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ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS

QUENTIN POSVA

Abstract. We study the singularities of varieties obtained as infinitesimal

quotients by 1-foliations in positive characteristic. (1) We show that quotients

by (log) canonical 1-foliations preserve the (log) singularities of the MMP.

(2) We prove that quotients by multiplicative derivations preserve many

properties, amongst which most F -singularities. (3) We formulate a notion of

families of 1-foliations, and investigate the corresponding families of quotients.
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§1. Introduction

On a normal variety X over a field of positive characteristic, a 1-foliation is a saturated

sub-sheaf of TX that is closed under Lie brackets and pth powers. A fruitful construction,

when having a 1-foliation at our disposal, is the associated infinitesimal quotient of the

underlying variety. It has been used multiple times to construct surprising or pathological

examples in positive characteristic: see, for example, [20–22], [34], [35], [45], [52]. The goal

of this paper is to study the singularities of such quotients.
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2 Q. POSVA

Since any finite purely inseparable morphism between normal varieties can be decom-

posed into a sequence of infinitesimal quotients, some restrictions on the 1-foliations are

necessary if we want qualitative results about the singularities. It is well-known that, at

least on regular varieties, quotients by so-called multiplicative derivations are particularly

simple [21] (see Proposition 4.1). We give a mild generalization, in case the variety

supporting the derivation is not necessarily regular. This applies in particular to quotient

by 1-foliations of rank > 1 which are formally generated, up to saturation, by a finite set of

commuting multiplicative derivations (1-foliations with at worst multiplicative singularities

in our terminology: see Definition 2.20).

Theorem 1.1 (Iterated applications of Theorem 4.3). Let X be a normal variety over

a perfect field of characteristic p > 0, and let F be a 1-foliation on X with at worst

multiplicative singularities. Then:

1. If X is Cohen–Macaulay, so is X/F .

2. If X is F-pure (resp. F-rational, F-injective or F-regular), so is X/F .

The idea is that any multiplicative derivation induces, after passing to an appropriate

étale neighborhood, an action of the infinitesimal group scheme μp. Quotients by μp-actions

have the remarkable property that the inclusion of the sub-ring of invariants is split (see,

e.g., [26, I.2.11]), and many cohomological properties are stable by taking a split sub-ring

of equal dimension.

It is interesting to note that not every usual cohomological property descends to quotients

by multiplicative derivations: for example, the Gorenstein property usually does not (see

Remark 4.2), while the more geometric-flavored Q-Gorenstein property does (Lemma 4.9).

A detailed discussion of descent of properties such as Gorenstein and Buchsbaum (for the

quotient by a single, non-necessarily p-closed derivation that is still “multiplicative” in an

appropriate sense) is given in [3] and [2].

Another perspective on singularities is given by the Minimal Model Program. One can

define birational singularities of Q-Gorenstein 1-foliations just as birational singularities of

varieties and pairs, as first noticed by McQuillan [42]. A remarkable feature is that quotients

by (log) canonical 1-foliations can only improve the birational singularities of the underlying

variety.

Theorem 1.2 (The punchline of Theorem 4.10). Let X be a normal variety over a

perfect field of characteristic p > 0, and F be a 1-foliation on X.

1. If F is canonical, then X/F is terminal (resp. canonical, klt, log canonical) as soon as

X is.

2. If F is log canonical, then X/F is klt (resp. log canonical) as soon as X is.

The proof is a direct comparison of pull-back formulas, leading to the simple equalities

(4.4). These equalities also show that any other implication (e.g., X is midly singular if

both X/F and F are) is not possible to obtain in general: see Remark 4.11 on that matter.

We apply Theorem 1.2 to normalized p-cyclic covering to obtain Reid-type covering results

(i.e., description of the MMP singularities of cyclic covers), see Corollary 4.15.

One drawback of Theorem 1.2 is that it is difficult in general to decide whether a given

1-foliation F is log canonical, etc., along its singular locus. Proposition 3.10 provides

examples of log canonical 1-foliations of corank 1 on singular varieties. For 1-foliations
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ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS 3

of rank 1 on regular varieties there is a useful characterization of log canonicity due

to McQuillan (Proposition 3.6), which turns out to be equivalent to having at worst

multiplicative singularities (Corollary 3.7). Using a local computation from [17], this leads

to a complete characterization of log canonical 1-foliations on regular surfaces.

Theorem 1.3 (Lemma 2.37, Proposition 4.12, and Theorem 4.19). Let S be a regular

surface over a perfect field of characteristic p > 0, and F be a 1-foliation of rank 1 on S.

Then:

1. F is canonical if and only if F is regular, if and only if S/F is regular.

2. F is log canonical if and only if S/F is F-regular, if and only if S/F is F-pure.

(The conditions on S/F can be equivalently be formulated for the normalization of S in the

field K(S/F)1/p.)

This shows that the log canonical condition on 1-foliations is quite restrictive, at least in

dimension two. In higher dimensions, little more is known apart from the following corollary.

Corollary 1.4 (Proposition 4.12 and Corollary 3.7). Let X be a regular variety over

a perfect field of positive characteristic, and let F be a non-trivial 1-foliation.

1. F cannot be terminal, and if it is canonical then it is regular outside a closed subset of

codimension ≥ 3.

2. If F has rank 1, then it is canonical if and only if it is regular.

3. If F has rank 1, then it is log canonical if and only if it has at worst multiplicative

singularities.

Finally, we explore a notion of family of 1-foliations. For technical reasons, we mostly

restrict ourselves to the case of smooth fibrations X →S (see Definition 5.1 and Remark 5.2).

In this setting, a family of 1-foliations is a coherent sub-module F ↪→ TX/S with S -flat

cokernel, whose restriction to every fiber is a 1-foliation in the usual sense. The theory of the

Quot scheme implies that, when we consider trivial underlying fibration X → S, universal

families of 1-foliations exist (Proposition 5.5). Then we consider whether the operation of

taking fibers commute with the operation of taking quotients by the 1-foliation. In general

they do not, but we prove the following criterion.

Theorem 1.5 (Proposition 5.9). Let (X → S, F ↪→ TX/S) be a family of 1-foliations.

Assume that X → S is smooth and S is regular. Let Q= TX/S/F . Then if Qs is locally free

for some s ∈ S, it holds that Xs/Fs = (X/F)s.

If Qs is just slightly less regular (for example not Cohen–Macaulay but SdimXs−1), then

commutativity may or may not occur, see Examples 5.15 and 5.16. So a more refined

criterion seems difficult to formulate in this generality. Nevertheless, a consequence of our

definition of families of 1-foliations is that the natural morphism ϕs : Xs/Fs → (X/F)s
is always an isomorphism in codimension one (Corollary 5.10), and this method easily

produces Q-Gorenstein degenerations of regular schemes into non-S2-ones.

The paper is organized as follows. In Section 2, we gather some basic material on

derivations, foliations, and infinitesimal quotients. Most of it is well-known and we claim

no originality. However, the available material on 1-foliations in positive characteristic is

scattered through the literature (see in particular [46], [49], [53], [35], [42], [61] and [8]), so

we have chosen to reproduce it here for ease of reference. Large parts of the content of our
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4 Q. POSVA

Sections 2 and 4.1 are discussed extensively, with many examples and applications, in a

book in preparation by Patakfalvi and Waldron [48]. For the surface theory and extended

examples, see also [62].

In Section 3, we recall the definition of birational singularities for 1-foliations, and

establish a characterization of rank 1 lc 1-foliations. In Section 4, we investigate the

singularities of some quotients, with the aim of proving Theorems 1.1, 1.2, and 1.3. We

discuss families of 1-foliations in Section 5.

Remark 1.6. We do not discuss properties of non-p-closed vector fields in this paper.

Interesting features of those are given in [44], [50].

§2. Preliminaries

2.1 Notations

Unless stated otherwise, we work over a perfect field k of positive characteristic p > 0.

1. A variety (over k) is an integral quasi-projective k -scheme of finite type. A curve (resp.

surface, threefold) is k -variety of dimension one (resp. two, three).

2. Normalizations of integral Noetherian schemes and algebras are denoted by (•)ν .
3. Let f : X → S be a morphism of k -schemes. We let F• denote the absolute Frobenius.

Then we can form the relative Frobenius FX/S = (FX ,f) : X →X(1) =X⊗S,FS
S: it is

an S -linear morphism. If FS is invertible, for example in the case S = Spec(k), we can

construct the sequence of S -linear morphisms (all denoted by FX/S),

· · · →X(−1) →X →X(1) → ·· ·

Notice that in this case, the schemes X(n) (n ∈ Z) are abstractly (but usually not

S -linearly) isomorphic.

4. The conditions Si are the Serre’s conditions, see [1, 0341].

5. We use at several places standard MMP terminology for singularities, as defined in

[32, §2.3].

2.2 p-basis

Let A be a k -algebra.

Definition 2.1. Let B⊂A be a purely inseparable extension of k -algebras, and assume

that A has height one over B (that is: Ap ⊂ B). Then a p-basis of A over B is a finite set

of elements {a1, . . . ,an} ⊂A with the property that

A=
⊕

0≤i1,...,in<p

B ·ai11 · · ·ainn

as Ap-modules.

If A is Noetherian, this notion is equivalent to that of differential basis [60]: a subset

{a1, . . . ,an} is a p-basis of A over B if and only if

Ω1
A/B =

n⊕
i=0

A ·dA/B(ai),

where dA/B : A → Ω1
A/B is the universal derivation relative to B → A. By Kunz theorem

[1, 0EC0], if A has a p-basis over Ap then A is regular and F -finite, and the converse also

holds as Ω1
A/Ap =Ω1

A/k will be a finite free A-module.
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ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS 5

Lemma 2.2. Let (A,m) be a regular complete local k-algebra, such that k ⊂ A/m is a

finite extension. Let {a1, . . . ,an} be a p-basis of A over Ap. Then:

1. for every i we can write ai = λi+xi, where λi ∈A× and xi ∈m\m2;

2. {x1, . . . ,xn} is a regular system of parameters of A.

Proof. As k is perfect, we obtain that A/m is also perfect. Moreover, by Cohen’s

structure theorem [1, 032A], A contains a field of representatives k0. So we can write

A = k0⊕m and ai = λi+xi with λi ∈ k0 and xi ∈ m. By assumption the dA/Ap(ai)’s form

a basis for Ω1
A/Ap over A. Since k0 = kp0 and since Ω1

A/Ap = Ω1
A/k, we obtain that the

dA/k(xi)’s form an A-basis of Ω1
A/k. In particular n= dimA. Applying Nakayama’s lemma

to the isomorphism m/m2 ∼=Ω1
A/k⊗A/m, we obtain that m= (x1, . . . ,xn).

2.3 Derivations

Let R be a ring and A be an R-algebra. A derivation of A over R is a R-linear map

D : A→A satisfying the Leibniz rule

D(ab) = aD(b)+ bD(a), a,b ∈A.

The set of those, denoted DerR(A), is naturally an A-module. This module is endowed with

a Lie bracket

[•,•] : DerR(A)→DerR(A) [D,D′] =D ◦D′−D′ ◦D.

While the composition of two derivations might not be a derivation, in case R is an Fp-

algebra the p-fold composition affords an R-linear map

DerR(A)→DerR(A), D 
→D[p] =D ◦ · · · ◦D︸ ︷︷ ︸
p times

.

Recall Hochschild’s formula [41, Theorem 25.5]: for a ∈A and D ∈DerR(A) we have

(aD)[p] = apD[p]+(aD)[p−1](a)D. (2.1)

The pth power of a sum of derivations is more complicated to describe: a formula of Jacobson

[24, p. 209] shows that(∑
i

Di

)[p]

−
(∑

i

D
[p]
i

)
is a linear combination of multi-fold commutators in the Di’s.

In particular, the naive expression (D1+D2)
[p] =D

[p]
1 +D

[p]
2 holds if [D1,D2] = 0.

An alternative description of the module of derivation is given by the A-linear canonical

isomorphism HomA(Ω
1
A/R,A)

∼=DerR(A), obtained by pre-composing any ϕ : Ω1
A/R →A by

the universal R-linear derivation dA/R : A→ Ω1
A/R.

Given a multiplicatively closed subset S ⊂ A, there is a canonical map DerR(A) →
DerR(S

−1A) given by the usual derivation rule for fractions. This is compatible with

the localization isomorphism HomA(Ω
1
A/R,A) ⊗ S−1A ∼= HomS−1A(Ω

1
S−1A/R,S

−1A). In

particular the module of derivations sheafifies, and for any R-scheme X we obtain a

sheaf of OX -module DerR(OX) which is the OX -dual of Ω1
X/R. It is customary to write
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6 Q. POSVA

DerR(OX) = TX/R (1). The Lie bracket and p-fold composition also sheafify into R-linear

operations on DerR(OX).

While the module of derivations commutes with localization, in general it does not

commute with completion. Indeed, the module of Kähler differentials Ω
̂A/R of a complete

local R-algebra Â is usually not of finite type over Â. Still, we have the following result

(which is known, but I could not locate a suitable compact reference).

Lemma 2.3. Let (A,m) be a local ring essentially of finite type over a Noetherian ring R.

Then there is a natural inclusion map

DerR(A)⊗ Â ↪→DerR(Â)

whose image is the sub-Â-module DercontR (Â) of continuous R-derivations of the m-adic

completion Â.

Proof. Since Â is a flat A-module and Ω1
A/R is a finitely presented A-module, the

canonical morphism

DerR(A)⊗A Â−→Hom
̂A(Ω

1
A/R⊗A Â, Â)

is an isomorphism [9, Chapter I, §2, n.10, Proposition 11]. In the rest of the proof, we

describe the target of this isomorphism. By the universal property of the inverse limit, it

can be written as

Hom
̂A(Ω

1
A/R⊗ Â, Â) = lim←−Hom

̂A(Ω
1
A/R⊗ Â,A/mn).

Let us describe the Hom-module into A/mn. On the one hand, an Â-linear morphism

Ω1
A/R ⊗ Â → A/mn is always continuous for the natural topologies, since it is uniquely

specified by an A-linear map Ω1
A/R →A/mn. On the other hand by [38, 6.Exercise 1.3], we

have a canonical isomorphism

Ω1
A/R⊗ Â∼= lim←−

(
Ω1

̂A/R
/mnΩ1

̂A/R

)
.

Combining these two facts with [14, 20.7.14.4], which we can apply as A/mn is discrete and

is annihilated by mn, we obtain a canonical identification

Hom
̂A(Ω

1
A/R⊗ Â,A/mn)∼=Homcont

̂A
(Ω1

̂A/R
,A/mn).

Let us apply the inverse limit along n: by the token already used above, it amounts to the

same to apply the inverse limit on the second arguments of the Hom modules, and so we

get an isomorphism

Hom
̂A(Ω

1
A/R⊗ Â, Â)∼=Homcont

̂A
(Ω1

̂A/R
, Â).

The right-hand side is a sub-module of Hom
̂A(Ω

1
̂A/R

, Â) = DerR(Â) which, by [14, 20.4.8.2],

corresponds to the set of continuous R-derivations of Â into itself. This completes the

proof.

1 In terms of the T i functors of Lichtenbaum and Schlessinger, we have TX/R = T 0
X/R.
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ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS 7

In any case, we will use the following convention: Assume that A is a local ring.

If M ⊂DerR(A) is a sub-module, then we will say that M satisfies some property formally,

if the sub-Â-submodule M ⊗ Â⊂DerR(A)⊗ Â satisfies the said property.

Remark 2.4. Let (A,m) be a regular local ring essentially of finite type over a perfect

field k0. Assume that A/m= k0. If x1, . . . ,xn is a regular system of parameters, then:

1. Derk0(A) is freely generated by some derivations D1, . . . ,Dn such that Di(xj) = δij (the

Kronecker delta). This follows from that the dxi give a basis of Ω1
A/k0

(see, e.g., [18, II,

Proposition 8.7 and Theorem 8.8]).

2. Under the isomorphism Â∼= k0�x1, . . . ,xn�, the Â-module Dercontk0
(Â)∼=Derk0(A)⊗ Â is

freely generated by the continuous k0-derivations
∂

∂xi
=Di⊗1 (i= 1, . . . ,n). This follows

from the previous item and from Lemma 2.3.

2.3.1. p-closed, additive and multiplicative derivations

Let R be an Fp-algebra and A be an R-algebra. We say that D ∈ DerR(A) is p-closed

if there is a ∈ A such that D[p] = aD. Hochschild’s formula (2.1) shows that any scaling

of a p-closed derivation is still p-closed. Amongst p-closed derivations, we distinguish two

special types as follows.

Definition 2.5. We say that D is additive if D[p] = 0. We say that D is multiplicative

if D[p] = uD for some unit u ∈A×.

Example 2.6. (Recall that k stands for a perfect field of characteristic p > 0.)

1. The derivation xi ∂
∂x on k[x,y1, . . . ,yn] is additive for i �= 1, and multiplicative for i= 1.

2. Consider the derivation ∂a,b = ax ∂
∂x + by ∂

∂y on k[x,y], where a,b ∈ Fp. We have

(∂a,b)
[p]

(xiyj) = (ai+ bj)pxiyj .

The element ai+ bj is to be understood as an element of Fp, on which the Frobenius is

trivial. Thus we see that (∂a,b)
[p] = ∂a,b. So ∂a,b is p-closed and multiplicative.

3. Consider the derivation D = x ∂
∂y + y ∂

∂x on k[x,y]. For p = 2 we have D[2] = x ∂
∂x + y ∂

∂y

which is not a scaling of D, so D is not p-closed. For p �= 2, the coordinate change

x= u+v,y = u−v gives D = u ∂
∂u +v ∂

∂v which is p-closed and multiplicative.

Warning: The additive and multiplicative properties are usually not stable by scaling.

This can be seen from Hochschild’s formula (2.1). Actually a scaling of an additive derivation

can be multiplicative, and vice-versa, for instance ∂
∂x and x ∂

∂x on k[x,x−1].

There is a well-known correspondence between additive and multiplicative derivations,

and actions of the infinitesimal group schemes αp and μp.

Proposition 2.7. Let X be a k-scheme and D ∈Derk(OX)(X) be a derivation.

1. D[p] = 0 if and only if there is an αp-action on X given by

OX →OX ⊗k k[t]/(t
p), s 
→

p−1∑
i=0

D◦i(s)

i!
ti.
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8 Q. POSVA

2. D[p] =D if and only if there is an μp-action on X given by

OX →OX ⊗k k[t]/(t
p−1), s 
→

p−1∑
i=0

D◦i(s)

i!
ti.

Proof. See, for example, [61, Proposition 3.1].

Remark 2.8. The case D[p] = uD with 1 �= u ∈ A× does not correspond to a group

action on X. However, as we will see in Section 4.1, we recover a group action after a finite

étale cover.

Example 2.9. Let E be an elliptic curve over k, and let η ∈H0(E,TE/k) be a global

generator. Then

η[p] =

{
η if E is ordinary,

0 if E is supersingular,

see, for example, [27, 12.4.1.3]. So E is ordinary (resp. supersingular) if and only if μp

(resp. αp) acts non-trivially on E.

Lemma 2.10. Let αp (respectively μp) acts on a k-scheme X by means of a derivation D.

Then the ideal of the fixed locus of the action is the ideal generated by D(OX), and the action

is free outside the fixed locus.

Proof. We may assume that X = Spec(A) is affine. As αp and μp have no non-trivial

subgroup schemes, the action is free outside the fixed locus. The action of αp can be

described as follows: given morphisms of affine schemes f : (S′ → S →X), corresponding to

ring maps

f∗ :
(
A

ϕ−→ Γ(S,OS)
ψ−→ Γ(S′,OS′)

)
and given λ ∈ αp(S) = {u ∈ Γ(S,OS) | up = 0}, the morphism λ ·f : S′ →X corresponds to

the ring map

A→ Γ(S′,OS′), a 
→
p−1∑
i=0

f∗(D◦i(a))

i!
ψ(λi)

(with the convention that 00 = 1 = 0! and D0 = id). Similarly, if we have instead an

μp-action, then given f as above and ν ∈ μp(S) = {u ∈ Γ(S,OS) | up = 1}, the morphism

ν ·f is given by the ring map

A→ Γ(S′,OS′), a 
→
p−1∑
i=0

f∗(D◦i(a))

i!
ψ(νi−1).

The fixed locus of the αp-action (resp. of the μp-action) is the subscheme Z ⊂X with the

following property (see, e.g., [10, Definition 2.2.5]): S →X factors through Z if and only if

λ ·f = f for every f and λ (resp. by ν ·f = f for every f and ν). From the description above

it is then clear that Z is the closed subscheme of X whose ideal is generated by the set

{D(a) | a ∈A}.
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ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS 9

Remark 2.11. Proposition 2.7 can be generalized as follows.

1. Given integers n,m ≥ 0, actions of μ×n
p ×α×m

p on X corresponds bijectively to sets of

n+m derivations {D1, . . . ,Dn+m} ⊂Derk(OX)(X) such that

• D
[p]
i =Di for 1≤ i≤ n,

• D
[p]
j = 0 for n+1≤ j ≤ n+m, and

• Da ◦Db =Db ◦Da for any 1≤ a,b≤ n+m.

2. Let G be either αpn or μpn . Disregarding the Hopf algebra structure of O(G), we have

O(G)∼= k[t]/(tp
n

). Thus a scheme morphism a : G×X →X such that(
X ∼= {eG}×X ↪→G×X

a−→X
)
= idX

corresponds to a k -linear ring map a∗ : OX → OX�t�/(tp
n

) which reduces to idOX

modulo t. By [41, §27] such morphisms correspond bijectively to Hasse–Schmidt

derivations D of length pn. Unravelling the compatibility conditions that are necessary

for a to be an action, we obtain necessary and sufficient conditions for D to define a

G-action. For example, if G= αpn then we obtain that D is iterative. Actions of finite

products of αpn and μpm are then described in the same way as above.

In general, a given p-closed derivationD ∈DerFp(A) is neither additive not multiplicative.

So one can ask whether there is 0 �= a ∈A such that aD becomes additive or multiplicative.

It is always possible to scale A so that it becomes additive: the following argument was

kindly communicated to me by Yuya Matsumoto.

Lemma 2.12. Let A be an integral Fp-algebra, and 0 �= D ∈ DerFp(A) be a p-closed

derivation. Then there exists a ∈A such that aD is non-zero and additive.

Proof. Choose x ∈ A such that D(x) �= 0 and write a = D(x)p−1. I claim that aD is

additive. By Hochschild’s formula (2.1) the derivation aD is p-closed, say (aD)[p] = h ·aD.

Then

(haD)(x) = (aD)[p](x) = (aD)◦(p−1)(aD(x)) = (aD)◦(p−1)(D(x)p) = 0.

Since A is a domain and (aD)(x) =D(x)p �= 0, we deduce that h= 0.

On the other hand, we observe the following remark.

Remark 2.13. It is not always possible to scale D so it becomes multiplicative: indeed,

assuming A is integral, if we could find such a scaling then AD would be a multiplicative

quotient and thus, assuming that A is Cohen–Macaulay, we would obtain that AD is

also Cohen–Macaulay by Theorem 4.3. This is usually not the case: for example, using

Lemma 2.31 one sees that for

D = xp ∂

∂x
+yp

∂

∂y
+zp

∂

∂z
on A= k[x,y,z],

the invariant subring AD is three-dimensional but only S2. So no non-zero scaling of D can

be multiplicative.
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2.4 Foliations

Let X be a normal connected k -scheme of finite type.

Definition 2.14. A foliation is a coherent subsheaf F ⊂ TX/k which is saturated in

TX/k (i.e., the quotient TX/k/F is a torsion-free OX -module) and closed under Lie brackets.

A foliation is called a 1-foliation if it is also closed under pth powers (2).

The geometric significance and relevance of 1-foliations is made clear by Jacobson’s

correspondence, which we will state in the next subsection (Theorem 2.39). Of course,

TX/k and the zero sub-sheaf are 1-foliations, which we refer to as the trivial ones.

Remark 2.15. Taking the stalk at the generic point establishes a bijective corre-

spondence between saturated coherent subsheaves of TX/k and sub-k(X)-vector spaces of

Tk(X)/k. Closure under Lie brackets or pth powers are also properties determined at the

generic point. In particular, given a coherent subsheaf of TX/k which is generically closed

under Lie brackets (resp. under Lie brackets and pth powers), its saturation in TX/k yields

a foliation (resp. a 1-foliation).

Definition 2.16. Let F be a foliation on X and let η ∈X be the unique generic point.

The rank of F is dimk(η)Fη, and the corank of F is dimk(η)(TX/k/F)η. We have the relation

rk(F)+corank(F) = dimX.

Definition 2.17. Let F be a foliation on X, and let x ∈X be a point. We say that F
is regular at x if OX,x is regular and the OX -module TX/k/F is locally free at x. Otherwise,

F is singular at x.

We note that the singular set of a foliation is closed, of codimension ≥ 2, and contains

the singular locus of the underlying variety. Notice also that F , as OX -module, is reflexive

(equivalently it satisfies Serre’s condition S2) by [1, 0EBG].

Regular 1-foliations have a simple local description on regular varieties.

Lemma 2.18 (Seshadri, Yuan). Let (A,m) be a regular local algebra that is essentially

of finite type over k and such that A/m= k, and F ⊂Derk(A) be a regular 1-foliation on A.

Then we can find local coordinates x1, . . . ,xn of A such that

F =

r∑
i=1

A ·Di, r = rkF ,

where the Di are as in Lemma 2.4. In particular, A has a p-basis over AF .

Proof. See [56, Proposition 6] or [64, Proof of Theorem 12].

More generally, regular (non-necessarily p-closed) derivations of regular complete local

ring also admit a normal form, see [42, Divertimento II.1.6], but we will not need such a

description.

For invertible foliations on regular schemes, there is a simple characterisation of freeness.

Lemma 2.19. Let x ∈X be a regular point and assume that the foliation F ⊗OX,x is

invertible as OX,x-module. Then F is regular at x if and only if F �⊂mX,xTX/k.

2 The terminology is not consistent in the literature. What we call 1-foliations are called p-foliations,
or sometimes simply foliations, in other sources. Foliations which are not necessarily closed under pth
powers have not been studied very extensively: see Remark 1.6.
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Proof. We apply [18, II, Lemma 8.9] to the cokernel N of F ↪→ TX/k: it is free at x if and

only if rk(N ⊗k(x)) = dimOX,x−1. This is equivalent to left-exactness of the right-exact

sequence

0→F⊗k(x)→ TX/k⊗k(x)→N ⊗k(x)→ 0.

If F is generated by ∂ at x, then left-exactness holds if and only if ∂ /∈mX,xTX/k.

Next we generalize the regularity condition in the following way.

Definition 2.20. Notations as above. We say that F has at worst multiplicative

singularities if at every point it is generated formally and up to saturation by multiplicative

continuous derivations that commute with each other.

Example 2.21.

1. Regular 1-foliations have at worst multiplicative singularities. Indeed, by working

formally we reduce through Example 2.18 to X = An
x and F =

∑r
i=1OX · ∂

∂xi
. Then

while the ∂
∂xi

are additive, F is the saturation of
∑r

i=1OX ·xi
∂

∂xi
, which is generated

by multiplicative derivations commuting with each other.

2. Let X = A3
x and G = OX ·

(
x1

∂
∂x1

+x2
∂

∂x2

)
+OX · ∂

∂x3
. Then G is the saturation of

the sub-module generated by the multiplicative derivations x1
∂

∂x1
+x2

∂
∂x2

and x3
∂

∂x3
,

and these two derivations commute with each other. So G has at worst multiplicative

singularities.

Remark 2.22. Much like regular 1-foliations, 1-foliations with at worst multiplicative

singularities have simple formal local descriptions on regular varieties. It will follow from

Proposition 4.1 that if A is a regular local k -algebra and F ⊂Derk(A) is a 1-foliation with

at worst multiplicative singularities, then we can find formal local coordinates x1, . . . ,xn of

Â such that

F̂ =
∑
α

Â ·Dα, where Dα =
n∑

i=1

λαixi
∂

∂xi
with λαi ∈ Fp.

The assumption that F is generated formally by commuting derivations is needed in order

to find formal coordinates adapted to every Dα.

Example 2.23. Consider the derivation ∂a,b on A2 introduced in Example 2.6, and let

Fa,b be the saturation of O · ∂a,b. The sheaf Fa,b is closed under Lie brackets, essentially

because it is generated up to saturation by a single derivation. We have also seen in

Example 2.6 that ∂a,b is p-closed, so Fa,b is a 1-foliation. Notice that Fa,b = Fλa,λb for

any λ ∈ F×
p . Let us look at its singularities.

1. If ab= 0 then Fa,b is generated by either ∂
∂x or ∂

∂x , and hence it is regular everywhere.

2. If ab �= 0 then Fa,b is generated by ∂a,b and has a unique singularity at the origin.

Hence the 1-foliation Fa,b has at worst multiplicative singularities.

Construction 2.24 (Birational pullback). Let π : Y →X be a birational morphism of

normal connected k-schemes. The generic stalk Fk(X) determines a foliation on Y, which

we will usually denote by π∗F . If F is a 1-foliation, then so is f∗F by Remark 2.15.
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Example 2.25. The reader will check that if π : An
y →An

x is the y1-chart of the blow-up

of (x1, . . . ,xr) for r ≤ n, which means that we have

(x1, . . . ,xn) 
→ (y1,y1y2, . . . ,y1yr,yr+1, . . . ,yn),

then the transformation rules are

π∗∂y1 = ∂y1 −
r∑

i=2

yi
y1

∂yi , π∗∂xi =
1

y1
∂yi (1< i≤ r), π∗∂xj = ∂yj (j > r).

Definition 2.26. Let F be a foliation on X. A prime divisor E ⊂X is called invariant

for F if generically3 the restricted map F|E → T 1
X/k|E factors through T 1

E/k, or equivalently

if F(IE)⊂ IE at the generic point of E.

It is convenient to introduce the function εF on the set of prime divisors on X, defined

as follows:

εF(E) =

{
0 if E is F-invariant,

1 otherwise.
(2.2)

If π : Y → X is birational with Y normal and E is a prime divisor on Y, then we set

εF(E) = επ∗F(E). This depends only on the divisorial valuation defined by E on K(X), not

on π. We drop the subscript and write ε(•) is no confusion is likely to arise.

Remark 2.27. Suppose that Z ⊂ X is a closed subset, and that X is regular at the

generic point of Z. If π : BlZX →X is the blow-up, then the (non-)invariance of the (unique)

π-exceptional divisor E can be a subtle question, already on surfaces.

1. If F � TA2/k is regular at the origin, then the blow-up of the origin will produce an

invariant divisor;

2. If F � TA2/k is not regular at the origin, then the blow-up of the origin may or may not

produce an invariant divisor: see Example 3.5.

In particular, F(IZ) ⊂ IZ does not guarantee that E is π∗F-invariant (because of the

saturation involved in defining π∗F).

2.5 Infinitesimal quotients

For simplicity of exposition, let us discuss quotients by derivations before quotients by

foliations.

2.5.1. Quotients by derivations

Let A be a k -algebra and D ∈Derk(A).

Definition 2.28. The subring of constants (or: the invariant subring) of D is the

subset AD = {a ∈A |D(a) = 0}.

It is easily seen that AD is indeed a subring of A, and that it contains k[Ap].

3 This definition is sometimes stated without the genericity assumption. To avoid technicalities related to
E ↪→X not being a regular immersion at special points, we state it as a condition at the generic point
of E. As long as E is a divisor, this makes no difference in the proofs.
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Lemma 2.29. Let A and D be as above, and assume that A is integral. Then:

1. Frac(A)D = Frac(AD).

2. If A is F-finite or normal, so is AD.

3. If x,y ∈AD is a regular sequence in A, then x,y is also a regular sequence in AD.

Proof. The derivation D extends to Frac(A) following the usual rule for differentiating

quotients. Clearly Frac(AD) ⊆ Frac(A)D. Conversely, assume that a
b ∈ Frac(A)D. As a

b =
abp−1

bp we have

0 =D
(a
b

)
=

D(abp−1)

bp

and so D(abp−1) = 0. Therefore abp−1

bp ∈ Frac(AD), showing the first point.

Assume that A is F -finite. Then A is a finite module over Ap, a fortiori over AD: by

Artin–Tate lemma [1, 00IS] it follows that AD is finite over Ap. Since Ap is finite over

(AD)p, we obtain that AD is F -finite.

Assume that A is normal, and suppose that x ∈ Frac(AD) satisfies a monic polynomial

equation with coefficients in AD. Then x ∈ A by normality of A, and D(x) = 0 by

assumption. So x ∈AD, showing that AD is normal.

Finally, assume that x,y ∈A is a regular sequence. Clearly x is not a zero-divisor in the

subring AD. Now assume that multiplication by y is not injective on AD/xAD. Then we

have an equality zy = wx with z,w ∈ AD and z /∈ xAD. Considering this equality in A,

we must have z = ax for some a ∈ A. But 0 =D(z) = xD(a) hence a ∈ AD and so in fact

z ∈ xAD: contradiction. Hence x,y is a regular sequence on AD.

The singularities of AD are difficult to describe beyond this lemma, even if A is regular.

We refer to [2], [3] for a general discussion, and to [45] for several two-dimensional examples.

We will only be interested in the cases where D is p-closed, but this does not simplify the

matter by much. If D is additive, all hell may break loose: the following proposition shows

that every singularity universally homeomorphic to a regular point is a composition of

αp-quotients.

Proposition 2.30. Let f : X → Y be a finite purely inseparable morphism of normal

Fp-schemes of degree p. Then f is locally an αp-quotient.

Proof. Indeed, f is locally the quotient by a p-closed derivation [40, Proposition 2.4].

Now apply Lemma 2.12.

The following lemma illustrates the typical singularities that may arise.

Lemma 2.31. Assume that A is a local normal k-algebra of dimension d ≥ 3 and that

D ∈Derk(A) is an additive derivation. Suppose that D(A) generates an mA-primary ideal.

Then AD is not S3 and not F-injective.

Proof. The following argument is essentially contained in [37, §5]. Let Y = Spec(A). By

Proposition 2.7 and Lemma 2.10, the derivation D defines an action of αp on Y which

is free on Y ∗ = Y \ {mA} and whose fixed locus is mA. (Indeed, notice that the residual

derivation D̄ ∈Derk(A/mA) is zero.) Let X = Spec(AD) = Y/αp be the geometric quotient:

it is also a local normal affine scheme of dimension d. Let q : Y →X be the quotient map,

let n= q(mA) and write X∗ =X \{n}.
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Recall that αp-torsors are classified by the flat cohomology groups H1
fl(•,αp). The

restriction q∗ : Y ∗ → X∗ is an αp-torsor, and thus defines an element [q∗] ∈ H1
fl(X

∗,αp).

We claim [q∗] does not belong to the natural restriction map r : H1
fl(X,αp)→H1

fl(X
∗,αp).

Indeed, suppose that there was an αp-torsor q : Y ′ →X such that q×Y Y ∗ = q∗. Then Y ′

is affine and S2. Since q is finite we see that q−1(n) has codimension d and so

Y ′ = SpecH0(Y ′,OY ′) = SpecH0(Y ′ \q−1(n),OY ′)∼= SpecH0(Y ∗,OY ) = SpecH0(Y,OY ),

where, for the last equality, we used that Y is S2 as well. Therefore q = q: but this is

impossible since q is not an αp-torsor.

Now we relate the non-surjectivity of H1
fl(X,αp) → H1

fl(X
∗,αp) to local cohomology.

Evaluate the exact sequence of flat group schemes

0→ αp →Ga

FGa/k−→ Ga → 0

on X∗ and X. Taking in account that Hi
fl(•,Ga) = Hi(•,O•), the beginning of the long

exact sequence of cohomology gives the commutative diagram

0 coker
(
FX/k|H0(X,OX)

)
H1

fl(X,αp) 0

0 coker
(
FX∗/k|H0(X∗,OX∗ )

)
H1

fl(X
∗,αp) ker

(
FX∗/k|H1(X∗,OX∗ )

)
0

= r

with exact rows. Here we used that H1(X,OX) = 0 since X is affine, and the left-most

vertical arrow is an equality because X is normal and X∗ ⊂X is big. So the non-surjectivity

of r implies that the Frobenius action on H1(X∗,OX∗) has a non-trivial kernel. Looking at

the usual long exact sequence

Hi
n(X,OX)→Hi(X,OX)→Hi(X∗,OX∗)

+1−→,

on which the Frobenius acts compatibly, we deduce that the action of the Frobenius on

H2
n(X,OX) ∼=H1(X∗,OX∗) has a non-trivial kernel. This means that X is not S3 neither

F -injective.

The quotients by multiplicative derivations are, in comparison, way nicer: we discuss

these in Section 4.1.

Let us compute two examples of subring of constants.

Example 2.32. Consider the derivation ∂a,b on k[x,y] from Example 2.6. Then we have

k[x,y]∂a,b = k[xiyj | ai+ bj = 0 (p)].

Example 2.33. Consider D= xp ∂
∂x +yp ∂

∂y on k[x,y]. Then D[p] = 0. Clearly xp,yp and

xpy−xyp belong to the ring of constants, and I claim that they generate it. It suffices to

show that

k[xp,yp,xpy−xyp]∼= k[u,v,s]/(sp− (u2v−uv2))

is a normal ring, which is easily seen using the Jacobian criterion.

If p = 2, then in Artin’s terminology [6] this is a D0
4 rational double point (hence a

canonical singularity). Using Fedder’s criterion, one checks that it is not F -pure.
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2.5.2. Quotients by foliations

Let X be a normal Noetherian connected k -scheme and let F ⊂Derk(OX) be a foliation

on X. We define the presheaf OF
X on the topological space |X| by

OF
X(U) = {s ∈ OX(U) |D(s) = 0 ∀D ∈ F(U)}.

This is a sheaf of algebras on |X|. It is easy to see that the locally ringed space (|X|,OF
X)

is a k -scheme: for if Spec(A) is an affine chart affine, then

k[Ap] ↪→AF ↪→A

so Spec(AF) has the same underlying topological space as Spec(A).

Definition 2.34. The quotient of X by F is the k -scheme X/F = (|X|,OF
X).

In particular X/F comes with a purely inseparable morphism q : X →X/F which is a

universal homeomorphism and factors the k -linear Frobenius of X (4). If X is F -finite then

q is a finite morphism. In this article, we will only consider the case where F is a 1-foliation.

The following well-known lemma will be used implicitly many times.

Lemma 2.35 (cf [61, §4.1]). Let A be a normal Noetherian F-finite k-algebra and F a

foliation on Spec(A). If p is a prime ideal of A with contraction q⊂AF , then:

1. AF is Noetherian,

2. (AF )q = (Ap)
Fp, and

3. if Â= Âp and F̂ = Fp⊗ Â, then Â
̂F is a local ring and it is equal to the completion of

(AF )q.

Proof. First we show that Ap is Noetherian: we have to show that any ideal I ⊂ Ap

is finitely generated. Let I = {f ∈ A | fp ∈ I}. Then clearly I is an ideal of A, and so it is

finitely generated, say I = (f1, . . . ,fr). Then it is easily seen that I = (fp
1 , . . . ,f

p
r ). So Ap is

Noetherian.

As Ap is Noetherian and A is F -finite, we get that A is a Noetherian Ap-module. As AF

is a sub-Ap-module, it must be a finite Ap-module. The Noetherian ring property of Ap

now ascends to AF by the Artin–Tate lemma [5].

The localization property is [61, Proposition 4.2]. For the completion property, we may

assume that A is local with maximal ideal p, so B =AF is also local with maximal ideal q.

Since A is F -finite, it is a finite B -module. As F is a finite A-module, it is also a finite

B -module. So Â = A⊗B B̂ and F̂ = F ⊗B B̂. If D1, . . . ,Dn generate F , then we have an

exact sequence

0→B →A
D−→A⊕n, where D(a) = (D1(a), . . . ,Dn(a))

which remains exact after tensoring by B̂, by flatness of completion. As
∑

iDi⊗B B̂ = F̂ ,

we obtain B̂ = Â
̂F .

4 The varieties that factor an iterated Frobenius morphism of regular varieties are sometimes called
Frobenius sandwiches in the literature.

https://doi.org/10.1017/nmj.2025.10072 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10072


16 Q. POSVA

Lemma 2.36. Notations as above.

1. K(X)F =K(X/F).

2. If X is F-finite and normal, so is X/F .

3. If s, t ∈ OX/F,q(x) form a regular sequence in OX,x, then s, t is also a regular sequence

in OX/F,q(x).

Proof. The question is Zariski-local, so we may assume that X = Spec(A). Say that F
is generated by D1, . . . ,Dn ∈Derk(A). Then X/F = Spec

(⋂
iA

Di
)
. So the assertions follow

from Lemma 2.29 applied inductively on A0 = A,A1 = AD1
0 ,A2 = AD2

1 , etc., once we have

observed that in the proof of Lemma 2.29 there is no harm in assuming that the codomain

of D was the fraction field.

Lemma 2.37 [46, Part I, III.1.9]. Let X be a smooth k-scheme, F a 1-foliation on X.

Then X/F is regular if and only if F is regular.

Proof. We may base-change to the algebraic closure of k and localize at a closed point,

so that X = Spec(A) is the spectrum of a regular local k -algebra with algebraically closed

residue field k. If F is regular, then by Example 2.18 we can find coordinates x1, . . . ,xn of

A such that

F =
r∑

i=1

A · ∂

∂xi
for some r ≤ n.

Then clearly Â
̂F ∼= k�xp

1, . . . ,x
p
r ,xr+1, . . . ,xn�, so AF is regular.

Conversely, assume that AF is regular. We have to check that TA/k/F is free. In fact, by

Kunz’s conjecture, a theorem since 1981, see [29], AF has a p-basis xr+1, . . . ,xn over Ap.

Then xp
r+1, . . . ,x

p
n extend to a set of local coordinates xp

1, . . . ,x
p
n of Ap. From this and the

Jacobson correspondence it follows immediately that F =
⊕r

i=1A
∂

∂xi
and thus the quotient

TX/F =
⊕n

i=r+1A
∂

∂xi
is free.

Remark 2.38. The above lemma, together with its proof, should be compared to the

following result of Zariski [65, Lemma 4] (see also the more general Nagata–Zariski–Lipman

theorem [41, Theorem 30.1]): if (A,m) is a complete local ring of characteristic 0, and

D ∈ Der(A) such that D(x) /∈ m for some x ∈ A, then there exists a subring A′ ⊂ A over

which x is analytically independent, such that A=A1�x� and D|A1 ≡ 0. Notice also that in

this case the assumption that A is complete is necessary, whereas in the proof of Lemma 2.37

completion is not needed to find a system of parameters adapted to F .

For the formation of quotients, the facts that F is saturated, closed under Lie brackets

and pth powers are irrelevant. However, if we restrict to quotients by 1-foliations, we obtain

the following geometric meaningful correspondence.

Theorem 2.39 (Jacobson correspondence: [25], [49]). Let X be a normal k-variety. Then

there is a bijection between

1. 1-foliations of rank r on X, and

2. factorizations of the k-linear Frobenius FX/k : X
f−→ Y →X(−1) where Y is normal and

deg(f) = pr.

The bijection is explicitly given by F 
→ (X →X/F) and (X → Y ) 
→DerOY
(OX).
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Let us also mention the well-known adjunction formula for quotients.

Definition 2.40. Let F be a foliation on X. Any Weil divisor representing the divisorial

sheaf det(F)−1 is called a canonical divisor of F , and will be denoted by KF .

Proposition 2.41 (Adjunction formula: [49, Proposition 2.10]). Let q : X → X/F be

the quotient of a normal k-variety by a 1-foliation. Then we have an exact sequence

0→F → TX/k → q[∗]TX/F → F
[∗]
X/kF → 0

and consequently an equality of Weil divisors

q∗KX/F =KX +(p−1)KF .

§3. Birational singularities of 1-foliations

Given a foliation F on a normal k -variety X, we define the birational singularities of F
in the spirit of the MMP (see [32]). We formulate the definition for any foliation, but we

will only use it for 1-foliations. It is convenient to do so in presence of a Q-Weil divisor Δ.

Definition 3.1. We say that (F ,Δ) is a (Q-)Gorenstein foliated pair if KF +Δ is

(Q-)Cartier.

Assume that (F ,Δ) is Q-Gorenstein. Then if π : Y →X is a birational proper k -morphism

of normal varieties, we can write

Kπ∗F +π−1
∗ Δ= π∗(KF +Δ)+

∑
E

a(E;F ,Δ)E,

where E runs through the π-exceptional prime divisors. Recalling the function ε from (2.2),

we can make the following definition.

Definition 3.2 [42, 57]. Suppose that (F ,Δ) is Q-Gorenstein. Then (F ,Δ) is:

1. terminal (resp. canonical) if a(E;F ,Δ) > 0 (resp. a(E;F ,Δ) ≥ 0) for all exceptional

prime divisors E over X ;

2. klt if �Δ�= 0 and a(E;F ,Δ)>−εF(E) for all exceptional E over X ;

3. log canonical (lc) if a(E;F ,Δ)≥−εF(E) for all exceptional E over X.

Some remarks are in order. It follows from the definitions that the following implications

hold:

terminal klt

canonical lc.

+ F Gor.

However, if F is canonical then it is not necessarily klt.

The terminal and klt conditions seem rather restrictive for foliations. It will follow from

Proposition 4.12 that if a 1-foliation F is terminal at a point x ∈ X then OX,x must be

singular. In particular the terminal locus of 1-foliations is never open.
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Moreover, in positive characteristic the birational singularities of X and F may have

little in common (5): see [8, Example 2.14].

As an example, we describe the birational singularities of regular 1-foliations on regular

varieties.

Lemma 3.3. Regular 1-foliations on regular varieties are canonical.

Proof. We use an observation of Bernasconi [8, Remark 2.12 and Example 2.13]. The

statement is étale-local, so it suffices to consider the case X = An
x and F =

⊕r
i=1OX · ∂

∂xi
.

Then KF is the line bundle generated inside
∧r

T 1
X by the r -vector field θ dual to the

r -form dx1 ∧ · · · ∧ dxr ∈ Ωr
X . If f : Y → X is birational and θ̃ is the pullback of θ, then

f∗(dx1∧· · ·∧dxr)(θ̃) = 1. As f∗(dx1∧· · ·∧dxr) is a regular r -form, we see that θ̃ does not

have any zero along exceptional divisors. This implies that Kf∗F −KF ≥ 0, and so F is

canonical.

Lemma 3.4. Non-trivial regular 1-foliations on regular varieties are not terminal.

Proof. We follow the method of [8, Example 2.13]. Let X be a regular variety

and F be a non-trivial regular 1-foliation. If NF is the cokernel of F ↪→ TX/k, then

KF = KX ⊗ det(N∨
F )−1. If π : X ′ → X is birational, then a convenient way to compute

KF ′ (where F ′ = π∗F) is the following. Write

π∗det(N∨
F ) =M⊗OX′(E),

where the right-hand side is uniquely determined by the property that E is an exceptional

π-divisor and M is locally generated by a (corankF)-form without pole nor zero along

Exc(π) (in our case E ≤ 0 by Lemma 3.3). Then we have KF ′ =KX′ ⊗M−1.

The result we want to establish is local, so we may work at the stalk OX,s of the variety at

a closed point. We will construct a weighted blow-up of OX,s whose coarse moduli witnesses

the non-terminality of F̂ . By Example 2.18, we may find local coordinates x1, . . . ,xn ∈OX,s

such that F is generated by ∂/∂xi for i= 1, . . . , r (where 1≤ r < n). Now blow-up the ideal

(x1,x
p
n): we obtain a morphism π : X ′ → Spec(OX,s). Its base-change along the completion

can be written as

Spec
(
ÔX,s

)
π̂←−X ′ = Projk(s)�x1, . . . ,xn�[X1,Xn]/(x

p
1Xn−xnX

p
1 ),

where the grading is given by degX1 = 1 and degXn = p. A simple computation on the

affine chart D+(X1), using the method of the first paragraph, shows that Kπ̂∗F ′ = π̂∗KF .

So F is indeed not terminal.

Example 3.5. Consider the 1-foliation Fa,b on A2 introduced in Example 2.23, and

assume that ab �= 0. I claim that it is log canonical, but not canonical nor klt. Let us show

that these are not canonical nor klt; the log canonical property can be obtained by similar

considerations, using that any divisorial valuation on A2 can be reached by a sequence of

blow-ups of points [32, Lemma 2.45], or alternatively by using Proposition 3.6.

We may assume that a �= 0. Let us blow-up the origin and consider the chart given by

π : A2
u,v → A2

x,y, (u,v) 
→ (u,uv).

Explicit computations show that ∂a,b lifts to ∂a,b−a on A2
u,v.

5 This contrasts with the characteristic 0 case: see [57, Remark 3.10] and [12, Theorem 1.5].
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1. Assume that a = b, so we may assume that both are equal to 1. Then the induced

(saturated) 1-foliation π∗F1,1 is F1,0, generated by ∂
∂u , and we have π∗KF1,1 =KF1,0 +E

where E = (u = 0) is the exceptional divisor. Since E is not invariant, this shows that

F1,1 is not canonical and also not klt, and that E is a log canonical place for the foliated

pair (A2,F1,1).

2. Next assume that a �= b. Then no saturation is needed to obtain the induced 1-foliation

π∗Fa,b = Fa,b−a. In particular π∗KFa,b
=KFa,b−a

. The exceptional divisor is invariant

for Fa,b−a, which shows that Fa,b is not klt.

Let n> 0 be minimal such that b−na=0 in Fp. If we iterate this blow-up procedure n

times, we find a birational morphism ϕ : A2 →A2 such that ϕ∗KFa,b
=KF1,0 +E where

E is a prime ϕ-exceptional divisor which is invariant for F1,0. So Fa,b is not canonical.

In case X is regular and F is a line bundle, there is a simple local characterization of log

canonical foliations due to McQuillan.

Proposition 3.6. Suppose (x∈X) is the spectrum of a regular local ring with maximal

ideal m and residue field k(x), and F is an invertible 1-foliation generated by ∂. Then:

1. if ∂ /∈mDerk(OX,x) then F is canonical at x;

2. if ∂ ∈ mDerk(OX,x), then F is log canonical at x if and only if the k(x)-linear

endomorphism ∂0 ∈ Endk(x)(m/m2) is not nilpotent.

This is stated in [42], but as locating the precise argument is a non-trivial task we sketch

the proof for the convenience of the reader.

Proof. The first part follows immediately from Lemmas 2.19 and 3.3. Thus we may

assume that ∂ ∈mDerk(OX,x).

First, observe that OX ·∂ =K−1
F . So if E is any exceptional prime divisor appearing on

π : Y → X, then at the generic point of E we can write π∗∂ = t
−a(E;F)
E ∂′, where tE is a

uniformizer of OY,E and ∂′ belongs to TY/k but not to mETY/k. The number a(E,F) is

necessarily an integer.

Non-log canonicity implies nilpotence. Let E be as above, centered at x, and

assume that a(E,F)<−εF(E). Write e=−a(E;F). We distinguish two cases:

1. Assume that e≥ 2. Then π∗∂(mn
E)⊂m

n+e−1
E . Letting pn =mn

E∩OX,x, we obtain ∂(pn)⊂
pn+e−1. As the pn’s generate the mX,x-adic topology, we deduce that the continuous

extension of ∂ to ÔX,x is topologically nilpotent. In particular, ∂[N ](mX,x) ⊂ m2
X,x for

some N � 0. This implies that ∂
[N ]
0 = 0.

2. The remaining case is e = 1. Then E must be invariant for π∗F , which means that

∂′(mE)⊂mE . Then ∂(pn)⊂ pn+1 and the same argument gives that ∂0 is nilpotent.

Nilpotence implies non-log canonicity. We also distinguish two cases, in which

we explicitly produce a divisor with discrepancy ≤ −2. The main tool is the formulas of

Example 2.25.

1. ∂0 = 0. Then ∂ ∈m2TX , where m is the maximal ideal of the closed point x. The blow-up

of the closed point produces an exceptional divisor E whose discrepancy is <−ε(E). To

see this, we may work étale-locally and reduce to the case where we blow-up An
x1,...,xn
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along the ideal I = (x1, . . . ,xl) (with l ≤ n), and ∂ =
∑n

i=1 fi∂xi satisfies mini ordI fi =

d≥ 2. If π : An
y → An

x is the y1-patch of the blow-up, then we have

π∗∂ = yd−1
1

⎡⎣f̃1(y)∂y1 +

l∑
i=2

1

y1

(
f̃i(y)−yif̃1(y)

)
∂yi +

n∑
j=l+1

f̃j(y)∂yj

⎤⎦ ,
where the f̃•(y) = y−d+1

1 (f•(x) ◦π) are regular functions that are still divisible by y1.

If the exceptional divisor E = (y1 = 0) is invariant, then a(E;F)≤−d+1< 0 =−ε(E).

Assume that E is not invariant: as f̃1(y)|(y1=0) = 0, this implies that the derivation in

brackets is still divisible by y1, and therefore a(E;F)≤−d <−ε(E).

2. If ∂0 �= 0 is nilpotent, we will show that after a few well-chosen blow-ups we reduce to

the previous case. The Jordan normal form of ∂0 is defined over k(x), since its only

eigenvalue is 0. So we may choose local coordinates with respect to which the matrix of

∂0 is already in Jordan normal form. The centers of the blow-ups will depend only on

these coordinates. Thus we may again work étale-locally on An
x1,...,xn

, say that the point

x corresponds to the ideal I = (x1, . . . ,xl) (with l ≤ n), and assume that a nilpotent

non-zero Jordan block is spanned by x1, . . . ,xr (with r ≤ l). We are going to blow-up

(x1, . . . ,xr): since this does not affect the other Jordan blocks, we may as well assume

that r = l. So write

∂ =
r−1∑
i=1

xi∂xi+1 + δ, δ ∈ I2TA2/k.

If π : An
y → An

x is the yr-patch of the I -blow-up, then one finds that

π∗∂ =
r−2∑
i=1

yi∂yi+1 +

[
yr−1yr∂yr −

r−1∑
i=1

yr−1yi∂yi +π∗δ

]
.

The derivation in parenthesis belongs to (y1, . . . ,yr)
2TAn/k, and the dimension of the

0-eigenspace at the origin has increased. Notice also that π∗∂ is not divisible by yr, so

the discrepancy of the (invariant) π-exceptional divisor is 0. By induction, we therefore

reduce to the case where ∂0 = 0.

The proof is complete.

Corollary 3.7. Let X be a regular variety over k, and F be a 1-foliation of rank 1

on X. Then:

1. F is canonical if and only if F is regular.

2. F is lc if and only if F has at worst multiplicative singularities.

Proof. By Proposition 3.6 and Definition 2.20 this is a formal-local question, so we may

assume that X = Spec(O) is the spectrum of a complete regular local ring, with maximal

ideal m, and F is generated by ∂ ∈ Dercontk (O) (for F is a divisorial sheaf on a regular

variety, hence an invertible sheaf). We may assume that ∂(m) ⊂ m, so we get an induced

endomorphism ∂0 ∈ EndO/m(m/m2).

First assume that F is lc. By Proposition 3.6, ∂0 is not nilpotent. But we have ∂[p] = u∂

for some u ∈O, since F is closed under pth powers. In particular ∂◦p
0 = ū∂0, where ū is the

image of u in the residue field. Thus u /∈m. This implies that ∂ is multiplicative.
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Conversely, if F has at worst singularities, we may assume that ∂ is multiplicative. Then

the function n 
→ ∂◦n
0 is p-periodic. Moreover ∂0 �=0 by Remark 2.22, thus ∂0 is not nilpotent

and so F is lc.

If F is regular, we already know it is canonical (Lemma 3.3). Conversely, if F is canonical

then it is lc and thus has at worst multiplicative singularities. So we may assume that F is

generated up to saturation by
∑

iλixi∂xi , where x1, . . . ,xn ∈O are formal coordinates and

λi ∈ Fp. If more than one λi is non-zero, then a series of blow-ups as in Example 3.5 show

that F is not canonical. Thus a single λi is non-zero, and it follows that F is regular.

3.1 Foliations on group quotient singularities

Let us give a series of examples of lc 1-foliations on singular varieties. First, consider

f : X → Y a finite surjective Galois morphism of normal connected k -schemes of finite

type. If G is the Galois group of the function field extension K(Y ) ⊂K(X), then G acts

on the K(X)-vector space Derk(K(X)) by

g ·∂ = g−1 ◦∂ ◦g ∈Derk(K(X)), g ∈G, ∂ ∈Derk(K(X))

and the K(Y )-vector field of invariants is Derk(K(Y )). By Galois descent, the K(Y )-

subspaces of Derk(K(Y )) correspond to the K(X)-subspaces of Derk(K(X)) which are

stable under the action of G.

Lemma 3.8. In the above situation, pullback along f at the generic point gives a rank-

preserving bijective correspondence between

1. 1-foliations on X whose generic stalk is preserved by the G-action, and

2. 1-foliations on Y.

Proof. This is a direct application of Remark 2.15 and Galois descent, except for the

fact that if F ⊂ TX/k is a 1-foliation on Y then FK(Y )⊗K(X) is closed under Lie brackets

and pth powers. This is an immediate calculation (using Hochschild’s formula (2.1) for pth

powers).

Definition 3.9. In the above situation:

1. if F ⊂ TY/k is a 1-foliation, we let f∗F ⊂ TX/k be the unique 1-foliation which generic

stalk FK(Y )⊗K(X);

2. if the generic stalk of H⊂ TX/k is G-stable, we let H/G⊂ TY/k be the unique 1-foliation

whose generic stalk is (HK(X))
G.

We can now state and prove the following proposition.

Proposition 3.10. Let H be a log canonical 1-foliation of corank 1 on a normal

connected Q-factorial k-scheme X of finite type. Let G be a finite group of order invertible

in k, acting on (X,G). If (Y =X/G,F =H/G) is the quotient, then F is log canonical.

Proof. The quotient Y is Q-factorial, so F is automatically Q-Gorenstein. So consider

a birational proper morphism f : Y ′ → Y , and let X ′ be the integral closure of Y ′ in K(X).

Then G acts on X ′ with quotient Y ′, and we have a commutative diagram
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Y X

Y ′ X ′,

q

f

q′

f ′

where q,q′ are the quotient morphisms. If F ′ and H′ denote the birational pullback of F
and H then by Lemma 3.8 we have q∗F =H and (q′)∗F ′ =H′. By the foliated version of

Riemann–Hurwitz [57, Proposition 3.7] (6) it holds that

KH = q∗KF +
∑
D⊂X

εH(D)(rD−1)D, KH′ = (q′)∗KF ′ +
∑

D′⊂X′

εH(D′)(rD′ −1)D′,

where r• denotes the ramification index of divisors with respect to the action of G.

Let E be a prime f -exceptional divisor. We want to estimate a(E;F). If q′ is étale over

the generic point of E then a(E;F) = a(E′;H)≥ 0 where E′ ⊂X ′ is any divisor lying over E.

So we may assume that rE′ > 1. Notice that (q′)∗E =
∑

E′ rE′E′.

We compute (q ◦ f ′)∗KF = (f ◦ q′)∗KF at the generic points of (q′)−1(E). On the one

hand

(q′)∗f∗KF =KH′ −
∑

D′⊂X′

εH(D′)(rD′ −1)D′−
∑
E′

a(E;F)rE′E′

and on the other

(f ′)∗q∗KF =KH′ −
∑
E′

a(E′;H)E′−
∑
D⊂Y

εG(D)(rD−1)(f ′)∗D.

Equating the two, we find that

rE′a(E;F)+(rE′ −1)εH(E′) = a(E′;H)+ δ,

where δ ≥ 0. As εH(E′) = εF (E) and a(E′;H)≥−εH(E′), we find that

a(E;F)≥−εF(E)+
δ

rE′

which shows that F is lc.

Example 3.11. Let k be an algebraically closed field of characteristic p > 2, and let

G = Z/2Z act k -linearly on A2
x,y by (x,y) 
→ (−x,−y). Let Y = Speck[x2,y2,xy] be the

quotient: it is an A1-singularity. If H is the 1-foliation on A2 generated by ∂x, then H/G is

generated by x∂x and y∂x. Consider the isomorphism

k[x2,y2,xy]∼= k[u,v,s]/(s2−uv), (x2,y2,xy) 
→ (u,v,s).

Then x∂x corresponds to ψ= 2u∂u+s∂s, and y∂x corresponds to 2s∂u+v∂s. They generate

an lc 1-foliation F =H/G on Y.

By Theorem 4.10 to be proved below, Y/F is a klt affine singularity. Its coordinate ring

is generated over k by the sections v and unsm where n,m≥ 0 are such that 2n+m= p.

6 The fact that we are working in positive characteristic does not create any problem: as the order of G
is prime to the characteristic, all the ramifications are tame.

https://doi.org/10.1017/nmj.2025.10072 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10072


ON THE SINGULARITIES OF QUOTIENTS BY 1-FOLIATIONS 23

§4. Singularities of quotients

4.1 Quotients by multiplicative derivations

In this subsection, we indicate a soft approach to singularities of quotients by multiplica-

tive derivations. So let A be any k -algebra, and let D ∈ Derk(A) be such that D[p] = uD

where u ∈ A×. By [40, Lemma 2.3] we have u ∈ AD. Notice that u−1 ∈ AD as well. We

consider the finite extension of rings

ϕ : A ↪→A′ =A
[
λ= u1/(1−p)

]
.

Since u is invertible and p−1 is coprime with p, we see that ϕ is finite étale. In particular

D lifts uniquely to a k -derivation of A′, which we denote again by D. We have

0 =D(1) =D(λp−1u) = (p−1)uλp−2D(λ)

and so D(λ) = 0. Moreover, by Hochschild’s formula (2.1) we have

(λD)[p] = λpD[p] = λpuD = λD.

So by Proposition 2.7 the derivation D′ = λD on A′ gives rise to a μp-group action on A′,

which is equivalent to a Z/p-grading

A′ =

p−1⊕
i=0

A′
i, A′

i = {s ∈A′ |D′(s) = is}.

Since D′(λ) = 0 we have A′
0 =AD[λ], and thus a commutative diagram

AD[λ] A[λ]

AD A.

⊕

ϕD ϕ (4.1)

Both vertical arrows ϕ,ϕD are split, as they are μp−1-cyclic covers. Thus we obtain that

the injection AD ↪→A splits as map of AD-modules (7).

We now derive some consequences of the above discussion. First we exploit the fact

that, up to an étale cover, a multiplicative derivation is given by a μp-action. In particular,

combining this observation with basic computations involving Jordan decomposition, we

recover a well-known result about multiplicative quotients of regular local rings (see, e.g.,

[53, Theorem 2]).

Proposition 4.1. Suppose that A a regular local k-algebra. If D ∈ Derk(A) is mul-

tiplicative then there exist formal coordinates x1, . . . ,xd ∈ Â and λ1, . . . ,λd ∈ Fp such that

D =
∑
i

λixi
∂

∂xi
.

In particular, the completion of AD is normal toric.

Proof. Since the vertical arrows in (4.1) are étale and induce isomorphisms on residue

fields, they induce isomorphisms of completions. So we may assume that A is complete and

7 This is also a consequence of the more general discussion given in [2, §1].
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that D is given by a continuous μp-action. The action of μp on A ∼= k(A)�x1, . . . ,xn� can

be linearized, see the proof of [54, Corollary 1.8]. Then it is given by the action of a single

matrix M ∈GLn(k(A)). We have Mp =M and thus the minimal polynomial of M divides

T p−T . So it cannot have multiple roots, and we deduce that M is semi-simple. As Mp =M

we see that its eigenvalues are elements of Fp. So after a k(A)-linear change of coordinates

we may assume that M is diagonal. Therefore the derivation D can be given a normal form

D =
∑
i

λixi
∂

∂xi
, λi ∈ Fp.

From this it is easily seen that AD is generated by monomials, and thus it is toric.

Remark 4.2. Quotients of regular local rings by multiplicative derivations are formally

toric, hence klt. In general, they are not canonical: if we consider the action of ∂a,b on A2

(see Example 2.23), then the quotient singularity is canonical if and only if it is Gorenstein,

which happens if and only if (a,b) = (1,−1) or (a,b) = (1,0) [21, Remark 2.4.1].

Next we use the splitting of the bottom arrows in (4.1) to descend some cohomological

properties from A to AD. For the definitions of F -singularities appearing in the next

theorem, see, for example, [39].

Theorem 4.3. Suppose that A is Noetherian and F-finite, and that D ∈ Derk(A) is

multiplicative. Then:

1. If A satisfies Serre’s property Sr then so does AD.

2. If A is F-pure (resp. F-rational, F-injective, F-regular), so is AD.

Proof. All these properties can be checked on localizations, and passing to the ring of

constants commutes with localization at prime ideals. So we may assume that A is local

with maximal ideal m. Then AD is also local with maximal ideal n= mD. By F -finiteness

the map AD ↪→A is finite, so dimA= dimAD.

Our main observation is the following one: since
√
nA=m, we have

H•
m(A) =H•

nA(A) =H•
n(A),

where on the right-hand side we consider A as an AD-module [23, Propositions 7.3 and

7.15(2)]. As mentioned above, by (4.1) we can write A=AD⊕B for some finite AD-module

B, and so the local cohomology splits accordingly, that is

H•
m(A) =H•

n(A
D⊕B) =H•

n(A
D)⊕H•

n(B). (4.2)

Let us show the first statement. Serre’s property Sr states that, after localizing at any

prime, the depth along the maximal ideal is at least min{dim, r}. Since dimA= dimAD, it

suffices to show that the depth does not decrease upon passing to the sub-ring of constants.

By [23, Theorem 9.1], we have

depthm(A) = inf
i
{Hi

m(A) �= 0}, depthn(A
D) = inf

i
{Hi

n(A
D) �= 0}.

So it follows from (4.2) that depthnA
D ≥ depthmA as desired.

Next we discuss descent of F -singularities. F -purity and F -regularity descend to split

subrings [39, Theorem 3.9 and Exercise 9, p. 13]. F -injectivity and F -rationality do not
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in general (see [39, Section 8] and [63]). Hopefully, the key fact is our situation is that

dimA= dimAD. We prove that F -rationality descends, the F -injective case is similar.

Suppose that A is F -rational: this means that A is Cohen–Macaulay and that given any

c ∈A not contained in any minimal prime, there exists an e > 0 such that the composition

Hd
m(A)

fe
A→Hd

m(F
e
∗A)

F e
∗ c−→Hd

m(F
e
∗A) (4.3)

is injective, where d = dimA and fe
A =Hd

m(A→ F e
∗A). As seen above, AD is also Cohen–

Macaulay. If we assume that c∈AD is not contained in any minimal prime, then by going-up

c is not contained in any minimal prime of A either, and the above sequence is thus injective.

Each local cohomology module in the sequence splits accordingly to (4.2). Since c ∈ AD,

the action of F ∗
e c preserves each one of the summands. In other words, (4.3) splits as

Hd
n(A

D)⊕Hd
n(B) Hd

n(F
e
∗ (A

D))⊕Hd
n(F

e
∗B) Hd

n(F
e
∗ (A

D))⊕Hd
n(F

e
∗B).

fe
AD⊕fe

B F e
∗ c⊕F e

∗ c

Since it is injective, the sequence given by the first summands is also injective. Thus AD is

F -rational, as claimed.

This has the following consequence for surface singularities. We say that a two-

dimensional germ of surface over k is a linearly reductive quotient singularity if Ô is

isomorphic to k�x,y�G where G is a linearly reductive group scheme acting freely away

from the origin [36, §6].

Corollary 4.4. Suppose that k is algebraically closed. Let (O,m) be a two-dimensional

linearly reductive quotient singularity over k, and D ∈ Derk(O) be a multiplicative deriva-

tion. Then OD is a linearly reductive quotient singularity.

Proof. Recall that two-dimensional linearly reductive quotient singularities are the same

as F -regular ones [36, Theorem 5.11]. So O is F -regular, and then OD is F -regular by

Theorem 4.3.

Remark 4.5. In the notations of the corollary, say that Ô = k�x,y�G. Then it is not

known whether ÔD is the quotient of k�x,y� by an extension of G and μp.

This is the case when G is discrete (with order invertible in k). Indeed, as Â2
x,y → Spec(Ô)

is étale above the complement of the closed point, D can be lifted to a G-invariant element of

Γ(Â2 \{0},Dercontk k�x,y�). By reflexivity, D extends to a regular element of Dercontk k�x,y�.

It defines a continuous μp-action on Â2 which commutes with the action of G. Then ÔD is

the quotient of k�x,y� by G×μp.

However, if G is not discrete then the question is much more complicated. See [37, §8.2,
especially Lemma 8.14] and the references therein for further discussion.

4.2 Birational singularities of quotients

In this section, we study singularities of infinitesimal quotients in arbitrary dimensions

from the point of view of birational geometry. It is convenient to do so for pairs and not

only varieties, so we make the following definition.
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Definition 4.6. Let X be a normal k -scheme of finite type, Δ a Q-Weil divisor on

X and F a 1-foliation on X. Let q : X → X/F = Y be the quotient. We define on Y the

Q-Weil divisor

ΔY =
∑
E

(
1− εF (E)

p−1

p

)
coeffE(Δ) · q(E),

where E runs through the prime divisors of Supp(Δ).

The extra factors are thrown in to accommodate the adjunction formula along q (that

is, Proposition 2.41) in presence of an extra divisor. Indeed, we have the following lemma.

Lemma 4.7 (cf [53, Proposition 1]). Let X be a normal k-scheme of finite type and F
be a 1-foliation on X. Let q : X → Y be the quotient. For a prime divisor E ⊂X with image

q(E) = EY ⊂ Y :

1. if E is F-invariant then q∗EY = E;

2. if E is not F-invariant then q∗EY = pE.

Proof. We can work on an étale neighborhood of the generic point of E, where X and

E are regular and F a sub-bundle of the tangent sheaf. Then by Example 2.18 we may

assume that X = An
x1,...,xn

, that F is generated by ∂
∂x1

, . . . , ∂
∂xr

with r < n, and that E is

cut out by a linear polynomial. The invariant subring, whose spectrum gives Y, is given by

k[xp
1, . . . ,x

p
r ,xr+1, . . . ,xr].

• If the polynomial is not a linear combination of x1, . . . ,xr, we make a change of coordinate

and assume that E is given by (xr+1 = 0). Then E is F-invariant and EY = (xr+1 = 0)

so q∗EY = E.

• If the polynomial is cut out by the x1, . . . ,xr, we may similarly assume that E = (xr = 0).

Then E is not F-invariant, as ∂
∂xr

|E /∈ TE , and EY = (xp
r = 0) so q∗EY = pE.

This completes the proof.

Proposition 4.8 (Log adjunction formula). Notations as in Definition 4.6. Then we

have an equality of Q-Weil divisors

q∗(KY +ΔY ) =KX +Δ+(p−1)KF .

Proof. Let E be a prime divisor on Supp(Δ). Then by Lemma 4.7, we have in any case

q∗
(
1− ε(E)

p−1

p

)
q(E) = E

and so q∗ΔY = Δ. Combining this equality with the adjunction formula Proposition 2.41

yields the result.

We also note that taking quotients preserves Q-Gorenstein properties.

Lemma 4.9. Let X be a normal k-scheme of finite type, F be a 1-foliation on X with

quotient q : X → Y . Let Δ be a Q-Weil divisor on X. If KX +Δ and KF are Q-Cartier,

then KY +ΔY is also Q-Cartier.

Proof. Since Y is normal, it has a well-defined canonical divisor KY which is invertible

on a big open subset U. Over that locus, the log adjunction reads q∗(KY +ΔY )|U = (KX +

Δ+(p−1)KF )|q−1U . Now KX +Δ and KF are by assumption Q-Cartier, so for n > 0 big
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enough the Weil divisor n(KX +Δ+ (p− 1)KF) is Cartier. Thus its pullback on Y (−1)

is Cartier as well. Since it is represented on the big open subset U (−1) by the divisor

np(KY (−1) +ΔY (−1)), it follows that KY (−1) +ΔY (−1) is Q-Cartier, and therefore KY +ΔY

is Q-Cartier as claimed.

The main theorem of this section reads as follows.

Theorem 4.10. Let (X,Δ) be a normal pair and F be a Q-Gorenstein 1-foliation on X.

Let q : X →X/F = Y be the quotient morphism and ΔY be the divisor on Y induced by Δ

as in Definition 4.6 above.

1. Assume that F is canonical. Then if (X,Δ) is terminal (resp. canonical, klt, lc), so is

(Y,ΔY ).

2. Assume that F is klt. If (X,Δ) has at worst lc singularities, then (Y,ΔY ) is klt.

3. Assume that F is lc. Then:

(a) If (X,Δ) has at worst klt singularities, so does (Y,ΔY );

(b) If (X,Δ) is lc, so is (Y,ΔY ).

Remark 4.11.

1. As the proof will show, in concrete cases a finer analysis might be possible (see

Proposition 4.13 for some examples).

2. Assume that F is strictly log canonical. Then even if X is smooth, the singularities of

Y need not be milder than klt, as we saw in Remark 4.2.

3. If both X and Y are regular, then F is regular according to Lemma 2.37. But in

general the singularities of F cannot be quantified from the singularities of X and Y : in

Example 2.33 we have seen the canonical singularity D0
4 (p=2) arising as the quotient of

k�x,y� by the non-lc derivation x2∂x+y2∂y. See [35, Proposition 2.3] for more examples

with p = 2. The surface case is nonetheless special, and we will see in Theorem 4.19

below that what is at play here is that the D0
4 singularity is not F -pure.

4. Even if F and X/F are midly singular, X need not be so. Indeed, consider the

affine scheme X = Spec(k[x, z]/(zp − s(x)) and the 1-foliation F generated by ∂/∂z.

As observed in [8, Example 2.14], F is canonical. The quotient X/F is the affine variety

with coordinate ring k[x, zp]/(zp− s(x)) ∼= k[x], hence it is regular. But we can choose

s(x) such that X is normal but not lc: for example s(x) = xn
1 +xm

2 with n,m� 1 not

divisible by p.

Proof. By Lemma 4.9 the Q-Weil log canonical divisor KY +ΔY is Q-Cartier, and

thus we may investigate its birational singularities. Consider a proper birational morphism

μ : Y ′ → Y , and write KY ′ +μ−1
∗ ΔY = μ∗(KY +ΔY )+

∑
aEE where E runs through the

exceptional prime divisors of μ. We are interested in the numbers aE . To compute them we

look at the following commutative diagram

X X ′

Y Y ′,

q

ν

q′

μ

where X ′ is the normalization of Y ′ in K(X). The morphism ν : X ′ →X indeed exists and

is uniquely determined by Zariski’s Main theorem. Notice that q′ is an homeomorphism;
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in particular q′ induces a bijection between the μ-exceptional prime divisors and the ν-

exceptional ones. So if E is μ-exceptional, let us write E′ the corresponding ν-exceptional

divisor. Let also F ′ = ν∗F be the foliation induced by F on X ′, so that q′ is the quotient

morphism.

We now write down the pullback formulas for every canonical divisor in sight:

KY ′ +μ−1
∗ ΔY = μ∗(KY +ΔY )+

∑
aEE,

KX +Δ= q∗(KY +ΔY )+(1−p)KF ,

KX′ +ν−1
∗ Δ= (q′)∗(KY ′ +μ−1

∗ ΔY )+(1−p)KF ′ ,

KF ′ = ν∗KF +
∑

bE′E′,

KX′ +ν−1
∗ Δ= ν∗(KX +Δ)+

∑
cE′E′.

Here we use the notations of Definition 4.6, and the third equality follows from

Proposition 4.8 and the observation that (ν−1
∗ Δ)Y ′ = μ−1

∗ ΔY (which can be verified over

the generic points of μ−1ΔY , where μ is an isomorphism). To simplify the notations, we

may localize at the generic point of some E, and assume that there is a unique exceptional

divisor. If we apply (q′)∗ to the very first equation in the above list, we find

aEδ(E
′)E′ = (q′)∗(KY ′ +μ−1

∗ ΔY )− (q′)∗μ∗(KY +ΔY ),

where

δ(E′) =

{
1 if E′ is F ′-invariant,

p otherwise.

Using the canonical isomorphism (q′)∗μ∗ ∼= ν∗q∗ and substituting in the other formulae on

the right-hand side, we find the equation

aEδ(E
′) = cE′ +(p−1)bE′ .

In other words, {
if E′ is F ′-invariant : aE = cE′ +(p−1)bE′

if E′ is not F ′-invariant : aE = 1
p (cE′ +(p−1)bE′) .

(4.4)

The number cE′ has a lower bound according to the birational singularities of (X,Δ). The

number bE′ has a lower bound according to the birational singularities of the foliation F
(and in the log canonical and klt cases, it might depend on the F ′-invariance of E′; in

particular, if bE′ is negative then E′ is not F ′-invariant). A simple case-by-case analysis

based on (4.4) concludes the proof.

We indicate several corollaries of Theorem 4.10.

Corollary 4.12. Let X be a regular variety and F a 1-foliation on X. Then:

1. if F is canonical then it is regular outside a closed subset of codimension ≥ 3.

2. if F � TX/k then F cannot be terminal.

Proof. By [30, Corollary 2.30] a terminal variety is regular in codimension 2. So if F is

canonical, then by Theorem 4.10 the quotientX/F is terminal, hence regular in codimension

2. Thus F is regular in codimension 2 by Lemma 2.37.
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Now if F � TX/k was terminal then it would be generically regular by the previous

paragraph, but by Example 3.4 regular foliations on regular varieties are not terminal:

contradiction.

As a consequence, we see that on regular surfaces in positive characteristic, there is no

terminal 1-foliations and that the only canonical ones are the regular ones. This is in sharp

contrast with the characteristic zero 0 case, where there is a larger supply of canonical

foliations [43, III.i.3].

If we consider singular underlying surfaces, then the discrepancies of F along the minimal

resolution are usually non-negative.

Proposition 4.13. Let S be a normal surface and F be a Q-Gorenstein 1-foliation

on S. Assume that S/F has canonical singularities (resp. is regular). Then a(E;F) ≥ 0

(resp. a(E;F)> 0) for every exceptional divisor E on the minimal resolution of S.

Proof. Let T = S/F , let π : S′ → S be the minimal resolution of S, and let T ′ be quotient

of S′ by π∗F . Then we have a commutative diagram

S S′

T T ′.

π

q

Let E ⊂ S′ be a prime π-exceptional divisor, with image E′ = q(E) ⊂ T ′. Then as in the

proof of Theorem 4.10, we find

a(E′;T )δ(E) = a(E;S′)+(p−1)a(E;F).

First assume that T is canonical. As δ(E) ∈ {1,p}, the left-hand side of the equality is

non-negative. Since S′ is the minimal resolution of S, we have a(E;S′)≤ 0. Thus we must

have a(E;F)≥ 0. If T is regular, then the left-hand side is positive and so a(E;F)> 0.

Example 4.14. Let T = (0 ∈ A2
x,y) and G be the 1-foliation generated by ∂a,−b

(Example 2.6). Then S = T/G is klt (even canonical if a = −b). Let F be the unique

1-foliation such that T (−1) = S/F . Then F is Q-Gorenstein since S is Q-factorial

[59, Corollary 4.11]. By the above proposition, if π : S′ → S is the minimal resolution then

Kπ∗F =KF +E where E ≥ 0 and Supp(E) = Exc(π).

Corollary 4.15. Let X be an lc (resp. klt) k-scheme of finite type and s∈H0(X,OX).

If the 1-foliation Ann(s) defined by

Ann(s)(U) = {D ∈ TX/k(U) |D(sU ) = 0}, U ⊂X open,

is lc and properly contained in TX/k, then the normalized p-cyclic cover (X[ p
√
s])

ν
is lc

(resp. klt).

Proof. It is easy to check that Ann(s) is indeed a 1-foliation, and that Ann(s) �= TX/k if

and only if s is not a pth power. If Y is the normalization ofX[ p
√
s] then X/Ann(s) = Y (−1).

As Y and Y (−1) are abstractly isomorphic, the result follows from Theorem 4.10.

Remark 4.16.

1. Corollary 4.15 can be generalized to more general p-cyclic coverings as follows. Let L
be a line bundle on X, and s ∈H0(X,L−p) be a section that does not have a pth root
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in H0(X,L−1). Then we use s : Lp →OX to give an OX -algebra structure to the direct

sum
⊕p−1

i=0 Li. Taking its normalized relative spectrum over X yields a finite purely

inseparable Y →X. Let {Uα} be a affine cover that trivializes L. For each Uα, choose a

generator σα ∈ L(Uα): we can write s|Uα = uασ
−p
α in L−p(Uα) for some uα ∈ OX(Uα).

This element uα does not depend on σα, up to scaling by an element of OX(Uα)
p. Thus

the assignments

Uα 
→ {D ∈ TX/k(Uα) |D(uα) = 0}

define a 1-foliation Ann(s) on X. Since

YUα
∼= Spec(OX(Uα)[T ]/(T

p−uα))
ν

we may apply Corollary 4.15 to obtain some singularity restrictions on Y as soon as

Ann(s) is lc.

2. If X is a regular variety, it is easy to find local generators of Ann(s), at least up to

saturation. Let x1, . . . ,xn be a regular system of parameters of OX,z. By Lemma 2.4,

there exist Di ∈ Derk(OX,z) such that Di(xj) = δij . Write si = Di(s): since s is not a

pth power, we may assume that s1 �= 0. Then it is immediate that

siD1−s1Di ∈Ann(s) ∀i= 2, . . . ,n.

Now Ann(s) has corank 1, so these n−1 derivations generate Ann(s) up to saturation

as they are generically linearly independent.

3. For example, let (s ∈ S) be a germ of regular surface and take ϕ ∈H0(S,OS). Choose a

regular system of parameters x,y ∈OS,s and let Dx,Dy ∈Derk(OS,s) be the derivations

afforded by Lemma 2.4. Then Ann(ϕ) is generated up to saturation by Dy(ϕ)Dx −
Dx(ϕ)Dy. Expanding ϕ=

∑
i,j ϕijx

iyj in ÔS,s, we have

Dy(ϕ)≡ ϕ01+ϕ11x+2ϕ02y and Dx(ϕ)≡ ϕ10+2ϕ20x+ϕ11y,

where the equalities are taken module m2. Assuming that Dy(ϕ) and Dx(ϕ) have trivial

greatest common divisor, we see:

(a) Ann(ϕ) is regular at s if and only if dϕ=Dx(ϕ)dx+Dy(ϕ)dy /∈mΩ1
S/k;

(b) Ann(ϕ) is strictly lc at s if and only if: ϕ01 = 0 = ϕ10 and the matrix(
ϕ11 −2ϕ20

2ϕ02 −ϕ11

)
is non-nilpotent (that is, its determinant and its trace are not both zero).

4. On surfaces, singularities of normalized p-cyclic covers can be handled with other

methods: for example, see [4], [28] for the case of canonical index-one cover of klt surfaces.

4.3 Singularities of surface quotients

In this section, we consider more specifically the singularities of quotients of regular

surfaces. From Theorem 4.10 we get the following corollary.

Corollary 4.17. Let (s ∈ S) be a normal surface germ and F a log canonical 1-

foliation on S. Assume either that

1. S is klt, or

2. there exists a non-zero Q-Weil divisor Δ such that (S,Δ) is lc.

Then the germ (s ∈ S/F) has rational singularities.
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Proof. Let T = S/F be the quotient. In the first case, T is also klt by the theorem and

klt surfaces are rational [58, Fact 3.4]. In the second case, if ΔT is defined as in Definition 4.6

then (T,ΔT ) is lc by the theorem. As ΔT �= 0 we deduce from [30, Proposition 2.28] that T

has rational singularities.

Remark 4.18. Corollary 4.17 may fail if F is not log canonical: see [35, Proposition 2.3]

for an example where the quotient has an elliptic singularity. It would be interesting

to determine what may happen when S is an elliptic singularity, and F a log canonical

1-foliation.

In the surface case, a partial converse of Theorem 4.10 holds.

Theorem 4.19. Let S be a regular surface over k, and F be a 1-foliation of rank 1 on S.

Then the following are equivalent:

1. S/F is F-regular (equivalently klt if p > 5),

2. S/F is F-pure,

3. F is lc.

Proof. We may assume that k is algebraically closed and that S = Spec(O) is the

spectrum of a complete regular local two-dimensional ring with residue field k, and that F
is not regular.

Suppose that F is lc. By Corollary 3.7 the 1-foliation F has multiplicative singularities.

Then by S/F is F -regular by Theorem 4.3.

Since F -regularity implies F -purity, we only need to show that if A=OF is F -pure then

F is lc. We follow the argument of [17, Proposition 2.4]. The sheaf F is free of rank 1, so

pick a generator ∂. We have ∂[p] = α∂ for some α∈O. We will show that ∂ is multiplicative,

which will conclude by Corollary 3.7.

The inclusion A ↪→ A1/p splits as map of A-modules. Since it factors through O, by

restriction we get an A-module map ϕ : O → A splitting the natural inclusion. Over

the regular locus of S/F the sheaf HomOS/F (OS ,OS) is generated by ∂ over OS [64].

This regular locus is big and the Hom sheaf is reflexive, thus ∂ generates over O the

endomorphism ring HomA(O,O). So we can write ϕ=
∑p−1

i=0 ai∂
[i] for some ai ∈O. Since ϕ

splits A=O∂ ↪→O, we see that a0 = 1 and ∂ ◦ϕ= 0. As the ∂[i] are O-linearly independent

[41, Theorem 25.4], by considering the i= 1 term of ∂ ◦ϕ we find

∂(a1)+1+αap−1 = 0.

Now ∂(a1) belongs to the maximal ideal of O (because F is assumed to be singular, cf

Lemma 2.19). Therefore α must be invertible, and so ∂ is multiplicative.

§5. Families of foliations

We introduce a notion of parametrized families of foliations. We fix once and for all a

perfect field k of characteristic p > 0.

5.1 Definitions and universal families

Definition 5.1. Let S be a locally Noetherian F -finite k -scheme. A family of foliations

of rank r over S is the data of

• a flat finite type k -morphism f : X → S,

• two coherent OX -modules F ↪→ TX/S ,
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subject to the following properties:

1. the fibers of X → S are geometrically normal and f∗OX =OS holds,

2. TX/S is flat over S, and its restriction to Xs can naturally be identified with the tangent

sheaf TXs/k(s) for every s ∈ S,

3. the quotient sheaf Q= TX/S/F is flat over S, and

4. for any s ∈ S, the fiber Fs ↪→ TXs/k(s) is a foliation of rank r.

We define analogously families of 1-foliations of rank r on X over S.

What is implicit in the definition is that, since both TX/S and Q are flat over S, the

sheaf F is also flat over S and so for every s ∈ S we have an exact sequence

0→Fs → TXs/k(s) →Qs → 0, (5.1)

where we write Fs = F ⊗k(s) and Qs =Q⊗k(s).

Remark 5.2. In practice, a family of foliations F ⊂ TX/S is interesting if we can

interpret F itself as a collection of vector fields over S. So typically we want TX/S = TX/S ,

and this is the only case we will consider. Given an arbitrary X → S, for every s ∈ S there

is a natural morphism TX/S ⊗k(s)→ TXs/k(s) but in general it is not an isomorphism. In a

few special cases it is, however:

1. When the morphism X → S is smooth, because then Ω1
X/S is locally free.

2. When S is regular, and TX/S is S2+dimS and flat over S. (8)

3. When TX/S is its own universal hull, in the sense of [31, §9.4].

Lemma 5.3. Let F ↪→ TX/S be a family of foliations (resp. of 1-foliations) of rank r.

Assume that S is S2. Then F is a foliation (resp. a 1-foliation) of rank r.

Proof. We need to prove that F is saturated in TX/S , since its generic fiber is already

closed under Lie brackets (resp. under pth powers), see Remark 2.15. Now F is flat over S

and its restriction to any fiber is S2. As S is S2, if follows from [15, 6.4.1(ii)] that F is an

S2 OX -module. It follows that the quotient sheaf Q is S1 (see [30, Lemma 2.60]). Since Q
has full support, it is torsion-free [1, 0AUV]. Hence F is saturated in TX/S .

Non-trivial families of foliations (resp. of 1-foliations) on constant smooth families exist.

In fact, assuming the fiber to be is projective, there are even universal such families. This

is a straightforward Quot scheme argument, which we spell out for completeness. We refer

to [13] for the definition and the construction of the Quot scheme.

Lemma 5.4. Let T → S be a proper morphism of Noetherian schemes and u : M→N
a surjective morphism of coherent OT -modules. Assume that M is flat over S. Then there

is a closed subscheme S′ of S such that: a morphism V → S factorizes through S′ if and

only if uV is an isomorphism.

Proof. This is [51, Chapter 2, §4, Proposition].

8 I am not aware of simple conditions, besides relative smoothness, that guarantee that TX/S satisfies
Serre’s condition Sr beyond r = 2, even in the absolute case where S is the spectrum of a field. If X is
Gorenstein and Ω1

X/k is Cohen–Macaulay, then by duality [11, Proposition 3.3.3] its dual TX/k is also

Cohen–Macaulay. The condition that Ω1
X/k is Cohen–Macaulay appears to be quite restrictive: in case

X is lci, Ω1
X/k satisfies Sr if and only if X is regular in codimension r [33, Proposition 9.7].
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Proposition 5.5. Let X be a regular projective connected k-scheme X and dimX >

r ≥ 1 be an integer. Then there is a locally closed subscheme Q0(r) (resp. a locally

closed subscheme Q1(r)) of QuotTX/k/X/k that parametrizes families of foliations (resp. of

1-foliations) of rank r on X over Noetherian bases.

Proof. Write T = TX/k. Notice that since X is regular, for every k -scheme S the sheaf

TXS/S is the pullback of T through the projection XS =X ×k S →X. Fix an ample line

bundle L on X. The Quot scheme QuotT/X/k is the disjoint union of the projective schemes

Q(ϕ) = QuotL,ϕ
T/X/k, where ϕ ∈ Q[t]. Each product XQ(ϕ) supports a universal quotient

TXQ(ϕ)/Q(ϕ) �Qϕ,univ. Let Fϕ,univ be its kernel. Note that the relative rank of Fϕ,univ over

Q(ϕ) is uniquely determined by the Hilbert polynomial ϕ.

We have to show that there exist a locally closed subscheme Q0(r,ϕ) (resp. Q1(r,ϕ)) of

Q(ϕ) such that S → Q(ϕ) factors through Q0(r,ϕ) (resp. through Q1(r,ϕ)) if and only if

the pullback of the universal quotient through XS →XQ is a family of foliations (resp. of

1-foliations) on X. Then we will have Qi(r) =
⊔

ϕQi(r,ϕ).

For simplicity, from now on we drop the ϕ from the notation. For every point q ∈Q, by

flatness of Quniv we have an exact sequence of OXk(q)
-coherent modules:

0→Funiv
q → TXk(q)/k(q) →Quniv

q → 0.

We define a few subschemes of Q as follows.

1. There is an open subset U parametrizing saturated and reflexive Funiv
q . The fibers Quniv

q

have all full support, so they are torsion-free if and only if if they are S1 [1, 0AUV].

Moreover by [1, 0EB8] and the above exact sequence, if Quniv
q is torsion-free then Funiv

q

is reflexive. Since Quniv is proper and flat over Q, the set of q ∈ Q over which Quniv
q is

S1 is open in Q [16, 12.2.1], call it U .
2. There is a closed subscheme Lparametrizing those Funiv

q which are closed under Lie

brackets. Consider the composite morphism

LFuniv :
2∧
Funiv → TXQ/Q →Quniv

sending v∧w to the class of [v,w] in Quniv. Its image im(LFuniv) is a coherent subsheaf

of Quniv. For a morphism S →Q, the pullback morphism (LFuniv)S is zero if and only

if the surjection im(LFuniv)→ 0 becomes an isomorphism. By Lemma 5.4 this defines a

closed subscheme L of Q.

3. There is a closed subscheme P of L parametrizing those Funiv
q which are closed under Lie

brackets and under pth powers. This is similar to the previous point, with the additional

subtlety that the pth power is not linear. However, Hochschild’s formula (2.1) shows

that (aD)[p] is the sum of apD[p] and a scaling of D ; and a formula due to Jacobson

[24, (15) on p. 209] says that (D1+D2)
[p]−D

[p]
1 −D

[p]
2 is a sum of commutators involving

only D1 and D2. Thus, restricting over L, we get a linear map

PFuniv : F ∗
XL/L

(
Funiv

L
)
−→Quniv

L

sending v to the class of v[p] inQuniv
L , where FXL/L : XL →X

(1)
L is the L-linear Frobenius.

As above, the function PFuniv vanishes functorially over a closed subset P ⊂ L.
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Now we set Q0(r) = U ∩L and Q1(r) = U ∩P. By construction they have the desired

properties (9), and the proof is complete.

5.2 Quotients and fibers

We turn to the following interrogation.

Question 5.6. Let (f : X → S,F ↪→ TX/S) be a family of 1-foliations; we continue to

assume, just as in Remark 5.2, that TX/S commutes with restriction to fibers. Let Z =X/F
be the quotient. Since the derivations in F are OS-linear, the morphism f factors as

X Z = X/F S.

f

q g
(5.2)

With these notations, we ask:

1. Is g : Z → S a flat morphism?

2. For s ∈ S, how do Zs and Xs/Fs relate?

For the first question, we have the following result.

Proposition 5.7. Notations as above. If S is regular of dimension ≤ 2, then g : Z → S

is flat.

Proof. We may assume that S =Spec(R) is regular local of dimension two with maximal

ideal (x,y) (the dimension one case will be similar), and that X = Spec(A). Since A is flat

over R, the elements x,y ∈AF form a regular sequence in A. By Lemma 2.36 the sequence

x,y is also regular in AF . By [1, 07DY] it follows that AF is flat over R.

Remark 5.8.

1. The statement of Proposition 5.7 still holds if we only assume that F is a 1-foliation

contained in TX/S , instead of being a family of 1-foliations. Thus we generalize the

flatness result of [55, Corollary 2.8].

2. Proposition 5.7 does not hold in general if dimS ≥ 3. For example, consider

X = A3
x×A3

s , g = pr2 : X → A3
s = S,

and let F be the family of 1-foliations generated by ∂ =
∑3

i=1 si∂xi . This derivation

defines an αp-action, whose fixed locus is V (s1, s2, s3) ⊂ X . Let ξ be the generic point

of this fixed locus. Then O∂
X ,ξ =OZ,q(ξ) has depth 2 by Lemma 2.31. Since f(ξ) is the

origin on A3
s , we see that OS,f(ξ) →OZ,q(ξ) is not flat, for otherwise OZ,q(ξ) would have

depth 3. Hence Z → S is not flat.

Next let us compare Zs with the quotient Xs/Fs. To begin with, for every s ∈ S we

construct a comparison morphism ϕs : Xs/Fs →Zs as follows. Locally, pick a section ∂ ∈F :

it is a local derivation on X which, as it belongs to TX/S , is OS-linear. By the exact

9 It might not be true that, given S → Q and the base-change h : XS → XQ, the morphism
h∗(LFuniv) : h∗ (∧2Funiv

)
→ h∗Quniv is the same as Lh∗Funiv , for the simple reason that h∗ (∧2Funiv

)

and
∧2h∗Funiv might be different. But in any case their images in h∗Quniv are the same, and all we

care about is the vanishing of that image.
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sequence (5.1), the restriction ∂s ∈ Fs is a local derivation of Xs that can be defined by the

commutativity of the diagram

OX OX

OXs OXs,

∂

∂s

So if a ∈ OX is annihilated by ∂, its image ā ∈ OXs is annihilated by ∂s. Letting ∂ range

through the elements of F , we obtain a factorization of the k(s)-linear Frobenius of Xs as

follows:

F ∗
Xs/k(s)

: OX (1)
s

→OZ ⊗k(s)
cs−→OXs/Fs

↪→OXs . (5.3)

This induces a universal homeomorphism ϕs : Xs/Fs → Zs which factors the k(s)-linear

Frobenius of Xs. Notice that the arrow cs : OZ ⊗ k(s) → OXs/Fs
in (5.3) is a priori not

injective. In fact, its kernel is p-nilpotent because Op
Z ⊆ OX (1) , and as OXs is reduced we

get in fact that cs is an injective map if and only if Zs is reduced.

If the morphism ϕs is an isomorphism, we say that taking fiber and quotient commutes

over s.

While ϕs is defined quite generally, we will concentrate on the case where X → S is

smooth and S is regular.

Proposition 5.9. Notations as in (5.2). Assume that the exact sequence

F ↪→ TX/S � Q is split at z ∈ X , that f is smooth at z and that S is regular at s = f(z).

Then ϕs : Xs/Fs → Zs is an isomorphism at z.

Proof. The question is local, so we may assume that S = Spec(A) and X = Spec(B)

are affine with (A,mA) regular local and B a smooth A-algebra. We may also shrink B

so that F becomes a direct summand of TB/A, and TB/A a direct summand of TB/k. So

F is a direct summand of TB/k. Then by Example 2.18, there is a partial system of local

coordinates v1, . . . ,vr ∈B such that we can write

B =
⊕

0≤i1,...,ir<p

BF ·vi11 · · ·virr ,

and moreover F is generated by ∂1, . . . ,∂r with the property that ∂i(vj) = δij (the Kronecker

delta). By A-linearity, the image of the structural map A → B is contained in BF . Thus

the fiber over the closed point of S is given by

B/mAB =
⊕

0≤i1,...,ir<p

(BF/mAB
F ) · v̄i11 · · · v̄irr ,

where v̄i is the image of vi through the quotient B→B/mAB. Moreover Fs is generated by

the restrictions ∂̄i of the ∂i’s, and we still have the property ∂̄i(v̄j) = δij . Thus if w̄ ∈B/mAB

is annihilated by every element of Fs, it belongs to the summand i1 = · · ·= ir =0, and we can

find a preimage of w̄ in the corresponding summand of B. That preimage will be annihilated

by every element of F . This shows that the map cs in (5.3) is an equality at z ∈ Xs.

Our main application of the proposition above is the following one (compare with

[7, Theorem 4.1.7]).
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Corollary 5.10. Notations as in (5.2). Assume that S is regular. Then for every

s ∈ S, the morphism ϕs is finite and an isomorphism in codimension one. Moreover it is

an isomorphism at z ∈ Xs if and only if Zs is S2 at z.

Proof. By assumption every fiber Xs is F -finite, so it is easily seen from the above

construction that every ϕs is finite. Take z ∈ Xs such that codimXs(z) ≤ 1: we check that

the hypothesis of Proposition 5.9 hold. Since Xs is normal, the local ring OXs,z is regular.

As f is flat and S is regular, we deduce that OX ,z is regular. Therefore f is smooth at

z ∈X . Moreover Qs is free at z ∈Xs (use the exact sequence (5.1) and the assumption that

Fs is saturated), and since Q is flat over S it follows that Q is free at z [1, 00MH]. Thus

TX/S →Q splits at z. So Proposition 5.9 indeed applies, and ϕs is an isomorphism at z.

As Xs/Fs is S2, the previous paragraph implies that ϕs is the S2-fication of red(Zs). Since

Zs is generically reduced by the above paragraph, if it is S2 then it is reduced everywhere

and so ϕs is an isomorphism.

Another sufficient condition for commutativity is the following one (compare with

[7, Theorem 4.1.5]).

Proposition 5.11. Notations as in (5.2). Assume that S is regular, and that at a

closed point z ∈ X the 1-foliation F has at worst multiplicative singularities. If s = f(z),

then g : Z → S is flat at q(z) and ϕs is an isomorphism at z ∈ Xs/Fs.

Proof. This can be checked at the completion of X at z. So we may assume that

X = Spec(A) is local complete and that F is generated up to saturation by commuting

multiplicative derivations. If D1,D2 ∈ Der(A) commute, then D2 descends to Der(AD1);

hence we may assume that F is generated up to saturation by a single multiplicative

derivation ∂ ∈ Der(A) defining a μp-action on A. Write A =
⊕p−1

i=0 Ai where Ai = {a ∈ A |
∂(a) = ia}; each Ai is an A0-module, and hence an OS,s-module. Then

Tor
OS,s

1 (k(s),A) =
⊕
i

Tor
OS,s

1 (k(s),Ai).

By the local criterion for flatness [1, 00MK], we obtain that the flatness of A over OS,s

implies the flatness of A0 =A∂ over OS,s.

To prove that ϕs is an isomorphism at z, by Corollary 5.10 we may assume that

codimXs(z)≥ 2 and show that depthq(z)(A0⊗k(s))≥ 2. (Alternatively, one can use that A0

is a universal geometric quotient, see the proof of [47, Chapter 1, §2, Theorem 1.1].) Since

OS,s is regular and A0 is flat over it, it is equivalent to show that depthq(z)(A0)≥ 2+dimf .

But A⊗k(s) is normal, so depthz(A)≥ 2+dimf by flatness. By (the proof of) Theorem 4.3

it follows that A0 has the desired property.

To conclude, we give some examples of (non-)commutativity.

Example 5.12. Assume that S is a regular curve with generic point η, that X → S is

smooth, and let F � TX/S be a family of 1-foliations of corank 1. If Qη is S2 (equivalently

a line bundle by [19, Proposition 1.9]), then ϕs is an isomorphism for every s ∈ S.

Indeed, if s is a closed point then as Qs is S1 we see that Q is S2 along Xs. Therefore Q
is an S2 rank 1 sheaf on X . As X is regular we deduce that Q is in fact a line bundle and

we apply Proposition 5.9.

Example 5.13 (Quotients of P2). Fix an excellent DVR R over k, with fraction field K.

Let F ⊂ TP2
R/R be the 1-foliation generated by ∂ = fx∂x+ gy∂y ∈ TA2

x,y/k
where f,g ∈ R×
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have distinct images in the residue field of R. Then ∂ is multiplicative. I claim that F is lc

everywhere. Indeed, cover P2
R with the three open sets

A2
x,y and A2

u,v and A2
u′,v′ , (x,y) = (u/v,1/v) = (v′/u′,1/u′).

One has

x∂x = u∂u =−u′∂u′ −v′∂v′ , y∂y =−u∂u−v∂v = u′∂u′ .

Using these transformation rules and Proposition 3.6, one sees that F is lc everywhere.

Combining Theorem 4.10 and Proposition 5.11, we get that P2
R/F → Spec(R) is a locally

stable family (in the sense of [31, §2.1]) with normal special fiber.

Example 5.14 (Quotients of P2, continued). In the notations of the previous example,

consider on A2
x,y the p-closed derivation

f(xnp−x)∂x+gλ(ynp−y)∂y

which on A2
u,v becomes

1

vnp−1

[
f(unp−1−vnp−1)−gλ(1−vnp−1)

]
u∂u+

1

vnp−1

[
−gλ(1−vnp−1)

]
v∂v.

Hence this is a multiplicative derivation, which generates an lc 1-foliation F ⊂ TP2
R/R. Thus,

as above, S = P2/F → Spec(R) is a locally stable family with normal central fiber.

Both fibers of S → Spec(R) are klt surfaces of Picard rank 1. As KF ∼= O(np− 1), by

Proposition 2.41 we see that S is canonically polarized when p ≥ 3 (if p = 2 we can also

get a del Pezzo or a Calabi–Yau surface). Notice that by [21, Example 3.6], if p ≥ 3 then

for most choices of λ and n, the minimal resolution of either fibers of S has a non-zero

non-closed global 1-form.

Example 5.15. Assume that ϕs is an isomorphism: then Qs need not be free or even

Cohen–Macaulay (which amounts to the same if Xs is regular). Indeed, consider the constant

family A3
x,y,t → A1

t over a field of characteristic 2, and the derivation

∂ = [x2+ tf ]
∂

∂x
+[y2+ tg]

∂

∂y
, f,g ∈ k[t], on A3.

Then ∂ ∈ TA3/A1 generates a family of 1-foliations, say F . Let ∂0 be the restriction of the

derivation ∂ to the fiber t= 0.

• The quotient TA2
x,y

/F0 is given by

k[x,y] ∂
∂x ⊕k[x,y] ∂

∂y

x2 ∂
∂x +y2 ∂

∂y

,

which is torsion-free but not free (and hence not Cohen–Macaulay) at the origin.

• However, I claim that the fiber of k[x,y,z]∂ over t = 0 is equal to k[x,y]∂0 . We have

computed in Example 2.33 the subring of constants of the derivation ∂0: it is given by

k[x2,y2,xy2−x2y]. Thus it suffices to find h∈ k[x,y, t] such that xy2−x2y+th∈ k[x,y, t]∂ .

One checks that h= gx+fy does the job.
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Example 5.16. Consider the family of 1-foliations F on X = A4
x,y,z,t → A1

t generated

by the additive derivation

∂ = xp ∂

∂x
+yp

∂

∂y
+ t

∂

∂z
.

Then z ∈ k[x,y,z] is a constant for ∂0, so it belongs to OX0/F0
. Say that f ∈ k[x,y,z, t]

satisfies ∂(z+ tf) = 0. Then it follows that

xpfx+ypfy+ tfz =−1,

where fx,fy,fz are the partial derivatives of f. But this cannot hold in a neighborhood of sub-

scheme defined by the ideal (x,y, t). Thus ϕ0 : X0/F0 → (X/F)0 is not an isomorphism along

the image of the line (x = y = 0). Observe however that it is an isomorphism everywhere

else.

While X/F = Y → A1 is smooth over the complement of the origin, the singularities

along the central fiber are quite complicated. In fact, I claim that Y → S is not a locally

stable family over 0 ∈ A1—by which I mean that (Y,Y0) is not lc—if p > 2. Assume it is.

Then for n > 1 not divisible by p, the base-change of Y → A1
t along A1

u → A1
t , t = un, is

again locally stable over 0 ∈ A1
u [31, 2.16.5]. Let us call it Y ′ → A1

u. Since A1
u → A1

t is flat,

we can compute Y ′ as the quotient of X ′ = A4
x,y,z,u by the 1-foliation F ′ generated by

∂′ = xp ∂

∂x
+yp

∂

∂y
+un ∂

∂z

(cf the proof of Lemma 2.35). Now let μ : W →X ′ be the blow-up of the ideal (x,y,z,u),

and consider the induced commutative diagram

X ′ W

Y ′ W/μ∗F ′.

μ

q

Then a local computation shows that the μ-exceptional divisor E is F ′-invariant, and that

Kμ∗F ′ = μ∗KF ′ −min{n−1,p−1}E.

If F = q(E), then (4.4) shows that

a(Y ′;F ) = 3− (p−1) ·min{n−1,p−1}.

This is smaller than −1 as soon as p,n > 2, but contradicts the log canonicity of (Y ′,Y ′
0).
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