero, which means that our }_’1,. .. ,Pm satisfies Assumption 2.2.1 and

hence by Theorem 5.2.1 we obtain that if Z;”zl o, € Z, then

H'(Q(x*D), V,) =0 for p # n.

6.2. By using the filtration introduced in 84, we shall study in detail the
structure of H*(Q2 (% D), V,) to the end we prepare some lemmas below. First
we extend the partial fractional decomposition to the case in several variables.
Notice that since any (# + 1) X (% + 1)-minor of (6.1.1) is non-zero, each of 1,
Wi,..., U, is written as a linear combination over C of any # + 1 linear polyno-
mials of P, 1 <;< m. Let glw) =uy' -+ w,/P, -+ P,, v, €Z. ,, and set
|v| =2 v, In case | v| > 0, for simplicity we suppose v, > 0; by the remark,
we see that there exist some constants ¢y,...,c,,; such that

=P+t P

Hence
n+l ur‘_lugz . e u:"
gw) = 2 ¢ ~ .
in1 JP1 "'Pj"'Pm
In case | v| =0, 1 is written as 1= Zj‘: ¢;P; for some constants ¢; € C and
hence
w="3 !
u) = c; = .
g f=11P1“'PJ-“‘Pm
Iterating the process, finally we arrive at the following result: if | v| =m—n,
then
wr . a,(w)
Pl...Pm ]P]'...Pjn
where J={j,... ,7,}, 1 <5 <--<j,<m and a,(w) is a homogeneous
polynomial of degree | v| — m + n. If | v| < m — n, then
ui’l...u:nzz ¢
P, P, 7 Pjl 'P,”
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where J is as above and ¢, € C.
Let a(u) be a polynomial of degree g ; then a(u) is a linear combination of
monomials u’f‘ s u’;” Applying the above result to each monomials, we obtain

Lemma 6.2.1. Let a(u) € C [u,,...,u,] with deg a(u) = p; then the rational
function a(u)/ P, - -+ P,, is written as follows: if ¢t = m — n, then

alu) m 1 1
R PP, ap(u) + El a, () P, * 1311§2gm 3, (4) PP, -
S+ 3 .

a W 55—
JieeeJ, .«
1< <eee<yy<m ! " PJIPJZ PJ,,

where ay, a;, A, ;,. .. are polynomials of degree = m, t — m +1L,puy—m+2,...,
respectively. If £ < m — n, then

a(u) ¢

‘szg:Pl"‘P

71 In

P,

where ¢; € C.

For simplicity of writing we use the following notation:

L eee g Loy 77 Ty,
ll zu . . .
x J)i=det| : :

jl D
L Liy,

For logarithmic p-forms ¢ € .Qp(log D), p=n—1,n, we will explicitly

dP;

write down ¢ as a sum of exterior products of P]
j

(cf. Proposition 2.2.3). First let ¢ € 2"(log D) ; then ¢ is written as ¢ =
alwdu, N -+ Ndu,/P,- P,, aw) € Clu,...,un,]. Since the rank of the

and polynomial forms

matrix
171;1 ...... xlj,,
xnj1 xnj,,

is v, there exists at least one non-zero v X v-minor of the matrix which is

1 2 - v
supposed, for simplicity, to be x < S > Then from

Jv Je Dy
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1
dP, A -+ A AP, A duyy, A e /\du,,=a:<. ’.’)a!u1 A A duy,
1 v
it follows
1
du, N\ - A du, = wdf’jl/\ o ANdAP N duy, N e A duy,
z Id2 gy
and hence
a; ---iu(“)
—hjl P, du, N\ -+ N du,
_ 1 de1 A A dP,-V A w A
- x(lZ .”) le Pj,, a...;(u du,,, N du,.
izl

This result, together with Lemma 6.2.1, yields the following Lemma for logarith-
mic p-forms, p =n — 1, n.

LEMMA 6.2.2 Let ¢ € 2°(log D), p=n—1, n. Suppose ¢ = pt = 0 ; then ¢
18 written in the form

z, dbp; dP 4P,
22 ¢=et 2 piAet LA BN e
6.2.2) ¢=09, ,E P, % lsjEjZSm PP, " P
dP; dP.
-+ > AN AN SRA
1£]1<"<iﬂ£m PI‘ P]P <0-’],“ Tp

where o, @iy« Qji...;, are polynomial forms of degree L. Moreover in case p =n — 1,
ifdeg o = — 1, we have ¢ = 0.

Proof. We set % du,:= (— D' duy A -+ Ndu; A -+ Ndu,, 1 <i<n.
Notice that du, A * du, = du, A\ -+ A du,. Let ¢ € 2" '(log D); then by Lem-
ma 6.2.1, we can write ¢ in the form

b, ,(u)
=3 X555
@ =. ~ P, - P

=1 jl fn

*du

i

where J = {j,..., 7}, 1 <7, < - <j,<m and b,,(u) is a polynomial of de-
gree ¢ + 1. Since

1 ”n
”P;:‘“‘P; ;=21 b, ;(u) * du,
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is a logarithmic (# — 1)-form in a neighbourhood of N_, D; , we have

P

Jy

(6.2.3) 2N b, (u) *du, € 2(C").
1=1

. 1 2 - =nm e
On the other hand, since x| . . ) # 0, the set {dP; A -+ NdP, N -

Jv T2 7 s
A den}lg,,gn forms a basis of A" 'T*X at each point of X and by the general
theory of exterior algebra, the base change from {* du},., ., to {dP; A --- A
@ A ANdP,} <, <, is given by the matrix of which entries are the
(n — 1) X (m — 1) minors of the matrix

Therefore 2. b, ;% du,; is expressible in the form
n —
2 ¢, @dP; N - NdP; N - NdP;, ¢ € Clu,...,u,], dege, =p+1;
v=1
which, together with (6.2.3), yields

-, GdP, A -+ A dP, € 2"(C).

P
This implies that P; divides c; . Notice that if # = — 1, this is equivalent to ¢; =
0 and hence ¢ = 0. We set ¢; = P; ¢; (u) ; then we have
Y N - . .
o=2X 2 p % *dP;, &, € Clu,..., u,] with deg ¢, = 1,
J ov=L "] in

where we use the abbreviation *dP; = dP; N -+ A j}i N NdP;.
By simple computations, it is shown that ¢ is written in the form (6.2.2).

Remark. By Lemma 6.2.1 and the proof of Lemma 6.2.2, we see easily that
for any ¢ € 2°(log D), ¢ is expressible in the form (6.2.2). But in general we

cannot conclude that the ¢, ..., 's are of degree (.

6.3. For the comparison of H"(2 (og D), V,) with H'(Q (% D), V,), we
will prove here the reduction theorem of rational forms to logarithmic forms.
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LEmMa 6.3.1. Weassume a, € Loy for L<j<mandp=n—1 orn. Let ¢
1
be in (% D) such that V,p € PP Q7NC") ; then we can write ¢ in the
1 m

Sform
p=¢+ VB
where ¢ € 2°(og D) and B € 2°7'(* D).
Proof. ¢ is expressible as
o=¢/P---Pi" € Q(CY, k21 for 1<j<m.

It suffices to show that if k; > 1, then we can find @ € 2°(C" and B € Q"7 (% D)
such that

o=a/(Py-- PP Pim + 7,8.

— 1
For since V,(a/(Pf*- -+ P/ -+ -Pi™) is in P Q7H(C"), we can iterate these

o
computations to obtain that ¢ is written in the form ¢ = PP + V8 for
1 m

some @ € 2°(C") and B € Q"'(* D). By V, (a/(P, -+ P,)) € %9"“(0") and

Lemma 1.3.1, we can conclude that a /P, - - P,, € 2" (log D).
Since

~ n . de B 1 P41 1
{d<p+j=21(a,~ k) 5 Aw]e——‘Pl...P Q7(C)

j m

1
Voo =
I

kj
j

and each k; = 1, we have

dap, it
dg+ Z (o, — k) 5 A g € 27T,
j

dP,
By assumption, P, and P; are relatively prime and a; — k; # 0 ; hence P~j N @

J
€ 2"1(C"), which shows that ¢/P, - P, is in 2°(og D). By the remark at
the and of 6.2, $/P,* -+ P,, is expressible in the following form

dP;
¢:P1"'Pm{(ﬂo+ ZTL/\@j_}_ e 4
j
dp, dP,
+ Z P A A P. (011 Jp]’
1<jj<eee<i, N1 »

https://doi.org/10.1017/50027763000004955 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004955

TWISTED DE RHAM COHOMOLOGY 79
Gy, € 27(C).
Hence ¢ is written as a sum of the following terms:
(6.3.1) [@l, /P --- Py

where we set J = {j,,..., 7}, 1 <j, < -+ <y, <m, and

PO dp, dp;, -
(¢l,:=P - P, P, A A Pjp N @jeijye

For simplicity, we suppose k;, > 1 and divide two cases.

First case: If 1 & {j;,...,7,} =/, then [@], is expressible as P; X polyno-
mial p-forms and hence the term (6.3.1) reduces to the form (polynomial p-form)/
pht szz ... ptm

f .

m
Second case where 1 € J. For simplicity we assume J = {1,...,v}; then

[@]j:dpl/\ /\dPu/\ (Pu+1"'Pm¢)J)'
Set
E=dP, N - NdAP, N (P,,, -+ P, @)/ PP Py - Py

then simple computations give

(6.3.2)
5 v APy A - NdP, N AP, P,¢
Vw§=(a1—k1+1)7[?&7+(—1) — P ¢ - ¢,
Pll...Pmm PP P

m daP, dP, N --- NdP,\N (P,., - P,¢
+ X (= k) HEA A B2 P,
j=v+1

f Plkl‘lpéfz . P,];m
The sum of the second and third terms in the right hand side of (6.3.2) is written
as 7 /PP PF - PEm where € °(C). Since ay § Z.,, we have

[§5]/ 1 n &
= + 7).
Plkl . P,I;m o, — kl +1 Pfl‘lPZIQ . P”;m "’(al - kl -+ 1)

This completes the proof of Lemma 6.3.1.

6.4. Let j: (2 (logD), V,) — (Q'(*x D), V,) be the natural inclusion of
complexes. We shall show that the induced homomorphism j,: H’ (2 (log D),
v,) — H’(Q (%D), V,) is an isomorphism for all p under the assumptions @; &
Z., for 1 <j<mand X, & & Z. The statement holds for 0 < p < n—1 by
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Theorem 5.1.1 and Theorem 5.2.1. To show it for p = #, let ¢ € 2" (% D) ; since
V,o =0, by Lemma 6.3.1, ¢ is expressible as ¢ = ¢ + V8, ¢ € 2"(log D),
B € 2" '(* D), which shows j, is surjective. To show Ji is injective, let ¢ €
2"(log D) such that ¢ = V¢ for some ¢ € 2" (% D) Since

1 -
(/,EWQ ch,

again by Lemma 6.3.1, ¢ is expressible as ¢ = a + V, 8, a € 2" '(log D), B €
Q"%(% D) and hence ¢ = V,a, which shows that ¢ is zero in H"(2 (log D),
V,) and hence jy is injective. Thus we have

THEOREM 6.4.1. In case of arrangement of hyperplanes in gemeval position, if
a, € Zy,forl <j<mand 22 a; € Z, then

H' Q' (%D), V,) =0 for p+n,
H"(Q (*D), V,) ~ H"(2 (log D), V,).

6.5. By investigating the filtration F. on 2" '(log D) in detail, we will
determine the structure of H"(2 (log D), V,). We have shown in 5.1 that if
Za;#m,m—1,..., then

(6.5.1) H"(Gr! 2 (log D), Gr, (V,)) = H"*(N'(log D))
where N" ' (log D), is defined in 4.3 by the cokernel of the mapping
o' Gr, 2" (log D) — 2" ' (log D),

For simplicity of writing, we use the following notations:
2°(C"), : space of homogeneous polynomial p-forms of degree v,
.Qp(C")S,,: space of polynomial p-form of degree < v,

. ap, dP,
X DRt P;‘l A /\Ti&

Notice that a polynomial p-form is of degree = p. By the remark and Lemma
6.2.2, £ € F,.Q" "(log D) is expressible in the form
E=Z0 G jur8e,, T Z 06, D A & einea

gy € 2°((C" <, and iy € 2'(C") .. In the above expression,
each summand @<{P A&, J=1{,... J},p=n—1 or n belongs to
F,2"(log D) and hence we can write F,2" '(log D) in the following form:

where §; ...;
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F,.Q" ' (og D) = X ¢y, . . rduy A RUCH ., +
+ Z §D<j1y' . -’jn—2> A Ql(Cn)él’

We can show the similar results for F,Q" (log D) which are summarized in the
following table: Here we abbreviate the space

> 0.y AT .,

1<jy<eee<ip<m

as [p] A Q%7 and so on.

F, F, F, F, | Fﬂ
0 |n—11AQ |In—11AQ%|In—11 A0, - [n—11 A Q2,
n—21AQ [In—21AQ,| -+ n—2] AQL,
n—31AQ |- [n—31 A 2%,
n—4] A Q%

Table 1.

6.6. Now we study the structure of Q"—l(log D); since our arrangement is,
by assumption, hyperplanes in general position, each of u,,..., #, is written as a
linear combination over C of any # linear homogeneous polynomials of 13]., 1<y
< m. Investigating in more detail the proof of Proposition 2.2.3 in this case, we
obtain the following

LEmMA 6.6.1. Let ¢ € 2" '(log D), with t 2 0 ; then ¢ can be written in the

form
m dP,
661 ¢=@,+X—F="N@+
=1 P,
dp, dpP,
-+ s “hAA oA ~In~1,(l—)]1' .
1<ji<e e o<y <m Ly P].n_1

where §; ..., € 2",

Proof. Since we can prove Lemma 6.6.1 along the same line of the proof of
Proposition 2.2.3, we will sketch the outline of the proof. Let ¢ € Qnﬁl(log D)ﬂ
with ¢ = 0; then we can write ¢ as ¢ = ¢/ P, - -+ P,, where ¢ is a homogeneous
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polynomial (# — 1)-form of degree ¢ + m. We have, by definition,

ap; "
< AN¢peE (C
?, ¢ ©

and then
(6.6.2) de A ¢ =0 (mod Pj) for1 <5< m.

By induction on m, we show that ¢ is written in the form

~ _ m dP,
(6.6.3) ¢=P1---Pm[<bo+ AN /R
i=1 P,
dP dP;
-+ > AN L }
1</ <ee<ip 1 <m i, an_l 1 n-1
where ¢j1"‘jn is homogeneous of degree p.
In case m = 1, we can write ¢ as
(664) ¢) = Z a1(u) *dpi, ai(u) = ‘QO(Cn)u+m—n+1:
i=1

since 131,. . P,, form a system of coordinates of C". By (6.6.2), we get dI—)1 AN¢Q=
a,(u) %1 =0 (mod P) where *1=dP, A -+ AN dP, and hence P, divides
a,(u) : a,(u) = P,a,(u). This, together with (6.6.4), implies that ¢y is written in
the form (6.6.3).

We suppose the statement is true for m and show that it is also true for m +
1. Let ¢ € Q"7(C") 4 myy Such that

dP, A ¢=0 (modP) forl1<;j<m+1.

Then by induction assumption, ¢ is written in the form (6.6.3) where Djpenniy 18
homogeneous of degree ¢+ 1. We will show the statement by induction on the
# 0.If N < n— 2, then the proof of Proposi-
tion 2.2.3 works in this case and hence the statement is true for N<»n — 2. In

largest number N for which ¢; .

cein

case N = n — 1, first notice that gbjl,,,jn_l is a homogeneous polynomial of degree

©t1l:deg¢;..; =1 Since le,. ..P, ,P,. form a system of coordinates of

Jn-1
n .
C’, by the remark, we can write ¢; ..., as
J1**In-1

- **In-17k + Pm+1a]1u-jn_1;m+1'

n—1 _
(6.6.5) Doty = El P a;.

Substitute (6.6.5) into (6.6.3); then from the same reasoning as in the proof of
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Proposition 2.2.3 (in (2.2.6), set B, . = Bjee,ymer = 0 and apply the
reasoning to our case) it follows that the statement is true for N = » — 1. This

*In-157k

completes induction.

As in 6.5, we set

dP; dP,
[ﬁ] A .Q:—l_P = Z — 1 A o A TJP A Qn_l—ﬂ(cn)p;

1<jy<eea<jpSm le s

then as in 6.5, we have

LEMMA 6.6.2. We have

Q" 'logD)y=[n—11 A Q,,
Q" ogD),=n—11 A2+ [n—2] A 2,

_Q"—l(logl—)),l: [n — 1] AQ£+[n—2] /\.Q:—i-

From Table 1 and Lemma 6.6.2 it follows that if g = 0, then the mapping
o Gr, 2" (log D) — Q" '(log D), is surjective and hence N" '(log D), =0
for ;¢ = 0. Therefore by (6.5.1) we have H"(Grf.Q'(log D), Grf(Vw)) =0 for
¢ = 0. Repeating the reasoning in the proof of Theorem 5.1.1, we conclude that
any @ € " (log D) is cohomologous to a & i F_,2"(log D).

Since

du, N\ -+ N du
PI...P

m

F_2"(logD) = Q% .. and F_,2" '(log D) =0,

we have an isomorphism
Ny du, \ *+- A du,
H (2 (logD), V,) = lﬁ—uf&m-n_l
1

m

m—1

Notice that dim .Qoém_n_l = < "

>. We summarize the results in

THEOREM 6.6.3. In case of arvangement of hyperplanes in gemeral position, if
;€ Loy fr l<j<mand X", a; & Z, then

H*(Q(%D), V,) =0 forp # n,
H"(Q (x*D), V,) =

{%dul/\ o A duy, | a(u) EC[u],degaﬁm—n—l}
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and
dim H"@' (+D), v,) = (" ).
n

Since F,2"'(log D) is the space spanned by ¢ <j,, .. .,j,_,>, we have also the
following isomorphism

HoGy, .. g 1155, < o0 <4, <m})}
w AN Hey,. . 1155, < <oy Sm}}

H'(Q'(%D), 7,) =

CorOLLARY  We can choose

gf"—1/\ dP’"1<'< <j < 1
le A an’ =1 In=>=m ’

as a basis of H'(Q" (% D), V).
Proof. 1t suffices to observe that
. . m . .
@ /\ §0<]1r--'7]n—1> = kgl ang(k’ ]ly---r]n—l>
and hence
. . m=l a, .
(p<mr ]ly--~,]n—l> = ; 7 <k ]17~--’]n—1>

in H'(Q' (D), V,).
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