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Observed changes and impacts

Ongoing climate trends have exacerbated many extreme 
events (very high confidence). The Australian trends include further 
warming and sea level rise sea level rise (SLR), with more hot days and 
heatwaves, less snow, more rainfall in the north, less April–October 
rainfall in the southwest and southeast and more extreme fire weather 
days in the south and east. The New Zealand trends include further 
warming and sea level rise (SLR), more hot days and heatwaves, less 
snow, more rainfall in the south, less rainfall in the north and more 
extreme fire weather in the east. There have been fewer tropical 
cyclones and cold days in the region. Extreme events include Australia’s 
hottest and driest year in 2019 with a record-breaking number of days 
over 39°C, New Zealand’s hottest year in 2016, three widespread 
marine heatwaves during 2016–2020, Category 4 Cyclone Debbie in 
2017, seven major hailstorms over eastern Australia and two over New 
Zealand from 2014–2020, three major floods in eastern Australia and 
three over New Zealand during 2019–2021 and major fires in southern 
and eastern Australia during 2019–2020. {11.2.1, Table 11.2, 11.3.8}

Climate trends and extreme events have combined with exposure 
and vulnerabilities to cause major impacts for many natural 
systems, with some experiencing or at risk of irreversible change 
in Australia (very high confidence) and in New Zealand (high 
confidence). For example, warmer conditions with more heatwaves, 
droughts and catastrophic wildfires have negatively impacted terrestrial 
and freshwater ecosystems. The Bramble Cay melomys, an endemic 
mammal species, became extinct due to loss of habitat associated with 
sea level rise (SLR) and storm surges in the Torres Strait. Marine species 
abundance and distributions have shifted polewards, and extensive 
coral bleaching events and loss of temperate kelp forests have occurred 
due to ocean warming and marine heatwaves across the region. In New 
Zealand’s southern Alps, from 1978 to 2016, the area of 14 glaciers 
declined 21%, and extreme glacier mass loss was at least 6 times more 
likely in 2011 and 10 times more likely in 2018 due to climate change. 
The end-of-summer snowline elevation for 50 glaciers rose 300 m from 
1949 to 2019. {11.3.1.1, 11.3.2.1, Table 11.2b, Table 11.4, Table 11.6, 
Table 11.9}

Climate trends and extreme events have combined with 
exposure and vulnerabilities to cause major impacts for some 
human systems (high confidence). Socioeconomic costs arising 
from climate variability and change have increased. Extreme heat has 
led to excess deaths and increased rates of many illnesses. Nuisance 
and extreme coastal flooding have increased due to sea level rise 
(SLR) superimposed upon high tides and storm surges in low-lying 
coastal and estuarine locations, including impacts on cultural sites, 
traditions and lifestyles of Aboriginal and Torres Strait Islander Peoples 
in Australia and Tangata Whenua Māori in New Zealand. Droughts 
have caused financial and emotional stress in farm households and 
rural communities. Tourism has been negatively affected by coral 

1	 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is 
expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and agreement statement, different confidence levels 
can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence.

bleaching, fires, poor ski seasons and receding glaciers. Governments, 
business and communities have experienced major costs associated 
with extreme weather, droughts and sea level rise (SLR). {11.3, 11.4, 
11.5.2, Table 11.2, Boxes 11.1–11.6}

Climate impacts are cascading and compounding across sectors 
and socioeconomic and natural systems (high confidence). 
Complex connections are generating new types of risks, exacerbating 
existing stressors and constraining adaptation options. An example 
is the impacts that cascade between interdependent systems and 
infrastructure in cities and settlements. Another example is the 2019–
2020 southeast Australia wildfires, which burned 5.8 to 8.1  million 
hectares, with 114 listed threatened species losing at least half of 
their habitat and 49 losing over 80%, over 3,000 houses destroyed, 
33 people killed, a further 429 deaths and 3230 hospitalisations due 
to cardiovascular or respiratory conditions, AUD$1.95 billion in health 
costs, AUD$2.3 billion in insured losses and AUD$3.6 billion in losses 
for tourism, hospitality, agriculture and forestry. {11.5.1, Box 11.1}

Increasing climate risks are projected to exacerbate existing 
vulnerabilities and social inequalities and inequities (high 
confidence). These include inequalities between Indigenous and non-
Indigenous Peoples and between generations, rural and urban areas, 
incomes and health status, increasing the climate risks and adaptation 
challenges faced by some groups and places. Resultant climate change 
impacts include the displacement of some people and businesses and 
threaten social cohesion and community well-being. {11.3.5, 11.3.6, 
11.3.10, 11.4}

Projected impacts and key risks

Further climate change is inevitable, with the rate and 
magnitude largely dependent on the emission pathway (very 
high confidence1). Ongoing warming is projected, with more hot 
days and fewer cold days (very high confidence). Further sea level rise 
(SLR), ocean warming and ocean acidification are projected (very high 
confidence). Less winter and spring rainfall is projected in southern 
Australia, with more winter rainfall in Tasmania, less autumn rainfall 
in southwestern Victoria and less summer rainfall in western Tasmania 
(medium confidence), with uncertain rainfall changes in northern 
Australia. In New Zealand, more winter and spring rainfall is projected 
in the west and less in the east and north, with more summer rainfall 
in the east and less in the west and central North Island (medium 
confidence). In New Zealand, ongoing glacier retreat is projected (very 
high confidence). More extreme fire weather is projected in southern and 
eastern Australia (high confidence) and over northern and eastern New 
Zealand (medium confidence). Increased drought frequency is projected 
for southern and eastern Australia and northern New Zealand (medium 
confidence). Increased heavy rainfall intensity is projected, with fewer 
tropical cyclones and a greater proportion of severe cyclones (medium 
confidence). {11.2.2, Table 11.3, Box 11.6}
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Climate risks are projected to increase for a wide range of 
systems, sectors and communities, which are exacerbated by 
underlying vulnerabilities and exposures (high confidence) 
{11.3; 11.4}. Nine key risks have been identified, based on magnitude, 
likelihood, timing and adaptive capacity {11.6, Table 11.14}:

Ecosystems at critical thresholds, where recent climate change has 
caused significant damage and further climate change may cause 
irreversible damage, with limited scope for adaptation

1)	 Loss and degradation of coral reefs and associated biodiversity 
and ecosystem service values in Australia due to ocean warming 
and marine heatwaves. For example three marine heatwaves on 
the Great Barrier Reef (GBR) during 2016–2020 caused significant 
bleaching and loss (very high confidence). {11.3.2.1, 11.3.2.2, 
Box 11.2}

2)	 Loss of alpine biodiversity in Australia due to less snow. For example 
loss of alpine vegetation communities (snow patch Feldmark and 
short alpine herb-fields) and increased stress on snow-dependent 
plant and animal species (high confidence). {11.3.1.1, 11.3.1.2}

Key risks that have potential to be severe but can be reduced 
substantially by rapid, large-scale and effective mitigation and 
adaptation

3)	 Transition or collapse of alpine ash, snowgum woodland, pencil 
pine and northern jarrah forests in southern Australia due to hotter 
and drier conditions with more fires. For example declining rainfall 
in southern Australia over the past 30 years, has led to drought-
induced canopy dieback across a range of forest and woodland 
types and death of fire-sensitive tree species due to unprecedented 
wildfires (high confidence). {11.3.1.1, 11.3.1.2}

4)	 Loss of kelp forests in southern Australia and southeast New 
Zealand due to ocean warming, marine heatwaves and overgrazing 
by climate-driven range extensions of herbivore fish and urchins. For 
example less than 10% of giant kelp in Tasmania was remaining by 
2011 due to ocean warming (high confidence). {11.3.2.1, 11.3.2.2}

5)	 Loss of natural and human systems in low-lying coastal areas due 
to sea level rise (SLR). For example for 0.5 m sea level rise (SLR), 
the value of buildings in New Zealand exposed to 1-in-100-year 
coastal inundation could increase by NZ$12.75  billion and the 
current 1-in-100-year flood in Australia could occur several times a 
year (high confidence). {11.3.5; Box 11.6}

6)	 Disruption and decline in agricultural production and increased 
stress in rural communities in southwestern, southern and 
eastern mainland Australia due to hotter and drier conditions. For 
example by 2050, a decline in median wheat yields of up to 30% 
in southwestern Australia and up to 15% in South Australia and 
increased heat stress in livestock by 31–42  days per year (high 
confidence). {11.3.4; 11.3.5; Box 11.3}

7)	 Increase in heat-related mortality and morbidity for people and 
wildlife in Australia due to heatwaves. For example heat-related 
excess deaths in Melbourne, Sydney and Brisbane are projected 
to increase by about 300/year (low emission pathway) to 600/year 
(high emission pathway) during the 2031–2080 period relative 
to 142/year in the period 1971–2020 (high confidence). {11.3.1, 
11.3.5.1, 11.3.5.2, 11.3.6.1, 11.3.6.2}

Key cross-sectoral and system-wide risk

8)	 Cascading, compounding and aggregate impacts on cities, 
settlements, infrastructure, supply chains and services due to 
wildfires, floods, droughts, heatwaves, storms and sea level rise 
(SLR). For example in New Zealand, extreme snow, heavy rainfall 
and wind events have combined to impact road networks, power 
and water supply, interdependent wastewater and stormwater 
services and business activities (high confidence) {11.3.3, 11.5.1, 
11.8.1}.

Key implementation risk

9)	 Inability of institutions and governance systems to manage climate 
risks. For example the scale and scope of projected climate impacts 
overwhelm the capacity of institutions, organisations and systems 
to provide necessary policies, services, resources and coordination 
to address socioeconomic impacts (high confidence) {11.5.1.2, 
11.5.1.3, 11.5.2.3, 11.7.1, 11.7.2, 11.7.3}.

There are important interactions between mitigation and 
adaptation policies and their implementation (high confidence). 
Integrated policies in interdependent systems across biodiversity, 
water quality, water availability, energy, transport, land use and 
forestry for mitigation can support synergies between adaptation 
and mitigation. These have co-benefits for the management of land 
use, water and associated conflicts and for the functioning of cities 
and settlements. For example, projected increases in fire, drought, 
pest incursions, storms and wind place forests at risk and affect their 
ongoing role in meeting New Zealand’s emissions reduction goals. 
{11.3.4.3, 11.3.10.2, 11.3.5.3, Box 11.5}

Challenges and solutions

The ambition, scope and progress of the adaptation process have 
increased across governments, non-government organisations, 
businesses and communities (high confidence). This process 
includes vulnerability and risk assessments, identification of strategies 
and options, planning, implementation, monitoring, evaluation and 
review. Initiatives include legislated institutional frameworks for 
risk assessment and national adaptation planning and monitoring 
in New Zealand, a National Recovery and Resilience Agency and 
National Disaster Risk Reuction Framework in Australia, deployment 
of new national guidance, decision tools, collaborative governance 
approaches and the introduction of climate risk and disclosure regimes 
for the private sector. The focus, however, has been on adaptation 
planning, rather than on implementation. {11.5.1, 11.7.1.1, Box 11.6, 
Table 11.15a, Table 11.15b, Table 11.17}

Adaptation progress is uneven, due to gaps, barriers and limits to 
adaptation and adaptive capacity deficits (very high confidence). 
Progress in adaptation planning, implementation, monitoring and 
evaluation is lagging. Barriers include lack of consistent policy 
direction, competing objectives, divergent risk perceptions and values, 
knowledge constraints, inconsistent information, fear of litigation, up-
front costs and lack of engagement, trust and resources. Adaptation 
limits are being approached for some species and ecosystems. Adaptive 
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capacity to address the barriers and limits can be built through greater 
engagement with groups and communities to build trust and social 
legitimacy through the inclusion of diverse values, including those 
of Aboriginal and Torres Strait Islander Peoples and Tangata Whenua 
Māori. {11.4, 11.5, 11.6, 11.7, 11.8, Table 11.4, Table 11.5, Table 11.6, 
Table 11.16, Box 11.2}

A range of incremental and transformative adaptation options 
and pathways is available as long as enablers are in place to 
implement them (high confidence). Key enablers for effective 
adaptation include shifting from reactive to anticipatory planning, 
integration and coordination across levels of government and sectors, 
inclusive and collaborative institutional arrangements, government 
leadership, policy alignment, nationally consistent and accessible 
information and decision-support tools, along with adaptation funding 
and finance, and robust, consistent and strategic policy commitment. 
Over 75% of people in Australia and New Zealand agree that climate 
change is occurring and over 60% believe climate change is caused by 
humans, giving climate adaptation and mitigation action further social 
legitimacy. {11.7.3, Table 11.17}

New knowledge on system complexity, managing uncertainty 
and how to shift from reactive to adaptive implementation is 
critical for accelerating adaptation (high confidence). Priorities 
include a greater understanding of impacts on natural system dynamics; 
the exposure and vulnerability of different groups within society, 
including Indigenous Peoples; the relationship between mitigation and 
adaptation; the effectiveness and feasibility of different adaptation 
options; the social transitions needed for transformative adaptation; 
and the enablers for new knowledge to better inform decision-making 
(e.g., monitoring data repositories, risk and vulnerability assessments, 
robust planning approaches, sharing adaptation knowledge and 
practice). {11.7.3.3}

Aboriginal and Torres Strait Islander Peoples and Tangata 
Whenua Māori can enhance effective adaptation through the 
passing down of knowledge about climate change planning 
that promotes collective action and mutual support across the 
region (high confidence). Supporting Aboriginal and Torres Strait 
Islander Peoples and Tangata Whenua Māori institutions, knowledge 
and values enable self-determination and create opportunities to 
develop adaptation responses to climate change. Actively upholding 
the UN Declaration on the Rights of Indigenous Peoples and Māori 
interests under the Treaty of Waitangi at all levels of government 
enables intergenerational approaches for effective adaptation. {11.3, 
11.4, 11.6, 11.7.3; Cross-Chapter Box INDIG in Chapter 18}

A step change in adaptation is needed to match the rising 
risks and to support climate resilient development (very high 
confidence). Current adaptation is largely incremental and reactive. 
A shift to transformative and proactive adaptation can contribute 
to climate resilient development. The scale and scope of cascading, 
compounding and aggregate impacts require new, larger-scale and 
timely adaptation. Monitoring and evaluation of the effectiveness of 
adaptation progress and continual adjustment is critical. The transition 
to climate resilient development pathways can generate major co-

benefits, but complex interactions between objectives can create 
trade-offs. {11.7, 11.8.1, 11.8.2}

Delay in implementing adaptation and emission reductions 
will impede climate resilient development, resulting in more 
costly climate impacts and greater scale of adjustments (very 
high confidence). The region faces an extremely challenging future. 
Reducing the risks would require significant and rapid emission 
reductions to keep global warming to 1.5°C–2.0°C, as well as robust 
and timely adaptation. The projected warming under current global 
emissions reduction policies would leave many of the region’s human 
and natural systems at very high risk and beyond adaptation limits. 
{11.8, Table 11.1, Table 11.14, Figure 11.6}
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11.1	 Introduction

This chapter assesses the observed impacts, projected risks, vulnerability 
and adaptation, and the implications for climate resilient development 
for the Australasia region, based on the literature published up to 1 
September 2021. It should be read in conjunction with other Working 
Group (WG) II chapters, the climate science assessment in the WGI 
report and the greenhouse gas emissions and mitigation assessment 
in the WGIII report.

11.1.1	 Context

The Australasia region is defined as the Exclusive Economic Zones 
(EEZs) and territories of Australia and New Zealand. In both countries, 
climate adaptation is largely implemented at a sub-national level 
through the devolution of functions constitutionally or by statute, 
alongside disaster risk reduction (COAG, 2011; Lawrence et al., 2015; 
Macintosh et al., 2015).

Australia’s economy is dominated by financial and insurance services, 
education, mining, construction, tourism, health care and social 
assistance (ABS, 2018) with Australian exports accruing mostly from 
mining (ABS, 2018; ABS, 2019). In New Zealand, service industries, 
including tourism, collectively account for around two-thirds of 
GDP (NZ Treasury, 2016). The primary sector contributes 6% of New 
Zealand’s GDP and over half of the country’s export earnings (NZ 
Treasury, 2016).

Existing vulnerabilities expose and exacerbate inequalities between 
rural, regional and urban areas, Indigenous and non-Indigenous Peoples, 
those with health and disability needs, and between generations, 
incomes and health status, increasing the relative climate change risk 
faced by some groups and places (high confidence) (Jones et al., 2014; 
Bertram, 2015; Perry, 2017; Hazledine and Rashbrooke, 2018).

Previous IPCC reports (Table 11.1) have documented observed climate 
impacts, projected risks, adaptation challenges and opportunities. 
This chapter presents more evidence of observed climate impacts 
and adaptation, better quantification of socioeconomic risks, new 
information about cascading and compounding risks, greater emphasis 
on adaptation enablers and barriers, and links to climate resilient 
development.

11.1.2 	 Economic, Demographic and Social Trends

Economic, demographic and sociocultural trends influence the exposure, 
vulnerability and adaptive capacity of individuals and communities (high 
confidence) (Elrick-Barr et al., 2016; Smith et al., 2016; Hayward, 2017; 
B. Frame et al., 2018; Plummer et al., 2018; Smith et al., 2018; Gartin 
et  al., 2020). In the absence of proactive adaptation, climate change 
impacts are projected to worsen inequalities between Indigenous and 
non-Indigenous peoples and other vulnerable groups (Green et  al., 
2009; Manning et  al., 2014; Ambrey et  al., 2017) (high confidence). 
Socioeconomic inequality, low incomes and high levels of debt, poor 
health and disabilities increase vulnerability and limit adaptation 

(Hayward, 2012) (11.7.2). A lack of services, such as schools and medical 
services, in poorer and rural areas and decision-making processes that 
privilege some voices over others exacerbate inequalities (Kearns et al., 
2009; Hinkson and Vincent, 2018).

Changes to the composition and location of different demographic 
groups in the region contribute to increased exposure or vulnerability 
to climate change (medium confidence). Australia’s population reached 
25 million in 2018 and is projected to grow to 37.4–49.2 million by 2066, 
with most growth in major cities (accounting for 81% of Australia’s 
population growth from 2016 to 2017) (ABS, 2018), although COVID-19 
is expected to slow the growth rate (CoA, 2020c). The highest growth 
rates outside of major cities occurred mostly in coastal regions (ABS, 
2017), which have built assets exposed to sea level rise (SLR). New 
Zealand’s population was 5.1 million at the end of 2020 and is projected 
to increase to 6.0–6.5 million by 2068, assuming no marked changes 
in migration patterns (Stats NZ, 2016; Stats NZ, 2021). Although the 
population densities of both countries are much lower than other OECD 
countries, they are highly urbanised with over 86% living in urban 
areas in both countries (Productivity Commission, 2017; World Bank, 
2018). This proportion is projected to increase to over 90% by 2050 (UN 
DESA, 2019) mostly in coastal areas (Rouse et al., 2017). Consideration 
of climate change impacts when planning and managing such growth 
and associated infrastructure could help avoid new vulnerabilities being 
created, particularly from wildfires, sea level rise (SLR), heat stress and 
flooding.

The region has an increasingly diverse population through the arrival 
of migrants, including those from the Pacific, whose innovations, 
skills and transnational networks enhance their and others’ adaptive 
capacity (De et al., 2016; Fatorić et al., 2017; Barnett and McMichael, 
2018), although language barriers and socioeconomic disadvantage 
can create vulnerabilities for some (11.7.2).

Climate change inaction exacerbates intergenerational inequity, 
including prospects for the current younger population (Hayward, 
2012). Increasing transient worker populations (ABS, 2018) may 
diminish social networks and adaptive capacity (Jiang et al., 2017). The 
region has an ageing population and increasing numbers of people 
living on their own who are highly vulnerable to extreme events, 
including heat stress and flooding (Zhang et al., 2013).

Socioeconomic trends are affected by global mega trends (KPMG, 
2021), which are expected to influence the region’s ability to implement 
climate change adaptation strategies (World Economic Forum, 2014). 
Digital technological advances have potential benefits for building 
adaptive capacity (Deloitte, 2017a).

11.2	 Observed and Projected Climate Change

11.2.1	 Observed Climate Change

Regional climate change has continued since AR5 was released in 2014, 
with trends exacerbating many extreme events (very high confidence). 
The following changes are quantified with references in Tables 11.2a 
and 11.2b. The region has continued to warm (Figure 11.1), with more 
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Table 11.1 |  Summary of key conclusions from the IPCC 5th Assessment Report (AR5) Australasia chapter (Reisinger et al., 2014) and relevant conclusions from the IPCC Special 
Reports on Global Warming of 1.5°C (IPCC, 2018), Climate Change and Land (IPCC, 2019a) and Oceans and Cryosphere (IPCC, 2019b).

Conclusions Report

Our regional climate is changing (very high confidence) and warming will continue through the 21st century (virtually certain) with more hot days, fewer cold days, 
less snow, less rainfall in southern Australia and the northeast of both of New Zealand’s islands, more rainfall in western New Zealand, more extreme rainfall, SLR, 
increased fire weather in southern Australia and across New Zealand and fewer cyclones but a greater proportion of intense cyclones.

(Reisinger et al., 
2014)

Key risks include changes in the structure and composition of Australian coral reefs, loss of montane ecosystems, increased flood damage, reduced water resources 
in southern Australia, more deaths and infrastructure damage during heatwaves, more fire-related impacts on ecosystems and settlements in southern Australia and 
across New Zealand, greater risk to coastal infrastructure and ecosystems and reduced water availability in the Murray-Darling Basin (MDB) and southern Australia 
(high confidence). Benefits are projected for some sectors and locations (high confidence), including reduced winter mortality and energy demand for heating, 
increased forest growth and enhanced pasture productivity.

Adaptation is occurring and becoming mainstreamed in some planning processes (high confidence). Adaptive capacity is considered generally high in many human 
systems, but adaptation implementation faces major barriers, especially for transformational responses (high confidence). Some synergies and trade-offs exist between 
different adaptation responses and between mitigation and adaptation, with interactions occurring both within and outside the region (very high confidence).

Vulnerability remains uncertain due to incomplete consideration of socioeconomic dimensions (very high confidence), including governance, institutions, patterns of 
wealth and ageing, access to technology and information, labour force participation and societal values.

Emissions reductions under Nationally Determined Contributions from signatories to the Paris Agreement are consistent with a global warming of 2.5°C–3.0°C above 
pre-industrial temperatures by 2100. Much deeper emission reductions are needed prior to 2030 to limit warming to 1.5°C. There are limits to adaptation and adaptive 
capacity for some human and natural systems at global warming of 1.5°C, with associated losses.

(IPCC, 2018)

Climate impacts will disproportionately affect the welfare of impoverished and vulnerable people because they lack adaptation resources. Strengthening 
the climate-action capacities of national and sub-national authorities, civil society, the private sector, Indigenous People and local communities can support 
implementation of actions.

Land-related responses that contribute to climate change adaptation and mitigation can also combat desertification and land degradation and enhance food security. (IPCC, 2019a)

Appropriate design of policies, institutions and governance systems at all scales can contribute to land-related adaptation and mitigation while facilitating the pursuit 
of climate-adaptive development pathways.

Mutually supportive climate and land policies have the potential to save resources, amplify social resilience, support ecological restoration and foster collaboration 
between stakeholders.

Near-term action to address climate change adaptation and mitigation, desertification, land degradation and food security can bring social, ecological, economic and 
development co-benefits. Delaying action (both mitigation and adaptation) will be more costly.

The rate of global mean SLR of 3.6 mm yr−1 for 2006–2015 is unprecedented over the last century. Extreme wave heights, coastal erosion and flooding have increased 
in the Southern Ocean by around 1.0 cm yr−1 over the period 1985–2018.

(IPCC, 2019b)

Some species of plants and animals have increased in abundance, shifted their range and established in new areas as glaciers receded and the snow-free season 
lengthened. Some cold-adapted or snow-dependent species have declined in abundance, increasing their risk of extinction, notably on mountain summits.

Many marine species have shifted their range and seasonal activities. Altered interactions between species have caused cascading impacts on ecosystem structure and 
functioning.

Mean SLR projections are higher by 0.1 m compared to AR5 under RCP8.5 in 2100. Extreme sea level events that are historically rare (once per century) are projected 
to occur frequently (at least once yr−1) at many locations by 2050.

Projected ecosystem responses include losses of species habitat and diversity and degradation of ecosystem functions. Warm water corals are at high risk already and 
are projected to transition to very high risk even if global warming is limited to 1.5°C.

Governance arrangements (e.g., marine protected areas, spatial plans and water management systems) are too fragmented across administrative boundaries and 
sectors to provide integrated responses to the increasing and cascading risks. Financial, technological, institutional and other barriers exist for implementing responses.

Enabling climate resilience and sustainable development depends critically on urgent and ambitious emissions reductions coupled with coordinated, sustained and 
increasingly ambitious adaptation actions. This includes better cooperation and coordination among governing authorities, education and climate literacy, sharing of 
information and knowledge, finance, addressing social vulnerability and equity, and institutional support.

extremely high temperatures and fewer extremely low temperatures. 
Snow depths and glacier volumes have declined. Sea level rise and 
ocean acidification have continued. Northern Australia has become 
wetter, while April–October rainfall has decreased in south-western 
and south-eastern Australia. In New Zealand, most of the south has 
become wetter, while most of the north has become drier (Figure 11.2). 
The frequency, severity and duration of extreme fire weather conditions 
have increased in southern and eastern Australia and eastern New 
Zealand. Changes in extreme rainfall are mixed. There has been a 
decline in tropical cyclone frequency near Australia.

Reliable measurements are limited for some types of storms, particularly 
thunderstorms, lightning, tornadoes and hail (Walsh et al., 2016). Many 
high-impact events are a combination of interacting physical processes 
across multiple spatial and temporal scales (e.g., fires, heatwaves and 
droughts), and better understanding of these extreme and compound 
events is needed (Zscheischler et al., 2018).

Some of the observed trends and events can be partly attributed to 
anthropogenic climate change, as documented in Chapter 16. Examples 
include regional warming trends and sea level rise (SLR), terrestrial 
and marine heatwaves, declining rainfall and increasing fire weather 
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Observed temperature changes in Australia and New Zealand
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Figure 11.1 |  Observed temperature changes in Australia and New Zealand. Annual temperature change time series are shown for 1910–2019. Mean annual temperature 
trend maps are shown for 1960–2019 using contours for Australia and individual sites for New Zealand. Data courtesy of BOM and NIWA.

Observed rainfall changes in Australia and New Zealand
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Figure 11.2 |  Observed rainfall changes in Australia and New Zealand. Rainfall change time series for 1900–2019 are shown for Northern Australia (December–February: 
DJF), southwest Australia (June–August: JJA) and southeast Australia (JJA). Dashed lines on the maps for Australia show regions used for the time series. Rainfall trend maps are 
shown for 1960–2019 (DJF and JJA) using contours for Australia and individual sites for New Zealand. Areas of low Australian rainfall (less than 0.25 mm/day) are shaded white 
in JJA. Data courtesy of BOM and NIWA.
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Table 11.2a |  Observed climate change for Australia.

Climate variable Observed change References

Air temperature over land
Increased by 1.4°C from 1910 to 2019, with 2019 being the warmest year; 9 of the 10 warmest on 
record have occurred since 2005; clear anthropogenic attribution.

(BoM and CSIRO, 2020; Trewin et al., 2020; 
BoM, 2021a; Gutiérrez et al., 2021)

Sea surface temperature
Increased by 1.0°C from 1900 to 2019 (0.09°C/decade), with an increase of 0.16°C–0.20°C/decade 
since 1950 in the southeast. Eight of the 10 warmest years on record have occurred since 2010.

(BoM and CSIRO, 2020)

Air temperature extremes 
over land

More extremely hot days and fewer extremely cold days in most regions. Weaker warming trends 
in minimum temperatures in southeast Australia compared to elsewhere during 1960–2016. Frost 
frequency in southeast and southwest Australia has been relatively unchanged since the 1980s. Very 
high monthly maximum or minimum temperatures that occurred around 2% of the time in the past 
(1960–1989) now occur 11–12% of the time (2005–2019). Multi-day heatwave events have increased 
in frequency and duration across many regions since 1950. In 2019, the national average maximum 
temperature exceeded the 99th percentile on 43 days (more than triple the number in any of the years 
prior to 2000) and exceeded 39°C on 33 days (more than the number observed from 1960 to 2018 
combined).

(Perkins-Kirkpatrick et al., 2016; Alexander 
and Arblaster, 2017; Pepler et al., 2018; BoM 
and CSIRO, 2020; Perkins-Kirkpatrick and 
Lewis, 2020; Trancoso et al., 2020)

Sea temperature extremes

Intense marine heatwave in 2011 near western Australia (peak intensity 4°C, duration 100 days). 
The likelihood of an event of this duration is estimated to be about five times higher than under 
pre-industrial conditions. Marine heatwave over northern Australia in 2016 (peak intensity 1.5°C, 
duration 200 days). Marine heatwave in the Tasman Sea and around southeast mainland Australia and 
Tasmania from September 2015 to May 2016 (peak intensity 2.5°C, duration 250 days)—likelihood of 
an event of this intensity and duration has increased about 50-fold. Marine heatwave in the Tasman 
Sea from November 2017 to March 2018 (peak intensity 3°C, duration 100 days). Marine heatwave on 
the GBR in 2020 (peak intensity 1.2°C, duration 90 days)

(BoM and CSIRO, 2018; BoM, 2020; Laufkötter 
et al., 2020; Oliver et al., 2021)

Rainfall

Northern Australian rainfall has increased since the 1970s, with an attributable human influence. April 
to October rainfall has decreased 16% since the 1970s in southwestern Australia (partly due to human 
influence) and 12% from 2000–2019 in south-eastern Australia. The lowest recorded average rainfall in 
Australia occurred in 2019.

(Delworth and Zeng, 2014; Knutson and Zeng, 
2018; Dey et al., 2019; BoM and CSIRO, 2020; 
BoM, 2021a)

Rainfall extremes

Hourly extreme rainfall intensities increased by 10–20% in many locations between 1966 to1989 and 
1990 to 2013. Daily rainfall associated with thunderstorms increased 13–24% from 1979 to 2016, 
particularly in northern Australia. Daily rainfall intensity increased in the northwest from 1950 to 2005 
and in the east from 1911 to 2014 and decreased in the southwest and Tasmania from 1911 to 2010.

(Donat et al., 2016; Alexander and Arblaster, 
2017; Evans et al., 2017; Guerreiro et al., 
2018; Dey et al., 2019; BoM and CSIRO, 2020; 
Bruyère et al., 2020; Dowdy, 2020; Dunn et al., 
2020; Gutiérrez et al., 2021)

Drought

Major Australian droughts occurred in 1895–1902, 1914–1915, 1937–1945, 1965–1968, 1982–1983, 
1997–2009 and 2017–2019. Fewer droughts have occurred across most of northern and central 
Australia since the 1970s, and more droughts have occurred in the southwest since the 1970s; drought 
trends in the southeast have been mixed since the late 1990s.

(Gallant et al., 2013; Delworth and Zeng, 
2014; Alexander and Arblaster, 2017; Dai and 
Zhao, 2017; Knutson and Zeng, 2018; Dey 
et al., 2019; Spinoni et al., 2019; Dunn et al., 
2020; Rauniyar and Power, 2020; BoM, 2021b; 
Seneviratne et al., 2021)

Wind speed
Wind speed decreased 0.067 m/s/decade over land in the period 1941–2016, with a decrease of 
0.062 m/s/decade over land from 1979 to 2015, and a decrease of 0.05–0.10 m/s/decade over land 
from 1988 to 2019. Wind speed increased 0.02 m/s/year across the Southern Ocean during 1985–2018.

(Troccoli et al., 2012; Young and Ribal, 2019; 
Blunden and Arndt, 2020; Azorin-Molina 
et al., 2021)

Sea level rise
Relative SLR was 3.4 mm/year from 1993 to 2019, which includes the influence of internal variability 
(e.g., ENSO) and anthropogenic greenhouse gases.

(Watson, 2020)

Fire

An increase in the number of extreme fire weather days from July 1950 to June 1985 compared to 
July 1985 to June 2020, especially in the south and east, partly attributed to climate change. More 
dangerous conditions for extreme pyro convection events since 1979, particularly in south-eastern 
Australia. Extreme fire weather in 2019–2020 was at least 30% more likely due to climate change.

(Dowdy and Pepler, 2018; BoM and CSIRO, 
2020; van Oldenborgh et al., 2021)

Tropical cyclones and other 
storms

Fewer tropical cyclones since 1982, with a 22% reduction in translation speed over Australian 
land areas in the period1949–2016. No significant trend in the number of East Coast Lows. From 
1979 to 2016, thunderstorms and dry lightning decreased in spring and summer in northern and 
central Australia, decreased in the north in autumn, and increased in the southeast in all seasons. 
Convective rainfall intensity per thunderstorm increased by about 20% in the north and 10% in the 
south. An increase in the frequency of large to giant hail events across southeastern Queensland and 
northeastern and eastern New South Wales in the most recent decade. Seven major hail storms over 
eastern Australia from 2014 to 2020 and three major floods over eastern Australia from 2019 to 2021.

(Pepler et al., 2015b; Ji et al., 2018; Kossin, 
2018; BoM and CSIRO, 2020; Dowdy, 2020; 
ICA, 2021; Bruyère et al., 2020)

Snow

At Spencers Creek (1830 m elevation) in NSW, annual maximum snow depth decreased 10% and 
length of snow season decreased 5% during 2000–2013 relative to 1954–1999. At Rocky Valley Dam 
(1650 m elevation) in Victoria, annual maximum snow depth decreased 5.7 cm/decade from 1954 to 
2011. At Mt Hotham, Mt Buller and Falls Creek (1638–1760 m elevation), annual maximum snow depth 
decreased 15%/decade from 1988 to 2013.

(Bhend et al., 2012; Fiddes et al., 2015; Pepler 
et al., 2015a; BoM and CSIRO, 2020)

Ocean acidification
Average pH of surface waters has decreased since the 1880s by about 0.1 (over 30% increase in 
acidity).

(BoM and CSIRO, 2020)
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in southern Australia and extreme rainfall and severe droughts in New 
Zealand.

11.2.2	 Projected Climate Change

There are three main sources of uncertainty in climate projections: 
emission scenarios, regional climate responses and internal climate 
variability (CSIRO and BOM, 2015). Emission scenario uncertainty 
is captured in Representative Concentration Pathways (RCPs) for 
greenhouse gases and aerosols. RCP2.6 represents low emissions, 
RCP4.5 medium emissions and RCP8.5 high emissions. Regional climate 
response uncertainty and internal climate variability uncertainty are 
captured in climate model simulations driven by the RCPs.

Further climate change is inevitable, with the rate and magnitude 
largely dependent on the emission pathway (very high confidence) 
(IPCC, 2021). Preliminary projections based on Climate Model 
Intercomparison Project Phase 6 (CMIP6) models are described in 
the IPCC Working Group I Atlas. For Australia, the CMIP6 projections 

broadly agree with CMIP5 projections except for a group of CMIP6 
models with greater warming and a narrower range of summer rainfall 
change in the north and winter rainfall change in the south (Grose 
et al., 2020). For New Zealand, the CMIP6 projections are similar to 
CMIP5, but the CMIP6 models indicate greater warming, a smaller 
increase in summer precipitation and a larger increase in winter 
precipitation (Gutiérrez et al., 2021).

Dynamical and statistical downscaling offer the prospect of improved 
representation of regional climate features and extreme weather events 
(IPCC 2021: Working Group I Chapter 10 (Doblas-Reyes et al., 2021)), 
but the added value of downscaling is complex to evaluate (Ekström 
et  al., 2015; Rummukainen, 2015; Virgilio et  al., 2021). Downscaled 
simulations are available for New Zealand (MfE, 2018) and various 
Australian regions (Gutiérrez et  al., 2021). Further downscaling was 
recommended by the Royal Commission into National Natural Disaster 
Arrangements (CoA, 2020e). Projections for rainfall, thunderstorms, 
hail, lightning and tornadoes have large uncertainties (Walsh et  al., 
2016; MfE, 2018).

Table 11.2b |  Observed climate change for New Zealand.

Climate variable Observed change References

Air temperature
Increased by 1.1°C in the period 1909–2019. Warmest year on record was 2016, followed by 2018 and 1998, which tied for second 
warmest. The six years between 2013 and 2020 were among New Zealand’s warmest on record.

(MfE, 2020a; NIWA, 2020)

Sea surface 
temperature

Increased by 0.2°C/decade from 1981 to 2018. (MfE, 2020a)

Air temperature 
extremes

Number of frost days (below 0°C) decreased at 12 of 30 sites, the number of warm days (over 25°C) increased at 19 of 30 sites, 
and the number of heatwave days increased at 18 of 30 sites during 1972–2019. Increase in the frequency of hot February days 
exceeding the 90th percentile between 1980–1989 and 2010–2019, with some regions showing more than a five-fold increase.

(Harrington, 2020; MfE, 
2020a)

Sea temperature 
extremes

The eastern Tasman Sea experienced a marine heatwave in 2017/2018 lasting 138 days with a maximum intensity of 4.1°C, and 
another marine heatwave in 2018/2019 lasting 137 days with a maximum intensity of 2.8°C.

(NIWA, 2019; Salinger 
et al., 2019b; Salinger et al., 
2020; Oliver et al., 2021)

Rainfall

From 1960 to 2019, almost half of the 30 sites had an increase in annual rainfall (mostly in the south) and 10 sites (mostly in the north) 
had a decrease, but few of the trends are statistically significant. Rainfall increased by 2.8% per decade in Whanganui, 2.1% per decade 
in Milford Sound and 1.3% per decade in Hokitika. Rainfall decreased by 4.3% per decade in Whangarei and 3.2% per decade in 
Tauranga.

(MfE, 2020a)

Rainfall extremes
The number of days with extreme rainfall increased at 14 of 30 sites and decreased at 11 sites during 1960–2019. Most sites with 
increasing annual rainfall had more extreme rainfall, and most sites with decreasing annual rainfall had less extreme rainfall.

(MfE, 2020a)

Drought
Drought frequency increased at 13 of 30 sites from 1972 to 2019 and decreased at 9 sites. Drought intensity increased at 14 sites, 11 
of which are in the north, and decreased at 9 sites, 7 of which are in the south.

(MfE, 2020a)

Wind speed
Since 1970, the wind belt has often shifted to the south of New Zealand, bringing an overall decrease in wind speed over the country. 
For 1980–2019, the annual maximum wind gust decreased at 11 of the 14 sites that had enough data to calculate a trend and 
increased at 2 of the 14 sites.

(MfE, 2020a)

Sea level rise Increased 1.8 mm/year during 1900–2018 and 2.4 mm/year during 1961–2018, mostly due to climate change. (Bell and Hannah, 2019)

Fire
Of the 28 sites, 6 sites (Napier, Lake Tekapo, Queenstown, Gisborne, Masterton, and Gore) had an increase in days with very high 
or extreme fire danger during 1997–2019 and 6 sites (Blenheim, Christchurch, Nelson, Tara Hills, Timaru, and Wellington) had a 
decrease. An increase in fire impacts during 1988–2018 included homes lost, damaged, threatened and evacuated.

(Pearce, 2018; MfE, 2020a)

Tropical cyclones 
and other storms

No significant change in storminess. Three major floods and two major hail storms during 2019–2021. (MfE, 2020a; ICNZ, 2021)

Snow and ice

From 1978 to 2019, the snowline rose 3.7 m/year. From 1977 to 2018, glacier ice volume decreased from 26.6 to 17.9 km3 (a loss of 
33%). From 1978 to 2016, the area of 14 glaciers in the southern Alps declined 21%. The end-of-summer snowline elevation for 50 
glaciers rose 300 m from 1949 to 2019. In the southern Alps, extreme glacier mass loss was at least 6 times more likely in 2011 and 
10 times more likely in 2018 due to climate change.

(Salinger et al., 2019a; 
Baumann et al., 2020; 
Chinn and Chinn, 2020; 
MfE, 2020a; Salinger et al., 
2021; Vargo et al., 2020)

Ocean acidification The Sub-Antarctic ocean off the Otago coast became 7% more acidic from 1998–2017. (MfE, 2020a)
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Future changes in climate variability are affected by the El Niño 
Southern Oscillation (ENSO), Southern Annular Mode (SAM), Indian 
Ocean Dipole (IOD) and Interdecadal Pacific Oscillation (IPO). An 
increase in strong El Niño and La Niña events is projected (Cai, 2015), 
along with more extreme positive phases of the IOD (Cai et al., 2018) 
and a positive trend in SAM (Lim et al., 2016), but potential changes 
in the IPO are unknown (NESP ESCC, 2020). There is uncertainty about 
regional climate responses to projected changes in ENSO (King et al., 
2015; Perry et al., 2020; Virgilio et al., 2021).

Australian climate projections are quantified with references in 
Table 11.3a. Further warming is projected, with more hot days, fewer 
cold days, reduced snow cover, ongoing sea level rise (SLR) and ocean 
acidification (very high confidence). Winter and spring rainfall and soil 
moisture are projected to decrease, with higher evaporation rates, 
decreased wind over southern mainland Australia, increased wind 
over Tasmania, and more extreme fire weather in southern and eastern 
Australia (high confidence). Heavy rainfall intensity is projected to 
increase, with more droughts over southern and eastern Australia 
(medium confidence). Increased winter rainfall is projected over 
Tasmania, with decreased rainfall in southwestern Victoria in autumn 
and in western Tasmania in summer, fewer tropical cyclones with a 
greater proportion of severe cyclones and decreased soil moisture in 
the north (medium confidence). Hailstorm frequency may increase (low 
confidence).

New Zealand climate projections are quantified with references in 
Table 11.3b. Further warming is projected, with more hot days, fewer 
cold days, less snow and glacial ice, ongoing sea level rise (SLR) 
and ocean acidification (very high confidence). Increases in winter 
and spring rainfall are projected in the west of the North and South 
Islands, with drier conditions in the east and north, caused by stronger 
westerly winds (medium confidence). In summer, wetter conditions are 
projected in the east of both islands, with drier conditions in the west 
and central North Island (medium confidence). Fire weather indices 
are projected to increase over northern and eastern New Zealand 
(medium confidence). Heavy rainfall intensity is projected to increase 
over most regions, with increased extreme wind speeds in eastern 
regions, especially in Marlborough and Canterbury, and reduced 
relative humidity almost everywhere, except for the west coast in 
winter (medium confidence). Drought frequency may increase in the 
north (medium confidence).

11.3	 Observed Impacts, Projected Impacts and 
Adaptation

This section assesses observed impacts, projected risks and adaptation 
for 10 sectors and systems. Boxes provide more details on specific 
issues. Risk is considered in terms of vulnerability, hazards (impact 
driver), exposure, reasons for concern and complex and cascading risks 
(Chapter 1; Figure 1.2).

11.3.1	 Terrestrial and Freshwater Ecosystems

11.3.1.1	 Observed Impacts

Widespread and severe impacts on ecosystems and species are 
now evident across the region (very high confidence) (Table  11.4). 
Climate impacts reflect both ongoing change and discrete extreme 
weather events (Harris et  al., 2018), and the climatic change signal 
is emerging despite confounding influences (Hoffmann et al., 2019). 
Fundamental shifts are observed in the structure and composition 
of some ecosystems and associated services (Table  11.4). Impacts 
documented for species include global and local extinctions, severe 
regional population declines and phenotypic responses (Table 11.4). In 
terrestrial and freshwater ecosystems, land use impacts are interacting 
with climate, resulting in significant changes to ecosystem structure, 
composition and function (Bergstrom et  al., 2021), with some 
landscapes experiencing catastrophic impacts (Table  11.4). Some of 
the observed changes may be irreversible where projected impacts 
on ecosystems and species persist (Table 11.5). Of note is the global 
extinction of an endemic mammal species, the Bramble Cay melomys 
(Melomys rubicola), from the loss of habitat attributable in part to sea 
level rise (SLR) and storm surges in the Torres Strait (Table 11.4).

Natural forest and woodland ecosystem processes are experiencing 
differing impacts and responses depending on the climate zone (high 
confidence). In Australia, an overall increase in the forest fire danger 
index, associated with warming and drying trends (Table  11.2a), 
has been observed particularly for southern and eastern Australia in 
recent decades (Box  11.1). The 2019–2020 mega wildfires of south 
eastern Australia burnt between 5.8 and 8.1 million hectares of mainly 
temperate broadleaf forest and woodland, but with substantial areas of 
rainforest also impacted, and were unprecedented in their geographic 
location, spatial extent and forest types burnt (Boer et al., 2020; Nolan 
et  al., 2020; Abram et  al., 2021; Collins et  al., 2021; Godfree et  al., 
2021). The human influence on these events is evident (Abram et al., 
2021; van Oldenborgh et al., 2021) (Box 11.1). The fires had significant 
consequences for wildlife (Hyman et al., 2020; Nolan et al., 2020; Ward 
et al., 2020) (Box 11.1) and flow-on impacts for aquatic fauna (Silva 
et al., 2020). In southern Australia, deeply rooted native tree species can 
access soil and groundwater resources during drought, providing a level 
of natural resilience (Bell and Nikolaus Callow, 2020; Liu et al., 2020). 
However, the Northern Jarrah forests of south western Australia have 
experienced tree mortality and dieback from long-term precipitation 
decline and acute heatwave-compounded drought (Wardell-Johnson 
et al., 2015; Matusick et al., 2018). While there is limited information 
on observed impacts for New Zealand, increased mast seeding events 
in beech forest ecosystems that stimulate invasive population irruptions 
have been recorded (Schauber et al., 2002; Tompkins et al., 2013).

11.3.1.2	 Projected Impacts

In the near term (2030–2060), climate change is projected to become 
an increasingly dominant stress on the region’s biodiversity, with 
some ecosystems experiencing irreversible changes in composition 
and structure and some threatened species becoming extinct (high 
confidence). Climate change will interact with current ecological 
conditions, threats and pressures, with cascading ecological impacts, 
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Table 11.3a |  Projected climate change for Australia. Projections are given for different RCPs (RCP2.6 is low, RCP4.5 is medium, RCP8.5 is high) and years (e.g., 20-year period 
centred on 2090). Uncertainty ranges are generally 10th–90th percentile, and median projections are given in square brackets where possible. The four Australian regions are shown 
in Chapter 2 of (CSIRO and BOM, 2015). Preliminary projections based on CMIP6 models are included for some climate variables from the IPCC (2021) WGI report.

Climate variable Projected change (year, RCP) relative to 1986–2005 References

Air temperature

Annual mean temperature

	– +0.5–1.5°C (2050, RCP2.6), +1.5–2.5°C (2050, RCP8.5), +0.5–1.5°C (2090, RCP2.6), +2.5–5.0°C (2090, RCP8.5)
	– Weaker increase in the south, stronger increase in the centre
	– Preliminary CMIP6 projections: +0.6°C–1.3°C (2050, SSP1-RCP2.6), +1.2°C–2.0°C (2050, SSP5-RCP8.5), +0.6°C–1.5°C (2090, 
SSP1-RCP2.6), +2.8°C–4.9°C (2090, SSP5-RCP8.5) relative to 1995–2014

(NESP ESCC, 2020; IPCC, 
2021)

Sea surface 
temperature

	– + 0.4–1.0°C (2030, RCP8.5)
	– +2–4°C (2090, RCP8.5)

(CSIRO and BOM, 2015)

Air temperature 
extremes

	– Annual frequency of days over 35°C may increase 20–70% by 2030 (RCP4.5) and 25–85% (RCP2.6) to 80–350% (RCP8.5) by 2090
	– Heatwave frequency may rise by 85% if global warming increases from 1.5°C to 2.0°C, and it may rise by four times for xxxx 3°C 
warming

	– Annual frequency of frost days may decrease by 10–40% (2030, RCP4.5), 10–40% (2090, RCP2.6) and 50–100% (2090, RCP8.5)

(CSIRO and BOM, 2015; 
Trancoso et al., 2020)

Rainfall

Annual mean rainfall

	– South: −15 to +2% (2050, RCP2.6), −14 to +3% (2050, RCP8.5), −15 to +3% (2090, RCP2.6), −26 to +4% (2090, RCP8.5)
	– East: −13 to +7% (2050, RCP2.6), −17 to +8% (2050, RCP8.5), −19 to +6% (2090, RCP2.6), −25 to +12% (2090, RCP8.5)
	– North: −12 to +5% (2050, RCP2.6), −8 to +11% (2050, RCP8.5), −12 to +3% (2090, RCP2.6), −26 to +23% (2090, RCP8.5)
	– Rangelands: −18 to +3% (2050, RCP2.6), −15 to +8% (2050, RCP8.5), −21 to +3% (2090, RCP2.6), −32 to +18% (2090, RCP8.5)

(Liu et al., 2018; NESP 
ESCC, 2020)

Rainfall extremes

Intensity of daily total rain with 20-year recurrence interval

	– +4 to +10% (2050, RCP2.6)
	– +8 to +20% (2050, RCP8.5)
	– +4 to +10% (2090, RCP2.6)
	– +15 to +35% (2090, RCP8.5)

(NESP ESCC, 2020)

Drought

Time in drought (Standardised Precipitation Index below −1)

	– Southern Australia: 32–46% [39%] (1995), 38–68% [54%] (2050, RCP8.5), 41–81% [60%] (2090, RCP8.5)
	– Eastern Australia: 25–46% [37%] (1995), 24–67% [47%] (2050, RCP8.5), 19–76% [56%] (2090, RCP8.5)
	– Northern Australia: 26–44% [34%] (1995), 18–54% [40%] (2050, RCP8.5), 9–81% [39%] (2090, RCP8.5)
	– Australian Rangelands: 29–43% [34%] (1995), 26–58% [42%] (2050, RCP8.5), 23–70% [46%] (2090, RCP8.5)

(Kirono et al., 2020)

Wind speed 0–5% decrease over southern mainland Australia and 0–5% increase over Tasmania (2090, RCP8.5) (CSIRO and BOM, 2015)

Sea level rise

	– South (Port Adelaide): 13–29 cm [21 cm] (2050, RCP2.6), 16–33 cm [25 cm] (2050, RCP8.5), 23–55 cm [39 cm] (2090, RCP2.6), 
40–84 cm [61 cm] (2090, RCP8.5)

	– East (Newcastle): 14–30 cm [22 cm] (2050, RCP2.6), 19–36 cm [27 cm] (2050, RCP8.5), 22–54 cm [38 cm] (2090, RCP2.6), 
46–88 cm [66 cm] (2090, RCP8.5)

	– North (Darwin City Council, 2011): 13–28 cm [21 cm] (2050, RCP2.6), 17–33 cm [25 cm] (2050, RCP8.5), 22–55 cm [38 cm] (2090, 
RCP2.6), 41–85 cm [62 cm] (2090, RCP8.5)

	– West (Port Hedland): 13–28 cm [20 cm] (2050, RCP2.6), 16–33 cm [24 cm] (2050, RCP8.5), 22–55 cm [38 cm] (2090, RCP2.6), 
40–84 cm [61 cm] (2090, RCP8.5)

These projections have not been updated to include an Antarctic dynamic ice sheet factor which increased global sea level projections 
for RCP8.5 by approx. 10 cm. Preliminary CMIP6 projections indicate +40–50 cm (2090, SSP1-RCP2.6) and +70–90 cm (2090, 
SSP5-RCP8.5)

(McInnes et al., 2015; 
Zhang et al., 2017; IPCC, 
2019b)
(IPCC, 2021)

Sea level extremes

Increase in the allowance for a storm tide event with 1% annual exceedance probability (100-year return period)

	– South (Port Adelaide): 21 cm (2050, RCP2.6), 25 cm (2050, RCP8.5), 41 cm (2090, RCP2.6), 66 cm (2090, RCP8.5)
	– East (Newcastle): 24 cm (2050, RCP2.6), 30 cm (2050, RCP8.5), 49 cm (2090, RCP2.6), 86 cm (2090, RCP8.5)
	– North (Darwin): 21 cm (2050, RCP2.6), 26 cm (2050, RCP8.5), 43 cm (2090, RCP2.6), 71 cm (2090, RCP8.5)
	– West (Port Hedland): 21 cm (2050, RCP2.6), 26 cm (2050, RCP8.5), 43 cm (2090, RCP2.6), 70 cm (2090, RCP8.5)

(McInnes et al., 2015)

Fire

	– East: annual number of severe fire weather days 0 to +30% (2050, RCP2.6), 0 to +60% (2050, RCP8.5), 0 to +30% (2090, RCP2.6), 
0 to +110% (2090, RCP8.5)

	– Elsewhere: number of severe fire weather days +5 to +35% (2050, RCP2.6), +10 to +70% (2050, RCP8.5), +5 to +35% (2090, 
RCP2.6) +20 to +130% (2090, RCP8.5)

(Clarke and Evans, 2019; 
Dowdy et al., 2019; Virgilio 
et al., 2019; Clarke et al., 
2020; NESP ESCC, 2020; 
Clark et al., 2021)

Tropical cyclones 
and other storms

	– Eastern region tropical cyclones: −8 to +1% (2050, RCP2.6), −15 to +2% (2050, RCP8.5), −8 to +1% (2090, RCP2.6), −25 to +5% 
(2090, RCP8.5)

	– Western region tropical cyclones: −10 to −2% (2050, RCP2.6), −20 to −4% (2050, RCP8.5), −10 to −2% (2090, RCP2.6), −30 to 
−10% (2090, RCP8.5)

	– East coast lows: −15 to −5% (2050, RCP2.6), −30 to −10% (2050, RCP8.5), −15 to −5% (2090, RCP2.6), −50 to −20% (2090, 
RCP8.5)

	– Hailstorm frequency may increase, but there are large uncertainties

(NESP ESCC, 2020; 
Raupach et al., 2021)
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Table 11.3b |  Projected climate change for New Zealand. Projections are given for different RCPs (RCP2.6 is low, RCP4.5 is medium, RCP8.5 is high) and years (e.g., 20-year period 
centred on 2090). Uncertainty ranges are 5th–95th percentiles, and median projections are given in square brackets where possible. Preliminary projections (10th–90th percentiles) 
based on CMIP6 models are included for some climate variables from the IPCC (2021) WGI report.

Climate variable Projected change (year, RCP) relative to 1986–2005 References

Air temperature

Annual mean temperature

	– +0.2–1.3°C [0.7°C] (2040, RCP2.6), +0.5–1.7°C [1.0°C] (2040, RCP8.5), +0.1–1.4°C [0.7°C] (2090, RCP2.6), +2.0–4.6°C [3.0°C] 
(2090, RCP8.5)

	– More warming in summer and autumn, less in winter and spring
	– More warming in the north than the south
	– Preliminary CMIP6 projections: +0.4°C–1.1°C (2050, SSP1-RCP2.6), +0.9°C–1.7°C (2050, SSP5-RCP8.5), +0.5°C–1.5°C (2090, 
SSP1-RCP2.6), +2.2°C–4.1°C (2090, SSP5-RCP8.5) relative to 1995–2014

(MfE, 2018);
(IPCC, 2021)

Sea surface 
temperature

	– +1.0°C (2045, RCP8.5),
	– +2.5°C (2090, RCP8.5).

(Law et al., 2018b)

Air temperature 
extremes

	– Annual frequency of days over 25°C may increase 20–60% (2040, RCP2.6) to 50–100% (2040, RCP8.5), and 20–60% (2090, 
RCP2.6) to 130–350% (2090, RCP8.5)

	– Annual frost frequency may decrease 20–60% (2040, RCP2.6) to 30–70% (2040, RCP8.5), and 20–60% (2090, RCP2.6) to 70–95% 
(2090, RCP8.5).

(MfE, 2018)

Rainfall

Annual mean rainfall

	– Waikato, Auckland and Northland: −7 to +7% (2040, RCP2.6), −8 to +5% (2040, RCP8.5), −5 to +11% [+2%] (2090, RCP2.6), −15 
to +12% [−2%] (2090, RCP8.5)

	– Hawke’s Bay and Gisborne: −8 to +8% [−1%] (2040, RCP2.6), −12 to +7% [−2%] (2040, RCP8.5), −9 to +4% [−2%] (2090, 
RCP2.6), −15 to +15% [−3%] (2090, RCP8.5)

	– Taranaki, Manawatū and Wellington: −4 to +9% [+1%] (2040, RCP2.6), −6 to +10% [+1%] (2040, RCP8.5), −6 to +15% [+3%] 
(2090, RCP2.6), −14 to +14% [+2%] (2090, RCP8.5)

	– Tasman-Nelson and Marlborough: −3 to +5% [+1%] (2040, RCP2.6), −3 to +8% [+1%] (2040, RCP8.5), −4 to +8% [+2%] (2090, 
RCP2.6), −3 to +15% [+5%] (2090, RCP8.5)

	– West coast and Southland: −4 to +12% [+3%] (2040, RCP2.6), −4 to +12% [+4%] (2040, RCP8.5), −2 to +18% [+5%] (2090, 
RCP2.6), −8 to +23% (2090, RCP8.5)

	– Canterbury and Otago: −7 to +15% [+3%] (2040, RCP2.6), −7 to +19% [+3%] (2040, RCP8.5), −6 to +18% (2090, RCP2.6), −9 to 
+28% [+8%] (2090, RCP8.5)

(Liu et al., 2018; MfE, 2018)

Rainfall extremes

Intensity of daily rain with 20-year recurrence interval

	– +2.8 to 7.2% [5%] (2040, RCP2.6)
	– +4.2 to 10.4% [7%] (2040, RCP8.5)
	– +2.8 to 7.2% [5%] (2090, RCP2.6)
	– +12.6 to 31.5% [2%] (2090, RCP8.5)

(MfE, 2018)

Drought

Increase in potential evapotranspiration deficit

	– Northern and eastern North Island: 100–200 mm (2090, RCP8.5)
	– Western North Island: 50–100 mm (2090, RCP8.5)
	– Eastern South Island: 50–200 mm (2090, RCP8.5)
	– Western South Island: 0–50 mm (2090, RCP8.5)

(MfE, 2018)

Wind speed

99th percentile of daily mean wind speed

	– Northern North Island: 0 to −5% (2090, RCP8.5)
	– Southern North Island: 0 to +5% (2090, RCP8.5)
	– South Island: 0 to +10% (2090, RCP8.5)

(MfE, 2018)

Sea level rise

	– 23 cm (2050, RCP2.6)
	– 28 cm (2050, RCP8.5)
	– 42 cm (2090 RCP2.6)
	– 67 cm (2090 RCP8.5)

These projections have not been updated to include an Antarctic dynamic ice sheet factor which increased global sea level projections for 
RCP 8.5 by approx. 10 cm. Preliminary CMIP6 projections indicate 40–50 cm (2090, SSP1-RCP2.6) and 70–90 cm (2090, SSP5-RCP8.5).

(MfE, 2017a; IPCC, 2019b)

Climate variable Projected change (year, RCP) relative to 1986–2005 References

Snow and ice

	– Maximum snow depth at Falls Creek and Mt Hotham may decline 30–70% (2050, B1) and 45–90% (2050, A1FI) relative to 1990
	– Maximum snow depth at Mt Buller and Mt Buffalo may decline 40–80% (2050, B1) and 50–100% (2050, A1FI) relative to 1990
	– Length of Victorian ski season may contract 65–90% and mean annual snowfall may decline 60–85% (2070–2099, RCP8.5) 
relative to 2000–2010.

	– The snowpack may decrease by about 15% (2030, A2) to 60% (2070, A2)

(Bhend et al., 2012; Harris 
et al., 2016; Di Luca et al., 
2018)

Ocean acidification pH is projected to drop by about 0.1 (2090, RCP2.6) to 0.3 (2090, RCP8.5)
(CSIRO and BOM, 2015; 
Hurd et al., 2018)
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including population declines, heat-related mortalities, extinctions 
and disruptions for many species and ecosystems (high confidence) 
(Table  11.5). These include inadequate allocation of environmental 
flows for freshwater fish (Vertessy et al., 2019), native forest logging 
for old-growth-forest-dependent fauna (Lindenmayer et  al., 2015; 
Lindenmayer and Taylor, 2020a; Lindenmayer and Taylor, 2020b), and 
invasive species (Scott et al., 2018). Climate change has synergistic and 
compounding impacts, particularly in bioregions already experiencing 
ecosystem degradation, threatened endemics and collapse of keystone 
species, including those of value to Indigenous Peoples, and high 
extinction rates as a consequence of human activities (Table  11.4) 
(Gordon, 2009; Australia SoE, 2016; Weeks et al., 2016; Cresswell and 
Murphy, 2017; Hare et al., 2019; MfE, 2019; Lindenmayer and Taylor, 
2020a; Lindenmayer and Taylor, 2020b; Bergstrom et al., 2021). Some 
native species are projected to have potentially greater geographic 
range if they can colonise new areas, while other species may be 
resilient to projected climate change impacts (Bulgarella et al., 2014; 
K.E. Lawrence et al., 2017; Conroy et al., 2019; Rizvanovic et al., 2019).

In southern Australia, some forest ecosystems (alpine ash, snow gum 
woodland, pencil pine, northern jarrah) are projected to transition to a 
new state or collapse due to hotter and drier conditions with more fires 
(high confidence) (Table  11.5). In Australia, most native eucalyptus 
forest plants have a range of traits that enable them to persist with 
recurrent fire through recovery buds (sprouters) or regenerate through 
seeding (Collins, 2020), affording them a high level of resilience. For 
high-end projected 2060–2080 fire weather conditions in southeast 
Australia (Clarke and Evans, 2019), stand-killing wildfires could occur 
at a severity and frequency greater than the regenerative capacity 
of seeders (Enright et al., 2015; Clarke and Evans, 2019). Most New 
Zealand native plants are not fire resistant and are projected to be 
replaced by fire-resistant introduced species following climate-change-
related fires (Perry et al., 2014).

A loss of alpine biodiversity in the southeast Australian Alps bioregion 
is projected in the near-term as a result of less snow on snow patch 
feldmark and short alpine herb fields as well as increased stress on snow-
dependent plant and animal species (high confidence) (Table  11.3, 
Table 11.5). In Australia, invasive plants’ and weeds’ response rates 
are expected to be faster than for native species, and climate change 
could foster the appearance of a new set of weed species, with many 
bioregions facing increased impacts from non-native plants (medium 
confidence) (Gallagher et  al., 2013; Scott et  al., 2014; March-Salas 
and Pertierra, 2020) (Table 11.5), along with declines in some listed 
weeds (Duursma et al., 2013; Gallagher et al., 2013). In New Zealand, 
climate change is projected to enable invasive species to expand to 
higher elevations and southwards (medium confidence) (Table 11.5) 
(Giejsztowt et al., 2020; MfE, 2020a).

Projected responses of ecosystem processes are uncertain in part due 
to complex interactions of climate change with soil respiration, plant 
nutrient availability (Hasegawa et al., 2015; Orwin et al., 2015; Ochoa-
Hueso et  al., 2017) and changing fire regimes (Table  11.5) (Scheiter 
et al., 2015; Dowdy et al., 2019). For aquatic biota, responses will reflect 
seasonal differences in water temperature (Wallace et al., 2015) and 
changes in rainfall intensity, productivity and biodiversity (Jardine et al., 
2015). Extreme floods may have negative impacts on New Zealand 
river biota, by mobilising nutrients, sediments and toxic chemicals and 
aiding the dispersal of invasive species. These effects are compounded 
by homogenisation of rivers through channelisation (Death et al., 2015).

Improved coastal modelling, experiments and in situ studies are 
reducing uncertainties at a local scale about the impact of future sea 
level rise (SLR) on coastal freshwater terrestrial wetlands (medium 
confidence) (Shoo et al., 2014; Bayliss et al., 2018; Grieger et al., 2019). 
Low-lying coastal wetlands are susceptible to saltwater intrusion from 
sea level rise (SLR) (Shoo et al., 2014; Kettles and Bell, 2015; Finlayson 
et al., 2017) with consequences for species dependent on freshwater 
habitats (Houston et  al., 2020). Saline habitat conditions will move 

Climate variable Projected change (year, RCP) relative to 1986–2005 References

Sea level extremes

For a rise in sea level of 30 cm, the 1-in-100-year high water levels may occur about

	– Every 4 years at the port of Auckland
	– Every 2 years at the port of Dunedin
	– Once a year at the port of Wellington
	– Once a year at the port of Christchurch

(PCE, 2015)

Fire

	– Seasonal Severity Rating (SSR) increases 50–100% in coastal Marlborough and Otago, 40–50% in Wellington and 30–40% in 
Taranaki and Whanganui, 0–30% elsewhere (2050, A1B).

	– Number of days with very high or extreme fire weather increase >100% in coastal Otago, Marlborough and the lower North Island, 
50–100% in Taupō and Rotorua, 20–50% in the rest of the North Island, and little change in the rest of the South Island (2050, 
A1B).

(Pearce et al., 2011)

Tropical cyclones 
and other storms

Poleward shift of mid-latitude cyclones and potential for a small reduction in frequency (MfE, 2018)

Snow and ice

	– Maximum snow depth on 31 August may decline by 0–10% (2040, A1B) and 26–54% (2090, A1B).
	– Annual snow days may be reduced by 5–15 days (2040, RCP2.6), 10–25 days (2040, RCP8.5), 5–15 days (2090, RCP2.6) and 
15–45 days (2090 RCP8.5).

	– Relative to 2015, New Zealand glaciers are projected to lose 36%, 53% and 77% of their mass by the end of the century under 
RCP2.6, RCP4.5 and RCP8.5, respectively.

	– Over the period 2006–2099, New Zealand glaciers are projected to lose 50 to 92% of their ice volume for RCP2.6 to RCP8.5.

(Hendrikx et al., 2013; 
MfE, 2018; Marzeion et al., 
2020; Anderson et al., 
2021)

Ocean acidification pH is projected to drop by about 0.1 (2090, RCP2.6) to 0.3 (2090 RCP8.5).
(CSIRO and BOM, 2015; 
Hurd et al., 2018; Law 
et al., 2018b)
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Table 11.4 |  Observed impacts on terrestrial and freshwater ecosystems and species in the region where there is documented evidence that these are directly (e.g., a species 
thermal tolerances are exceeded) or indirectly (e.g., through changed fire regimes) the result of climate change pressures.

Ecosystem Climate-related pressure Impact Source

Australia

Forest and woodlands of southern and 
southwestern Australia

30-year declining rainfall
Drought-induced canopy dieback across a 
range of forest and woodland types (e.g., 
northern jarrah)

(Matusick et al., 2018; Hoffmann et al., 
2019)

Multiple wildfires in short succession 
resulting from increased fire risk conditions, 
including declining winter rainfall and 
increasing hot days

Local extirpations and replacement 
of dominant canopy tree species and 
replacement by woody shrubs due to 
seeders having insufficient time to reach 
reproductive age (alpine ash) or vegetative 
regeneration capacity is exhausted (snow 
gum woodlands)

(Slatyer, 2010; Bowman et al., 2014; 
Fairman et al., 2016; Harris et al., 2018; 
Zylstra, 2018)

Background warming and drying created 
soil and vegetation conditions that 
are conducive to fires being ignited by 
lightning storms in regions that have rarely 
experienced fire over the last few millennia

Death of fire-sensitive trees species from 
unprecedented fire events (Palaeo-endemic 
pencil pine forest growing in sphagnum, 
Tasmania, killed by lightning-ignited fires 
in 2016)

(Hoffmann et al., 2019)

Australian Alps Bioregion and Tasmanian 
alpine zones

Severe winter drought; warming and 
climate-induced biotic interactions

Shifts in dominant vegetation with a decline 
in grasses and other graminoids and an 
increase in forb and shrub cover in Bogong 
High Plains, Victoria, Australia

(Bhend et al., 2012; Hoffmann et al., 2019)

Snow loss, fire, drought and temperature 
changes

Changing interactions within and among 
three key alpine taxa related to food 
supply and vegetation habitat resources: 
The mountain pygmy-possum (Burramys 
parvus), the mountain plum pine 
(Podocarpus lawrencei) and the bogong 
moth (Agrostis infusia)

(Hoffmann et al., 2019)

Retreat of snow line Increased species diversity in alpine zone (Slatyer, 2010)

Reduced snow cover
Loss of snow-related habitat for alpine zone 
endemic and obligate species

(ACE CRC, 2010; Pepler et al., 2015a; 
Thompson, 2016; Mitchell et al., 2019)

Wet Tropics World Heritage Area
Warming and increasing length of dry 
season

Some vertebrate species have already 
declined in both distribution area and 
population size, both earlier and more 
severely than originally predicted

(Moran et al., 2014; Hoffmann et al., 2019)

Sub-Antarctic Macquarie island

Reduced summer water availability for 
17 consecutive summers, and increases 
in mean wind speed, sunshine hours and 
evapotranspiration over four decades

Dieback in critically endangered 
habitat-forming cushion plant Azorella 
macquariensis in the fellfield and herb field 
communities

(Bergstrom et al., 2015; Hoffmann et al., 
2019)

Mass mortality of wildlife species (flying 
foxes, freshwater fish)

Extreme heat events; rising water 
temperatures, temperature fluctuations, 
altered rainfall regimes including droughts 
and reduced in-flows

Flying foxes—thermal tolerances of 
species exceeded; fish—amplified extreme 
temperature fluctuations, increasing 
annual water basin temperatures, extreme 
droughts and reduced runoff after rainfall

(AAS, 2019; Ratnayake et al., 2019; Vertessy 
et al., 2019)

Bramble Cay melomys (mammal)
Melomys rubicola

SLR and storm surges in Torres Strait Loss of habitat and global extinction
(Lunney et al., 2014; Gynther et al., 2016; 
Waller et al., 2017; CSIRO, 2018)

Koala, Phascolarctos cinereus
Increasing drought and rising temperatures, 
compounding impacts of habitat loss, fire 
and increasing human population

Population declines and enhanced risk of 
local extinctions

(Lunney et al., 2014)

Tawny dragon lizard, Ctenophorus decresii
Desiccation stress driven by higher body 
temperatures and declining rainfall

Population decline and potential local 
extinction in Flinders Ranges, south 
Australia

(Walker et al., 2015)

Birds

Changing thermal regimes including 
increasing thermal stress and changes in 
plant productivity are identified as being 
causal

Changes in body size, mass and condition 
and other traits linked to heat exchange

(Gardner et al., 2014a; Gardner et al., 
2014b; Campbell-Tennant et al., 2015; 
Gardner et al., 2018; Hoffmann et al., 2019)
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inland and new coastal ecosystem states may emerge, including the 
World Heritage listed Kakadu’s freshwater wetland (Bayliss et al., 2018) 
(Table 11.5). Increasingly, sea level rise (SLR) will shrink the intertidal 
zone, having implications for wading birds which use this zone (Tait and 
Pearce, 2019) (Box 11.6). The ecology of freshwater wetlands in New 
Zealand are projected to be impacted by the intersection of warming, 
drought and heavy rainfall (Pingram et al., 2021) (Table 11.5).

The impacts on species from projected global warming depend on their 
physiological and ecological responses for which knowledge is limited 
(Table 11.5) (Bulgarella et al., 2014; Carter et al., 2018; Green et al., 
2021). Knowledge of projected impacts is constrained by uncertainties 
about the influence of physiological limits, barriers to dispersal, 
competition, the availability of habitat resources (Worth et al., 2014) 
and disruptions to ecological interactions (Lakeman-Fraser and Ewers, 
2013; Parida et  al., 2015; Porfirio et  al., 2016). Gaps in ecological 
modelling of future climate impacts include consideration of long-term 
rainfall and temperature changes (Grimm-Seyfarth et al., 2017; Grimm-
Seyfarth et al., 2018), species dispersal rates, evolutionary capacity and 
phenotypic plasticity and the thresholds at which they are considered 
adequate to counter the impacts of climate change (Ofori et al., 2017b), 
as well as indirect effects including sea level rise (SLR) and altered fire 
regimes (Shoo et al., 2014; Cadenhead et al., 2016; He et al., 2016).

11.3.1.3	 Adaptation

Managing climate change risks to ecosystems is primarily based 
on reducing the impact of other anthropogenic pressures, including 
invasive species, and facilitating natural adaptation (high confidence). 
This approach is most feasible within protected areas on public, private 
and Indigenous land and sea (Bellard et al., 2014; Liu et al., 2020) but 
is also applicable elsewhere (Barnes et al., 2015). Effective strategies 
promote ecosystem resilience by changing unsustainable land uses 
and management practices, increasing habitat connectivity, controlling 
introduced species, restoring habitats, implementing appropriate fire 
management, integrated risk assessment and adaptation planning (B. 
Frame et al., 2018; Lindenmayer et al., 2020; Macinnis-Ng et al., 2021). 
Complementary approaches include ex situ seed banks (Morrison and 
Pickering, 2013; Christie et al., 2020).

Best practice conservation adaptation planning is informed by data 
on key habitats, including refugia, and restoration that facilitates 
species movements and employs adaptive pathways (very high 

confidence) (Guerin and Lowe, 2013; Reside et al., 2014; Shoo et al., 
2014; Keppel et al., 2015; Andrew and Warrener, 2017; Baumgartner 
et al., 2018; Harris et al., 2018; Jacobs et al., 2018a; Das et al., 2019; 
Walker et  al., 2019; Molloy et  al., 2020). Landscape planning (Bond 
et al., 2014; McCormack, 2018) helps reduce habitat loss, facilitates 
species dispersal and gene flow (McLean et al., 2014; Shoo et al., 2014; 
Lowe et al., 2015; Harris et al., 2018; McCormack, 2018) and allows for 
new ecological opportunities (Norman and Christidis, 2016). Coastal 
squeeze is a threat to freshwater wetlands and requires planning 
for the potential inland shift (Grieger et al., 2019). Adaptations that 
maintain critical volumes and periodicity of environmental flows 
will help protect freshwater biodiversity (Box 11.3) (Yen et al., 2013; 
Barnett et al., 2015; Wang et al., 2018b).

Adaptation planning for ecosystems and species requires monitoring 
and evaluation to identify trigger points and thresholds for new actions 
to be implemented (high confidence) (Tanner-McAllister et al., 2017; 
Williams et al., 2020). Best planning practice includes keeping options 
open (Barnett et al., 2015; Dunlop et al., 2016; Finlayson et al., 2017) 
and updating management plans in light of new information. New 
insights are emerging into how species’ natural adaptive capacities 
can inform adaptation planning (Llewelyn et al., 2016; Steane et al., 
2017; Hoeppner and Hughes, 2019). Physiological limits to adaptation 
in some species are being identified (Barnett et  al., 2015; Sorensen 
et  al., 2016), and where natural responses are not feasible, human-
assisted translocations may be warranted (Becker et  al., 2013; 
Chauvenet et  al., 2013; Innes et  al., 2019) for some species (Ofori 
et al., 2017a; Ofori et al., 2017b). Legal reform may be needed to better 
enable climate adaptation for biodiversity conservation that recognises 
species’ natural adjustments to their distributions and the difficulties 
encountered in predicting the consequences for ecological interactions 
and ecosystem services (McCormack, 2018; McDonald et al., 2019).

Adaptation research priorities include understanding of the 
interactions and cumulative impacts of existing stressors and 
climate change and the implications for managing ecosystems and 
natural resources (Williams et  al., 2020). For Australia, research on 
implementation strategies for conservation and managing threats, 
stress and natural assets is a priority (Williams et  al., 2020). For 
New Zealand, understanding how terrestrial ecosystems and species 
respond to climate change is a priority, and where existing stressors 
are affecting freshwater quantity and quality, in situ monitoring 
to detect and evaluate projections of climate change impacts on 

Ecosystem Climate-related pressure Impact Source

New Zealand

Forest birds Warming

Increasing invasive predation pressure on 
endemic forest birds surviving in cool forest 
refugia, particularly larger-bodied bird 
species that nest in tree cavities and are 
poor dispersers

(Walker et al., 2019)

Coastal ecosystems More severe storms and rising sea levels
Erosion of coastal habitats, including dunes 
and cliffs, is reducing habitat

(Rouse et al., 2017)

Beech forest ecosystems
Increasing mean temperatures and 
indirectly through effects of events like 
ENSO

Increased beech mast seeding events that 
stimulate population irruptions for invasive 
rodents and mustelids, which then prey on 
native species

(Schauber et al., 2002; Tompkins et al., 
2013)
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Table 11.5 |  An indicative selection of projected climate-change impacts on terrestrial and freshwater ecosystems and species in Australia and New Zealand respectively.

Ecosystem, species Climate-related pressure Projected Impact Source

Australia

Floristic composition of vegetation 
communities

Increases in temperature and reductions in 
annual precipitation by 2070. Many plant 
species based on median projection from 
five global climate models (ACCESS1.0, 
CNRM-CM5, HADGEM2-CC, MIROC5, 
NorESM1-M) centred on the decade 2070 
under RCP8.5

47% of vegetation types have characteristic 
plant species at risk of their climatic 
tolerances being exceeded from increasing 
mean annual temperature by 2070 with 
only 2% at risk from reductions in annual 
precipitation by 2070

(Gallagher et al., 2019)

Some south east Australian temperate 
forests

Reduction in winter rainfall and rising 
spring temperatures resulting in an 
increase in the frequency of very high fire 
weather conditions and increased risk of 
catastrophic wildfires; based on output from 
15 CMIP5 GCMs using RCP8.5 for years for 
2060–2079 as compared to 1990–2009

Increase in fire frequency prevents 
recruitment of obligate seeder resulting 
in changing dominant species and 
vegetation structure including long lasting 
or irreversible shift in formation from tall 
wet temperate eucalypt forests dominated 
by obligate seeder trees (e.g., alpine ash) to 
open forest or in worst case to shrubland
Declining rainfall and regolith drying, more 
unplanned, intense fires and declining 
productivity place stress on tree growth 
and compromise biodiversity in northern 
jarrah forest

(Doherty et al., 2017; Zylstra, 2018; 
Bowman et al., 2019; Dowdy et al., 2019; 
Naccarella et al., 2020)
(Wardell-Johnson et al., 2015)

Tree line stasis or regression (snow gum)
(Doherty et al., 2017); (Bowman et al., 2019; 
Naccarella et al., 2020)

Increase in lightning-ignited landscape fires 
along with contracting palaeo-endemic 
refugia due to warmer and drier climates

Population collapse and severe range 
contraction of slow-growing, fire-sensitive 
palaeo-endemic temperate rainforest 
species (e.g., pencil pine)

(Doherty et al., 2017); (Bowman et al., 
2019)

Rhizosphere responses or accelerated rates 
of soil organic matter decomposition

Plant nutrient availability may be enhanced
(Hasegawa et al., 2015; Ochoa-Hueso et al., 
2017)

Alpine ecosystems

Increasing global warming and rising 
temperatures, ongoing reduction in snow 
cover and winter rain and increasing 
frequency and magnitude of wildfires

Loss of alpine vegetation communities 
(snow patch feldmark and short alpine 
herb fields) and increased stress on 
snow-dependent plant and animal species; 
changing suitability for invasive species

(Slatyer, 2010; Morrison and Pickering, 
2013; Pepler et al., 2015a; Williams et al., 
2015; Harris et al., 2017)

Northern tropical savannahs Rainfall and CO2 effects
Potentially resulting in an increase in 
ecosystem carbon storage

(Scheiter et al., 2015)

Murray-Darling River Basin Drought Reduced river flow; mass fish kills (Grafton et al., 2014; AAS, 2019)

Unimpaired river basins Elevated CO2 levels
Increase plant water use reduces stream 
flow

(Ukkola et al., 2016)

Bearded dragons (lizards), Pogona spp. Changes in precipitation
P. henrylawsoni and P. microlepidota to gain 
suitable habitat, P. nullarbor and P. vitticeps 
showing the most potential loss

(Wilson and Swan, 2017; Silva et al., 2018)

Xeric bees
Broad temperate tolerances, arid climate 
adapted

Climate-resilient, only small response (Silva et al., 2018)

Great desert skink Liopholis kintorei
Buffering capacity of underground 
microclimates, for nocturnal and crepuscular 
ectotherms

Warming impacts projected to be indirect (Moore et al., 2018)

22 narrow-range fish species in imminent 
risk of extinction

Projected changes in rainfall, run-off, air 
temperatures and the frequency of extreme 
events (drought, fire, flood) compound risk 
from other key threats especially invasive 
species

Extinction projected within next 20 years (Lintermans et al., 2020)

Freshwater taxa (freshwater fish, crayfish, 
turtles and frogs)

Changed hydrological regimes

Substantial changes to the composition of 
faunal assemblages in Australian rivers well 
before the end of this century, with gains/
losses balanced for fish but suitable habitat 
area predicted to decrease for many crayfish 
and turtle species and nearly all frog species

(James et al., 2017)
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biodiversity and a national data repository are lacking (MfE, 2020a). 
The projected increase in invasive species indicates the importance 
of a step-up in pest management efforts to ensure native species 
persistence as invasive species spread from climate change (Firn 
et al., 2015). There remains a gap between the knowledge generated, 
potential adaptation strategies and their incorporation into 

conservation instruments (medium confidence) (Graham et al., 2019; 
Hoeppner and Hughes, 2019), though there is increasing recognition 
of the need to improve governance and management structures for 
their implementation (Christie et al., 2020).

Ecosystem, species Climate-related pressure Projected Impact Source

New Zealand

Modified lowland wetlands
Intersection of warming, drought and heavy 
rainfall (ex-tropical cyclones)

Prolonged anoxic conditions in waterways 
(blackwater events) leading to mortality of 
fish (e.g., shortfin eels) and invertebrates, 
while botulism outbreaks can lead to 
impacts on waterfowl

(Pingram et al., 2021)

Native forests and lands
Elevated CO2 levels, warming, increased 
precipitation.

Short-term beneficial effects on carbon 
storage; droughts in eastern areas would 
decrease productivity and rates of carbon 
storage in the medium term

(Ausseil et al., 2019b)

Increased fire intensity and frequency in hot 
and dry parts of New Zealand

Much of the native vegetation has no fire 
adaptations, causing vulnerability to local 
extinction due to ‘interval squeeze’

(Perry et al., 2014)

Freshwater rivers Rainfall variation
Cascading effects of warming, drought, 
floods and algal blooms compounded by 
water abstraction

(Macinnis-Ng et al., 2021)

Three species of naturalised woody weeds Warming and increased CO2 levels Increased geographic range (Sheppard and Stanley, 2014)

Kauri tree, Agathis australis
Lower than average rainfall stimulates 
a drought-deciduous response in this 
evergreen species

Increased litter fall (Macinnis-Ng and Schwendenmann, 2015)

Windmill palm Warming Increased geographic range (Aguilar et al., 2017)

New Zealand tussock grasslands Warming Enhanced respiration (Graham et al., 2014)

Invasive species Warming
Increased invasive species abundance and 
increased predation on native species

(Tompkins et al., 2013; Macinnis-Ng et al., 
2021)

Warming
Expanded ranges of invasive species in 
higher/cooler areas

(Sheppard and Stanley, 2014; Walker et al., 
2019)

Warming
Change in flowering phenology and 
pollination competition

(Giejsztowt et al., 2020)

Warming
Increase in invasive plants, insects and 
pathogens from sub-tropical/tropical 
climates

(Macinnis-Ng et al., 2021)

Tuatara (reptile), Sphenodon punctatus Warming
Temperature-dependent sex determination 
with more male hatches threatening small, 
isolated populations

(Grayson et al., 2014)

Warming Increased geographic range (Carter et al., 2018)

Cattle tick Warming
Increased geographic range and risk of 
tick-spread anaemia in cattle

(K.E. Lawrence et al., 2017)

Brown mudfish, Neochanna apoda Drought

Reduced flow regimes associated with 
drought interact with reduced habitat due 
to land use change, leading to population 
declines and potential local extinction

(White et al., 2016b; White et al., 2017)

Suter’s skink (lizard) Oligosoma suteri Warming
Increased suitable range but unclear if 
dispersal is possible because habitats are 
isolated

(Stenhouse et al., 2018)

Threatened endemic passerine bird, 
Notiomystis cincta

Fluctuations in total precipitation, 
particularly increased and more variable 
rainfall

Heavy rainfall can flood nests and kill 
fledglings while droughts can cause 
population-wide reproductive failure

(Correia et al., 2015)

Feral cats Warming Increased geographic range (Aguilar et al., 2015b)
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11.3.2	 Coastal and Ocean Ecosystems

Australia’s EEZ covers over 8.1 million km2 of marine territory, including 

50,000 km of coastline (Dhanjal-Adams et  al., 2016), spanning sub-
Antarctic islands in the south to tropical waters in the north. New 
Zealand’s marine territory extends from the sub-tropics to sub-

Box 11.1 | Escalating Impacts and Risks of Wildfire

Fire activity depends on weather, ignition sources, land management practices and fuel flammability, availability and continuity (Bradstock 
et al., 2014). Increased fire activity in southeast Australia associated with climate change has been observed since 1950 (Abram et al., 
2021), though trends vary regionally (medium confidence) (Bradstock et al., 2014). In New Zealand, there has been an increased frequency 
of major wildfires in plantations (FENZ, 2018) and at the rural–urban interface (medium confidence) (Pearce, 2018). In northern Australia, 
increased wet season rainfall (Gallego et al., 2017) has increased dry season fuel loads (Harris et al., 2008).

In Australia, the frequency and severity of dangerous fire weather conditions is increasing, with partial attribution to climate change 
(very high confidence) (Dowdy and Pepler, 2018; Abram et al., 2021) (11.2.1, Figure Box 11.1.1), especially in southern and eastern 
Australia during spring and summer (Harris and Lucas, 2019). Although Australia’s eucalyptus forests and woodlands are fire adapted 
(Collins, 2020), increasing intensity and frequency of fires may exceed their resilience because of the shorter intervals between high-
severity fires (Bowman et al., 2014; Etchells et al., 2020; Lindenmayer and Taylor, 2020a). Recent fires have severely impacted eastern 
rainforests, including significant Gondwana refugia (Abram et al., 2021). In New Zealand, the trends in very high and extreme fire weather 
(1997–2019) have not yet been attributed to climate change (MfE, 2020a).

Fire weather is projected to increase in frequency, severity and duration for southern and eastern Australia (high confidence) and most of 
New Zealand (medium confidence) (11.2.2), with projected increases in pyro-convection risk for parts of southern Australia (Dowdy et al., 
2019) and increased dry-lightning and fire ignition for southeast Australia (Mariani et al., 2019; Dowdy, 2020). Increased fire risk in spring 
may reduce opportunities for prescribed fuel-reduction burning in some regions (Harris and Lucas, 2019; Di Virgilio et al., 2020). Fuel 
dryness is a key constraint on wildfire occurrence (Ruthrof et al., 2016). Vegetation change will affect fuel load and fire risk in different 
areas in complex ways (Watt et al., 2019; Alexandra and Max Finlayson, 2020; Clarke et al., 2020; Sanderson and Fisher, 2020).

Direct effects of wildfire include death and injury to people and animals and damage to ecosystems, property, agriculture, water supplies 
and other infrastructure (Brodison, 2013; Pearce, 2018; de Jesus et al., 2020; Johnston et al., 2020; Maybery et al., 2020). Indirect effects 
include electricity and communication blackouts leading to cascading impacts on services, infrastructure and communities (Bowman, 
2012; Schavemaker and van der Sluis, 2017).

For New Zealand, there has been recent increased frequency and magnitude of property losses due to wildfire (Pearce, 2018). The 
1660-hectare Port Hills fire in 2017 resulted in the greatest house losses (9) in almost 100 years (Langer et al., 2018), but the subsequent 
5540-hectare Lake Ohau fire destroyed 53 houses in 2020 (Waitaki District Council, 2020).

In Australia, between 1987 and 2016, there were 218 deaths, 1000 injuries, 2600 people left homeless and 69,000 people affected by 
wildfire (Deloitte, 2017b). Wildfires cost about AUD$1.1 billion per year on average (11.5.2).

The Australian wildfires of 2019–2020 resulted in 33 deaths, over 3000 houses destroyed, AUD$2.3  billion in insured losses and 
AUD$3.6 billion in losses for tourism, hospitality, agriculture and forestry (CoA, 2020e; Filkov et al., 2020) (Figure Box 11.1.2). Smoke caused 
a further 429 deaths and 3230 hospitalisations as a result of respiratory distress and illness, with health costs totalling AUD$1.95 billion 
(Johnston et al., 2020). These fires burnt about 5.8 to 8.1 million hectares of forest in eastern Australia (Ward et al., 2020; Godfree et al., 
2021), resulting in the loss or displacement of nearly 3 billion vertebrate animals (CoA, 2020e; Wintle et al., 2020). Further, 114 listed 
threatened species lost at least 50% of their habitat, and 49 lost 80% (Wintle et al., 2020), among other severe ecological impacts 
(Hyman et al., 2020). Smoke carried over 4000 km to New Zealand, where it increased snow/glacier melt through darkening surfaces 
and produced a detectable odour (Pu et al. 2021;(Filkov et al., 2020). The fire season of 2019–2020 was at least 30% more likely than 
a century ago due to the influence of climate change (van Oldenborgh et  al., 2021). Following the fires, a Royal Commission into 
National Natural Disaster Arrangements made 80 recommendations, most of which were accepted by government, including establishing 
a disaster advisory body and a resilience and recovery agency (11.5.2.3) (CoA, 2020e).

In the face of climate change and the increased cost of fire damage and suppression, there has been considerable investment in fire risk 
reduction (Table Box 11.1.1). Recent analysis of 8800 fires in Australia shows resource constraints in response capacity are a barrier to 
effectively containing fires (Collins et al., 2018b), compounded by lengthened and more extreme fire seasons.
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Change in number of dangerous  fire weather days
Change in the annual (July to June) number of days
that the Forest Fire Danger Index (FFDI) exceeds
its 90th percentile from July 1985 to June 2020
relative to July 1950 to June 1985
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Figure Box 11.1.1 |  Change in the annual (July to June) number of days that the Forest Fire Danger Index (FFDI) exceeds its 90th percentile from July 
1985 to June 2020 relative to July 1950 to June 1985 (BoM and CSIRO, 2020; Abram et al., 2021).

Table Box 11.1.1 |  Examples of adaptation options and enablers to reduce wildfire risk (Hart and Langer, 2011; Mitchell, 2013; Price et al., 2015; Tolhurst 
and McCarthy, 2016; Deloitte, 2017b; Miller et al., 2017; Steffen et al., 2017; Kornakova and Glavovic, 2018; Newton et al., 2018; Pearce, 2018; CoA, 2020e; McKemey 
et al., 2020).

Land management Communications Infrastructure

Prescribed burning to reduce fuel load close to built 
assets.

Clearer communication of existing exposure and 
vulnerability to enable informed decisions about risk 
tolerance and management, including sites of key 
biodiversity that are sensitive or susceptible to fire.

Enhanced training and support for firefighters and 
aerial firefighting assets, including sharing of resources 
nationally and internationally to address the increasing 
overlap of fire seasons, which are lengthening across 
the world.

Engagement with Australia’s Aboriginal and Torres 
Strait Islander Peoples to utilise and learn from their fire 
management knowledge and skills to assist in landscape 
management and greenhouse gas mitigation.

Increased research to understand interactions between 
fire, fuel, weather, climate and human factors to enhance 
projections of fire occurrence and behaviour.

Nationally consistent response to exceedance of air 
quality standards.

Locating power lines appropriately or underground and 
decentralising power supply to reduce ignitions.

Community education and engagement, encouraging 
house and property maintenance, improving 
early-warning systems, more targeted messaging and 
increased emergency evacuation planning and sheltering 
options.

Improved governance arrangements to ensure 
greater accountability and coordination between 
agencies, sharing of data and resources for emergency 
planning and greater understanding of risks to critical 
infrastructure and supply chains.

Preventive, community-based interventions to reduce 
ignitions from arson and accidental fires.

Development of new systems to augment capability of 
fire services and technological advances to detect and 
respond to fires.

Reduced exposure of new assets through statutory 
spatial planning and land use regulations, building codes 
and building design standards.

Box 11.1 (continued)
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Fires in southern and eastern Australia from Sep 2019 to Feb 2020

Extreme air pollution

5.8 to 8.1 million hectares burned with net emissions of up to 830 million tonnes of CO2-eq

Respiratory illness and disruption of outdoor activities and transport

Massive fire-fighting effort, saving many lives and at least 16,000 buildings

Building and facility closures, sporting events cancelled, holidays cancelled, workplace closures

Degraded and destroyed: Wineries, fruit, livestock, dairy, plantations

Loss of or displacement of 3 billion animals, with possible extinctions

Change in framework vegetation species and depletion of vegetation habitat resources

Smoke and ash transported to New Zealand, affecting air quality and glaciers

Destroyed and damaged utilities and infrastructure, e.g. roads closed for weeks, power and communication outages, fuel shortages, back-up generators  

without diesel, phone batteries run flat

Emergency evacuations of thousands of people by road, sea and air involving State Emergency Services and National Defence Force

Contamination of rivers and water supply with ash and sediment

Economic impacts: Estimates of the national financial impacts are over $8 billion

Social impacts: 33 people killed by fires, 429 killed by smoke, 3,103 houses destroyed, social disruption, injuries, exhaustion and mental health issues

Environmental impacts: Loss of ecosystem service benefits
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Figure Box 11.1.2 |  Cascading impacts on people, economic activity, built assets, ecosystems and species arising from the Black Summer fires of 
2019–2020 in eastern and southern Australia (Boer et al., 2020; CoA, 2020e; CoA, 2020b; CoA, 2020a; CSIRO, 2020; Filkov et al., 2020; Johnston et al., 2020; 
Ward et al., 2020; Wintle et al., 2020; Abram et al., 2021; Godfree et al., 2021).

Box 11.1 (continued)

https://doi.org/10.1017/9781009325844.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009325844.013


11

1602

Chapter 11� Australasia

Antarctic waters, encompassing an EEZ of 4 million km2, 18,000 km 
of coastline and 700 smaller islands and islets, in addition to the two 
main islands (Costello et al., 2010a; MfE, 2016).

The marine environment is important to the culture, health and well-
being of the region’s diverse Indigenous Peoples, including those who 
had sovereign ownership, governance, resource rights, and stewardship 
over ‘Sea Country’ for many thousands of years before the current sea 
level stabilised approximately 6000 years ago and before current coastal 
ecosystems were established (Rist et al., 2019). Marine environments 
contribute AUD$69 billion per year to Australia’s economy (Eadie et al., 
2011), and NZD$4  billion per year to New Zealand’s economy (MfE, 
2016). They have a high proportion of rare and endemic species (Croxall 
et al., 2012) and provide ecosystem services including food production, 
coastal protection, tourism and carbon sequestration (Croxall et  al., 
2012; Kelleway et al., 2017). Half of the species within New Zealand’s 
seas are endemic (Costello et al., 2010b).

11.3.2.1	 Observed Impacts

Climate change is having major impacts on the region’s oceans (very 
high confidence) (Table  11.6) (Law et  al., 2016; Sutton and Bowen, 
2019). Rising sea surface temperatures (SSTs) have exacerbated marine 
heatwaves, notably near western Australia in 2011, the GBR in 2016, 
2017 and 2020 and the Tasman Sea in 2015/2016, 2017/2018 and 
2018/2019 (Table 11.2) (BoM and CSIRO, 2018; AMS, 2019; NIWA, 2019; 
Salinger et al., 2019b; Sutton and Bowen, 2019; BoM, 2020; Salinger 
et al., 2020; Oliver et al., 2021). Temperature anomalies ranged from 
1.2°C to 4.0°C and durations ranged from 90–250 days (Table 11.2).

Ocean carbon storage and acidification has led to decreased surface 
pH in the region (Table 11.2), including the sub-Antarctic waters off 
the East Coast of New Zealand’s South Island (very high confidence) 
(Law et al., 2016). The depth of the Aragonite Saturation Horizon has 
shallowed by 50–100 m over much of New Zealand, which may limit 
and/or increase the energetic costs of growth of calcifying species 
(low confidence) (Anderson et al., 2015; Bostock et al., 2015; Mikaloff-
Fletcher et al., 2017).

In the estuaries of southwestern Australia, sustained warming and 
drying trends have caused dramatic declines in freshwater flows of 
up to 70% since the 1970s and increased frequency and severity of 
hypersaline conditions, enhanced water column stratification and 
hypoxia and reduced flushing and greater retention of nutrients 
(Hallett et al., 2017).

Extensive changes in the life history and distribution of species have 
been observed in Australia’s (very high confidence) (Gervais et  al., 
2021) and New Zealand’s marine systems (medium confidence) 
(Table 11.6) (Cross-Chapter box MOVING SPECIES in Chapter 5). New 
occurrences or increased prevalence of disease, toxins and viruses are 
evident (de Kantzow et al., 2017; Condie et al., 2019), along with heat 
stress mortalities and changes in community composition (Wernberg 

2	 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is 
expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and agreement statement, different confidence levels 
can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence.

et al., 2016; Zarco-Perello et al., 2017; Thomsen et al., 2019). Extreme 
climatic events in Australia from 2011 to 2017 led to abrupt and 
extensive mortality of key habitat-forming organisms — corals, kelps, 
seagrasses and mangroves — along over 45% of the continental 
coastline of Australia (high confidence) (Babcock et al., 2019).

In 2016 and 2017, the GBR experienced consecutive occurrences 
of the most severe coral bleaching in recorded history (very high 
confidence) (Box 11.2), with shallow-water reef in the top two-thirds 
of the GBR affected and the severity of bleaching on individual reefs 
tightly correlated with the level of local heat exposure (Hughes et al., 
2018b; Hughes et al., 2019c). Mass mortality of corals from these two 
unprecedented events resulted in larval recruitment in 2018 declining 
by 89% compared to historical levels (Hughes et al., 2019b). southern 
reefs were also affected by warming, although significantly less than 
in the north (Kennedy et  al., 2018). Coral reefs in Australia are at 
very high risk of continued negative effects on ecosystem structure 
and function (very high confidence) (Hughes et  al., 2019b), cultural 
well-being (very high confidence) (Goldberg et al., 2016; Lyons et al., 
2019), food provision (medium confidence) (Hoegh-Guldberg et  al., 
2017), coastal protection (high confidence) (Ferrario et al., 2014) and 
tourism (high confidence) (Deloitte Access Economics, 2017; Prideaux 
and Pabel, 2018; GBRMPA, 2019). If bleaching persists, an estimated 
10,000 jobs and AUD$1 billion in revenue would be lost per year from 
declines in tourism alone (Swann and Campbell, 2016).

11.3.2.2	 Projected Impacts

Future ocean warming, coupled with periodic extreme heat events, 
is projected to lead to the continued loss of ecosystem services and 
ecological functions (high confidence) (Smale et al., 2019) as species 
further shift their distributions and/or decline in abundance (Day et al., 
2018). Compounding climate-driven changes in the distribution of 
habitat-forming species, invasive macroalgae are predicted to exhibit 
higher growth under all higher pCO2 and lower pH conditions (Roth-
Schulze et al., 2018). Corals and mangroves around northern Australia 
and kelp and seagrass around southern Australia are of critical 
importance for ecosystem structure and function, fishery productivity, 
coastal protection and carbon sequestration; these ecosystem services 
are therefore extremely likely2 to decline with continued warming. 
Equally, many species provide important ecosystem structure and 
function in New Zealand’s seas including in the deep sea (Tracey 
and Hjorvarsdottir, 2019). The future level of sustainable exploitation 
of fisheries is dependent on how climate change impacts these 
ecosystems. Native kelp is projected to further decline in southeastern 
New Zealand with warming seas (Table 11.6). Climate change could 
affect New Zealand fisheries’ productivity (Cummings et  al., 2021), 
and both ocean warming and acidification may directly affect shellfish 
culture (Cunningham et al., 2016; Cummings et al., 2019) and indirectly 
through changes in phytoplankton production (Pinkerton, 2017).

Climate-change-related temperature and acidification may affect 
species sex ratios and, thus, population viability (medium confidence) 
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(Table 11.3) (Law et al., 2016; Tait et al., 2016; Mikaloff-Fletcher et al., 
2017). Acidification may alter sex determination (e.g., in the oyster 
Saccostrea glomerate), resulting in changes in sex ratios (Parker et al., 
2018), and may thus affect reproductive success (low confidence). 
Decreasing river flows (Chiew et  al., 2017) are projected to cause 
periodically open estuaries across southwest Australia to remain closed 
for longer periods, inhibiting the extent to which marine taxa can 
access these systems (Hallett et al., 2017) and with warming predicted 
to constrain activity in some large fish (Scott et  al., 2019b). Major 
knowledge gaps include environmental tolerances of key life stages, 

sources of recruitment, population linkages, critical ecological (e.g., 
predator–prey interactions) or phenological relationships and projected 
responses to lowered pH (Fleming et al., 2014; Fogarty et al., 2019).

Black-browed albatrosses breeding on Macquarie Island may be more 
vulnerable to future climate-driven changes to weather patterns in the 
Southern Ocean and potential latitudinal shifts in the sub-Antarctic 
Front (Cleeland et  al., 2019). New Zealand coastal ecosystems face 
risks from sea level rise (SLR) and extreme weather events (MfE, 
2020a).

Table 11.6 |  Observed climate-change-related changes in the marine ecosystems of Australia and New Zealand. Climate-related impacts have been documented at a range of 
scales from single-species or region-specific studies to multi-species or community-level changes.

Type of change Examples Climate-related Pressure Source

Australia

Reduced activity and increased 
energetic demands

Coral trout (Plectropomus leopardus), one of Australia’s most 
important commercial and recreational tropical finfish species

Increased temperature (experimental laboratory 
study) and ocean warming

(Johansen et al., 2014; Scott 
et al., 2017)

Estuaries warming and 
freshening

Australian lagoons and rivers warming and decreasing pH at 
a faster rate than predicted by climate models

Warming and reduction in rainfall (leading to 
reduced flows and therefore being less frequently 
open to the sea)

(Scanes et al., 2020)

Changes in life-history traits, 
behaviour or recruitment

Reduced size of Sydney rock oysters (for commercial sale)
Limited capacity to bio mineralise under 
acidification conditions

(Fitzer et al., 2018)

Reduced growth in tiger flathead fish in equatorward range Ocean warming
(Morrongiello and Thresher, 
2015)

55% of 335 fish species became smaller and 45% became 
larger as seas warmed around Australia

Ocean warming (over three decades) (Audzijonyte et al., 2020)

Rock lobster display reduced avoidance of predators at 23°C 
compared to 20°C

Increased temperature (experimental laboratory 
study)

(Briceño et al., 2020)

Analysis of stress rings in cores of corals from the GBR dating 
back to 1815 found that following bleaching events, the coral 
was less affected by subsequent marine heatwaves

Heat events (DeCarlo et al., 2019)

Mortality and reductions in spawning stocks of fishery 
important abalone, prawns, rock lobsters

2011 marine heatwave (Caputi et al., 2019)

Recruitment of coral on GBR reduced to 11% of long-term 
average

Warming-driven back-to-back global bleaching 
events

(Hughes et al., 2019b)

Green turtle hatchlings from southern GBR 65–69% female 
and hatchlings from northern GBR 100% female for last two 
decades

Increased sand temperatures (Jensen et al., 2018)

New diseases, toxins
First occurrence of virulent virus causing Pacific Oyster 
Mortality Syndrome (POMS), up to 90% of all farmed oysters 
died in impacted areas

Detected during heatwave (de Kantzow et al., 2017)

Mussels, scallops, oysters, clams, abalone and rock lobsters 
on east coast of Tasmania found to have high levels of 
Paralytic Shellfish toxins, originating from a bloom of harmful 
Alexandrium tamarense

Warming and extension of the East Australian 
Current

(Hallegraeff and Bolch, 2016)

Range expansion of phytoplankton Noctiluca, which can be 
toxic

Warming and extension of the East Australian 
Current

(Hallegraeff et al., 2020)

Mortality of fish following algal blooms in South Australia 2013 marine heatwave (Roberts et al., 2019)

Changes in species distributions
Range extensions at the poleward range limit have been 
detected in: fish, cephalopods, crustaceans, nudibranchs, 
urchins, corals

Ocean warming

(Baird et al., 2012; Robinson 
et al., 2015; Sunday et al., 2015; 
Ling et al., 2018; Nimbs and 
Smith, 2018; Ramos et al., 2018; 
Smith et al., 2019; Caswell et al., 
2020)

Contractions in range at the equatorward range edge have been 
detected in anemones, asteroids, gastropods, mussels, algae

Ocean warming
(Pitt et al., 2010; Poloczanska 
et al., 2011; Smale et al., 2019)
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Type of change Examples Climate-related Pressure Source

Australia’s most southern dominant reef building coral, 
Plesiastrea versipora, in eastern Bass Strait, increasing in 
abundance at the poleward edge of the species’ range and in 
western Australia

Ocean warming
(Tuckett et al., 2017; Ling et al., 
2018)

Southwestern Australia fish assemblages—warm-water fish 
increasing in density at poleward edge of distributions and 
cool-water species decreasing in density at equatorward 
edge of distributions; increase in warm-water habitat 
forming species leading to reduced habitat for invertebrate 
assemblages

Combination of increased temperatures and 
changes in habitat-forming algal species

(Shalders et al., 2018; Teagle 
et al., 2018)

Predicted reduction range of rare Wilsonia humilis herb in 
Tasmanian saltmarsh but no change in rest of community

Wetter and drier climate (Prahalad and Kirkpatrick, 2019)

Changes in abundance
Shift towards a zooplankton community dominated by 
warm-water small copepods in southeast Australia

Ocean warming (Kelly et al., 2016)

Diebacks of tidal wetland mangroves
2015–2016 heatwaves combined with moisture 
stress

(Duke et al., 2017)

Decline in giant kelp in Tasmania, Australia, less than 10% 
remaining; loss of kelp Australia-wide totalling at least 
140,187 hectares

Ocean warming and change in East Australian 
Current (lower nutrients)

(Wahl et al., 2015; Butler 
et al., 2020; Filbee-Dexter and 
Wernberg, 2020)

Regional loss of seagrass in Shark Bay World Heritage Area, 
western Australia

High air and water temperatures during 2011 
heatwave

(Strydom et al., 2020)

Increased annual dugong and inshore dolphin mortality 
across Queensland

Sustained low air temperature and increased 
freshwater discharge during high Southern 
Oscillation Index (SOI) (ENSO) index

(Meager and Limpus, 2014)

Predicted equatorward decline and poleward shift of sea 
urchin in eastern Australia

Ocean warming (Castro et al., 2020)

Increasing mortality of Australian fur seal pups in low-lying 
colonies

Storm surges and high tides amplified by ongoing 
SLR

(McLean et al., 2018) (Box 11.6)

Rapid shifts in community 
composition, structure and 
integrity

Community-wide tropicalisation in Australian temperate 
reef communities; temperate species replaced by seaweeds, 
invertebrates, corals, and fishes characteristic of sub-tropical 
and tropical waters

Extreme marine heatwaves led to 100-km range 
contraction of extensive kelp forests

(Vergés et al., 2016; Wernberg 
et al., 2016)

Ongoing declines in habitat-forming seaweeds Climate-driven shift of tropical herbivores
(Thomson et al., 2015; Nowicki 
et al., 2017; Zarco-Perello et al., 
2017; Wernberg et al., 2016)

Dieback of temperate seagrass in Shark Bay, Australia, 
subsequently replaced by tropical early successional seagrass 
with seagrass-associated megafauna (sea turtles) declining 
in health status

2011 marine heatwave (Strydom et al., 2020)

Increased herbivory by fish on tropicalised reefs of western 
Australia

Change in species composition due to ocean 
warming

(Zarco-Perello et al., 2019)

No recovery 2 years after coral bleaching and macroalgae 
mortality in western Australia

2011 marine heatwave (Bridge et al., 2014)

Mass mortality of particular coral species on affected reefs 
during heatwaves on GBR (Eastern Australia) led to altered 
coral reef structure and species composition 8 months later.

2016 marine heatwave (Hughes et al., 2018c)

Community-wide restructuring along GBR 1 year after the 
2016 mass bleaching event

2016 marine heatwave (Stuart-Smith et al., 2018)

New Zealand

Changes in life-history
Alteration of shell of pāua (black footed abalone, Haliotis iris) 
under lowered pH (calcite layer thinner, greater etching of 
external shell surface)

Lowered pH (experimental laboratory study) (Cummings et al., 2019)

Decline in maximum swimming performance of kingfish and 
snapper

Elevated CO2 (experimental laboratory study)
(Watson et al., 2018; McMahon 
et al., 2020)

Increased mortality and faster growth in juvenile kingfish Increased temperature (Watson et al., 2018)

Earlier spawning of snapper in South Island 2017–2018 heatwave (Salinger et al., 2019b)

Increase in mortality
Heat stress mortality in salmon farms off Marlborough, New 
Zealand, where 20% of salmon stocks died

2017–2018 marine heatwave (Salinger et al., 2019b)
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Type of change Examples Climate-related Pressure Source

Changes in species distributions
Species increasingly caught further south (e.g., snapper and 
kingfish)

Ocean warming and 2017–2018 marine heatwave (Salinger et al., 2019b)

Non-breeding distribution of New Zealand nesting seabird 
(Antarctic prion) shifting south with long-term climate 
inferred from stable isotopes

Climate warming (Grecian et al., 2016)

Less phytoplankton production in Tasman Sea but more on 
sub-tropical front

Ocean warming (Chiswell and Sutton, 2020)

Loss of bull kelp (Durvillaea) populations in southern New 
Zealand subsequently replaced by introduced kelp Undaria

2017–2018 heatwave when sea and air 
temperatures exceeded 23°C and 30°C respectively

(Salinger et al., 2019b; Thomsen 
et al., 2019; Salinger et al., 2020)

Box 11.2 | The Great Barrier Reef in Crisis

The GBR is the world’s largest coral reef system, comprising 3863 reefs over an area of 348,700 km2, stretching for 2300 km. The GBR 
is a central cornerstone of the beliefs, knowledges, lores, languages and ways of living for over 70 geographically and culturally diverse 
Traditional Owner groups spanning the length of the GBR (Dale et al., 2018), and it contributes an estimated AUD$6.4 billion per year 

(pre-COVID) to the Australian economy, mainly via tourism. As the world’s most extensive coral reef ecosystem, the GBR is a globally 
outstanding and significant entity, with practically the entire ecosystem inscribed as a World Heritage Site in 1981 (UNESCO, 1981).

The GBR is already severely impacted by climate change, particularly ocean warming, through more frequent and severe coral bleaching 
(very high confidence) (Hughes et al., 2018b; Hughes et al., 2019c). The worst coral bleaching event on record affected over 90% of reefs 
in 2016 (Hughes et al., 2018b). In the most northern 700-km-long section of the GBR in which the heat exposure was the most extreme, 
50% of the coral cover on reef crests was lost within 8 months (Hughes et al., 2018c). Throughout the entire GBR, including the southern 
third where heat exposure was minimal, the cover of corals declined by 30% between March and November 2016 (Hughes et al., 2018b). 
In 2017, the central third of the reef was the most severely affected and the back-to-back regional-scale bleaching events has led to an 
unprecedented shift in the composition of GBR coral assemblages, transforming the northern and middle sections of the reef system 
(Hughes et al., 2018c) to a highly degraded state (very high confidence). Coral recruitment to the GBR in 2018 was reduced to only 11% 
of the long-term average (Hughes et al., 2019b). A mass bleaching event also occurred in 2020, making it the third event in 5 years (BoM, 
2020) (Figure Boxes 11.2.1 and 11.2.2).

Increased heat exposure also affects the abundance and distribution of associated fish, invertebrates and algae (high confidence) (Stuart-
Smith et al., 2018). Thus, coral bleaching is an indicator of thermal effects on coral habitat, fauna and flora. Bleaching is expected to 
continue for the GBR and Australia’s other coral reef systems (virtually certain). Bleaching conditions are projected to occur twice each 
decade from 2035, annually after 2044 under RCP8.5 and annually after 2051 under RCP4.5 (Heron et al., 2017). Global warming of 3°C 
would result in over six times the 2016 level of thermal stress (Lough et al., 2018).

Increases in cyclone intensity projected for this century, and other extreme weather events, will greatly accelerate coral reef degradation 
(Osborne et al., 2017). Additionally, through interactions between elevated ocean temperature and coastal runoff (nutrient and sediment), 
extreme weather events may contribute to an increased frequency and/or amplitude of crown-of-thorns starfish outbreaks (Uthicke et al., 
2015), further reducing the spatial distribution of coral.

Recovery of coral reefs following repeated disturbance events is slow (Hughes et al., 2019b; IPCC, 2019b), and it takes at least a decade 
after each bleaching event for the very fastest growing corals to recover (high confidence) (Gilmour et al., 2013; Osborne et al., 2017). 
Estimates of future levels of thermal stress, measured as degree heating months, which incorporates both the magnitude and duration 
of warm season SST anomalies, suggest that achieving the 1.5°C Paris Agreement target would be insufficient to prevent more frequent 
mass bleaching events (very high confidence) (Lough et al., 2018), although it may reduce their occurrence (Heron et al., 2017), and 
occurrences of warming events similar to 2016 bleaching could be reduced by 25% (King et al., 2017).

Tourist motivations for visiting the GBR are changing, with a recent survey finding that two-thirds of tourists were visiting ‘before it was 
gone’ and a similar number were reporting damage to the reef—an example of ‘last chance tourism’ (Piggott-McKellar and McNamara, 
2016). The Australian government is investing AUD$1.9 billion to support the GBR through science and practical environmental outcomes, 
including reducing other anthropogenic pressures, which can suppress natural adaptive capacity (CoA, 2019b; GBRMPA, 2019). However, 
adaptation efforts on the GBR aimed specifically at climate impacts, for example coral restoration following marine heatwave impacts 
(Boström-Einarsson et al., 2020), may slow the impacts of climate change in small discrete regions of the reef or reduce short-term 
socioeconomic ramifications, but they will not prevent widespread bleaching (Condie et al. 2021).
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The Great Barrier Reef
(a) Spatial patterns in heat exposure
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Figure Box 11.2.1 |  Top panels: spatial patterns in heat exposure along the GBR in 2016 (left pair) and 2017 (right pair), measured from satellites 
as Degree Heating Weeks (DHW, °C-weeks). Middle panels: geographic footprint of recurrent coral bleaching in 2016 (left) and again in 2017 (right), measured by 
aerial assessments of individual reefs (adapted from (Hughes et al., 2019c)]). Bottom panels: density of coral recruits (mean per recruitment panel on each reef), measured 
over three decades, from 1996 to 2016 (n = 47 reefs, 1784 panels) (left), compared to the density of coral recruits in 2018 after the mass mortality of corals in 2016 and 
2017 due to the back-to-back bleaching events (n = 17 reefs, 977 panels) (right). The area of each circle is scaled to the overall recruit density of spawners and brooders 
combined. Yellow and blue indicate the proportion of spawners and brooders respectively (from (Hughes et al., 2019b)]).

Box 11.2 (continued)
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Nutrient availability and productivity in the sub-tropical waters 
of New Zealand are projected to decline due to increased SST and 
strengthening of the thermocline, but they may increase in sub-
Antarctic waters, potentially bringing some benefit to fish and other 
species (low confidence) (Law et al., 2018b). For New Zealand waters 
as a whole, declines in net primary productivity of 1.2% and 4.5% are 
projected under RCP4.5 and RCP8.5 respectively by 2100, and declines 
in the primary production of surface waters by an average 6% from the 
present day under RCP8.5, with sub-tropical waters experiencing the 
largest decline (Tait et al., 2016).

The pH of surface waters around New Zealand is projected to decline 
by 0.33 under RCP 8.5 by 2090 (Tait et al., 2016), and the depth at 
which carbonate dissolves is projected to be significantly shallower 
(Mikaloff-Fletcher et  al., 2017), affecting the distribution of some 
species of calcifying cold water corals (medium confidence) (Law 
et al., 2016). However, model projections suggest that the top of the 
Chatham Rise may provide temporary refugia for scleractinian stony 
corals from ocean acidification because the Chatham Rise sits above 
the aragonite saturation horizon (Anderson et al., 2015; Bostock et al., 
2015). For sub-tropical corals, skeletal formation will be vulnerable 
to the changes in ocean pH, with implications for their longer-term 
growth and resilience (Foster et al., 2015).

11.3.2.3	 Adaptation

Climate change adaptation opportunities and pathways have been 
identified across aquaculture, fisheries, conservation and tourism 
sectors in the region (MacDiarmid et  al., 2013; Fleming et  al., 
2014; MPI, 2015; Jennings et  al., 2016; MfE, 2016; Royal Society Te 
Apārangi, 2017; Ling and Hobday, 2019), and some stakeholders 
are already autonomously adapting (Pecl et al., 2019). Some fishing 
and aquaculture industries use seasonal forecasts of environmental 
conditions to improve decision-making, risk management and business 
planning (Hobday et  al., 2016), with the potential to use 5-yearly 
forecasts similarly (Champion et  al., 2019). Shifts in the distribution 
and availability of target species (e.g., oceanic tuna) would impact 
the ability of domestic fishing vessels to continue current fishing 
practices, with potential social and economic adjustment costs (Dell 
et  al., 2015), including disruption to supply chains (Fleming et  al., 
2014; Plagányi et  al., 2014) (Cross-Chapter Box  MOVING SPECIES 
in Chapter 5). Species abundance data are insufficient to enable 
projections of climate impacts on fishery productivity. However, fishery 
and aquaculture industries are considering adaptation strategies, 
such as changing harvests and relocating farms (Pinkerton, 2017). 
Thus, while climate change is extremely likely to affect the abundance 
and distribution of marine species around New Zealand, insufficient 
monitoring means there is limited evidence of ecosystem level change 
in biodiversity to date and no quantitative projections of which species 
may win and lose to climate change (Table 11.6) (Law et al., 2018a; 
Law et al., 2018b).

Figure Box 11.2.2 |  Variation in the severity of mass-bleaching episodes 
recorded on Australia’s GBR over the last four decades (1980–2020). The 
overall number of reefs surveyed was substantially higher in 1998, 2002, 2016, 2017 
and 2020 when aerial surveys were undertaken, whereas the severity of other more 
localised bleaching episodes was documented with in-water surveys (adapted from 
(Pratchett et al., 2021). Extent of bleaching in 2020 was similar in severity to that of 
2016 but more geographically widespread and included southern reefs.

Variation in the severity of mass-bleaching 
episodes recorded on Australia’s Great Barrier Reef over the 
last four decades (1980–2020)
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Box 11.2 (continued)
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11.3.3	 Freshwater Resources

Climate change impacts on freshwater resources cascade across 
people, agriculture, industries and ecosystems (Boxes 11.3 and 11.5). 
The challenge of satisfying multiple demands with a finite resource is 
exacerbated by high interannual and inter-decadal variability of river 
flows, particularly in Australia (Chiew and McMahon, 2002; Peel et al., 
2004; McKerchar et al., 2010).

11.3.3.1	 Observed Impacts

Streamflow has generally increased in northern Australia and decreased 
in southern Australia since the mid-1970s (high confidence) (Zhang 
et al., 2016). Declining river flows since the mid-1970s in southwest 
Australia have led to changed water management (WA Government, 
2012; WA Government, 2016). The large decline in river flows during 
the so-called 1997–2009 Millennium drought in southeast Australia 
resulted in low irrigation water allocations, severe water restrictions 
and major environmental impacts (Potter et  al., 2010; Chiew and 
Prosser, 2011; Leblanc et al., 2012; van Dijk et al., 2013). The drying in 
southern Australia highlighted the need for hydrological models that 
adequately account for climate change (Vaze et al., 2010; Chiew et al., 
2014; Saft et al., 2016; Fowler et al., 2018). The decline in streamflow 
was largely due to the decline in cool-season rainfall (which has been 
partly attributed to climate change) (Figure 11.2) (Timbal and Hendon, 
2011; Post et al., 2014; Hope et al., 2017; DELWP, 2020), when most of 
the runoff in southern Australia occurs.

In New Zealand, precipitation has generally decreased in the north 
and increased in the southwest (Figure 11.2) (Harrington et al., 2014), 
but it is difficult to ascertain trends in the relatively short streamflow 
records. Glaciers in New Zealand’s southern alps have lost one third of 
their mass since 1977 (Mackintosh et al., 2017; Salinger et al., 2019b), 
and glacier mass loss in 2018 was at least 10 times more likely to occur 
with anthropogenic forcing than without (Vargo et al., 2020).

11.3.3.2	 Projected Impacts

Projections indicate that future runoff in southeast and southwest 
Australia are likely to decline (median estimates of 20% and 50% 
respectively under 2.2°C global average warming) (Figure 11.3) (Chiew 
et al., 2017; Zheng et al., 2019). These projections are broadly similar 
to those reported previously and in AR5 (Teng et al., 2012; Reisinger 
et al., 2014). The range of estimates arises mainly from the uncertainty 
in projected future precipitation (Table 11.2a).

The runoff decline in southern Australia is projected to be further 
accentuated by higher temperature and potential evapotranspiration 
(Potter and Chiew, 2011; Chiew et al., 2014), transpiration from tree 
regrowth following more frequent and severe wildfires (Brookhouse 
et al., 2013) (Box 11.1), interceptions from farm dams (Fowler et al., 
2015) and reduced surface–groundwater connectivity (limiting 
groundwater discharge to rivers) in long dry spells (high confidence) 
(Petrone et al., 2010; Hughes et al., 2012; Chiew et al., 2014). In the 
longer term, runoff will also be affected by changes in vegetation 
and surface–atmosphere feedback in a warmer and higher CO2 
environment, but the impact is uncertain because of the complex 

interactions, including changes in climate inputs, fire patterns 
(Box 11.1) and nutrient availability (Raupach et al., 2013; Ukkola et al., 
2016; Cheng et al., 2017).

Climate change is projected to affect groundwater recharge and the 
relationship between surface waters and aquifers and through rising 
sea levels where groundwater has a tidal signature (PCE, 2015; MfE, 
2017a). Groundwater recharge across southern Australia has decreased 
in recent decades (Fu et al., 2019), and this trend is expected to continue 
(high confidence) (Barron et  al., 2011; Crosbie et  al., 2013). Climate 
change is also projected to impact water quality in rivers and water 
bodies, particularly through higher temperature and low flows (Jöhnk 
et  al., 2008) (Box  11.5) and increased sediment and nutrient load 
following wildfires (high confidence) (Biswas et al., 2021) (Box 11.1) 
and floods (Box 11.4).

The projected changes in river flows in New Zealand are consistent 
with the precipitation projections (Table 11.2), with increases in the 
west and south of the South Island and decreases in the east and 
north of the North Island (Figure 11.4). In the South Island, the runoff 
increase occurs mainly in winter due to increasing moisture-bearing 
westerly airflow, with more precipitation falling as rain and snow 
melting earlier. In the North Island, the runoff decrease occurs in spring 
and summer (Caruso et  al., 2017; Collins et  al., 2018a; Jobst et  al., 
2018; D. Collins, 2020).

11.3.3.3	 Adaptation

In Australia, prolonged droughts and projections of a drier future 
have accelerated policy and management change in urban and rural 
water systems. Adaptation initiatives and mechanisms, like significant 
government investment to enhance the Bureau of Meteorology online 
water information (Vertessy, 2013; BoM, 2016), funding to improve 
agricultural water use and irrigation efficiency (Koech and Langat, 
2018), enhanced supply through inter-basin transfers and upgrading 
water infrastructure and an active water trading market (Wheeler 
et al., 2013; Kirby et al., 2014; Grafton et al., 2016) are helping to buffer 
regional systems against droughts and facilitating some adaptation to 
climate change (medium confidence). However, these measures could 
also be maladaptive because they may perpetuate unsustainable water 
and land uses under ongoing climate change (Boxes 11.3 and 11.5).

The widespread 2017–2019 drought across eastern Australia (BoM, 
2021b) has led to the Australian government establishing a Future 
Drought Fund (Australian Government, 2019) to enhance drought 
resilience and a National Water Grid Authority to develop regional 
water infrastructure to support agriculture. Nevertheless, the ability to 
adapt to climate change is compounded by uncertainties in future water 
projections, complex interactions between science, policy, community 
values and political voice, and competition between different sectors 
dependent on water (Boxes 11.3 and 11.5). The impact of declining 
water resources on agricultural, ecosystems and communities in 
southeastern Australia would escalate with ongoing climate change 
(medium confidence) (Hart, 2016; Moyle et  al., 2017), highlighting 
the importance of more ambitious, anticipatory, participatory and 
integrated adaptation responses (Bettini et al., 2015; Abel et al., 2016; 
Marshall and Lobry de Bruyn, 2021).
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Altered water regimes resulting from the combined effects of climatic 
conditions and water policies carry uneven and far-reaching implications 
for communities (high confidence). Acting on Indigenous Peoples’ claims 
to cultural flows (to maintain their connections with their country) is 
increasingly recognised as an important water management and social 
justice issue (Taylor et al., 2017; Hartwig et al., 2018; Jackson, 2018; 
Jackson and Moggridge, 2019; Moggridge et al., 2019). Compounding 
stressors, such as coal and coal seam gas developments, can also 
severely impact local communities, water catchments and water-
dependent ecosystems and assets, exacerbating their vulnerability to 
climate change (Navi et al., 2015; Tan et al., 2015; Chiew et al., 2018).

In Australian capital cities and regional centres, water planning 
has focused on securing new supplies that are resilient to climate 

change. This includes increasing use of stormwater and sewage 
recycling and managed aquifer recharge (Bekele et  al., 2018; Page 
et al., 2018; Gonzalez et al., 2020). All major coastal Australian cities 
have desalination plants. Household scale adaptation, like rainwater 
harvesting, water-smart gardens, dual flush toilets, water-efficient 
showerheads and voluntary residential use targets, can help reduce 
water demand by up to 40% (Shearer, 2011; Rhodes et  al., 2012; 
Moglia et al., 2018). Water utilities across Australia have established 
climate change adaptation guidelines (WSAA, 2016). Coordinated 
efforts to reduce demand, design and retrofit infrastructure to reduce 
flood risk and harvest water and to practice water-sensitive urban 
design are evident (WSAA, 2016; Kunapo et al., 2018; Rogers et al., 
2020b). Transitioning centralised water systems to a more sustainable 
basis represents adaptation progress but is complex and faces many 

Projected changes in mean annual runoff
2046–2075 relative to 1976–2005 for RCP8.5 from hydrological modelling with future climate projections informed by 42 CMIP5 GCMs 
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Figure 11.3 |  Projected changes in mean annual runoff for 2046–2075 relative to 1976–2005 for RCP8.5 from hydrological modelling with future climate 
projections informed by 42 CMIP5 GCMs. Projections for RCP4.5 are about three quarters of the aforementioned projections. Plots show median projection and the 10th and 
90th percentile range of estimates. The boundaries are based on hydroclimate regions and major drainage basins. Source: (Zheng et al., 2019).
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barriers and limits (medium confidence) (Morgan et  al., 2020). 
Developing multiple redundant or decentralised systems can enhance 
community resilience and promote autonomous adaptations that may 
be more sustainable and cost effective in the longer term (Mankad and 
Tapsuwan, 2011; WSAA, 2016; Iwanaga et al., 2020).

In New Zealand, many water supplies are at risk from drought, extreme 
rainfall events and sea level rise (SLR), exacerbated by underinvestment 
in existing water infrastructure (in part due to funding constraints) 
and urban densification (high confidence) (CCATWG, 2017; MfE and 
Stats NZ, 2021). Lessons can be learned from global experience (e.g., 
Cape Town, South Africa; Section 4.3.4). Water quality has diminished, 
with hotter conditions and drought causing algal blooms, combined 
with intensification of agricultural land uses in some areas, and heavy 
rainfall and sea level rise (SLR) causing flooding and sedimentation 
of water sources and health impacts (11.3.6; Box 11.5). Some towns 

are only partially metered or not metered at all, which exacerbates 
the adaptation challenge (Hendy et al., 2018; WaterNz, 2018; Paulik 
2019a). Unregulated or absent water supplies accentuate risks to 
vulnerable groups of people (MfE, 2020b). Māori view water as the 
essence of all life, which makes any impacts on water a governance 
and stewardship concern, and increasingly, the subject of legal claims 
(MfE, 2020a; MfE, 2020b; MfE, 2020c) (11.4.2). Māori understanding 
of time can also open up new spaces for rethinking freshwater 
management in a climate change context that does not reinforce or 
rearticulate multiple environmental injustices (Parsons et al., 2021).

Water resource adaptation in New Zealand is variable across local 
government and water authorities but they all actively monitor water 
availability, demand and quality, and most have drought management 
plans. The 2019/2020 drought led to water shortages in the most 
populated areas of Waikato, Auckland and Northland, resulting in 

Projected percentage change in mean annual runoff
2086–2099 relative to 1986–2005 from hydrological modelling informed by six CMIP5 GCMs for four RCPs
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Figure 11.4 |  Projected percentage change in mean annual runoff for 2086–2099 relative to 1986–2005 from hydrological modelling informed by six CMIP5 
GCMs for four RCPs. Maps show median projection from the six modelling runs. White indicates that the change is not statistically significant. Source: (D. Collins, 2020).

Box 11.3 | Drought, Climate Change and Water Reform in the Murray-Darling Basin

The MDB is Australia’s largest, most economically important and politically complex river system (Figure Box 11.3.1). The MDB supports 
agriculture worth AUD$24 billion/year, 2.6 million people in diverse rural communities and important environmental assets including 16 
Ramsar listed wetlands (DAWE, 2012). Climate change is projected to substantially reduce water resources in the MDB (high confidence), 
with the median projection indicating a 20% decline in average annual runoff under 2.2°C average global warming (Figure  11.3) 
(Whetton and Chiew, 2020). This reduction, plus increased demand for water in hot and dry conditions, would increase the already 
intense competition for water (high confidence) (CSIRO, 2008; Hart, 2016).
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The economic, environmental and social impacts of the 1997–2009 Millennium Drought in the MDB (Chiew and Prosser, 2011; Leblanc 
et al., 2012; van Dijk et al., 2013) and projections of a drier future under climate change have accelerated significant water policy reforms 
costing more than AUD$12 billion (Bark et al., 2014; Docker and Robinson, 2014; Hart, 2016). These reforms included the development 
of a Basin Plan (MDBA, 2011; MDBA, 2012) requiring consistent regional water resource plans (MDBA, 2011; MDBA, 2012; MDBA, 
2013) and environmental watering strategies (MDBA, 2014) across the MDB. Despite contestation, the reforms have resulted in some 
substantive achievements, including returning an equivalent of about one-fifth of consumptive water to the environment through the 
purchase of irrigation water entitlements and infrastructure projects (medium confidence) (Hart, 2016; Gawne et al., 2020; MDBA, 2020). 
However, the overall impacts of these water management initiatives are difficult to measure due to hydroclimatic variability, time lags 
and environmental, social and institutional complexity (Crase, 2011; Bark et al., 2014; Docker and Robinson, 2014; MDBA, 2020).

Reform initiatives such as water markets, improving agriculture water use efficiency (Koech and Langat, 2018), and increasing 
environmental water are helping buffer the system against droughts (medium confidence) (Moyle et al., 2017), but they can also be 
maladaptive by perpetuating unsustainable water and land use under ongoing climate change. While water markets can allow users 
to adapt and shift water to higher value uses, they can also have adverse impacts unless supported by wider policy goals and planning 
processes (Wheeler et al., 2013; Kirby et al., 2014; Grafton et al., 2016; Qureshi et al., 2018).

Adapting MDB management to climate risks is an escalating challenge, with the projected decline in runoff being potentially greater than 
the water recovered for the environment (Chiew et al., 2017). While the Basin Plan includes mechanisms for climate risk management 
(Neave et al., 2015), it does not require altering pre-existing rules that distribute the impacts of anticipated reductions in water resources 
between users (Hart, 2016; Capon and Capon, 2017; Alexandra, 2020). The intense drought conditions in 2017–2019 (BoM, 2021b), the 
South Australian Royal Commission investigation into the MDB reforms (SA Government, 2019b) and major fish kills in the lower Darling 
River in the summer of 2018/2019 (AAS, 2019; Vertessy et al., 2019) have increased concerns about the Basin Plan’s climate adaptation 
deficit (medium confidence). Consequently, the MDB Authority (MDBA) is undertaking an assessment of climate change risks and 
developing adaptation mechanisms (MDBA, 2019) that can feed into the revisions to the Basin Plan scheduled for 2026. The MDB reforms 
to date illustrate the difficulties in integrating climate change science and projections into management (Alexandra, 2018; Alexandra, 
2020). Anticipatory and participatory governance and adaptive management approaches supported by structural and institutional 
reforms would support the effectiveness of the reforms (Abel et al., 2016; Alexandra, 2019; Hassenforder and Barone, 2019; Marshall and 
Lobry de Bruyn, 2021).

(a) The Murray-Darling Basin (b) Average annual river flows in the Basin
     under pre-development conditions 

Water availability
assessment location

Historical
water availability

1234 Regional water
availability (Gl/y)
based on
assessment 
locations

Figure Box 11.3.1 |  (A) The Murray-Darling Basin, and (B) average annual river flows in the basin under pre-development conditions (from (CSIRO, 
2008) showing that most of the runoff comes from the southeastern highlands. The borders show key drainage basins.

Box 11.3 (continued)
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water reduction advisories and 5 to 8 weeks’ waiting time for water 
tank refills and water rationing. The Havelock North water supply 
contamination, which arose after an extreme rainfall event (DIA, 
2017a; DIA, 2017b), was exacerbated by fragmented governance and 
led to passage of the Taumata Arawai-Water Services Regulator Act 
of 2020 and the Water Services Bill of 2020 aimed at the protection 
of source water. The 2017 update to the National Policy Statement for 
Freshwater Management contains guidelines for implementation at the 
regional level (MfE, 2017b), including consideration of climate change, 
which creates opportunities for adaptation. However, there remain 

tensions between land, water and people which are exacerbated by 
climate changes and have yet to be addressed (Box  11.5). The first 
National Adaptation Plan and the Resource Management law reform 
have the potential to help resolve these tensions (11.7.1) (CCATWG, 
2017; MfE, 2020a).

Box 11.4 | Changing Flood Risk

Pluvial (flash flood from high intensity rainfall) and fluvial (river) flooding are the most costly natural disasters in Australia, averaging 
AUD$8.8 billion per year (Deloitte, 2017b). In New Zealand, insured damages for the 12 costliest flood events from 2007 to 2017 exceeded 
NZD$472 million, of which NZD$140 million has been attributed to anthropogenic climate change (Frame et al., 2020). Extreme rainfall 
intensity in northern Australia and New Zealand has been increasing, particularly for shorter (sub-daily) duration and more extreme high 
rainfall (high confidence) (Westra and Sisson, 2011; Griffiths, 2013; Laz et al., 2014; Rosier et al., 2015) (Table 11.2b). Changes are also 
occurring in spatial and temporal patterns and seasonality (Wasko and Sharma, 2015; Zheng et al., 2015; Wasko et al., 2016).

Extreme rainfall is projected to become more intense (high confidence), but the magnitude of change is uncertain (Evans and McCabe, 
2013; Bao et al., 2017) (Table 11.3). The insured damage in New Zealand from more intense extreme rainfall under RCP8.5 is projected 
to increase 25% by 2080–2100 (Pastor-Paz et al., 2020). In urban areas, extreme rainfall intensity is projected to increase pluvial flood 
risk (high confidence). In New Zealand, 20,000 km2 of land, 675,000 people, and 411,000 buildings with a NZD$135 billion replacement 
value are exposed to flood risk (Paulik et al., 2019a).

In non-urban areas, where the flood response is also dependent on antecedent catchment conditions (Johnson et al., 2016; Sharma et al., 
2018), there is no evidence of increasing flood magnitudes in Australia (Ishak et al., 2013; Zhang et al., 2016; Bennett et al., 2018), except 
for the most extreme events (Sharma et al., 2018; Wasko and Nathan, 2019). Modelling studies project increases in flood magnitudes in 
northern and eastern Australia and in western and northern New Zealand (high confidence) (Hirabayashi et al., 2013; Collins et al., 2018a; 
Do et al., 2020). The change in flood magnitude in southern Australia is uncertain because of the compensating effect of more intense 
extreme rainfall versus projected drier antecedent conditions (Johnson et al., 2016; Pedruco et al., 2018; Wasko and Nathan, 2019). Higher 
rainfall intensity and peak flows also increase erosion and sediment and nutrient loads in waterways (Lough et al., 2015) and exacerbate 
problems from ageing stormwater and wastewater infrastructure (Jollands et al., 2007; WSAA, 2016; Hughes et al., 2021).

There is some recognition of the need for flood management and planning to adapt to climate change (medium confidence) (COAG, 
2011; CCATWG, 2018; CoA, 2020d). Australian flood estimation guidelines recommend a 5% increase in design rainfall intensity per 
degree global average warming (Bates et al., 2015). In New Zealand, the recommended increase ranges from 5% to more than 10% for 
shorter-duration and longer-return-period storms (MfE, 2010; Carey-Smith et al., 2018). Both guidelines also indicate the potential for 
higher increases in extreme rainfall intensity.

Adaptation to reduce flooding and its impacts have included improved flood forecasting (Vertessy, 2013; BoM, 2016) and risk management 
(AIDR, 2017), accommodating risk through raising floor levels and sealing external doors (Queensland Government, 2011; Wang et al., 
2015), deploying temporary levee structures and reducing risk through spatial planning and relocation. Adaptation options in urban 
areas include improved stormwater management (Hettiarachchi et al., 2019; Matteo et al., 2019), ecosystem-based approaches such as 
maintaining floodplains, restoring wetlands and retrofitting existing flood control systems to attenuate flows, and water-sensitive urban 
design (WSAA, 2016; Radcliffe et al., 2017; Radhakrishnan et al., 2017; Rogers et al., 2020b).

Adaptation to changing flood risks is currently mostly reactive and incremental in response to flood and heavy rainfall events (high 
confidence). For example, the 2010–2011 flooding in eastern Australia resulted in changes to reservoir operations to mitigate floods 
(QFCI, 2012) and insurance practice to cover flood damages (Phelan, 2011; Phelan et al., 2011; QFCI, 2012; Schuster, 2013). Nevertheless, 
adaptation planning that is pre-emptive and incorporates uncertainties into flood projections is emerging (medium confidence) 
(Schumacher, 2020). Examples from New Zealand include the use of Dynamic Adaptive Pathways Planning (DAPP) (Lawrence and 
Haasnoot, 2017) with Real Options assessment (Infometrics and PSConsulting, 2015) and designing decision signals and triggers to 
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11.3.4	 Food, Fibre, Ecosystem Products

The food, fibre and ecosystem product sectors are economically 
important in the region. Agriculture contributes around 4% of New 
Zealand GDP and 2% of Australian GDP and over 50% of New 
Zealand’s and 11% of Australia’s exports (NZ Treasury, 2016; Jackson 
et al., 2020). Forestry contributes 1% of New Zealand GDP and 0.5% 
Australian GDP (NZ Treasury, 2016; Whittle, 2019). With processing 
and indirect effects, the primary sector of New Zealand contributes 
25% of GDP (Saunders et al., 2016). The region has the lowest level 
of agricultural subsidies across the OECD (OECD, 2017) and highly 
responsive producers to market drivers but limited strategic, longer-
term approaches to environmental challenges and adaptation 
(Wreford et  al., 2019). Both countries receive government financial 
drought assistance (Pomeroy, 2015; Downing et al., 2016).

Impacts resulting from climate change are observed across sectors and 
the region (high confidence). While more intense changes are observed 
in Australia, New Zealand is also experiencing impacts, including the 
economic impacts of drought attributable to climate change (Frame 
et  al. 2020). Overall, modelling indicates that negative impacts will 
intensify with increased levels of warming in both countries, with 
declining crop yield and quality, and negative effects on livestock 
production and forestry. Although benefits are identified, particularly 
in the short term for New Zealand (MfE, 2020a), an absence of studies 
that consider the totality of climatic variables, including extremes, 
moderate the benefits identified from considering only selected 
variables and systems in isolation.

Incremental adaptation is occurring (Hochman et  al., 2017; Hughes 
and Lawson, 2017; Hughes and Gooday, 2021). In the longer term, 
transformative adaptation, including land use change, will be required 
(Cradock-Henry et al., 2020a), both as a result of sectoral adaptations 
and mitigation (medium confidence) (Grundy et  al., 2016). Specific 
changes are context specific and challenging to project (Bryan 
et  al., 2016). Future adaptive capacity may be limited by declining 
institutional and community capacity resulting from high debt, 
unavailability of insurance, increasing regulatory requirements and 
funding mechanisms that lock in ongoing exposure to climate risk, 
creating mental health impacts (Rickards et al., 2014; Wiseman and 
Bardsley, 2016; McNamara and Buggy, 2017; McNamara et al., 2017; 
Moyle et al., 2017; Robinson et al., 2018; Ma et al., 2020; Yazd et al., 
2020).

11.3.4.1	 Field Crops and Horticulture

11.3.4.1.1	Observed impacts

Drought, heat and frost in recent decades have shown the vulnerability 
of Australian field crops and horticulture to climate change (Cai 
et  al., 2014; Howden et  al., 2014; CSIRO and BOM, 2015; Lobell 
et  al., 2015; Hughes and Lawson, 2017; King et  al., 2017; Webb 
et al., 2017; Harris et al., 2020) as recognised by policymakers (CoA, 
2019a) (high confidence). Northern Australia’s agricultural output 
losses are on average 19% each year due to drought (Thi Tran et al., 
2016). In southern Australia, the frequency of frost has been relatively 
unchanged since the 1980s (Dittus et  al., 2014; Pepler et  al., 2018; 
BoM and CSIRO, 2020). Drier winters have increased the irrigation 
requirement for wine grapes (Bonada et al., 2020), while smoke from 
the 2019/20 fires, which occurred early in the season, caused significant 
taint damage (Jiang et al., 2021). In New Zealand, reduced winter chill 
has a compounded impact on the kiwifruit industry, resulting in early 
harvest and increased energy demand for refrigeration and port access 
problems (Cradock-Henry et al., 2019) (11.5).

Across all types of agriculture, drought and its physical flow-on effects 
have caused financial and emotional disruption and stress in farm 
households and communities (Austin et al., 2018; Bryant and Garnham, 
2018; Yazd et  al., 2019) (11.3.6). Severe and uncertain climate 
conditions are statistically associated with increases in farmer suicide 
(Crnek-Georgeson et  al., 2017; Perceval et  al., 2019). Rural women 
often carry extra stress and responsibilities, including increased unpaid 
and paid work and emotional load (Whittenbury, 2013; Hanigan et al., 
2018; Rich et al., 2018).

11.3.4.1.2	Projected impacts

Australian crop yields are projected to decline due to hotter and drier 
conditions, including intense heat spikes (high confidence) (Anwar 
et  al., 2015; Lobell et  al., 2015; Prokopy et  al., 2015; Dreccer et  al., 
2018; Nuttall et al., 2018; Wang et al., 2018a). Interactions of heat and 
drought could lead to even greater losses than heat alone (Sadras and 
Dreccer, 2015; Hunt et al., 2018). Australian wheat yields are projected 
to decline by 2050, with a median yield decline of up to 30% in 
southwest Australia and up to 15% in southern Australia, with possible 
increases and decreases in the east (Taylor et al., 2018; Wang et al., 
2018a). In temperate fruit, accumulated winter chill for horticulture 
is projected to further decline (Darbyshire et  al., 2016). Winegrape 
maturity is projected to occur earlier due to warmer temperatures 
(high confidence) (Webb et al., 2014; van Leeuwen and Darriet, 2016; 

monitor changes before physical and coping thresholds are reached (Stephens et al., 2018). Implementing adaptive flood risk management 
relies upon an understanding of how such risks change in uncertain and ambiguous ways necessitating adaptive and robust decision-
making processes. These can enable learning through participatory adaptive pathways approaches (Lawrence and Haasnoot, 2017; 
Bosomworth and Gaillard, 2019) and through coordination across different levels of government and statutory mandates, adaptation 
funding and individual and community adaptations (Glavovic et al., 2010; Boston and Lawrence, 2018; McNicol, 2021).

Box 11.4 (continued)
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Jarvis et al., 2018; Ausseil et al., 2019b), leading to potential changes 
in wine style (Bonada et al., 2015). Rice is susceptible to heat stress, 
and average grain yield losses across rice varieties range from 83% 
to 53% in experimental trials when heat stress is applied during 
plant emergence and grain fill stages (Ali et al., 2019). In Tasmania, 
wheat yields are projected to increase, particularly at sites presently 
temperature-limited (Phelan et al., 2014).

New Zealand evidence on impacts across crops is very limited. 
Precipitation and temperature changes alone show minor effects on 
crop yield, and winter yields of some crops may increase (e.g., wheat, 
maize) (Ausseil et al., 2019b). For temperate fruit, loss of winter chill 
may reduce yields in some regions and trigger impacts across supply 
chains (Cradock-Henry et al., 2019) (11.5.1). Increased pathogens could 
damage the cut flower, guava and feijoa fruit growing and the honey 
and related industries (Lawrence et al., 2016). The combined effects of 
changes in seasonality, temperature, precipitation, water availability 
and extremes, such as drought, have the potential to escalate impacts, 
but understanding of these effects is limited.

Other climate-change-related factors complicate crop climate 
responses. When CO2 was elevated from present-day levels of 400 to 
550 ppm in trials, yields of rainfed wheat, field pea and lentil increased 
approximately 25% (0–70%). However, there was a 6% reduction in 
wheat protein that could not be offset by additional nitrogen fertilizer 
(O’Leary et al., 2015; Fitzgerald et al., 2016; Tausz et al., 2017). Elevated 
CO2 will worsen some pest and disease pressures, for example, 
barley yellow dwarf virus impacts on wheat (Trębicki et  al., 2015). 
Warmer temperatures are also expanding the potential range of the 
Queensland fruit fly, including into New Zealand (Aguilar et al., 2015a), 
threatening the horticulture industry (Sultana et  al., 2017; Sultana 
et al., 2020). Some crop pests (e.g., the oat aphid) are projected to be 
negatively affected by climate change (Macfadyen et al., 2018), but 
so too are beneficial insects. There is large uncertainty in rainfall and 
crop projections for northern Australia (Table 11.3). For sugarcane, an 
impact assessment for CO2 at 734 ppm using the A2 emission scenario 
at Ayr in Queensland projected modest yield increases (Singels et al., 
2014). Climate change is projected to adversely impact tropical fruit 
crops such as mangoes through higher minimum and maximum 
temperatures, reducing the number of inductive days for flowering 
(Clonan et al., 2020).

Climate change is projected to shift agro-ecological zones (high 
confidence) (Lenoir and Svenning, 2015; Scheffers et  al., 2016). This 
includes the climatically determined cropping strip bounded by the 
inner arid rangelands and the wetter coast or mountain ranges in 
mainland Australia (Nidumolu et al., 2012; Eagles et al., 2014; Tozer 
et al., 2014). A narrowing of grain-growing regions is projected with 
a shift of the inner margin towards the coast under drier and warmer 
conditions (Nidumolu et al., 2012; Fletcher et al., 2020). The economic 
impact of the shift depends on adaptation (Sanderson et  al., 2015; 
Hunt et al., 2019) and how resources, support industries, infrastructure 
and settlements adapt. Shifts in agro-ecological zones present some 
opportunities, for example warming is projected to be beneficial for 
wine production in Tasmania (Harris et al., 2020).

11.3.4.1.3	Adaptation

Some farmers are adapting to drier and warmer conditions through 
more effective capture of non-growing-season rainfall (e.g., stubble 
retention to store soil water), improved water use efficiency and 
matching sowing times and cultivars to the environment (high 
confidence) (Kirkegaard and Hunt, 2011; Fitzer et al., 2019; Haensch 
et  al., 2021). Observed adaptations include new technologies that 
improve resource efficiencies, professional knowledge and skills 
development, new farmer and community networks and diversification 
of business and household income (Ghahramani et  al., 2015; De 
et al., 2016). For Australian wheat, earlier sowing and longer-season 
cultivars may increase yield by 2–4% by 2050, with a range of −7 to 
+2% by 2090 (Wang et al., 2018a). In the wheat industry, breeding 
for improved reproductive frost tolerance remains a priority (Lobell 
et al., 2015). Modelling suggests that, since 1990, farm management 
has held Australian wheat yields constant, but declining rainfall and 
increasing temperature may have contributed to a 27% decline in 
simulated potential Australian wheat yield (Hochman et al., 2017).

Other observed incremental adaptations include later pruning in the 
grape industry to spread harvest period and partially restore wine 
balance, with neutral effects on yield and cost (Moran et  al., 2019; 
Ausseil et al., 2021). The cotton sector increasingly requires shifts in 
sowing dates to avoid financial impacts (Luo et al., 2017). During years 
of low water availability, rice growers have been trading water and/or 
shifting to dry land farming (Mushtaq, 2016).

Growers in New Zealand are changing the timing of their operations, 
growing crops within covered enclosures and purchasing insurance 
(Cradock-Henry and McKusker, 2015) Teixeira et al. 2018). Investment 
of capital in irrigation infrastructure has increased (Cradock-Henry 
et al., 2018a), although its effectiveness as an adaptation depends on 
water availability (Box 11.5). In industries based on long-lived plants, 
such as the kiwifruit and grape industries, many of the adaptations 
(e.g., breeding and growing heat-adapted and disease-resistant 
varieties) have long lead times and require greater investment than 
in the cropping sector (Cradock-Henry et al., 2020a). While breeding 
programmes for traits with enhanced resilience to future climates 
are beginning, there is little evidence of  strategic industry planning 
(Cradock-Henry et al., 2018a).

For drought management, balancing near-term needs with long-term 
adaptation to increasing aridity is essential (Downing et  al., 2016). 
Insufficient and maladaptive decisions can have far-reaching effects, 
including changes to resources, infrastructure, services and supply 
chains to which others must adapt (Fleming et al., 2015; Graham et al., 
2018). While there is potential for a greater proportion of agriculture 
to be located to northern Australia, there are significant and complex 
agronomic, environmental, institutional, financial and social challenges 
for successful transformation, including the risk of disruption (medium 
confidence) (Jakku et al., 2016).
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11.3.4.2	 Livestock

11.3.4.2.1	Observed impacts

Both the seasonality and annual production of pasture is changing (high 
confidence). In many regions, warming is increasing winter pasture 
growth (Lieffering, 2016); the effects on spring growth are more mixed, 
with some regions experiencing increased growth (Newton et al., 2014) 
and others experiencing reduced spring growth (Perera et  al., 2020). 
Droughts are causing economic damage to livestock enterprises, with 
drought and market prices significantly affecting profit (Hughes et al., 
2019a), in addition to the impacts on animal health and the livelihoods 
of pastoralists, periods of drought contribute to land degradation, 
particularly in the cattle regions of northern Australia (Marshall, 2015). 
Heat load in cattle leads to reduced growth rates and reproduction, and 
extreme heat waves can lead to death (Lees et al., 2019; Harrington, 
2020). Temperatures over 32°C reduce ewe and ram fertility along with 
the birth weight of lambs (van Wettere et al., 2021).

11.3.4.2.2	Projected impacts

Some areas may experience increased pasture growth, but others 
may experience a decrease that cannot be fully offset by adaptation 
(high confidence) (Moore and Ghahramani, 2013; Lieffering, 2016; 
Kalaugher et al., 2017). Climate change may modify the seasonality 
of pasture growth rates more than annual yields in New Zealand 
(Lieffering, 2016). In eastern parts of Queensland, climate change 
impacts on pasture growth are equivocal, with simple empirical 
models suggesting a decrease in net primary productivity (Liu et al., 
2017), while mechanistic models that include increases in length 
of the growing season and the beneficial effects of CO2 fertilisation 
indicate increases in pasture growth (Cobon et al., 2020). In Tasmania, 
annual pasture production is projected to increase by 13–16%, even 
with summer growth projected to decline with increased interannual 
variability, resulting in a projected increase in milk yields by 3–16% per 
annum (Phelan et al., 2015).

Extreme climatic events (droughts, floods and heatwaves) are 
projected to adversely impact productivity for livestock systems 
(medium confidence). This includes reduced pasture growth rates 
between 3–23% by 2070 from late spring to autumn and elevated 
growth in winter and early spring (Cullen et al., 2009; Hennessy et al., 
2016; Chang-Fung-Martel et al., 2017). Heavy rainfall and storms are 
projected to lead to increased erosion, particularly in extensively grazed 
systems on steeper land, reducing productivity for decades, reducing 
soil carbon (Orwin et al., 2015) and increasing sedimentation. Increased 
heat stress in livestock is projected to decrease milk production and 
livestock reproduction rates (high confidence) (Nidumolu et al., 2014; 
Ausseil et al., 2019b; Lees et al., 2019). In Australia, the average number 
of moderate to severe heat stress days for livestock is projected to 
increase 12–15 d by 2025 and 31–42 d by 2050 compared to 1970–
2000 (Nidumolu et al., 2014). In New Zealand, an extra 5 (RCP2.6) to 
7 (RCP8.5) moderate heat stress days per year are projected for 2046–
2060 (high confidence) (Ausseil et al., 2019b), which would especially 
affect animals transported long distances (Zhang and Phillips, 2019) and 
strain the cold chains needed to deliver meat and dairy products safely. 
The distribution of existing and new pests and diseases are projected to 

increase, for example, new tick- and mosquito-borne diseases such as 
bovine ephemeral fever (Kean et al., 2015).

11.3.4.2.3	Adaptation

Adaptations in both grazing and confined beef cattle systems require 
enhanced decision-making skills capable of integrating biophysical, 
social and economic considerations (high confidence). Social learning 
networks that support integration of lessons learned from early 
adopters and involvement with science-based organisations can help 
enhance decision-making and climate adaptation planning (Derner 
et al., 2018). Pasture management adaptations for livestock production 
include deeper rooted pasture species in higher rainfall regions 
(Cullen et  al., 2014) and drought-tolerant species (Mathew et  al., 
2018). Soil and land management practices are important in ensuring 
soils maintain their supporting and regulating services (Orwin et al., 
2015). Adaptations in the primary sector in New Zealand are now 
positioned within the requirements of the National Policy Statement 
on Freshwater (MfE, 2020b). Adaptations to manage heat stress in 
livestock include altering the breeding calendar, providing shade and 
sprinklers, altering nutrition and feeding times and more heat-tolerant 
animal breeds (Chang-Fung-Martel et al., 2017; Lees et al., 2019; van 
Wettere et al., 2021).

Beef rangeland systems in Queensland are projected to have benefits 
in the southeast through higher CO2 and temperatures extending the 
growing season and reducing frost, but a warmer and drier climate in 
the southwest may reduce pasture and livestock production (Cobon 
et  al., 2020). Northern Queensland is most resilient to temperature 
and rainfall changes (production limited by soil fertility) while western/
central west Queensland is most sensitive to rainfall changes, that is, 
low rainfall is associated with lower productivity (Cobon et al., 2020). 
The social context of climate change impacts and the processes 
shaping vulnerability and adaptation, especially at the scale of the 
individual, are critical to successful adaptation efforts (Marshall and 
Stokes, 2014).

11.3.4.3	 Forestry

11.3.4.3.1	Observed impacts

Climate change may have increased tree mortality in Australia’s 
commercial Eucalyptus globulus and Pinus radiata plantation forests 
(Crous et al., 2013; Pinkard et al., 2014). Climate warming enhanced 
tree water use and vulnerability to heat (Crous et al., 2013). Increases 
in fire frequency and intensity in forests of southern Australia are 
leading to diminishing resources available for timber production 
(Pinkard et al., 2014) (Box 11.1).

11.3.4.3.2	Projected impacts

The projected declines in rainfall in far southwest and far southeast 
mainland Australia are projected to reduce plantation forest yields 
(high confidence). Warmer temperatures are projected to reduce forest 
growth in hotter regions (between 7 and 25%), especially where 
species are grown at the upper range of their temperature tolerances, 
and increase plantation forest growth (>15%) in cooler margins like 
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Tasmania and the Victorian highlands (2030, A2); emission scenario A2 
creates a warming trajectory slightly higher than the RCP6.0 warming 
scenario, but less than RCP8.5 (Rogelj et al., 2012; Battaglia and Bruce, 
2017). Elevated CO2 is projected to increase forest growth if other 
biophysical factors are not limiting (medium confidence) (Quentin 
et al., 2015; Duan et al., 2018).

Forestry plantations are projected to be negatively impacted from 
increases in fire weather (Box 11.1), particularly in southern Australia 
(high confidence) (Pinkard et al., 2014).   Increased pest damage due 
to temperature increases may reduce eucalyptus and pine plantation 
growth by as much as 40% in some Australian environments by 2050 
(Pinkard et  al., 2014). Increased heat and water stress may enhance 
insect pest defoliation for P. radiata in Australia (e.g., Sirex noctilio, Ips 
grandicollis and Essigella californica) (Mead, 2013; Pinkard et al., 2014).

Combined impacts from heavy rainfall, soil erosion, drought, fire and 
pest incursions are projected to increase risks to the permanence of 
carbon offset and removal strategies in New Zealand for meeting its 
climate change targets (PCE, 2019; Watt et al., 2019; Anderegg et al., 
2020; Schenuit et al., 2021). Effective management of the interactions 
between mitigation and adaptation policies can be achieved through 
governance and institutions, including Māori tribal organisations 
and sectoral adaptation, to ensure effective and continued carbon 
sequestration and storage as the climate changes (medium confidence) 
(Lawrence et al., 2020b) (11.4.2) (Box 11.5). The productivity of radiata 
pine (P. radiata D. Don) in New Zealand due to higher CO2 is projected to 
increase by 19% by 2040 and 37% by 2090, but greater wind damage 
to trees is expected (Watt et  al., 2019). Changes in the distribution 
of existing weeds, pests and diseases with potential establishment 
of new sub-tropical pests and seasonal invasions are projected (Kean 
et al., 2015; Watt et al., 2019; MfE, 2020a). Increased pathogens such 
as pitch canker, red needle cast and North American bark beetles could 
damage plantations (Hauraki Gulf Forum, 2017; Lantschner, 2017; 
Watt et al., 2019).

11.3.4.3.3	Adaptation

Adaptation options include increased investment in monitoring forest 
condition and functioning; early detection and management of insect 
pests, diseases and invasive species; improved selection of land with 
appropriate growing conditions for plantation timber production 
under current and future conditions; trialling new species and genetic 
varieties; changing the timing and frequency of planned fuel reduction 
fires; introducing more fire-tolerant tree species where appropriate; 
reducing ignition sources; and maintaining access and emergency 
response capacity (Boulter, 2012; Pinkard et al., 2014; Keenan, 2017).

11.3.4.4	 Marine Food

11.3.4.4.1	Observed impacts

The ecological impacts of climate change on fisheries species have 
already emerged (high confidence) (Morrongiello and Thresher, 2015; 
Gervais et al., 2021). This includes loss of habitats for fisheries species 
(Vergés et  al., 2016; Babcock et  al., 2019) and poleward shifts in 
the distribution of barrens-forming urchins (Ling and Keane, 2018) 

impacting abalone and rock lobster fisheries. The percentage of reef 
as barrens across eastern Tasmania grew from 3.4% to 15.2% from 
2001/2002 to 2016/2017, an approx. 10.5% increase per annum 
over the 15-year period (Ling and Keane, 2018). Oysters farmed from 
wild spat (Sydney rock oysters Saccostrea glomerata) are most at risk 
from climate change, primarily due to observed increases in summer 
temperatures and heatwave-related mortalities (Doubleday et  al., 
2013). The exceptional 2017/2018 summer heatwave caused significant 
losses of farmed salmon in New Zealand, with farm owners seeking 
consent to move operations to cooler water (Salinger et al., 2019b).

11.3.4.4.2	Projected impacts

Aquaculture is projected to be more easily adapted than wild fisheries 
to avoid excessive exposure to the physio-chemical stresses from 
acidification, warming and extreme events (Richards et al., 2015). In 
New Zealand, wild and cultured shellfish are identified as being most 
at risk from climate change (Capson and Guinotte, 2014). Changes 
in ocean temperature and acidification and the downstream impacts 
on species distribution, productivity and catch are projected concerns 
(medium confidence) (Law et al., 2016) that impact Māori harvesting 
of traditional seafood and the social, cultural and educational 
elements of food gathering (mahinga kai) (MfE, 2016). Warm 
temperate hatchery-based finfish species (yellowtail kingfish Seriola 
lalandi) are projected to be the least at risk, because of well-controlled 
environmental conditions in hatcheries and temperature increases, 
which are expected to increase growth rates and productivity during 
the grow-out stage (Doubleday et al., 2013). For wild fisheries, multi-
model projections suggest temperate and demersal systems, especially 
invertebrate shallow-water species, would be more strongly affected by 
climate change than tropical and pelagic systems (medium confidence) 
(Pecl et al., 2014; Fulton et al., 2018; Pethybridge et al., 2020). In New 
Zealand waters, available habitat for both albacore tuna and oceanic 
tuna (Cummings et al., 2021) is expected to widen and shift.

11.3.4.4.3	Adaptation

Selective breeding in oysters is projected to be an important global 
adaptation strategy for sustainable shellfish aquaculture that can 
withstand future climate-driven change to habitat acidification (Fitzer 
et al., 2019). Less than a quarter of fisheries management plans for 
99 of Australia’s most important fisheries considered climate change, 
and only to a limited degree (Fogarty et al., 2019; Fogarty et al., 2021). 
Implementation of management and policy responses to climate 
change have lagged in part because climate change has not been 
considered as the most pressing issue (Hobday and Cvitanovic, 2017; 
Fogarty et al., 2019; Fogarty et al., 2021) (Cross-Chapter Box MOVING 
SPECIES in Chapter 5).

11.3.5	 Cities, Settlements and Infrastructure

Almost 90% of the population of Australia and New Zealand is urban 
(World Bank, 2019). Each country has vibrant and diverse urban, 
rural and remote settlements, with some highly disadvantaged areas 
isolated by distance and limited infrastructure and services (Argent 
et al., 2014; Charles-Edwards et al., 2018; Spector et al., 2019). Some 
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areas in northern Australia and New Zealand, especially those with 
higher proportions of Indigenous inhabitants, face severe housing, 
health, education, employment and services issues (Kotey, 2015), 
which increases their vulnerability to climate change.

Infrastructure within and between cities and settlements is critical for 
activity across all sectors, with interdependencies increasing exposure 
to climate hazards (11.5.1). Previous planning horizons for existing 
infrastructure are compromised by now having to accommodate 
ongoing sea level rise (SLR), warming and increasing frequency of 
extreme rainfall and storm events (Climate Institute, 2012; MfE, 2017a). 
There is almost no information on the costs and benefits of adapting 
vulnerable and exposed infrastructure in Australia or New Zealand. 
Given the value of that infrastructure and the rising damage costs, 
this represents a large knowledge gap that has led to an adaptation 
investment deficit.

11.3.5.1	 Observed Impacts

Critical infrastructure, cities and settlements are being increasingly 
affected by chronic and acute climate hazards, including heat, 
drought, fire, pluvial and fluvial flooding and sea level rise (SLR), with 
consequent effects on many sectors (high confidence) (Instone et al., 
2014; Loughnan et  al., 2015; Zografos et  al., 2016; Hughes et  al., 
2021). Risks and impacts vary with physical characteristics, location, 
connectivity and socioeconomic status of settlements because of the 
ways these influence exposure and vulnerability (high confidence) 
(Loughnan et al., 2013; MfE, 2020a).

Weather-related disasters are causing significant disruption and 
damage (Paulik et  al., 2019a; CSIRO, 2020; Paulik et  al., 2020). In 
Australia, during 1987–2016, natural disasters caused an estimated 
971 deaths and 4370 injuries, 24,120 people were made homeless 

Box 11.5 | New Zealand’s Land, Water and People Nexus under a changing climate

New Zealand’s economy, dominated by the primary sector and the tourist industry (pre-COVID), relies upon a ‘clean green’ image of 
water, natural ecosystems and pristine landscapes (Foote et al., 2015; Roche and Argent, 2015; Hayes and Lovelock, 2017). Water is 
highly valued by Māori for its mauri or life force and for its intrinsic values and multiple uses (Harmsworth et al., 2016). Increasingly, 
these diverse values are coming into conflict (Hopkins et al., 2015) due to increasing pressures from how land is used and managed and 
the effects on water availability and quality. Such tensions will be further challenged as temperatures rise and extreme events intensify 
beyond what has been experienced, thus stressing current adaptive capacities (high confidence) (Hughey and Becken, 2014; Cradock-
Henry and McKusker, 2015; Hopkins et al., 2015; MfE and Stats NZ, 2021) (11.2.2; 11.3.4).

Irrigation has increasingly been used to enhance primary sector productivity and regional economic development (Srinivasan et  al., 
2017; Fielke and Srinivasan, 2018; MfE and Stats NZ, 2021) (Srinivasan et al., 2017; Fielke and Srinivasan, 2018; MfE and Stats NZ, 
2021). Pressure for long-term access to groundwater or large-scale water storage is increasing to ensure the ongoing viability of the 
primary sector as the climate changes. While investment in irrigation infrastructure may reduce climate change impacts in the short term, 
maladaptive outcomes cannot be ruled out longer term, which means that focusing attention now on adaptive and transformational 
measures can help increase climate resilience in areas exposed to increasing drought and climate extremes that disrupt production 
(medium confidence) (Abel et al., 2016; Cradock-Henry et al., 2019) (Yletyinen et al., 2019).

Furthermore, overallocation raises further tensions from competing uses of water such as for horticulture and urban water supplies, 
as well as for ecological requirements. The deterioration of water quality and loss of places of social, economic, cultural and spiritual 
significance creates increasing tension for Māori in particular (Harmsworth et al., 2016; Salmon, 2019; MfE and Stats NZ, 2021). Public 
concern has increased over the deterioration of New Zealand’s waterways and the profiting of some land uses at the expense of 
environmental quality and human health—tensions that make adaptation to climate change more challenging (Duncan, 2014; Foote 
et al., 2015; Scarsbrook and Melland, 2015; McDowell et al., 2016; McKergow et al., 2016; Greenhalgh and Samarasinghe, 2018). A lack 
of precautionary governance of water resources linked to unsustainable land use practices degrading water quality (Scarsbrook and 
Melland, 2015; Salmon, 2019) highlights the role that foresight could play in managing the nexus between land, water and people in a 
changing climate (11.3.3). Adaptive planning holds potential for navigating these multi-dimensional challenges (Sharma-Wallace et al., 
2018; Cradock-Henry and Fountain, 2019; Hurlbert et al., 2019) (11.7).

Furthermore, land and, in particular, plantation and native forests play a critical role in meeting New Zealand’s emissions reduction goals. 
However, the persistence of land and forests as a carbon sink is uncertain, and the sequestered carbon is at risk from future loss resulting 
from climate change impacts, including from increased fire, drought and pest incursions, storms and wind (IPCC, 2019a; PCE, 2019; Watt 
et al., 2019; Anderegg et al., 2020) (11.3.4.3), underlining the importance of interactions between mitigation and adaptation policy and 
implementation. Integrated climate change policies across biodiversity, water quality, water availability, land use and forestry for mitigation 
can support the management of land use, water and people conflicts, but there is little evidence of such coordinated policies (Cradock-Henry 
et al., 2018b; Wreford et al., 2019). Implementation of the National Policy Statement for Freshwater Management 2020 (MfE, 2020b) and the 
National Adaptation Plan (due out in August 2022) present opportunities for such interconnections and diverse values to be addressed, as 
well as enabling sector and community benefits to be realised across New Zealand (Awatere et al., 2018; Lawrence et al., 2020b).
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and about 9  million people were affected (Deloitte, 2017a). More 
than 50% of these deaths and injuries came from heatwaves in 
cities and 22% from fires. During the 2007–2016 period, Australia 
natural disaster costs averaged AUD$18.2 billion yr−1, with the largest 
contributions from floods (AUD$8.8  billion), followed by cyclones 
(AUD$3.1 billion), hail (AUD$2.9 billion), storms (AUD$2.3 billion) and 
fires (AUD$1.1 billion) (Deloitte, 2017a). The Australian fires in 2019–
2020 cost over AUD$8 billion, with devastating impacts on settlements 
and infrastructure (Box 11.1)

Sea level rise affects many interdependent systems in cities and 
settlements, which increases the potential for compounding and 
cascading impacts (11.5.1). Seaports, airports, water treatment plants, 
desalination plants, roads and railways are increasingly exposed to 
sea level rise (SLR) (very high confidence), impacting their longevity 
and levels of service and maintenance (high confidence) (McEvoy and 
Mullett, 2014; Woodroffe et al., 2014; PCE, 2015; Ranasinghe, 2016; 
Newton et  al., 2018; Paulik et  al., 2020) (Box  11.6). Compounding 
coastal hazards in New Zealand, such as elevated water tables 
associated with rising sea level and intense rainfall (Morgan and 
Werner, 2015; McBride et  al., 2016; White et  al., 2017; Hughes 
et  al., 2021), are exerting pressure on stormwater and wastewater 
infrastructure and drinking water supply and quality (MfE, 2020a).

Extreme heat events exacerbate problems for vulnerable people and 
infrastructure in urban Australia, where urban heat is superimposed 
upon regional warming, and there are adverse impacts for population 
and vegetation health, particularly for socioeconomically disadvantaged 
groups (Tapper et al., 2014; Heaviside et al., 2017; Filho et al., 2018; 
Gebert et  al., 2018; Rogers et  al., 2018; Longden, 2019; Marchionni 
et al., 2019; Tapper, 2021) (11.3.6), energy demand, energy supply and 
infrastructure (very high confidence) (Newton et  al., 2018) (11.3.10). 
Extreme heat is increasingly threatening liveability in some rural areas 
in Australia (Turton, 2017), particularly given their reliance on outside 
physical work and older populations. Settlement design and the level of 
greening interact with climate change to influence local heating levels 
(Tapper et al., 2014; Wong et al., 2020; Tapper, 2021).

Floods cause major damage. The floods of early 2019 in North Queensland 
cost AUD$5.68  billion (Deloitte, 2019), while Cyclone Yasi and the 
Queensland floods of 2011 cost A$6.9 billion (Deloitte, 2016). Floodplains 
in New Zealand have considerably higher overall national exposure of 
buildings and population than coasts (Paulik et al., 2019a) (Box 11.4). The 
insured losses from the 12 costliest floods in New Zealand from 2007 to 
2017 totalled NZD$471.56 million, of which NZD$140.48 million could 
be attributed to climate change (Frame et al., 2020).

Climatic extremes are exacerbating existing vulnerabilities (high 
confidence). Long supply chains, poorly maintained infrastructure, 
social disadvantage and poor health and lack of skilled workers 
(Eldridge and Beecham, 2018; Mathew et al., 2018; Rolfe et al., 2020) 
are contributing to serious stress and disruption (Smith and Lawrence, 
2014; Kiem et al., 2016). In many rural settlements, population ageing 
and reliance on an overstretched volunteer base for recovery from 
extreme events are increasing vulnerability to climate change (Astill 
and Miller, 2018; Davies et  al., 2018). Recovery from long, intense, 
more frequent and compounding climatic events in rural areas has 

been disrupted by the erosion of natural, financial, built, human and 
social capital (De et al., 2016; Sheng and Xu, 2019). Delayed recovery 
from extreme climatic events has been compounded by long-term 
displacement, which in turn prolongs the impacts (Matthews et  al., 
2019). Severe droughts have contributed to poor health outcomes for 
rural communities, including extreme stress and suicide (Beautrais, 
2018; Perceval et  al., 2019). In Australia, competition among water 
users has left some rural communities experiencing extreme water 
shortage and insecurity with associated health impacts (Wheeler et al., 
2018; Judd, 2019) (Box 11.3).

11.3.5.2	 Projected Impacts

Changes in heat waves, droughts, fire weather, heavy rainfall, storms 
and sea level rise (SLR) are projected to increase negative impacts for 
cities, settlements and infrastructure (high confidence) (Table  11.3a, 
Table 11.3b; Box 11.1, Box 11.3, Box 11.4).

Increased floods, coastal inundation (assuming a sea level rise (SLR) 
of 1.6 m by 2100), wildfires, windstorms and heatwaves may cause 
property damage in Australia estimated at AUD$91 billion per year by 
2050 and AUD$117 billion per year by 2100 for RCP8.5, while damage-
related loss of property value is estimated at AUD$611 billion by 2050 
and AUD$770 billion by 2100 for RCP8.5 (Steffen et  al., 2019). For a 
1.0-m sea level rise (SLR), the value of exposed assets in New Zealand 
would be NZD$25.5 billion (Box 11.6). For a 1.1-m sea level rise (SLR), 
the value of exposed assets in Australia would be AUD$164–226 billion 
(Box  11.6). These exposure estimates exclude impacts on personal 
livelihood, well-being and lifestyle.

Extreme heat risks are projected to exacerbate existing heat-related 
impacts on human health, vegetation and infrastructure (Tapper et al., 
2014; Tapper, 2021) (11.3.6). In Australia, the annual frequency of days 
over 35°C is projected to increase 20–70% by 2030 (RCP4.5), and 
25–85% (RCP2.6) to 80–350% (RCP8.5) by 2090 (Table  11.3a). For 
example, Perth may average 36 d over 35°C by 2030 (RCP4.5). In New 
Zealand, the annual frequency of days over 25°C may increase 20–
60% (RCP2.6) to 50–100% (RCP8.5) by 2040 and 20–60% (RCP2.6) to 
130–350% (RCP8.5) by 2090 (Table 11.3b). For example, Auckland may 
average 39 d over 25°C by 2040 (RCP8.5). Unprecedented extreme 
temperatures, as high as 50°C in Sydney or Melbourne, could occur 
with global warming of 2.0°C (Lewis et al., 2017). Heat-related costs 
for Melbourne during 2012–2051 are estimated at AUD$1.9  billion, 
of which AUD$1.6  billion is human health/mortality costs (AECOM, 
2012). Extreme heat is threatening liveability in some rural areas in 
Australia (Turton, 2017), particularly given their reliance on outside 
physical work and older populations.

Key infrastructure and services face major challenges. Structural metal 
corrosion rates are projected to increase significantly at coastal locations 
but decrease inland (Trivedi et al., 2014). A drier climate may decrease 
the rate of deterioration of road pavements, but extreme rainfall events 
and heat pose a significant risk (Taylor and Philp, 2015), especially to 
unsealed roads in northern Australia (CoA, 2015). Critical infrastructure 
on coasts is at risk from sea level rise (SLR) and storm surges (Box 11.6). 
Facilities such as hospitals face weather-related hazards exacerbated 
by climate change and not originally anticipated in building and 
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infrastructure design (Loosemore et al., 2011; Loosemore et al., 2014). 
By 2050, increased risks are projected for the availability and quality of 
potable water supplies, delivery of wastewater and stormwater services 
to communities, transport systems, electricity infrastructure, operating 
municipal landfills and contaminated sites located near rivers and 
the coast (Gilpin et al., 2020; MfE, 2020a; Hughes et al., 2021). These 
then create risks to social cohesion and community well-being from 
displacement of individuals, families and communities, with inequitable 
outcomes for vulnerable groups (Boston and Lawrence, 2018).

11.3.5.3	 Adaptation

In cities and settlements, climate adaptation is under way and is 
being led and facilitated by state and local government leadership 
and facilitation, particularly in Australia (high confidence) (Hintz 
et al., 2018; Newton et al., 2018) (Table 11.7, Supplementary Material 
Table SM11.1a).

Effective adaptations to urban heat include spatial planning, expanding 
tree canopy and greenery, shading, sprays and heat-resistant and 
energy-efficient building design, including cool materials and reflective 
or green roofs (very high confidence) (Broadbent et al., 2018; Jacobs 
et al., 2018b; Haddad et al., 2019; Haddad et al., 2020a; Yenneti et al., 
2020; Bartesaghi-Koc et al., 2021; Tapper, 2021). Reducing urban heat 
not only benefits human health but reduces the demand for, and cost 
of, air conditioning (Haddad et al., 2020b) and the risk of electricity 
blackouts (11.3.10).

Adaptation progress is being hampered by current urban 
redevelopment practice and statutory planning guidelines that are 
leading to the removal of critical urban green space (Newton and 
Rogers, 2020). Reform of approaches to urban redevelopment would 
facilitate adaptation (Newton and Rogers, 2020). Several cities in 
Australia and New Zealand are part of the 100 Resilient Cities global 
network, which helped facilitate the metropolitan Melbourne Urban 
Forest Strategy across councils (Fastenrath et al., 2019; Coenen et al., 
2020), and in New Zealand, restoration of the urban forest in Hamilton 
is reducing heat stressors (Wallace and Clarkson, 2019). In peri-urban 
zones, adapting to fire risk is a contested issue, raising difficult trade-
offs between heat management, ecological values and fuel reduction 
in treed landscapes (Robinson et al., 2018).

The resilience of Australia’s major cities to flooding and drought 
has been advanced through a range of economic and physical 
interventions. Water-sensitive urban design irrigates vegetation with 
harvested storm water that improves water security, flood risk, carbon 
sequestration, biodiversity and air and water quality and delivers 
cooling that can save human lives in heatwaves (Wong et al., 2020). 
Stormwater harvesting is supported by some councils in New Zealand 
and can deliver recycled water for households (Attwater and Derry, 
2017), improving climate resilience and reducing water demand 
(White et al., 2017). Addressing infrastructure vulnerability is essential 
given the long lifetime of assets, criticality of services and high costs of 
maintenance (Chester et al., 2020; Hughes et al., 2021).

Climate risk management is evolving, but adaptive capacity, implemen-
tation, monitoring and evaluation are uneven across all scales of cities, 

settlements and infrastructure (very high confidence) (Table  11.15a 
and Table  11.15b; Supplementary Material Tables SM11.1a and 
SM11.1b). There is increasing awareness of the need to move from 
incremental coping and defensive coastal strategies (Jongejan et al., 
2016) to transformational adaptation, for example managed retreat 
(Torabi et al., 2018; Hanna, 2019), and to consider the flow-on effects 
(e.g., for housing and employment) (Fatorić et al., 2017; Torabi et al., 
2018). Strategies limited to building household and community self-
reliance (Astill and Miller, 2018) are increasingly inadequate given sys-
temic and interconnected stressors and cascading impacts across in-
terdependent systems (Lawrence et al., 2020b). Integrated approaches 
to climate change adaptation and emissions reduction have potential 
for addressing interdependent systems (e.g., nature-based approaches, 
climate-sensitive urban design, energy and transport systems) (Nor-
man et al., 2021). Climate risk assessment and adaptation guidelines 
have been prepared for transport infrastructure authorities and organ-
isations (Finlayson et al., 2017; Byett et al., 2019; Yenneti et al., 2020).

Infrastructure service vulnerability in New Zealand is supported by 
new institutional adaptations including the Infrastructure Commission 
to develop a 30-year national infrastructure strategy. The Climate 
Change Commission (Climate Change Commission, 2020) has issued 
six principles for climate-relevant infrastructure investments and is 
mandated to monitor the National Climate Change Adaptation Plan 
based on the first National Climate Change Risk Assessment (MfE, 
2020a). A National Disaster Resilience Strategy addresses integrated 
planning for risk reduction and awareness-raising in New Zealand 
(Department of the Prime Minister and Cabinet, 2019).

Successive inquiries and reviews highlight potential synergies between 
disaster risk management and climate resilience (11.5.1) (Smith 
and Lawrence, 2018; Ruane, 2020). In Australia, there is a National 
Disaster Risk Reduction Framework (CoA, 2018b) and a National 
Recovery and Resilience Agency (CoA, 2021) that help underpin 
the development of national support systems for rural and regional 
emergency management and associated volunteer sectors (McLennan 
et al., 2016) and wildfire smoke impacts (CoA, 2020e). The National 
Heatwave Framework Working Group uses a Heatwave Forecast 
Service, and heatwave early-warning and adaptation systems that 
operate in Adelaide, Melbourne, Sydney and Brisbane have reduced 
potential death rates (Nitschke et al., 2016).

Infrastructure planning is lagging behind international standards 
for climate resilience evaluation and guidance for adaptation to 
climate risk (high confidence) (CSIRO, 2020; Kool et al., 2020; Hughes 
et  al., 2021). Some companies have examined their exposure to 
climate risk and developed strategies to minimise their vulnerability 
(Climate Institute, 2012) (11.3.8). Climate risk assessments have been 
conducted for the electricity sector in both Australia and New Zealand 
(11.3.10). Climate change is considered in Australian infrastructure 
plans for national and regional water supply security, water for 
irrigated agriculture, a coastal hazards adaptation strategy and the 
Tanami Road upgrade (Infrastructure Australia, 2016; Infrastructure 
Australia, 2019; Infrastructure Australia, 2021)

Industry associations are beginning to facilitate climate adaptation 
for infrastructure, including the Australian Green Infrastructure 
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Council (CoA, 2015), the Green Building Council of Australia Green 
Star Programme (GBCA, 2020), the Water Services Association of 
Australia, Climate Change Adaptation Guidelines (WSAA, 2016) and 
the Australian Sustainable Built Environment Council Built Environment 
Adaptation Framework (ASBEC, 2012). The Infrastructure Sustainability 
Rating Scheme measures the social, environmental, governance and 
cultural outcomes delivered by more than AUD$160  billion worth of 
infrastructure, and it is projected to deliver a cost-benefit ratio of 1:1.6 
to 1:2.4 during the period 2020–2040 (RPS, 2020). There is scope for 
engagement of industry in transitioning to a low-carbon green economy 
that is adapted to climate change, but less certainty on how to develop 
appropriate business cases (Newton and Newman, 2015).

There are tensions between settlement-scale adaptation options, such 
as managed retreat, that focus on the long term and people’s values, 
place attachments, needs and capacities (Gorddard et al., 2016; Fatorić 
et  al., 2017; Graham et  al., 2018; O’Donnell, 2019; Norman et  al., 
2021). Tensions also exist between climate change adaptation and 

mitigation goals (e.g., current energy efficiency standards in Australian 
buildings can worsen their heat resistance and increase dependence 
on air-conditioning) (Hatvani-Kovacs et al., 2018). Where there is a lack 
of coordination between jurisdictions, there can be flow-on effects 
from failure to adapt, for example in coastal local government areas 
(Dedekorkut-Howes et al., 2020) (Box 11.6). There is limited information 
across the region on climate change impacts and adaptation options for 
telecommunications (NCCARF, 2013) (Table 11.7). There is an emerging 
recognition that implementing and evaluating the adaptation process 
(vulnerability and risk assessments, identification of options, planning, 
implementation, monitoring, evaluation and review) in local contexts 
can advance more effective adaptation (Moloney and McClaren, 2018). 
For example, the Victorian state government has built monitoring, 
evaluation and adaptation components into its adaptation plan 
(Table 11.15a).

Table 11.7 |  Cities, settlements and infrastructure: key risks and adaptation options.

Sector Key Risks Adaptation Options Inter-Sector Dependencies Sources

Road
Heat, SLR, coastal surges, floods 
and high-intensity rainfall impacts 
on road foundations

Re-routing, coastal protection, 
improved drainage

Ports (fuel supply), rail (fuel 
supply), electricity

(NCCARF, 2013; CoA, 2018a; MfE, 
2020a)

Rail
Extreme temperatures, flooding, 
SLR, high-intensity rainfall impacts 
on track foundations

Drainage and ventilation 
improvements, systematic risk 
assessments, overhead wire and 
rail/sleeper upgrades, re-routing

Electricity, telecommunications, 
fuel supply (transport, ports)

(CoA, 2018a; MfE, 2020a)

Urban and Rural Built 
Environment1

Extreme temperatures, floods, 
extreme weather events, wildfire 
(at urban–rural interface), SLR

Multiple options from the 
building-to-city scale to reduce 
heat impacts and improve climate 
resilience, behavioural change, 
coastal defences and managed 
retreat

Road, rail, electricity, air and 
seaports, telecommunications, 
water and wastewater

(CoA, 2018a; Newton et al., 2018; 
Haddad et al., 2019; MfE, 2020a; 
Paulik et al., 2020; Tapper, 2021)
(Box 11.1)
(Box 11.4)

Electricity
High-wind/ temperature events, 
wildfire, lightning, dust storms, 
drought (hydro)

Demand management, 
re-engineering and new 
technology, network intelligence, 
smart metering, improved 
planning for outages

Road, rail, water
(CoA, 2017; MfE, 2020a)
(11.3.10.)

Ports: Air and Sea
SLR, coastal surges, wind, heat, 
extreme weather events

Air: improved coastal, pluvial 
and fluvial flood protection, 
on-site services; sea: widening 
operational limits, raising wharfs, 
roads and breakwaters

Electricity, road, rail, water
(McEvoy and Mullett, 2014; MfE, 
2020a)

Telecommunications Floods, wildfires, extreme wind
Protect, place underground, 
wireless systems

Electricity, digital connectivity, 
all sectors serviced, rural 
communities

(NCCARF, 2013)

Stormwater Wastewater and 
Water supplya.

High-intensity rainfall, increased 
and extreme temperatures, 
flooding, drought, SLR

Large investments in upgrading 
centralised infrastructure and 
capacity, increasing investment 
in decentralised infrastructure 
and capacity (e.g., water-sensitive 
urban design), demand 
management, fewer options in 
smaller communities, governance 
at scale

Electricity, telecommunications, 
urban and rural built environment

(White et al., 2017; CoA, 2018a; 
Gilpin et al., 2020; MfE, 2020a; 
Wong et al., 2020; Hughes et al., 
2021)
(Box 11.4)

Notes:

(a) Water supply safety and security and exposure of buildings have been identified as the most significant risks for New Zealand in terms of urgency and consequence (MfE, 2020a). 
No such ranking of risk has been done for Australia.
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Box 11.6 | Rising to the Sea Level Challenge

Many of the region’s cities and settlements, cultural sites and place attachments are situated around harbours, estuaries and lowland rivers 
(Black, 2010; PCE, 2015; Australia SoE, 2016; Rouse et al., 2017; Hanslow et al., 2018; Birkett-Rees et al., 2020) exposed to ongoing relative sea 
level rise (RSLR). RSLR includes regional variability in oceanic conditions (Zhang et al., 2017) and vertical land movement along New Zealand’s 
tectonically dynamic coasts (Levy et al., 2020) and some Australian hotspots for subsidence (Denys et al., 2020; King et al., 2020; Watson, 2020).

Table Box 11.6.1 |  Observed and projected impacts from higher mean sea level

Impacts from increase in mean sea level References

Nuisance and extreme coastal flooding have increased from higher mean sea level in 
New Zealand. Projected SLR will cause more frequent flooding in Australia and New 
Zealand before mid-century (very high confidence)

(Hunter, 2012; McInnes et al., 2016; Stephens et al., 2017; Stephens et al., 2020); 
(Steffen et al., 2014; PCE, 2015; MfE, 2017a; Hague et al., 2019; Paulik et al., 2020)

Squeeze in intertidal habitats (high confidence)
(Steffen et al., 2014; Peirson et al., 2015; Mills et al., 2016a; Mills et al., 2016b; Pettit 
et al., 2016; Rouse et al., 2017; Rayner et al., 2021)

Significant property and infrastructure exposure (high confidence)
(Steffen et al., 2014; PCE, 2015; Harvey, 2019; LGNZ, 2019; Paulik et al., 2020) (Table 
Box 11.5.2 and Table Box 11.6.2)

Loss of significant cultural and archaeological sites and projected to compound with 
several hazards over this century (medium confidence)

(Bickler et al., 2013; Birkett-Rees et al., 2020; NZ Archaeological Association, 2020)

Increasing flood risk and water insecurity with health and well-being impacts on Torres 
Strait Islanders (high confidence)

(Steffen et al., 2014; McInnes et al., 2016; McNamara et al., 2017)

Degradation and loss of freshwater wetlands (high confidence)
(Pettit et al., 2016; Bayliss and Ligtermoet, 2018; Tait and Pearce, 2019; Grieger et al., 
2020; Swales et al., 2020)

Coastal shoreline position is driven by a complex combination of natural drivers, past and present human interventions, climate variability 
(Bryan et al., 2008; Helman and Tomlinson, 2018; Allis and Hicks, 2019) and variation in sediment flux (Blue and Kench, 2017; Ford and 
Dickson, 2018). RSLR, to date, is a secondary factor influencing shoreline stability (medium confidence), and in Australia no definitive SLR 
signature is yet observed in shoreline recession, nor is one documented in New Zealand, due to variability in shoreline position responding 
to storms and seasonal, annual and decadal climate drivers (Australian Government, 2009; McInnes et al., 2016; Sharples et al., 2020).

The primary impacts of rising mean sea level (Table Box 11.6.1) are being compounded by climate-related changes in waves, storm 
surge, rising water tables, river flows and alterations in sediment delivery to the coast (medium confidence). The net effect is projected 
to increase erosion on sedimentary coastlines and flooding in low-lying coastal areas (McInnes et al., 2016; MfE, 2017a; Hanslow et al., 
2018; Wu et al., 2018). Waves are projected to be higher in southern Australasia and lower elsewhere (Morim et al., 2019) and storm 
surge slightly higher in the south, slightly lower further north in New Zealand (Cagigal et al., 2019) and small robust declines in southern 
Australia, with potentially larger changes in the Gulf of Carpentaria (Colberg et al., 2019).

The cumulative direct and residual risk from RSLR and associated impacts are projected to continue for centuries, necessitating ongoing 
adaptive decisions for exposed coastal communities and assets (high confidence) (MfE, 2017c; Oppenheimer et al., 2019; Tonmoy et al., 
2019).

Prevailing decision-making assumes shorelines can continue to be maintained and protected from extreme storms, flooding and erosion, 
even with RSLR (Lawrence et al., 2019a). Rapid coastal development has increased exposure of coastal communities and infrastructure 
(high confidence) (Helman and Tomlinson, 2018; Paulik et al., 2020), reinforcing perceptions of safety (Gibbs, 2015; Lawrence et al., 2015) 
and creating barriers to retreat and nature-based adaptations (very high confidence) (Schumacher, 2020). The efficacy and increasing costs 
of protection and accommodation risk reduction approaches and rebuilding after extreme events have been questioned and have limits 
(PCE, 2015; MfE, 2017a; Harvey, 2019; LGNZ, 2019; Paulik et al., 2020; Haasnoot et al., 2021). Future shoreline erosion is often signalled 
using defined coastal setback lines(s) and using probabilistic approaches to signal uncertainty (Ramsay et al., 2012; Ranasinghe, 2016).
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Table  Box  11.6.2 |   Observed relative SLR (variance-weighted average) with uncertainty range (standard deviation) and projected impacts on infrastructure and 
population of 1.1 m in Australia and 1 m in New Zealand. SLR projections for 2050 and 2090 are given in Table 11.3a and Table 11.3b.

Country
Observed relative sea 

level rise
Projected impacts of SLR (1.1 m Australia, 1.0 m New Zealand)

Value of coastal urban 
infrastructure

Number of buildings 
exposed

Number of 
residents 
exposed

Public council assets 
exposed

Australia

2.2±1.8 mm/year to 2018 
for four >75-year records (or 
an average of 0.17 m over 
75 years), 3.4 mm/year from 
1993–2019 (Watson, 2020)

AUD$164 to >226 billion (DCCEE, 
2011; Steffen et al., 2019)
111% rise in inundation cost from 
2020 to 2100 (Mallon et al., 2019)

187,000 to 274,000 residential 
buildings, 5800 to 8600 
commercial buildings, 3700 to 
6200 light industrial buildings 
(DCCEE, 2011)

N/A
27,000 to 35,000 km roads and 
1200 to 1500 km rail lines and 
tramways (DCCEE, 2011)

New 
Zealand

1.8 mm/year from 1900–2018, 
1.2 mm/year from 1900–1960 
and 2.4 mm/year from 
1961–2018 (Bell and Hannah, 
2019)

NZD$25.5 billion (Paulik et al., 2020) 75,890 (Paulik et al., 2020)
105,580 
(Paulik 
et al., 2020)

4000 km pipelines, 1440 km 
roads, 101 km rail, 72 km 
electricity transmission lines 
(Paulik et al., 2020)
NZD$5 billion (2018) (reserves, 
buildings, utility networks, 
roads) (LGNZ, 2019)

Flooding from high spring (‘king’) tides or storm tides during extreme weather events are raising public awareness of SLR (Green Cross 
Australia, 2012), including through media coverage (Priestley et al., 2021). The use of adaptive decision tools (11.7.3.1; Table 11.17) is 
increasing the understanding of changing coastal risk (Bendall, 2018; Lawrence et al., 2019b; Palutikof et al., 2019b) and how dynamic 
adaptive pathways and monitoring of them can aid implementation (Stephens et  al., 2018; Lawrence et  al., 2020b). Collaborative 
governance between local governments and their communities, including with Māori tribal organisations, is emerging in New Zealand 
(OECD, 2019b) assisted by national direction (DoC NZ, 2010) and guidance on adaptive planning (Table 11.15b). This shift from reactive 
to pre-emptive planning is better suited to ongoing RSLR (Lawrence et al., 2020b).

In Australia, adaptation to SLR remains uneven across jurisdictions in the absence of clear federal or state guidance, rendering Australia 
unprepared for flooding from SLR (Dedekorkut-Howes et al., 2020). Risk-averse coastal governance at the local level has led to shifts in 
liabilities to other actors and to future generations (Jozaei et al., 2020). Managed retreat has emerged as an adaptation option in New 
Zealand (Rouse et al., 2017; Hanna, 2019; Kool et al., 2020; Lawrence et al., 2020c), where protective measures are transitional (DoC 
NZ, 2010) and where managed retreat has arisen from collaborative governance (Owen et al., 2018). Remaining adaptation barriers are 
social or cultural (the absence of licence and legitimacy) and institutional (the absence of regulations, policies and processes that support 
changes to existing property rights and the funding of retreat) (high confidence) (O’Donnell and Gates, 2013; Tombs et al., 2018; Grace 
et al., 2019; O’Donnell et al., 2019).

Legacy development, competing public and private interests, trade-offs among development and conservation objectives, policy 
inconsistencies, short- and long-term objectives and the timing and scale of impacts compound to create contestation over 
implementation of coastal adaptation (high confidence) (Mills et al., 2016b; McClure and Baker, 2018; Dedekorkut-Howes et al., 2020; 
McDonald, 2020; Schneider et al., 2020). Legal barriers to coastal adaptation remain (Schumacher, 2020) with a risk that the courts will 
become decision makers (Iorns Magallanes et al., 2018) due to legislative fragmentation, status quo leadership, lack of coordination 
between governance levels and agreement about who pays for what adaptation (very high confidence) (Waters et al., 2014; Boston and 
Lawrence, 2018; Palutikof et al., 2019a; Noy, 2020). The nexus of climate, law, place and property rights continues to expose people and 
assets to ongoing SLR (Johnston and France-Hudson, 2019; O’Donnell, 2019), especially where the risks of SLR are not being reflected 
in property valuations (Cradduck et al., 2020). Risk signalling through land use planning, flooding events and changes in insurance 
availability and costs is projected to increase recognition of coastal risks (medium confidence) (Storey and Noy, 2017; CCATWG, 2018; 
Lawrence et al., 2018a; Harvey and Clarke, 2019; Steffen et al., 2019; Cradduck et al., 2020; ICNZ, 2021). Proactive local-led engagement 
and strategy are key to effective adaptation and incentivising and supporting communities to act (Gibbs, 2020; Schneider et al., 2020). 
Adopting ‘fit for purpose’ decision tools that are flexible as sea levels rise (11.7.3) can build adaptive capacity in communities and 
institutions (high confidence).

Box 11.6 (continued)
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11.3.6	 Health and Well-being

11.3.6.1	 Observed Impacts

There is ample evidence of health loss due to extreme weather in 
Australia and New Zealand, and rising temperatures, changing 
rainfall patterns and increasing fire weather have been attributed to 
anthropogenic climate change (11.2.1). Extreme heat leads to excess 
deaths and increased rates of many illnesses (Hales et  al., 2000; 
Nitschke et al., 2011; Lu et al., 2020). Between 1991 and 2011 it is 
estimated that 35–36% of heat-related mortality in Brisbane, Sydney 
and Melbourne was attributable to climate change, amounting to 
about 106 deaths a year on average over the study period (Vicedo-
Cabrera et  al., 2021). Exposure to high temperatures at work is 
common in Australia, and the health consequences may include more 
accidents, acute heat stroke and chronic disease (Kjellstrom et  al., 
2016).  Long-term rise in temperatures is changing the balance of 
summer and winter mortality in Australia (Hanigan et al., 2021). The 
Black Summer wildfires in Australia in 2019/2020 (Box 11.1) caused 
33 deaths directly (Davey and Sarre, 2020) and exposed millions of 
people to heavy particulate pollution (Vardoulakis et  al., 2020). In 
the Australian states most heavily affected by the fires, 417 deaths, 
3151 hospital admissions for cardiovascular or respiratory conditions 
and about 1300 emergency department presentations for asthma are 
attributed to wildfire smoke exposure (Borchers Arriagada et al., 2020). 
Immediate smoke-related health costs from the 2019–2020 fires are 
estimated at AUD$1.95 billion (Johnston et al., 2020).

Extreme heat is associated with decreased mental well-being, more 
marked in women than men (Ding et  al., 2016). Changing climatic 
patterns in western Australia have undermined farmers’ sense of 
identity and place, heightened anxiety and increased self-perceived 
risks of depression and suicide (Ellis and Albrecht, 2017). Following the 
Black Saturday wildfires in Victoria in 2009, 10–15% of the population 
in the most severely affected areas reported persistent fire-related 
post-traumatic stress disorder, depression and psychological distress 
(Bryant et al., 2014). Repeated exposure to the threat of wildfires in 
Australia, either directly (Box 11.1) or through media coverage (Looi 
et al., 2020), may compound effects on mental health. In March 2017, 
31,000 people in New South Wales and Queensland were displaced 
by Tropical Cyclone Debbie. Six months post-cyclone, adverse mental 
health outcomes were more common among those whose access to 
health and social care was disrupted (King et al., 2020).

Dengue fever remains a threat in northern Australia and variations in 
rainfall and temperature are related to disease outbreaks and patterns 
of spread, although most outbreaks are sparked by travellers bringing 
the virus into the country (Bannister-Tyrrell et al., 2013; Hall et al., 2021). 
Cases of dengue fever and other arboviral diseases have been increasing 
among recent arrivals to New Zealand from overseas, but to date there 
have been no reports of local transmission (Ammar et al., 2021).

In 2016 in New Zealand, it is estimated 6000 to 8000 people became 
ill due to contamination of the Havelock North water supply with the 
bacteria Campylobacter (Gilpin et al., 2020). The infection was traced 
to sheep faeces washed into the underground aquifer that feeds the 
town’s (untreated) water supply after an extraordinarily heavy rainfall 

event. This is not an isolated finding: increases in paediatric hospital 
admissions are seen across New Zealand two days after heavy rainfall 
events (Lai et al., 2020).

11.3.6.2	 Projected impacts

Climate change is projected to have detrimental effects on human 
health due to heat stress, changing rainfall patterns including floods 
and drought climate-sensitive air pollution (including that caused 
by wildfires) (high confidence) and vector-borne diseases (medium 
confidence). Vulnerability to detrimental effects of climate change will 
vary with socioeconomic conditions (high confidence).

The greatest number of people affected by compounding effects of 
heat, wildfires and poor air quality will be in urban and peri-urban 
areas of Australia. By 2100 the proportion of all deaths attributable 
to heat in Melbourne, Sydney and Brisbane may rise from about 0.5% 
to 0.8% (under RCP 2.6), or 3.2% (under RCP 8.5) (Gasparrini et al., 
2017). Heatwave related excess deaths in Melbourne, Sydney and 
Brisbane are projected to increase to 300/year (RCP2.6) or 600/year 
(RCP8.5) during 2031–2080 relative to 142/year during 1971–2020, 
assuming no adaptation and high population growth (Guo et  al., 
2018). High temperatures amplify the risks due to local air pollution: 
without adaptation, ozone-related deaths in Sydney may increase by 
50–60/year by 2070 (Physick et al., 2014).

Unless there is more effective control of nutrient runoff, bacterial 
contamination of drinking water supplies is projected to increase due 
to more intense rainfall events, exacerbating risks to human health 
(Gilpin et  al., 2020; Lai et  al., 2020), and higher temperatures will 
increase freshwater toxic blooms (Hamilton et al., 2016).

In general, the area of Australia suitable for the transmission of dengue 
is projected to increase (Zhang and Beggs, 2018; Messina et al., 2019), 
but estimates of local disease risk vary considerably according to 
climate change scenario and socioeconomic pathways (Williams 
et  al., 2016). The spread of Wolbachia among Aedes mosquitoes in 
northern Australia has already reduced dengue transmission and may 
decrease the influence of climate in the future (Ryan et al., 2019). In 
New Zealand, the risk of dengue remains low for the remainder of this 
century (Messina et al., 2019). Higher temperatures and more intense 
rainfall may also increase pollen production and the risk of allergic 
illness throughout the region (Haberle et al., 2014).

11.3.6.3	 Adaptation

Strengthening basic public health services can rapidly reduce 
vulnerability to death and ill-health caused by climate change; however, 
this opportunity is often missed (very high confidence). The 2020 New 
Zealand Health and Disability System Review pointed to shortcomings 
in leadership and governance, structures that embed health inequity, 
lack of transparency in planning and reporting and underinvestment 
in public health personnel and systems (HDSR, 2020). An Australian 
study found that without deliberate planning the health system 
‘would only be able to deal with climate change in an expensive, ad 
hoc crisis management manner’ (Burton, 2014). In both Australia and 
New Zealand the COVID-19 epidemic has highlighted weaknesses 
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in information systems, primary care for marginalised groups and 
intersectoral planning (Salvador-Carulla et  al., 2020; Skegg and Hill, 
2021): all these deficiencies are relevant to climate adaptation.

Underlying health and economic trends affect the vulnerability of the 
population to extreme weather (high confidence). Poor housing quality 
is a risk factor for climate-related health threats (Alam et al., 2016). 
Homeless people lack access to temperature-controlled or structurally 
safe housing and often are excluded  from disaster preparation and 
responses (Every, 2016). These inequalities are reversible. For example, 
a government partnership with social housing providers in Australia 
improved the thermal performance of housing for low-income tenants 
(Barnett et al., 2013). A postcode-level analysis of the vulnerability of 
urban populations to extreme heat in Australian capital cities (Loughnan 
et  al., 2013) led to the development of an interactive website for 
purposes of planning and emergency preparedness (Figure 11.5) as well 

as subsequent work on green urban design for cooler, more liveable 
cities (Tapper, 2021).

Heatwave responses, from public education to formal heat-warning 
systems, are the best-developed element of adaptation planning for 
health in Australia, but many metropolitan centres are still not covered 
(high confidence) (Nicholls et  al., 2016; Nitschke et  al., 2016). Air 
conditioning (AC) in Australian homes reduces mortality in heatwaves 
by up to 80% (Broome and Smith, 2012), but heavy reliance on AC 
carries risks. It is estimated that a power outage on the third day 
of extreme heatwaves would result in an additional 10–21 deaths 
in Adelaide, 24–47 in Melbourne and 7–13 in Brisbane (Nairn and 
Williams, 2019). Multiple interventions at the landscape, building and 
individual scale are available to reduce the negative health effects of 
extreme heat (Jay et al., 2021).

Housing and socio-economic disadvantage is correlated with the use of emergency services on hot days
(a) A community vulnerability index (VI (PCA)) by deciles 

9

VI (PCA)

87654321 10 9

Ambulance callouts

8765432 10

(b) Ambulance call-outs on days above daily mean of 34°C

30 kmBrisbane

North North

Figure 11.5 |  Housing and socioeconomic disadvantage are correlated with the use of emergency services on hot days (rho = 0.55, p<0.01). The spatial 
distribution of (A) a community vulnerability index (VI) (PCA) by deciles and (B) ambulance call-outs on days above the daily mean of 34°C, in Brisbane, Australia.  Ambulance 
call-out data are expressed as deciles based on per-capita calls during 2003–2011 (Loughnan et al., 2013)
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Heat extremes receive most policy attention, but the numbers of 
deaths are less than those resulting from more frequent exposures to 
moderately high temperatures (Longden, 2019). Melbourne, with its 
Urban Forest Strategy, provides a case study in long-term planning 
for cooler cities (Gulsrud et al., 2018). Australian workers’ perceptions 
of heat and responses to high temperatures show that heat policies 
on their own are insufficient for full protection; workers also require 
knowledge and agency to slow down or take breaks on their own 
initiative (Singh et al., 2015; Lao et al., 2016).

The first national climate change risk assessment in New Zealand (MfE, 
2020a) highlighted the risk to potable water supplies. An inquiry into the 
Havelock North outbreak recommended that all registered drinking water 
supplies (which supply about 80% of the national population) in New 
Zealand should be disinfected and have stronger oversight by a national 
regulatory body (Government Inquiry into Havelock North Drinking 
Water, 2017). The use of local and Indigenous knowledge strengthens 
interventions to protect water supplies to remote settlements that may 
be affected by climatic changes (Henwood et al., 2019).

Adaptation requires better protection of health facilities and supply 
chains, but hospital managers seldom have capacity to invest in long-
term improvements in infrastructure (Loosemore et al., 2014). However, 
health services in the region are required to prepare disaster plans: these 
could be expanded to explicitly cover health adaptation and local threats 
from climate change, including flooding events (Rychetnik et al., 2019).

11.3.7	 Tourism

11.3.7.1	 Observed Impacts

Tourism is a major economic driver in the region, accounting for 3% 
(Australia) and 6% (New Zealand) of GDP pre-COVID-19 (WTTC, 2018). 
Climate change is having significant impacts on tourism due to the 
heavy reliance of the sector on natural heritage and outdoor attractions 
(11.3.1; Box 11.2). Furthermore, because Australia and New Zealand 
are both long-haul destinations, a global increase in ‘flygskam’ (flight 
shame) will likely impact travel patterns (Becken et al., 2021).

Impacts of climate change are being observed across the tourism 
system (high confidence) (Scott et al., 2019a), most notably the GBR 
(Box  11.2) (Ma and Kirilenko, 2019). Australia’s ski industry is very 
sensitive to climatic change, due to reductions in snow depth and 
snow season length (Table  11.2) (Steiger et  al., 2019; Knowles and 
Scott, 2020). The 2019–2020 summer wildfires (Box  11.1) impacted 
tourism and travel infrastructure, affecting air quality, vineyards and 
wineries (CoA, 2020e; Filkov et al., 2020). Global media coverage of 
the wildfires, alongside Australia’s climate change policy response, 
profoundly and negatively, affected Australia’s destination image 
(Schweinsberg et al., 2020; Wen et al., 2020). In New Zealand’s South 
Island, Fox and Franz Josef Glaciers have retreated approximately 
700 m since 2008, with ice melt and retreat resulting in increased 
rock fall risks and negatively affecting the tourist experience (Purdie, 
2013; Stewart et al., 2016; Wang and Zhou, 2019). The west coast of 
New Zealand is extremely prone to flooding events, impacting amenity 
values and access (Paulik et al., 2019a). Damage to tracks, huts and 

bridges have closed popular destinations, including the Hooker Glacier 
and the popular Routeburn and Heaphy Tracks during heavy rainfall 
events (Christie et al., 2020). Climate-driven damage is motivating ‘last 
chance’ tourism to see key natural heritage and outdoor attractions, 
for example, GBR (Piggott-McKellar and McNamara, 2016) and Franz 
Josef and Fox Glaciers (Stewart et al., 2016).

11.3.7.2	 Projected Impacts

Widespread impacts from projected climate change are very likely 
across the tourism sector. The World Heritage listed Kakadu National 
Park in Australia is projected to experience increasing severity of 
cyclones (Turton, 2014), and sea level rise (SLR) is projected to affect 
freshwater wetlands (11.3.1.2; Table 11.5) (McInnes et al., 2015) and 
Indigenous rock art (Higham et al., 2016; Hughes et al., 2018a). The 
projected increase in the number of hot days in northern and inland 
Australia may impact the attractiveness of the region for tourists 
(Amelung and Nicholls, 2014; Webb and Hennessy, 2015). Coastal 
erosion and flooding of Australasian beaches due to sea level rise (SLR) 
and intensifying storm activity are estimated to increase by 60% on 
the Sunshine Coast by 2030, causing significant damage to tourist-
related infrastructure (Hughes et al., 2018a). Urgent ‘hard’ and ‘soft’ 
adaptation strategies are projected to help reduce sea level rise (SLR) 
impacts (Becken and Wilson, 2016).

Glacier tourism, a multi-million-dollar industry in New Zealand, 
is potentially under threat because glacier volumes are projected 
to decrease (very high confidence) (Purdie, 2013). Glacier volume 
reductions of 50–92% by 2099 relative to the present reflect the large 
range of temperature projections between RCP2.6 and RCP8.5. Under 
RCP2.6 at 2099, the glaciers retain a similar configuration to present, 
although clean-ice glaciers will retreat significantly. For RCP4.5, 
RCP6.0 and RCP8.5, the clean-ice glaciers will retreat to become small 
remnants in the high mountains (Anderson et al. 2021).

Snow skiing faces significant challenges from climate change (high 
confidence). In Australia, the annual maximum snow depth is estimated 
to decrease from current levels by 15% (2030) and 60% by 2070 (SRES 
A2) (Di Luca et al., 2018). By 2070–2099, relative to 2000–2010, the 
length of the Victorian ski season is projected to contract by 65–90% 
under RCP8.5 (Harris et al., 2016). The New Zealand tourism destination 
of Queenstown is expected to experience declining snowfall, increased 
wind and more severe weather events (Becken and Wilson, 2016). Ski 
tourism stakeholders have been responding to longer-term climate 
risks with an increase in snow-making machines in New Zealand since 
2013 (Hopkins, 2015) and in Australia (Harris et al., 2016).

11.3.7.3	 Adaptation

Current snow-making technologies are expected to sustain the ski 
industry until mid-century. However, with warmer winter temperatures 
and declining water availability, snow-making is projected to decrease 
to half at most resorts by 2030 (Harris et al., 2016). New Zealand’s ski 
industry may benefit from Australian skiers visiting New Zealand due 
to lower relative vulnerability (Hopkins, 2015). However, tourists may 
substitute destinations or ski less in the absence of snow (medium 
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agreement, limited evidence) (Cocolas et  al., 2015; Walters and 
Ruhanen, 2015).

With the exception of the ski industry (Becken, 2013; Hopkins, 2015), 
tourism stakeholders generally focus on coping with short-term weather 
events, rather than longer-term climate risks, but they do exhibit high 
adaptive capacity by diversifying their activities (Stewart et al., 2016). 
Post-COVID-19 pandemic economics and recovery policies challenge 
this sector’s prospects, and the combination of COVID-19 and climate 
change (e.g., fires, floods) has also highlighted the need for the tourism 
sector to be able to respond to multiple, overlapping crises.

There is limited evidence that research into the impact of climate 
change on tourism in Australia and New Zealand is translating 
into policy or action (Moyle et al., 2017). New Zealand government 
tourism sector strategies acknowledge this and the need for greater 
understanding of climate change for the sector (TIA, 2019) but do not 
offer solutions (MBIE, 2019b; MfE, 2020a). The COVID-19 pandemic 
and the global pause of international travel offer an opportunity to 
potentially ‘reset’ tourism to account for the impacts of climate change 
(Prideaux et al., 2020).

11.3.8	 Finance

11.3.8.1	 Observed Impacts

The finance sector has significant exposure to climate variability and 
extreme events (high confidence).

Aggregated insured losses from weather-related hazard events 
from 2013 to 2020 were almost AUD$15 billion for Australia (1.2% 
of GDP) and almost NZD$1  billion for New Zealand (0.4% of GDP) 
(NIWA, 2020; ICA, 2021) (ICA, 2020a; NIWA, 2020). However, there is 
no trend in normalised losses because the rising insurance costs are 
being driven by more people living in vulnerable locations with more 
to lose (McAneney et al., 2019). In New Zealand, two major hailstorms 
during 2014–2020 and three major floods during 2019–2021 caused 
significant insurance losses (ICNZ, 2021). Insured losses exceeded 
NZD$472  million for the 12 costliest floods from 2007 to 2017, of 
which NZD$140 million could be attributed to anthropogenic climate 
change (Frame et al., 2020). In Australia, insured damage was almost 
AUD$1.0 billion for the Queensland hailstorm in 2020, AUD$1.7 billion 
for east coast flooding in 2020, AUD$2.3 billion for the 2019–2020 fires, 
AUD$2.3 billion for the Queensland hailstorm in 2019, AUD$1.2 billion 
for the North Queensland floods in 2019, AUD$1.4 billion for the NSW 
hailstorm in 2018, AUD$1.8  billion for Cyclone Debbie in 2017 and 
AUD$1.5 billion for the Brisbane hailstorm in 2014 (ICA, 2020b). The 
insured loss from the seven costliest hailstorms in Australia from 2014 
to 2021 totalled AUD$7.6 billion (ICA, 2021).

Some homes in the highest-risk areas tend to be in lower socioeconomic 
groups that may not buy insurance (Actuaries Institute, 2020). For 
example, a quarter of residents that experienced loss or damage in 
the 2019 Townsville floods did not have insurance (ACCC, 2020). 
Underinsurance reduces people’s capacity to recover from adverse 
events, while over-reliance on private insurance undermines collective 

disaster recovery efforts (Lucas and Booth, 2020). In Australia, those 
in high-risk areas minimise house and contents insurance for financial 
reasons (Booth and Harwood, 2016; Osbaldison et al., 2019; Actuaries 
Institute, 2020). Insurance premiums in northern Australia are almost 
double those in the rest of Australia, and rising, mainly due to cyclone 
damage (ACCC, 2020).

11.3.8.2	 Projected Impacts

Risks for the finance sector are projected to increase (medium 
confidence). The potential impact of increased coastal and inland 
flooding, soil desiccation and contraction, fire and wind could lead to 
higher insurance costs, reduced property values and difficulties for some 
customers to service loans (CBA, 2018). Under a high-emissions scenario 
(RCP8.5), estimated annual losses to home-lending customers may 
increase 27% by 2060, and the proportion of properties with high credit 
risk may rise from 0.01% in 2020 to 1% in 2060, assuming no portfolio 
changes (CBA, 2018). In New Zealand, weather-related insurance claims 
between 2000 and 2017 totalled NZD$450 million, 40% of which was 
due to extreme rainfall. Using six climate model projections of extreme 
rainfall, the insured damage is projected to increase by 7% (RCP2.6) 
to 8% (RCP8.5) by 2020–2040 and 9% (RCP2.6) to 25% (RCP8.5) by 
2080–2100, relative to 2000–2017 (Pastor-Paz et al., 2020). By 2050–
2070, tropical cyclone risk for properties not in flood plains or storm 
surge zones in south-east Queensland may increase by 33% under a 
2°C scenario and by 317% under a 3°C scenario for properties in flood 
plains and storm surge zones (IAG, 2019).

11.3.8.3	 Adaptation

Banks, insurers and investors increasingly recognise the risks posed 
by climate change to their businesses (high confidence) (Paddam 
and Wong, 2017). Collaborations between banks, insurers and 
superannuation funds in Australia and New Zealand are driving 
efforts aimed at achieving the Paris Agreement goals, including 
the New Zealand Centre for Sustainable Finance and Australian 
Sustainable Finance Initiative (AFSI, 2020; TAO, 2020; NZCFSF, 2021). 
Company directors, including superannuation fund directors, have 
legal obligations to disclose and appropriately manage material 
financial risks (Barker et al., 2016; Hutley and Davis, 2019). Financial 
regulators are aware of climate risks for financial stability and financial 
institutions (RBNZ, 2018; RBA, 2019) and are closely supervising 
climate risk disclosure practices (TCFD, 2017; RBNZ, 2018; APRA, 
2019; CMSI, 2020; IGCC, 2021b). In Australia, regulatory action (APRA, 
2021) includes issuing prudential guidelines for financial institutions 
on managing climate risk, aligned with guidelines developed by the 
Climate Measurement Standards Initiative (NESP ESCC, 2020). In New 
Zealand, the financial sector (climate-related disclosure and other 
matters) amendment bill aims to ensure that the effects of climate 
change are routinely considered in business, investment, lending and 
insurance underwriting decisions (NZ Government, 2021).

Banks and insurers are beginning to undertake climate risk analyses 
(CRO Forum, 2019; Bruyère et  al., 2020) and disclose their risks 
(Paddam and Wong, 2017; ANZ, 2018; CBA, 2018). For example, the 
agricultural banking sector has analysed climate risk and embedded 
climate adaptation financing into its risk scoring and lending practices 
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(CBA, 2019). However, the overall number of disclosures continues 
to lag expectations, suggesting the need for mandatory climate risk 
disclosure in Australia (IGCC, 2021a).

Climate adaptation finance is not evident (medium confidence). There 
is an adaptation finance gap (Mortimer et al. 2020). Private sector 
initiatives are beginning to emerge through large scale projects or 
public–private partnerships, such as the Queensland Betterment 
Fund (Banhalmi-Zakar et al., 2016; Ware and Banhalmi-Zakar, 2020). 
Addressing investor pressure (IGCC, 2017) could increase investment in 
adaptation. However, ongoing policy uncertainty in Australia continues 
to be the key barrier to allocating additional capital to invest in climate 
solutions for 70% of investors (IGCC, 2021a).

Current and future insurance affordability pressures could be addressed 
by increased mitigation, revisions to building codes and standards 
and better land use planning (ACCC, 2020; Actuaries Institute, 2020). 
In New Zealand, insurance signals are motivating the government 
to address adaptation funding mechanisms (Boston and Lawrence, 
2018; CCATWG, 2018). Some insurers offer premium discounts to 
customers with reduced risk (Drill et  al., 2016), with increasing 
premiums reflecting known risk and no cover for some hazards in risky 
locations (CCATWG, 2017). Special excess payments are available for 
flood hazard so customers take responsibility for part of the claim, 
with increasing premiums to reflect known and foreseeable risk and 
downgrading cover from replacement value to market value (Bruyère 
et  al., 2020). Retreat by private insurers from risky locations could 
increase the unfunded fiscal risk to the government (Storey and 
Noy, 2017), creating moral hazard (Boston and Lawrence, 2018). The 
litigation risk from failing to take adaptation action (Hodder, 2019) 
could affect financial markets and government policy settings, creating 
cascading impacts across society (Lawrence et al., 2020b) CRO Forum, 
2019). For some climate risks, national governments act as ‘last resort’ 
insurers (CCATWG, 2017), but this could become unsustainable (CRO 
Forum, 2019).

11.3.9	 Mining

Many mines are exposed and sensitive to climate extremes (high 
confidence), but there is little available research on climate change 
impacts on them (Odell et al., 2018). Most Australian mines face higher 
temperatures, cyclones, erosion and landslides and hazards such as sea 
level rise (SLR) and storms across their supply chains, including ports 
(Cahoon et al., 2016). Impacts include operational disruptions such as 
acute drainage problems (Loechel and Hodgkinson, 2014) and heat-
induced illness, irritation and absenteeism among workers (McTernan 
et al., 2016), lost revenue and increased costs (Pizarro et al., 2017).

Damage and disruption from climate impacts can cost operators 
billions of dollars (Cahoon et al., 2016). Climatic extremes increase the 
risk and impact of spillages along transportation routes (Grech et al., 
2016), exacerbate mining’s effects on hydrology, ecosystems and air 
quality (Phillips, 2016; Ali et al., 2018), increase contamination risks 
(Metcalfe and Bui, 2016) and disrupt and slow mine site rehabilitation 
(Wardell-Johnson et al., 2015; Hancock et al., 2017). Adaptations such 
as improved water management are emerging slowly (Gasbarro et al., 

2016; Becker et al., 2018). Some companies are spatially diversifying 
and relocating (Hodgkinson et al., 2014). Others are replacing workers 
with automation and remote operations (Halteh et al., 2018; Keenan 
et al., 2019).

11.3.10	 Energy

Australia’s energy generation is a mix of coal (56%), gas (23%) and 
renewables (21%) (DISER, 2020), with ageing coal-fired infrastructure 
being replaced by a growing proportion of renewable and distributed 
energy resources (AEMO, 2018). In New Zealand, 60% of energy 
generation comes from hydro-electricity and 15% from geothermal 
(MBIE, 2021), with coal (2%) and gas (13%) generation capacity to 
be retired, and total renewable energy to increase from 82% in 2017 
to around 95% by 2050, mostly through wind generation (MBIE, 
2019a).

11.3.10.1	 Observed Impacts

The energy sector is highly vulnerable to climate change (high 
confidence). Oil and gas systems are vulnerable to storms, fires, 
drought, floods, sea level rise (SLR), extreme heat and fires, which can 
damage infrastructure, slow production and add to operational costs 
(Smith, 2013). The electricity system is vulnerable to high temperatures 
reducing generator and network capacity and increasing failure 
rates and maintenance costs (AEMO, 2020a). Fires (including those 
sparked by electrical distribution lines) pose risks to assets. Smoke 
can cause electricity transmission to trip, and high winds reduce wind-
energy capacity and threaten the integrity of transmission lines. Low 
rainfall reduces hydro-energy capacity and increases the demand 
for desalination energy. Higher sea level may affect some low-lying 
generation, distribution and transmission assets, and compound 
extreme weather events can cause outages (Vose and Applequist, 
2014; Lawrence et al., 2016; AEMO, 2020b; AEMO, 2020a; ESCI, 2021). 
For example, in September 2016, a major windstorm in South Australia 
damaged 23 transmission towers and cut power to over 900,000 
households. In February 2017, the South Australian energy system 
failed to cope with a heatwave-related jump in demand, causing power 
cuts to 40,000 homes (Steffen et  al., 2017). In April 2018, a storm 
over Auckland, New Zealand left 182,000 properties without power 
(Bell, 2018). The 2019/2020 Australian heatwaves and fires caused 
widespread blackouts that disrupted communications, transport and 
emergency response capacity (Box 11.1).

11.3.10.2	 Projected Impacts

Risks for the energy sector are projected to increase with climate change 
(medium confidence). Projected increases in the frequency and intensity 
of heatwaves, fires, droughts and wind-storms would increase risks for 
energy supply and demand (AEMO, 2020b; ESCI, 2021). Households 
are unevenly vulnerable to energy sector risks due to varying housing 
quality and health dependencies (11.3.6). In New Zealand, a warmer 
climate and increasing energy efficiency is projected to marginally 
reduce annual average peak electricity heating demand (Stroombergen 
et  al., 2006; MBIE, 2019a). Winter and spring inflows to main hydro 
lakes are projected to increase 5–10% and may reduce hydroelectric 
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energy vulnerability (McKerchar and Mullan, 2004; Poyck et al., 2011; 
Stevenson et al., 2018). However, major electricity supply disruptions 
are projected to increase as dependence on electricity grows from 25% 
of total energy in 2016 to 58% in 2050 (Transpower, 2020).

In Australia, the total heating and cooling energy demand of 5-star 
energy-rated houses is projected to change by 2100 (Wang et  al., 
2010). At 2°C global warming, the estimated change in demand is 
−27% in Hobart, −21% in Melbourne, +61% in Darwin, +67% in Alice 
Springs and +112% in Sydney. For a 4°C global warming, the changes 
are −48%, −14%, +135%, +213% and +350% respectively.

11.3.10.3	 Adaptation

Options to manage risks include adaptation of energy markets, 
integrated planning, improved asset design standards, smart-
grid technologies, energy generation diversification, distributed 
generation (e.g., roof-top solar, microgrids), energy efficiency, demand 
management, pumped hydro storage, battery storage and improved 
capacity to respond to supply deficits and balance variable energy 
resources across the network (Table  11.8) (high confidence). With 
increasing electrification, diversification and resilience can contribute 
to security of supply as fossil fuels are retired from the energy mix 
(AEMO, 2020b). In Australia, the AEMO (2020) Integrated System Plan 
has evaluated various options, costs and benefits. Risks associated 

Table 11.8 |  Adaptation options for energy sector.

Adaptation options References

Diversification of electricity supplies geographically and technically, including distributed energy resources and variable renewable energy (AEMO, 2020b)

Integrated planning, improved asset design and management and disaster recovery to build resilience to more extreme weather (AEMO, 2020b; Transpower, 2020)

Augmentation of transmission grid to support change in generation mix using interconnectors and renewable energy zones, coupled with 
energy storage, adds capacity and helps balance variable resources across the network

(Blakers et al., 2017; ICCC, 2019; AEMO, 
2020b)

Climate change risks included in the design, location and rating of future infrastructure and consideration of the implications for future 
transmission developments

(Bridge et al., 2018; AEMO, 2020b)

Increased design and construction standards, flood defence measures, insurance, improved water efficiency, improved insulation of 
supercooled LNG processes, more efficient air conditioning and creating fire breaks for the oil and gas sector

(Smith, 2013; Gasbarro et al., 2016)

Technological developments to strengthen existing resilience under climate change that reinforce the relative advantage of western Australia 
and Tasmania for new wind energy installations

(Evans et al., 2018)

Energy generation diversity, demand management, pumped hydro storage and battery storage (Keck et al., 2019; Transpower, 2020)

Tools and strategies to manage winter energy deficits and dry years alongside renewable electricity generation deployment (Transpower, 2020)

Improved insulation and heating of buildings and flexible electricity consumption to reduce significance of winter electricity demand peak
(Stroombergen et al., 2006; MBIE, 2019a; 
Transpower, 2020)

Table 11.9 |  Examples of observed impacts that can be partly attributed to climate change.

Impact Source

Mass bleaching of GBR in 2016/2017 due to a marine heatwave Box 11.2

In the New Zealand southern Alps, extreme glacier mass loss, which was at least 6 times more likely in 2011 and 10 times more likely in 2018, due to warming 11.2.1, 11.3.3

In the Australian Alps bioregion, loss of habitat for endemic and obligate species due to snow loss and increases in fire, drought and temperature Table 11.4

In the Australian wet tropics world heritage area, some vertebrate species have declined in distribution area and population size due to increasing temperatures and 
length of dry season

Table 11.4

Extinction of Bramble Cay melomys due to loss of habitat caused by storm surges and SLR in Torres Strait Table 11.4

In New Zealand, increasing invasive predation pressure on endemic forest birds surviving in cool forest refugia due to anthropogenic warming Table 11.4

In New Zealand, erosion of coastal habitats due to more severe storms and SLR Table 11.4, Box 11.6

In Australia, estuaries warming and freshening with decreasing pH Table 11.6

Changes in life-history traits, behaviour or recruitment of fish and invertebrates due to ocean acidification or warming, severe decline in recruitment of coral on GBR 
due to ocean warming, aquaculture stock deaths due to heat stress

Table 11.6

New diseases and toxins due to warming and extension of East Australian Current Table 11.6

Changes in almost 200 marine species’ distributions and abundance due to ocean warming Table 11.6

Temperate marine species replaced by seaweeds, invertebrates, corals and fishes characteristic of sub-tropical and tropical waters Table 11.6

River flow decline in southern Australia is largely due to the decline in cool-season rainfall partly attributed to anthropogenic climate change 11.3.3

In New Zealand, the 2007/2008 drought and 2012/2013 drought were 20% attributed to anthropogenic climate change 11.3.3

In New Zealand, about 30% of the insured damage for the 12 costliest flood events from 2007 to 2017 can be attributed to anthropogenic climate change 11.3.8

In Australia, 35–36% of heat-related excess mortality in Melbourne, Sydney and Brisbane from 1991–2018 can be attributed to anthropogenic climate change 11.3.6
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with an increasing reliance on weather-dependent renewable energy 
(e.g., solar, wind, hydro) (ESCI, 2021) can be managed through strong 
long-distance interconnection via high-voltage powerlines and storage 
(Blakers et  al., 2017; Blakers et  al., 2021; Lu et  al., 2021). However, 
implementation of adaptation options remains inadequate (Gasbarro 
et al., 2016).

11.3.11	 Detection and Attribution of Observed Climate 
Impacts

Detection and attribution of observed climate trends and events is called 
‘climate attribution’. This has been assessed by IPCC WGI (Gutiérrez 
et  al., 2021; Ranasinghe et  al., 2021; Seneviratne et  al., 2021) and 
summarised in Chapter 16. Trends that have been formally attributed in 
part to anthropogenic climate change include regional warming trends 
and sea level rise (SLR), decreasing rainfall and increasing fire risk in 
southern Australia. Events include extreme rainfall in New Zealand 
during 2007–2017, the 2007/2008 and 2012/2013 droughts in New 
Zealand, high temperatures in Australia during 2013–2020, the 2016 
northern Australian marine heatwave, the 2016/2017 and 2017/18 
Tasman Sea marine heatwaves and 2019/2020 fires in Australia.

Detection and attribution of climate impacts on natural and human 
systems is called ‘impact attribution’. This often involves a two-step 
approach (joint attribution) that links climate attribution to observed 
impacts. Impact attribution is complicated by confounding factors, for 
example, changes in exposure arising from population growth, urban 
development and underlying vulnerabilities.

Impact attribution is considered in Sections  11.3.1–11.3.10 and 
summarised in Table  11.9. More literature is available for natural 
systems than human systems, which represents a knowledge gap rather 
than an absence of impacts that are attributable to anthropogenic 
climate change. Fundamental shifts in the structure and composition of 
some ecosystems are partly due to anthropogenic climate change (high 
confidence). In human systems, the costs of droughts and floods in New 
Zealand, and heat-related mortality and fire damage in Australia, are 
partly attributed to anthropogenic climate change (medium confidence).

11.4	 Indigenous Peoples

Indigenous perspectives of well-being embrace physical, social, 
emotional and cultural domains, collectiveness and reciprocity and, 
more fundamentally, connections between all elements across past, 
present and future generations (Australia. NAHS Working Party, 1989; 
MfE, 2020a). Changing climate conditions are expected to exacerbate 
many of the social, economic and health inequalities faced by Aboriginal 
and Torres Strait Islander Peoples in Australia and Māori in New Zealand 
(high confidence) (Bennett et  al., 2014; Hopkins et  al., 2015; AIHW, 
2016; Lyons et al., 2019). As a consequence, effective policy responses 
are those that take advantage of the interlinkages and dependencies 
between mitigation, adaptation and Indigenous Peoples’ well-being 
(Jones, 2019) and those that address the transformative change 
needed from colonial legacies (high confidence) (Hill et al., 2020). There 
is a central role for Indigenous Peoples in climate change decision-

making that helps address the enduring legacy of colonisation through 
building opportunities based on Indigenous governance regimes, 
cultural practices to care for land and water and intergenerational 
perspectives (very high confidence) (Nursey-Bray et al., 2019; Petzold 
et al., 2020) (Cross-Chapter Box INDIG in Chapter 18).

11.4.1	 Aboriginal and Torres Strait Islander Peoples of 
Australia

The highly diverse Aboriginal and Torres Strait Islander Peoples of 
Australia have survived and adapted to climate changes such as 
sea level rise (SLR) and extreme rainfall variability during the late 
Pleistocene era, through intimate place-based Indigenous knowledge 
in practice and while losing traditional land and sea country 
ownership (Liedloff et al., 2013) (Cross-Chapter Box INDIG in Chapter 
18) including during the Late Pleistocene era (Golding and Campbell, 
2009; Nunn and Reid, 2016). They belong to the world’s oldest 
living cultures, continually resident in their own ancestral lands, or 
‘country’, for over 65,000 years (Kingsley et al., 2013; Marmion et al., 
2014; Nagle et al., 2017; Tobler et al., 2017; Nursey-Bray and Palmer, 
2018). The majority of the Australian Indigenous Peoples live in urban 
areas in southern and eastern Australia, but are the predominant 
population in remote areas.

Climate-related impacts on Aboriginal and Torres Strait Islander 
Peoples, countries (traditional estates) and cultures have been observed 
across Australia and are pervasive, complex and compounding (high 
confidence) (Green et  al., 2009) (11.5.1), for example, the loss of 
biocultural diversity, nutritional changes through the availability of 
traditional foods and forced diet change, water security and loss of land 
and cultural resources through erosion and SLR (Table 11.10) (TSRA, 
2018). Moreover, these impacts are being experienced now particularly 
in low-lying geographical areas—especially in the Torres Strait Islands 
(Mosby, 2012; Kelly, 2014; Murphy, 2019; Hall et al., 2021). Estimates 
of the loss from fire impacts on ecosystem services that contribute to 
the well-being of remotely located Indigenous Australians were found 
to be higher than the financial impacts from the same fires on pastoral 
and conservation lands (Sangha et al., 2020) and could increase with 
both financial and non-financial impacts (Box 11.1).

Due to ongoing impacts of colonisation, Aboriginal and Torres Strait 
Islander Peoples have, on average, lower income, poorer nutrition, lower 
school outcomes and employment opportunities, higher incarceration 
and higher levels of removal of children than non-Indigenous 
Australians, represented in high comorbidities of chronic diseases and 
mental health impacts (Marmot, 2011; Green and Minchin, 2014; AIHW, 
2015). This relative poverty can reduce climate-adaptive capacities 
while exacerbating climate change vulnerabilities (Nursey-Bray and 
Palmer, 2018). In remote country, this can combine with lack of security 
for food and water, non-resilient housing and extreme weather events, 
contributing to migration off traditional country and into towns and 
cities—with flow-on social impacts such as homelessness, dislocation 
from community and family and disconnection from country and 
spirituality (Mosby, 2012; Brand et al., 2016).
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Recognition of the role of Aboriginal and Torres Strait Islander Peoples 
in identifying solutions to the impacts of climate change is slowly 
emerging (UN, 2018), having been largely excluded from meaningful 
representation from the conception of climate change dialogue through 
to debate and decision-making (Nursey-Bray et  al., 2019). Honouring 
the United Nations Declaration on the Rights of Indigenous Peoples and 
social justice values would support self-determination and the associated 
opportunity for Indigenous Australians to develop adaptation responses 
to climate change (Langton et al., 2012; Nursey-Bray and Palmer, 2018; 
Nursey-Bray et al., 2019), including the adaptive capacity opportunities 
available through Indigenous knowledge (Liedloff et al., 2013; Petheram 
et al., 2015; Stewart et al., 2019) (Cross-Chapter Box INDIG in Chapter 
18). The Uluru Statement from the Heart proposes a pathway and 
roadmap forward for enhanced representation of Aboriginal and Torres 
Strait Islander Peoples in decision-making in Australia (Ululru Statement, 
2017). Table 11.11 provides examples of traditional Indigenous practices 
of adaptation to a changing climate. However, due to Indigenous 
methods of knowledge sharing and knowledge holding, such knowledge 
relies disproportionately on elders and seniors, who form a very small 
portion of the total Aboriginal and Torres Strait Islander Peoples of 
Australia, and is limited in the formal literature (ABS, 2016).

11.4.2	 Tangata Whenua—New Zealand Māori

Māori society faces diverse impacts, risks and opportunities from 
climate change (Table  11.12). Studies exploring climate change 
impacts, scenarios, policy implications, adaptation options and tools 
for Māori society have increased substantially (e.g., (King et al., 2012; 
Bargh et al., 2014; Jones et al., 2014; Bryant et al., 2017; Awatere et al., 
2018; Colliar and Blackett, 2018). Māori priorities surrounding climate 
change risks and natural resource management have been articulated 
in planning documents by many Māori kin groups (e.g., (Ngāti Tahu- 
Ngāti Whaoa Rūnanga Trust, 2013; Raukawa Settlement Trust, 2015; 
Ngai-Tahu, 2018; Te Urunga Kea - Te Arawa Climate Change Working 
Group, 2021), reflecting the importance of reducing vulnerability and 
enhancing resilience to climate impacts and risks through adaptation 
and mitigation.

Māori have long-term interests in land and water and are heavily 
invested in climate-sensitive sectors (agriculture, forestry, fishing, 
tourism and renewable energy) (King et  al., 2010). Large proportions 
of collectively owned land already suffer from high rates of erosion 
(Warmenhoven et al., 2014; Awatere et al., 2018), which are projected 
to be exacerbated by climate-change-induced extreme rainfalls (high 
confidence) (RSNZ, 2016; Awatere et  al., 2018). Changing drought 

Table 11.10 |  Climate-related impacts on Aboriginal and Torres Strait Islander Peoples, country and cultures.

Impacts Implications

Loss of biocultural diversity 
(land, water and sky) (medium 
confidence)

Healthy country is critical to Indigenous Australians’ livelihoods, caring for country responsibilities, health and well-being. Damage to land can 
magnify the loss of spiritual connection to land from dispossession from traditional country and leads to disruption of cultural structures. Climate 
change impacts can exacerbate and/or accelerate existing threats of habitat degradation and biodiversity loss and create challenges for traditional 
stewardship of landscapes (Mackey and Claudie, 2015)

Climate-driven loss of native 
title and other customary lands 
(medium confidence)

Traditional coastal lands lost through erosion and rising sea level, with associated mental health implications from loss of cultural and traditional 
artefacts and landscapes, including the destruction and exhumation of ancestral graves and burial grounds. This is also occurring and predicted 
to intensify in the low-lying islands of the Torres Strait (TSRA, 2018; Hall et al., 2021) and was also noted during the extreme bushfires in Eastern 
Australia in late 2019 and early 2020.

Changing availability of traditional 
foods and forced diet change 
(medium confidence)

Human health impacts can be exacerbated by climate change through the changing availability of traditional foods and medicines, while outages and 
the high costs of electricity can limit the storage of fresh food and medication (Kingsley et al., 2013; Spurway and Soldatic, 2016; Hall and Crosby, 
2020)

Changing climatic conditions 
for subsistence food harvesting 
(medium confidence)

Climate-change-induced SLR and saltwater intrusion can limit the capacity for traditional Indigenous floodplain pastoralism and affect food security, 
access to and affordability of healthy, nutritional food (Ligtermoet, 2016; Spurway and Soldatic, 2016)

Extreme weather events triggering 
disasters (high confidence)

Increasing frequency or intensity of extreme weather events (floods, droughts, cyclones, heatwaves) can cause disaster responses in remote 
communities, including infrastructure damage of essential water and energy systems and health facilities (TSRA, 2018; Hall and Crosby, 2020)

Heatwave impacts on human 
health (high confidence)

Heatwaves can occur in many regions of Australia. Tropical regions can experience prolonged seasons of high temperatures and humidity levels, 
resulting in extreme heat stress risks. For example, the Torres Strait Islands are already categorised under the U.S. National Oceanic and Atmospheric 
Administration (NOAA) Heat Index as a danger zone for extreme human health risk during summer (TSRA, 2018)

Health impacts from changing 
conditions for vector-borne 
diseases (high confidence)

Climate change can alter exposure and increase risk for remote Indigenous Peoples to infection from waterborne and insect-borne diseases, especially 
if medical services are limited or damaged by extreme weather events. For example, in the Torres Strait Islands the changing climate is affecting the 
range and extension of the Aedes albopictus and Aedes aegypti mosquitoes that can carry and transmit dengue and other viruses (Horwood et al., 
2018; TSRA, 2018)

Unadaptable infrastructure for 
changing environmental conditions 
(high confidence)

Poorly designed, inferior quality and unmaintained housing can create health challenges for tenants in extreme heat (Race et al., 2016). Essential 
community-scale water and energy service infrastructure, unpaved roads, sea walls and stormwater drains can fail in extreme weather events 
(McNamara et al., 2017)

Drinking water security (medium 
confidence)

Predicted continued increases in arid conditions in Australia are expected to reduce the recharge rate of finite groundwater supplies (Barron et al., 
2011). For remote communities reliant on groundwater for drinking supplies, this water insecurity creates vulnerabilities from over-extraction and 
lack of access (Jackson et al., 2019; Hall and Crosby, 2020). This groundwater can also have microbial contamination from sewage and chemicals 
supporting bacterial growth, such as high iron levels supporting the growth of Burkholderia pseudomallei that causes melioidosis in humans and 
animals (Kaestli et al., 2019). In the Torres Strait, increasing reliance on desalination for drinking water raises costs for fuel and its associated 
transport (Beal et al., 2018)
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occurrence, particularly across eastern and northern New Zealand, 
is also projected to affect primary sector operations and production 
(medium confidence) (King et  al., 2010; Smith et  al., 2017; Awatere 
et al., 2018). Further, many Māori-owned lands and cultural assets, such 
as marae and urupa, are located on coastal lowlands vulnerable to sea 
level rise (SLR) impacts (high confidence) (Manning et al., 2014; Hardy 
et al., 2019). Māori tribal investment in fisheries and aquaculture faces 
substantial risks from changes in ocean temperature and acidification 
and the downstream impacts on species distribution, productivity and 
yields (medium confidence) (Law et al., 2016). A clearer understanding of 
climate change risks and the implications for sustainable outcomes can 
enable more informed decisions by tribal organisations and governance 
groups.

Changing climate conditions are projected to exacerbate health 
inequities faced by Māori (medium confidence) (Bennett et al., 2014; 
Jones et  al., 2014; Hopkins, 2015). The production and ecology of 
some keystone cultural flora and fauna may be impacted by projected 
warming temperatures and reductions in rainfall (medium confidence) 
(RSNZ, 2016; Bond et al., 2019; Egan et al., 2020). Obstruction of access 
to keystone species is expected to adversely impact customary practice, 

cultural identity and well-being (medium confidence) (Jones et  al., 
2014; Bond et  al., 2019). Social-cultural networks and conventions 
that promote collective action and mutual support are central features 
of many Māori communities, and these practices are invaluable for 
initiating responses to, and facilitating recovery from, climate stresses 
and extreme events (King et  al., 2011; Hopkins et  al., 2015). Māori 
tribal organisations have a critical role in defining climate risks and 
policy responses (Bargh et al., 2014; Parsons et al., 2019), as well as 
entering into strategic partnerships with business, science, research 
and government to address these risks (high confidence) (Manning 
et al., 2014; Beall and Brocklesby, 2017; CCATWG, 2017).

More integrated assessments of climate change impacts, adaptation 
and socioeconomic risk for different Māori groups and communities, 
in the context of multiple stresses, inequities and different ways of 
knowing and being (King et al., 2013; Schneider et al., 2017; Henwood 
et al., 2019), would assist those striving to evaluate impacts and risks 
and how to integrate these assessments into adaptation plans (high 
confidence). Better understanding of the social, cultural and fiscal 
implications of sea level rise (SLR) is urgent (PCE, 2015; Rouse et al., 
2017; Colliar and Blackett, 2018), including what duties local and 

Table 11.11 |  Examples of Aboriginal and Torres Strait Islander Peoples’ practices of adaptation to a changing climate

‘Caring for Country’: Traditional Practices for Holistic Land and Cultural Protection and Adaptation in a Changing Climate Source

Indigenous Protected Area (IPA) management plans enable culturally and ecologically compatible development that contribute to local Indigenous economies
(Mackey and Claudie, 
2015).

IPAs can avoid the potential for ‘nature–culture dualism’ that locks out Indigenous access in some protected area legislation because they are based on 
relational values informed by local Indigenous knowledge

(Lee, 2016)

Fire management using cultural practices can achieve greenhouse gas emission targets while maintaining Indigenous cultural heritage. (Robinson et al., 2016)

Indigenous Ranger programmes provide a means for Indigenous-guided land management, including for fire management and carbon abatement, fauna studies, 
medicinal plant products, weed management and recovery of threatened species

(Mackey and Claudie, 
2015)

Faunal field surveys can engage local, bounded and fine-scale intuitive species location by Indigenous knowledge holders and their knowledge used for 
conservation planning

(Wohling, 2009; 
Ziembicki et al., 2013)

Cultural flows in waterways are a demonstration of cultural knowledge, values and practice in action as they are informed by Indigenous knowledge, bound by 
water-dependent values, and define when and where water is to be delivered, particularly in a changing climate

(Bark et al., 2015; Taylor 
et al., 2017)

Table 11.12 |  Climate-related impacts and risks for Tangata Whenua New Zealand Māori

Impact Risks

Changes in drought occurrence and 
extreme weather events

Risks to Māori tribal investment in forestry, agriculture and horticulture sector operations and production, particularly across eastern and 
northern New Zealand (medium confidence) (King et al., 2010; Awatere et al., 2018; Hardy et al., 2019)

Changes in rainfall, temperature, drought, 
extreme weather events and ongoing SLR

Risks to potable water supplies (availability and quality) for remote Māori populations (medium confidence) (RSNZ, 2016; Henwood et al., 
2019)

Changes in rainfall, temperature, drought, 
extreme weather events and ongoing SLR

Risks of exacerbating existing inequities (e.g., health, economic, education and social services), social cohesion and well-being (medium 
confidence) (Bennett et al., 2014; Jones et al., 2014)

Changes in rainfall regimes and 
more intense drought combined with 
degradation of lands and water

Risks to the distribution and survival of cultural keystone flora and fauna, as well as cascading risks for Māori customary practice, cultural 
identity and well-being (high confidence) (King et al., 2010; RSNZ, 2016; Bond et al., 2019)

Changes in ocean temperature and 
acidification

Risks to nearshore and ocean species productivity and distribution, as well as cascading risks for Māori tribal investment in the fisheries and 
aquaculture sectors (medium confidence) (King et al., 2010; Law et al., 2016)

Sea-level-rise-induced erosion, flooding 
and saltwater intrusion

Risks to Māori-owned coastal lands and economic investment as well as risks to community well-being from displacement of individuals, 
families and communities (high confidence) (Manning et al., 2014; Smith et al., 2017; Hardy et al., 2019)

Sea-level-rise-induced erosion, inundation 
and saltwater intrusion

Risks to Māori cultural heritage as well as cascading risks for tribal identity and spiritual well-being (medium confidence) (King et al., 2010; 
Manning et al., 2014; RSNZ, 2016)

Impacts of climate change, adaptation and 
mitigation actions

Risks that governments are unable to uphold Māori interests, values and practices under the Treaty of Waitangi, creating new, modern-day 
breaches of the Treaty of Waitangi (high confidence) (Iorns Magallanes, 2019; MfE, 2020a)
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central government might have with respect to actively upholding 
Māori interests under the Treaty of Waitangi (high confidence) (Iorns 
Magallanes, 2019). Intergenerational approaches to climate change 
planning will become increasingly important, elevating political 
discussions about conceptions of rationality, diversity and the rights 
of non-human entities (high confidence) (Ritchie, 2013; Carter et al., 
2018; Ruru, 2018; Munshi et al., 2020).

11.5	 Cross-Sectoral and Cross-Regional 
Implications

The impacts and adaptation processes described in Sections 11.3 and 
11.4 are focused on specific sectors, systems and Indigenous Peoples. 
Added complexity, risk and adaptation potential stem from cross-
sectoral and cross-regional interdependencies.

11.5.1	 Cascading, Compounding and Aggregate Impacts

11.5.1.1	 Observed Impacts

Climate impacts are cascading, compounding and aggregating across 
sectors and systems due to complex interactions (high confidence) 
(Pescaroli and Alexander, 2016; Challinor et  al., 2018; Zscheischler 
et al., 2018; Steffen et al., 2019; AghaKouchak et al., 2020; CoA, 2020e; 
Lawrence et al., 2020b; Simpson et al., 2021) (Boxes 11.1, 11.3, 11.4, 
11.5 and 11.6). Cascading impacts propagate via interconnections 
and systemic factors, including supply chains, shared reliance on 
connected biophysical systems (e.g., water catchments and ecosystems), 
infrastructure, essential goods and services and the exercise of 
governance, leadership, regulation, resources and standard practices 
(e.g., in planning and building codes), including lock-in of past decisions 
and experience (CSIRO, 2018; Lawrence et al., 2020b). The capacity of 
critical systems such as information, communication and technology, 
water infrastructure, health care, electricity and transport networks, is 
being stretched, with impacts cascading to other systems and places, 
exacerbating existing hazards and generating new risks (Cradock-
Henry, 2017) (11.3.6; 11.3.10; Box 11.1). Temporal or spatial overlap 
of hazards (e.g., drought, extreme heat and fire; drought followed by 
extreme rainfall) are compounding impacts (Zscheischler et al., 2018) 
and affecting multiple sectors.

Extreme events such as heatwaves, droughts, floods, storms and 
fires have caused deaths and injuries (Deloitte, 2017a) (11.3.5.1), 
and affected many households, communities and businesses via 
impacts on ecosystems, critical infrastructure, essential services, food 
production, the national economy, valued places and employment. This 
has created long-lasting impacts (e.g., mental health, homelessness, 
health incidents and reduced health services) (Brown et  al., 2017; 
Brookfield and Fitzgerald, 2018; Rychetnik et al., 2019) and reduced 
adaptive capacity (Friel et al., 2014; O’Brien et al., 2014; Ding et al., 
2015; CoA, 2020e) (Box 11.1, Box 11.3, 11.3.1–11.3.10).

In New Zealand, extreme snow, rainfall and wind events have 
combined to impact road networks, power and water supplies and have 
impeded interdependent wastewater and stormwater services and 

business activities (Deloitte, 2019; Lawrence et al., 2020b; MfE, 2020a) 
(Box  11.4). Community and infrastructure services are periodically 
disrupted during extreme weather events, triggering impacts from the 
interdependencies across enterprises and individuals (Glavovic, 2014; 
Paulik et al., 2021).

Slow-onset climate change impacts have also had cascading and 
compounding effects. For example, degradation of the GBR by ocean 
heating, acidification and non-climatic pressures (Marshall et al., 2019), 
repeated pluvial, fluvial and coastal flooding of some settlements (Paulik 
et al., 2019a; Paulik et al., 2020), long droughts and water insecurity 
in rural communities (Tschakert et al., 2017) and the gradual loss of 
species and ecological communities have caused substantial ecological, 
social and economic losses. Indigenous Peoples have especially been 
impacted by multiple and complex losses (Johnson et al., 2021) (11.4).

11.5.1.2	 Projected Impacts

Cascading, compounding and aggregate impacts are projected to grow 
due to a concurrent increase in heatwaves, droughts, fires, storms, 
floods and sea level (high confidence) (CSIRO, 2020; Lawrence et al., 
2020b). Urban wastewater, stormwater and water supply systems are 
particularly vulnerable in New Zealand (Paulik et al., 2019a; Hughes 
et al., 2021) to pluvial flooding (Box 11.4) and to sea level rise (SLR) 
(Box 11.6), with flow-on effects to settlements, insurance and finance 
sectors, and governments (Lawrence et  al., 2020b). Furthermore, 
consecutive heavy rainfall events in late summer and autumn, 
following drought conditions in low-lying modified wetland areas, 
have implications for the operation of flood control infrastructure as 
increased rainfall intensity, land subsidence and sea level rise (SLR) 
compound and result in the retention of floodwaters (Pingram et al., 
2021).

In Australia, the aggregate loss of wealth due to climate-induced 
reductions in productivity across agriculture, manufacturing and service 
sectors is projected to exceed AUD$19 billion by 2030, AUD$211 billion 
by 2050 and AUD$4 trillion by 2100 for RCP8.5 (Steffen et  al., 
2019) (Table  11.13). Projected impacts also cascade across national 
boundaries via value chains, markets, movement of humans and other 
organisms and geopolitics (e.g., migration from near-neighbours as a 
pathway for adaptation, mobile climate-sensitive diseases and changes 
in production and trade patterns) (Lee et al., 2018; Nalau and Handmer, 
2018; Schwerdtle et al., 2018; Dellink et al., 2019). The scale of impacts 
is projected to challenge the adaptive capacity of sectors, governments 
and institutions (Steffen et al., 2019), including the insurability of assets 
and risks to lenders (Storey and Noy, 2017).

11.5.1.3	  Adaptation

Coordinating adaptation strategies and addressing underlying 
exposure and vulnerability can increase resilience to cascading, 
compounding and aggregate impacts (high confidence) (Table 11.17; 
11.7.3). Systems understanding, network analysis, stress testing, spatial 
mapping, collaboration, information sharing and interoperability across 
states, sectors, agencies and value chains, as well as national-scale 
facilitation, can increase adaptive capacity (Espada et al., 2015; CoA, 
2020e; Cradock-Henry et al., 2020b; Jozaei et al., 2020). Greater system 
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diversity, modularity, redundancy, adaptability and decentralised control 
can reduce the risk of cascading failures and system breakdown (Sinclair 
et  al., 2017; Sellberg et  al., 2018). Addressing existing vulnerabilities 
in systems can reduce susceptibility and improve the resilience of 
interdependent systems (11.7.3). Multi-level leadership, including 
national and sub-national policies, laws and finance can reduce and 
manage aggregate risks supported by the enablers in Table 11.17.

Anticipatory governance and agile decision-making can build resilience 
to cascading, compounding and aggregate impacts (high confidence) 
(Boston, 2016; Deloitte, 2016; Steffen et al., 2019; CoA, 2020e; CSIRO, 
2020; Lawrence et  al., 2020b; MfE, 2020c). There is uncertainty 
about whether standard integrated assessment models can estimate 
cascading and compounding impacts across systems and sectors, but 
systems methodologies and social network analysis hold promise 
(Stoerk et  al., 2018; Cradock-Henry et  al., 2020b). Interventions at 
the landscape, building and individual scales can reduce the negative 
health effects of current and future extreme heat, if integrated in 
well-communicated heat action plans with robust surveillance and 
monitoring (Jay et al., 2021).

In Australia, the National Disaster Risk Reduction Framework (CoA, 
2018b), National Recovery and Resilience Agency and Australian 
Climate Service (CoA, 2021) can provide some support for adaptation 
across multiple sectors. New Zealand has effective partnerships across 
critical infrastructure through lifelines groups, but organisational silos 
and lack of stress testing of plans hamper coordinated decision-making 
during crises and for adaptation (Brown et al., 2017; Lawrence et al., 
2020b). The New Zealand national risk assessment, national adaptation 
plan, forthcoming Climate Change Adaptation Act and monitoring of 
adaptation progress by the Climate Change Commission provide a 
framework for anticipating climate change risks (MfE, 2020a).

11.5.2	 Implications for National Economies

The implications of climate change for national economies are significant 
(high confidence). The costs associated with lost productivity, disaster 
relief expenditure and unfunded contingent liabilities represent a 
major risk to financial system stability (MfE, 2020a). Costs include 
significant and often long-term social impacts, temporary dislocation, 
business disruption and impacts on employment, education, 
community networks, health and well-being (Deloitte, 2017a). Climate 
change disrupts international patterns of agricultural production and 
trade in ways that may be negative but that also may lead to new 
opportunities for agriculture (Mosnier et al., 2014; Nelson et al., 2014; 
Lee et al., 2018). Net exports may increase following global climate 
shocks (Lee et al., 2018), but the longer-term effects on GDP are likely 
to be negative (Dellink et al., 2019).

11.5.2.1	 Observed Impacts

In Australia, during 2007–2016, total economic costs from natural 
disasters averaged AUD$18.2  billion per year (Deloitte, 2017a). 
Individual weather-related disaster costs across multiple sectors have 
exceeded AUD$4 billion, such as the 2009 fires in Victoria (Parliament 
of Victoria, 2010), the 2010–2011 floods in south-east Queensland 

(Deloitte, 2017b), the 2019 floods in northern Queensland (Deloitte, 
2019) and the 2019–2020 fires in southern and eastern Australia 
(Box 11.1).

In New Zealand, the annual cost of rural fire to the economy has been 
estimated at NZD$67 million, with indirect ‘costs’ potentially two to 
three times the direct costs (Scion, 2018). Insured losses from weather-
related disasters cost almost NZD$1 billion during 2015–2021 (ICNZ, 
2021). Floods cost the New Zealand economy at least NZD$120 million 
for privately insured damages between 2007 and 2017 (D. Frame et al., 
2018). The 2007/2008 drought cost NZD$3.2 billion and the 2012/13 
drought cost NZD$1.6 billion, of which about 20% could be attributed 
to anthropogenic climate change (Frame et al., 2020) (11.3.11).

The intangible costs of climate impacts, including death and injury, 
impacts on health and well-being, education and employment, 
community connectedness and the loss of ancestral lands, cultural 
sites and ecosystems (Barnett et al., 2016; Warner et al., 2019), affect 
multiple sectors and systems and exacerbate existing vulnerabilities. 
While often incommensurable, intangible costs may be far higher than 
the tangible costs. For example, following the Victorian fires in 2009, 
the tangible costs were AUD$3.1  billion while the intangible costs 
were AUD$3.4 billion; following the Queensland floods in 2010/2011, 
the tangible costs were AUD$6.7  billion while the intangible costs 
were AUD$7.4 billion (Deloitte, 2016).

11.5.2.2	 Projected Impacts

The economic long-run impact increases with higher levels of warming 
(high confidence), but there is a wide range in projections. Conservative 
estimates for the long-run impacts of a 1°C, 2°C or 3°C global 
warming (relative to 1986–2005) on Australian GDP are −0.3, −0.6 
and −1.1%/year, respectively, while for New Zealand the estimates are 
−0.1, −0.4 and −0.8%/year respectively (Kompas et al., 2018). More 
detailed modelling indicates a loss in Australia’s GDP of 6% by 2070 
for 3°C global warming, while a 2.6% GDP rise by 2070 is possible for 
1.5°C global warming (Deloitte, 2020). The potential for much more 
severe effects on GDP is shown in recent estimates, which attempt 
to account for the increased severity of uncertain effects (e.g., up to 
18.5% reduction in Australia’s GDP by mid-century) (Swiss Re, 2021).

In Australia, the total annual cost of damage due to floods, coastal 
inundation, forest fires, subsidence and wind (excluding cyclones) is 
estimated to increase 55% between 2020 and 2100 for RCP8.5 (Mallon 
et  al., 2019). National damage costs and impacts on asset values 
could be significant (Table 11.13). The macroeconomic shocks induced 
from climate change, including reduced agricultural yields, damage to 
property and infrastructure and commodity price increases, could lead to 
significant market corrections and potential financial instability (Steffen 
et al., 2019). Under a ‘slow decline’ scenario by 2060 where Australia 
fails to adequately address climate change and sustainability challenges, 
GDP is projected to grow at 0.7% less per year and real wages would 
be 50% lower than under an ‘outlook scenario’ where Australia meets 
climate change and sustainability challenges (CSIRO, 2019).

In New Zealand, the value of buildings exposed to coastal inundation 
could increase by NZD$2.55 billion for every 0.1-m increment in sea 
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level, that is, NZD$25.5 billion for a 1.0-m sea level rise (SLR) (Paulik 
et  al., 2020). Greater understanding is required of the distributional 
impacts, the rate of change of costs over time and the economic 
implications of delayed action (Warner et al., 2020).

11.5.2.3	 Adaptation

Investments in mitigation and adaptation can help reduce or prevent 
economic losses now and in the coming decades (IPCC, 2018; Steffen 
et  al., 2019); however, the costs and benefits of mitigation and 
adaptation are not well understood in the region (high confidence) 
(CSIRO, 2019; MfE, 2020a).

In New Zealand, the emphasis has been on rebuilding after climate 
disasters, rather than anticipatory adaptation (Boston and Lawrence, 
2018). Australia is similarly focused on disaster response and recovery, 
even though investment in disaster resilience can provide a cost:benefit 
ratio of 1:2 to 1:11 through reduced post-disaster recovery and 
reconstruction (GCA, 2019). Recent Australian and state government 
spending on direct recovery from disasters was around AUD$2.75 billion 
per year, compared to funding for natural disaster resilience of 
approximately AUD$0.1 billion per year (Deloitte, 2017b). The Australian 
government is supporting most of the 80 recommendations from the 
Royal Commission into National Natural Disaster Arrangements, 
including establishing a disaster advisory body and a resilience and 
recovery agency (CoA, 2020e; CoA, 2020b). Australia and New Zealand 
provide humanitarian and disaster assistance across the Pacific, which 
is increasingly focused on climate adaptation and the SDGs (Brolan 
et  al., 2019) as cyclones and floods become amplified by climate 
change (Fletcher et al., 2013) (Table 11.3). Climate change may increase 
current migration flows to and impacts on diaspora in Australia and 

New Zealand from near-neighbour island nations as they become 
increasingly stressed by rising seas, higher temperatures, more droughts 
and stronger storms (Nalau and Handmer, 2018).

Delaying adaptation to climate risks may result in higher overall costs 
in future when adaptation is more urgent and impacts more extreme 
(medium confidence) (Boston and Lawrence, 2018; IPCC, 2018). 
Estimates of the magnitude of adaptation costs and benefits in the 
region are localised and sectoral (e.g., (Thamo et al., 2017) or regionally 
aggregated (Joshi et  al., 2016). Adaptation costs are expected to 
increase markedly for higher RCPs, for example, a tripling of expected 
costs between RCP2.6 and RCP8.5 for sea level rise (SLR) protection 
in Australia (Ware et al., 2020). Existing governance arrangements for 
funding adaptation are inadequate for the scope and scale of climate 
change impacts anticipated; dedicated funding mechanisms that can 
be sustained over generations can enable more timely adaptation 
(Boston and Lawrence, 2018).

11.6	 Key Risks and Benefits

Nine key risks have been identified (Table 11.14) based on four criteria: 
magnitude, likelihood, timing and adaptive capacity (Chapter 16). 
Most of the key risks are similar to those in the IPCC AR5 Australasia 
chapter (Reisinger et al., 2014), but the emphasis here is on specific 
systems affected by multiple hazards rather than specific hazards 
affecting multiple systems. The selection of key risks reflects what has 
been observed, projected and documented, noting that there are gaps 
in knowledge, and a lack of knowledge does not imply a lack of risk 
(11.7.3.3). Key risks are grouped into four categories:

Table 11.13 |  Economy-wide projected costs (AUD$) of climate change in Australia. (Estimates are not comparable across studies because different methods have been used. 
Estimates for later in the century are speculative because both impacts and adaptation are uncertain.)

Impact 2030 2050 2090 Reference

Damage-related loss of property value in Australia $571 billion $611 billion $770 billion (Steffen et al., 2019)

Property damage in Australia $91 billion/year $117 billion/year (Steffen et al., 2019)

Loss of asset value of road infrastructure (including freeways, main roads 
and unsealed roads) in Australia at risk of a SLR of 1.1 m by 2100

$46–60 billion (DCCEE, 2011)

Loss of asset value of rail and tramway infrastructure in Australia at risk 
of a SLR of 1.1 m by 2100

$4.9–6.4 billion (DCCEE, 2011)

Loss of asset value of residential buildings in Australia at risk of a SLR of 
1.1 m by 2100 (2008 replacement value)

$51–72 billion (DCCEE, 2011)

Loss of asset value of light industrial buildings (used for warehousing, 
manufacturing and assembly activities and services) in Australia at risk of 
a SLR of 1.1 m by 2100

$4.2–6.7 billion (DCCEE, 2011)

Loss of asset value of commercial buildings (used for wholesale, retail, 
office and transport activities) in Australia at risk of a SLR of 1.1 m by 
2100 (2008 replacement value)

$58–81 billion (DCCEE, 2011)

Accumulated loss of wealth due to reduced agricultural productivity and 
labour productivity

$19 billion $211 billion $4.2 trillion (Steffen et al., 2019)

Wind damage to dwellings in Cairns, Townsville, Rockhampton and 
south-east Queensland (assuming a 4% discount rate)

$3.8 billion $9.7 billion $20 billion
(Stewart and Wang, 
2011)

Damage to Australian coastal residential buildings due to SLR (A1B 
scenario, 3.5°C global warming)

$8 billion (Wang et al., 2016)
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Ecosystems at critical thresholds where recent climate change has 
caused significant damage and further climate change may cause 
irreversible damage, with limited scope for adaptation

1)	 Loss and degradation of coral reefs in Australia and associated 
biodiversity and ecosystem service values due to ocean warming 
and marine heatwaves (11.3.2.1, 11.3.2.2, Box 11.2).

2)	 Loss of alpine biodiversity in Australia due to less snow (11.3.1.1, 
11.3.1.2).

Key risks that have potential to be severe but can be reduced 
substantially by rapid, large-scale and effective mitigation and 
adaptation

3)	 Transition or collapse of alpine ash, snow gum woodland, pencil 
pine and northern jarrah forests in southern Australia due to hotter 
and drier conditions with more fires (11.3.1.1, 11.3.1.2)

4)	 Loss of kelp forests in southern Australia and southeast New 
Zealand due to ocean warming, marine heatwaves and overgrazing 
by climate-driven range extensions of herbivore fish and urchins 
(11.3.2.1, 11.3.2.2).

5)	 Loss of natural and human systems in low-lying coastal areas due 
to sea level rise (SLR) (11.3.5, Box 11.6).

6)	 Disruption and decline in agricultural production and increased 
stress in rural communities in southwestern, southern and eastern 
mainland Australia due to hotter and drier conditions (11.3.4, 
11.3.5, Box 11.3).

7)	 Increase in heat-related mortality and morbidity for people and 
wildlife in Australia due to heatwaves (11.3.5.1, 11.3.5.2, 11.3.6.1, 
11.3.6.2).

Key cross-sectoral and system-wide risk

8)	 Cascading, compounding and aggregate impacts on cities, 
settlements, infrastructure, supply chains and services due to 
wildfires, floods, droughts, heatwaves, storms and sea level rise 
(SLR) (11.5.1.1, 11.5.1.2, Box 11.1, Box 11.4, Box 11.6).

Key implementation risk

9)	 Inability of institutions and governance systems to manage climate 
risks (11.5; 11.7.1, 11.7.2, 11.7.3).

At higher levels of global warming, adaptation costs increase, options 
become limited and risks grow. The ‘burning embers’ diagram in 
Figure 11.6 has four IPCC risk categories: undetectable, moderate, high 
and very high, with transition points defined by different global warming 
ranges. The embers are indicative, based on an assessment of available 
literature and expert judgement (Supplementary Material SM 11.2). 
Outcomes for low and moderate adaptation have been compared, with the 
latter including both incremental and transformative options. Illustrative 
examples of adaptation pathways are shown in Figure 11.7 for low-lying 
coastal areas and Figure  11.8 for heat-related mortality. These figures 
highlight thresholds at which adaptation options become ineffective and 
possible combinations of strategies and options implemented at different 
times to manage emerging risks and changing risk profiles.

Caveats: (a) key risks are assessed at regional scales, so they do not 
include other risks for finer scales or specific groups; (b) non-climatic 
vulnerabilities are held constant for simplicity; (c) the assessment of 
risk ratings at different levels of global warming is limited by available 
literature; (d) risks increase with global warming, despite the lack 
of an IPCC risk rating beyond very high; and (e) the feasibility and 
effectiveness of adaptations options were not assessed due to limited 
literature (11.7.3.3).

The New Zealand National Climate Change Risk Assessment (MfE, 
2020a) identified the priority risks from climate change for New 
Zealand based on a literature review and expert elicitation. The top 
two risks in each of five domains are as follows:

1.	 Natural environment
a)	 risks to coastal ecosystems due to ongoing sea level rise (SLR) and 

extreme weather events
b)	 risks to indigenous ecosystems and species from invasive species

2.	 Human environment
a)	 risks to social cohesion and community well-being from 

displacement of people
b)	 risks of exacerbating existing inequities and creating new and 

additional inequities from distribution impacts

3.	 Economy
a)	 risks to governments from economic costs associated with lost 

productivity, disaster relief expenditure and unfunded contingent 
liabilities

b)	 risks to the financial system from instability

4.	 Built environment
a)	 risk to potable water supplies due to changes in rainfall, 

temperature, drought, extreme weather events and ongoing sea 
level rise (SLR)

b)	 risks to buildings due to extreme weather events, drought, 
increased fire weather and ongoing sea level rise (SLR)

5.	 Governance
a)	 risk of maladaptation due to practices, processes and tools that do 

not account for uncertainty and change over long time frames
b)	 risk that climate change impacts across all domains will be 

exacerbated, because current institutional arrangements are not 
fit for adaptation

Not all of these risks feature as key risks for the wider Australasia 
region; nonetheless, they are reflected across Chapter 11 and remain 
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Table 11.14 |  Key risks from climate change based on assessment of the literature and expert judgement (Supplementary Material SM 11.2). Assessment criteria are magnitude, 
timing, likelihood and adaptive capacity. Risk drivers are hazards, exposure and vulnerability. Adaptation options describe ways in which risks can be reduced. Confidence ratings 
are based on the amount of evidence and agreement between lines of evidence.

Key risk
(confidence rating) 

(Chapter reference)
Consequences influenced by hazards, exposure, vulnerability and adaptation options

1. Loss and degradation 
of tropical shallow coral 
reefs and associated 
biodiversity and 
ecosystem service 
values in Australia due 
to ocean warming and 
marine heatwaves
(very high confidence)
(11.3.2, Box 11.2)

Consequences: Widespread destruction of coral reef ecosystems and dependent socio-ecological systems. Three mass bleaching events from 2016 to 2020 have 
already caused significant loss of corals in shallow-water habitats across the GBR. Globally, bleaching is projected to occur twice each decade from 2035 and 
annually after 2044 under RCP 8.5 and annually after 2051 under RCP4.5. A 3°C global warming could cause over six times the 2016 level of thermal stress.
Hazards: Increase in background warming and marine heatwave events degrade reef-building corals by triggering coral bleaching events at a frequency greater 
than the recovery time. Fish populations also decline during and following heatwave events.
Exposure: Increasing geographic area affected by rate and severity of ocean warming
Vulnerability: Vulnerability to increases in sea temperature is already very high because of other stressors on the ecosystem, including sediment, pollutants and 
overfishing.
Adaptation options: Minimising other stressors. Efforts on the GBR may slow the impacts of climate change in small sections or reduce short-term socioeconomic 
ramifications, but they will not prevent widespread bleaching.

2. Loss of alpine 
biodiversity in Australia 
due to less snow
(high confidence)
(11.3.1, Table 11.2, 
Table 11.3, Table 11.4, 
Table 11.5)

Consequences: Loss of endemic and obligate alpine wildlife species and plant communities (feldmark and short alpine herb fields) as well as increased stress on 
snow-dependent plant and animal species.
Hazards: Projected decline in annual maximum snow depth by 2050 is 30–70% (low emissions) and 45–90% (high emissions); projected increases in 
temperature and decreases in precipitation.
Exposure: Alpine species face elevation squeeze due to lack of nival zone, and alpine environments have restricted geographic extent.
Vulnerability: Narrow ecological niche of species including snow-related habitat requirements; encroachment from sub-Alpine woody shrubs; vulnerability 
generated by non-climatic stressors including weeds and feral animals, especially horses
Adaptation options: Reducing pressure on alpine biodiversity from land uses that degrade vegetation and ecological condition, along with weed and pest 
management.

3. Transition or collapse 
of alpine ash, snow gum 
woodland, pencil pine 
and northern jarrah 
forests in southern 
Australia due to hotter 
and drier conditions 
with more fires
(high confidence)
(11.2, 11.3.1, 11.3.2, 
Box 11.1)

Consequences: If regenerative capacities of the dominant (framework) canopy tree species are exceeded, a long-lasting or irreversible transition to a new 
ecosystem state is projected with loss of characteristic and framework species, including loss of some narrow-range endemics.
Hazards: Hotter and drier conditions have increased extreme fire weather risk since 1950, especially in southern and eastern Australia. The number of severe fire 
weather days is projected to increase 5–35% (RCP2.6) and 10–70% (RCP8.5) by 2050
Exposure: Shift in landscape fire regimes to larger, more intense and frequent wildfires over extensive areas (~10 million hectares) of forests and woodlands 
from longer fire seasons and more hazardous fire conditions and increasing human-sourced ignitions from urbanisation and projected increase in frequency of 
lightning strikes
Vulnerability: The resilience and adaptive capacity of the forests is being reduced by ongoing land clearing and degrading land management practices
Adaptation options: Increased capacity to extinguish wildfires during extreme fire weather conditions; avoiding and reducing forest degradation from 
inappropriate forest management practices and land use.

4. Loss of kelp forests in 
southern Australia and 
southeast New Zealand 
due to ocean warming, 
marine heatwaves 
and overgrazing by 
climate-driven range 
extensions of herbivore 
fish and urchins
(high confidence)
(11.3.2)

Consequences: Observed decline in giant kelp in Tasmania since 1990, with less than 10% remaining by 2011 due to ocean warming. Extensive loss of kelp, 
−140,187 hectares across Australia, loss of bull kelp in southern New Zealand, replaced by the introduced kelp following the 2017/2018 marine heatwave. 
Further loss of native kelp is projected with warming oceans.
Hazards: Ocean warming and marine heatwave events
Exposure: Coastal waters around Australia and New Zealand
Vulnerability: Giant kelp are already federally listed in Australia as an endangered marine community type. In Australia, kelp forests are vulnerable to 
nutrient-poor East Australian Current waters pushing further south, warming waters and increased herbivory from range-extending species.
Adaptation options: Minimising other stressors, local restoration and transplantation of heat-tolerant phenotypes.

5. Loss of human and 
natural systems in 
low-lying coastal areas 
from ongoing SLR
(high confidence)
(11.2, 11.3.2, 11.3.5, 
11.3.10, 11.4, 
Table 11.3; Box 11.6)

Consequences: Nuisance and extreme coastal flooding are already occurring due to SLR. For 0.2- to 0.3-m SLR, coastal flooding is projected to become more 
frequent, for example, the current 1-in-100-year flood would occur every year in Wellington and Christchurch. For 0.5-m SLR, the value of buildings in New 
Zealand exposed to coastal inundation could increase by NZD$12.75 billion and the current 1-in-100-year flood in Australia could occur several times a year. 
For 1.0-m SLR, the value of exposed assets in New Zealand would be NZD$25.5 billion. For 1.1-m SLR, the value of exposed assets in Australia would be 
AUD$164–226 billion. This would be associated with the displacement of people, disruption and reduced social cohesion, degraded ecosystems, loss of cultural 
heritage and livelihoods and loss of traditional lands and sacred sites.
Hazards: Rising sea level (0.2–0.3 m by 2050, 0.4–0.7 m by 2090), storm surges, rising groundwater tables.
Exposure: Population growth, new and infill urbanisation, tourism developments in low-lying coastal areas. Buildings, roads, railways, electricity and water 
infrastructure. Torres Strait Island and remote Māori communities are particularly exposed and sensitive.
Vulnerability: Ineffective planning regulations, reduced availability and increased cost of insurance and costs to governments as insurers of last resort. 
Inadequate investment in avoidance and preparedness exacerbating underlying social vulnerabilities. Financial and physical capacities to cope and adapt are 
uneven across populations, creating equity issues.
Adaptation options: Risk reduction coordinated across all levels of government with communities. Statutory planning frameworks, decision tools and funding 
mechanisms that can address the changing risk. Planning and land use decisions, including managed retreat where it is inevitable. Improved capacity of 
emergency services, early-warning systems, improved planning and regulatory practice and building and infrastructure design standards. Options that anticipate 
risk and adjust as conditions change.
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Key risk
(confidence rating) 

(Chapter reference)
Consequences influenced by hazards, exposure, vulnerability and adaptation options

6. Disruption and 
decline in agricultural 
production and 
increased stress in rural 
communities across 
south western, southern 
and eastern mainland 
Australia due to hotter 
and drier conditions.
(high confidence)
(11.2, 11.3.4, 11.3.6.3, 
11.4.1, Table 11.11, 
Boxes 11.1, 11.3)

Consequences: Projected decline in crop, horticulture and dairy production, for example, decline in median wheat yields by 2050 of up to 30% in southwest 
Australia and up to 15% in southern Australia. Increased heat stress in livestock by 31–42 days per year by 2050. Reduced winter chilling for horticulture. 
Increased smoke impacts for viticulture. Flow-on effects for agricultural supply chains, farming families and rural communities across southwestern, southern and 
southeastern Australia, including the MDB.
Hazards: Hotter and drier conditions with constraints on water resources and more frequent and severe droughts in southwestern, southern and eastern Australia.
Exposure: Across southwestern, southern and eastern Australia, many production regions are exposed, including the MDB, which supports agriculture worth 
AUD$24 billion/year, 2.6 million people in diverse rural communities and important environmental assets containing 16 Ramsar Convention-listed wetlands.
Vulnerability: Existing financial, social, health and environmental pressures on rural, regional and remote communities. Existing competition for water resources 
among communities, industries and environment and uncertainty about sharing of water under a drying climate.
Adaptation options: Improved governance and collaboration to build rural resilience, including regional and basin-scale initiatives. Improved water policies and 
initiatives (e.g., MDB plan) and changes in management and technologies. Resilience-focused planning for rural settlements, land use, industry, infrastructure 
and value chains. Adoption of information, tools and methods to better manage uncertainty, variability and change. Incremental changes in farm management 
practices (e.g., stubble retention, weed control, water-use efficiency, sowing dates, cultivars). In some regions, major changes may be necessary, for example, 
diversification in agricultural enterprises, transition to different land uses (e.g., carbon sequestration, renewable energy production, biodiversity conservation) or 
migration to another area. Flows in waterways based on Indigenous knowledge to protect cultural assets.

7. Increase in 
heat-related mortality 
and morbidity for people 
and wildlife in Australia
(high confidence)
(11.2, 11.3.1, 11.3.5, 
11.3.6, 11.4)

Consequences: During 1987–2016, natural disasters caused 971 deaths and 4370 injuries, with more than 50% due to heatwaves. Annual increases are 
projected for excess deaths, additional hospitalisations and ambulance callouts. Heatwave-related excess deaths in Melbourne, Sydney and Brisbane are 
projected to increase by about 300/year (RCP2.6) to 600/year (RCP8.5) during 2031–2080 relative to 142/year during 1971–2020, assuming no adaptation. 
Significant heat-related mortality of wildlife species (flying foxes, freshwater fish) has been observed and is projected to increase.
Hazards: Increased frequency, intensity and duration of extreme heat events
Exposure: Pervasive but differentially affecting some wildlife species depending on their thermal tolerances and occupational groups (e.g., outdoor workers) and 
those living in high exposure areas (e.g., urban heat islands). Health risks multiply with other harmful exposures, for example, to wildfire smoke.
Vulnerability: Lower adaptive capacity for young/old/sick people, those in low-quality housing and of lower socioeconomic status, and areas served by fragile 
utilities (power, water). Remote locations with extreme heat and inadequate cooling in housing infrastructure (such as remote indigenous communities). For 
wildlife, impacts of extreme heat events are being amplified by habitat loss and degradation.
Adaptation options: Urban cooling interventions including irrigated green infrastructure and increased albedo, education to reduce heat stress, heatwave/fire 
early-warning systems, battery/generator systems for energy system security, building standards that improve insulation/cooling, accessible / well-resourced 
primary health care. For wildlife, removing human stressors, reducing pressures from ferals and weeds, and ensuring suitable habitat.

8. Cascading, 
compounding and 
aggregate impacts 
on cities, settlements, 
infrastructure, supply 
chains and services due 
to extreme events
(high confidence)
(11.2, 11.3.4, 11.3.5, 
11.3.6, 11.3.7, 11.3.8, 
11.3.9, 11.3.10, 11.4, 
11.5.1, Boxes 11.1, 11.4, 
11.6)

Consequences: Widespread and pervasive damage and disruption to human activities generated by the interdependencies and interconnectedness of 
physical, social and natural systems. Examples include failure of transport, energy and communication infrastructure and services, heat stress, injuries and 
deaths, air pollution, stress on hospital services, damage to agriculture and tourism, insurance loss from heatwaves and fires; failure of transport, stormwater 
and flood-control infrastructure and services from floods and storms; water restrictions, reduced agricultural production, stress for rural communities, 
mental health issues, lack of potable water from droughts; damage to buildings, roads, railways, electricity and water infrastructure, loss of assets and lives, 
displacement of people, reduced social cohesion, degraded ecosystems from extreme SLR. Large aggregate costs due to lost productivity and major disaster 
relief expenditures, creating unfunded liabilities and supply chain disruption, e.g., 2019–2020 Australian fires cost AUD$8 billion. The long-run impact of a 
1°C, 2°C or 3°C global warming (relative to 1986–2005) on Australian GDP is estimated at −0.3%/year, −0.6%/year and −1.1%/year respectively, while for 
New Zealand estimates are −0.1%/year, −0.4%/year and −0.8%/year respectively. Impacts on Māori tribal investments in forestry, agriculture, horticulture, 
fisheries and aquaculture.
Hazards: Heatwaves, droughts, fires, floods, storms and SLR. This includes cascading and compound events such as heatwaves with fires, storms with floods or 
droughts followed by heavy rainfall and extreme sea levels.
Exposure: Highly populated areas, rural and remote settlements, traditional lands and sacred sites. Greater urban density and population growth increases 
exposure in high-risk areas. Different exposure for different hazards, for example, heatwaves: urban and peri-urban areas; fire: peri-urban areas and settlements 
near forests; floods: people, property and infrastructure from pluvial floods in cities and settlements and fluvial floods on floodplains; storms: buildings and 
infrastructure in cities and settlements.
Vulnerability: Existing social and economic challenges (e.g., those caused by COVID-19) and socioeconomic and cultural inequalities; competing resource and 
land use demands across sectors; inadequate planning, policy, governance, decision-making and disaster resilience capacity; and non-climatic stresses on 
ecosystems. Vulnerabilities generated by interdependencies and interconnectedness of physical, social and natural systems.
Adaptation options: Flexible and timely adaptation strategies that prepare socioeconomic and natural systems for surprises and unexpected threats. Multi-sector 
coordinated actions that address widespread impacts, redress existing vulnerabilities and building adaptive capacity and systemic resilience. Improved 
coordination between and within levels of governments, communities and private sector. Greater use of dynamic decision frameworks and suitable economic 
and social assessment tools. Improved emergency services and early-warning systems; use of climate-resilient standards for buildings and infrastructure. 
Transformational adaptations (e.g., managed retreat) that can be planned in stages.
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Figure 11.6 |  Burning embers diagram for each of the nine key risks for low and moderate adaptation. The risk categories are undetectable, moderate, high and 
very high. While there is no risk category beyond very high, risks obviously get worse with further global warming, and the risk for coral reefs is already very high. The assessment 
is based on available literature and expert judgement, summarised in Table 11.14 and described in Supplementary Material SM 11.2. The global warming range associated with 
each risk transition has a confidence rating (**** very high, *** high, ** moderate, * low) based on the amount of evidence and level of agreement between lines of evidence

Key risk
(confidence rating) 

(Chapter reference)
Consequences influenced by hazards, exposure, vulnerability and adaptation options

9. Inability of 
institutions and 
governance systems to 
manage climate risks
(high confidence)
(11.2, 11.3.5, 11.3.6, 
11.3.7, 11.3.8, 11.3.10, 
11.4, 11.5.1, 11.7.2, 
Boxes 11.1–11.6)

Consequences: Climate hazards overwhelm the capacity of institutions, organisations, systems and leaders to provide necessary policies, services, resources, 
coordination and leadership. Failed adaptation at the institutional and governance levels has widespread, pervasive impacts on all areas of society. This 
includes a reliance on reactive, short-term decision-making that locks in existing exposures, leaves perverse incentives and interconnected and systemic impacts 
unaddressed and generates high costs and fiscal impacts. This worsens vulnerability and leads to maladaptation, inequities and injustices within and across 
generations, as well as actions that do not uphold the rights, interests, values and practices of Indigenous Peoples. Resultant failure to take adaptation action 
generates litigation risk.
Hazards: Increasing frequency, duration, severity and complexity of extreme weather events, droughts and SLR
Exposure: All sectors, communities, organisations and governments
Vulnerability: Fragmented institutional and legal arrangements, under-resourcing of services, lack of dedicated adaptation funding instruments and 
resources to support communities and local government, uneven capability to manage uncertainty and conflicting values and competing policy and 
political interests.
Adaptation options: Pre-emptive options that avoid and reduce risks. Redesign of policy and statutory frameworks and funding instruments for addressing 
changing risks and uncertainties that enable just and collaborative governance across scales and domains. Addressing existing vulnerabilities and capacity, 
capability and leadership deficits within and across all levels of government, all sectors, Indigenous Peoples and communities. Risk and vulnerability assessment 
methodologies and decision-making tools that build resilience and address changing risks and vulnerabilities. Co-designed adaptation approaches implemented 
with communities, including Māori tribal organisations and Australian Aboriginal and Torres Strait Island peoples.
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Figure 11.7 |  Illustrative adaptation pathway for risk to natural and human systems in low-lying coastal areas due to sea level rise.
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Figure 11.8 |  Illustrative adaptation pathway for risk of heat-related mortality and morbidity for people and wildlife in Australia due to heatwaves.
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priorities for New Zealand to address through the National Adaptation 
Plan, its implementation and monitoring.

Short-term benefits from climate change may include reduced winter 
mortality, reduced energy demand for winter heating, increased 
agriculture productivity and forest growth in south and west New 
Zealand and increased forest and pasture growth in southern Australia, 
except where rainfall and soil nutrients are limiting (11.3.4, 11.3.6, 
11.3.10) (medium confidence).

11.7 	 Enabling Adaptation Decision-Making

11.7.1	 Observed Adaptation Decision-Making

The ambition, scope and progress on adaptation by governments 
have risen but are uneven, with a focus on high-level strategies at 
the national level, adaptation planning at sub-national levels and 
new enabling legislation (very high confidence) (Table  11.15a, 
Table  11.15b) (Lawrence et  al., 2015; Macintosh et  al., 2015; MfE, 
2020a). The adaptation process comprises vulnerability and risk 
assessments, identification of options, planning, implementation, 
monitoring, evaluation and review. Large gaps remain, especially in 
effective implementation, monitoring and evaluation (Supplementary 
Material SM 11.1) (CCATWG, 2017; Warnken and Mosadeghi, 2018), 
and current adaptation is largely incremental and reactive (very high 
confidence) (Box 11.4, Box 11.6, Table 11.14).

Australia has a National Climate Resilience and Adaptation Strategy, 
a National Recovery and Resilience Agency (11.5.2.3), and the First 
National Action Plan to implement the National Disaster Risk Reduction 
Framework which acknowledges climate change as a disaster risk 
driver (Home Affairs, 2020). States and territories have climate change 
adaptation strategies with plans to address them (Table 11.15a), with 
some adaptation implementation at the state level and, increasingly, at 
the local government level (Jacobs et al., 2016; Warnken and Mosadeghi, 
2018) (Table 11.15a). In coastal zones, however, few local government 
planning instruments are being applied (Warnken and Mosadeghi, 
2018; Harvey, 2019; Robb et  al., 2019; Elrick-Barr and Smith, 2021). 
Some businesses and industry sectors are recognising climate-related 
risks and adaptation planning (11.3.4; 11.3.7; 11.3.10) (Harris et  al., 
2016; Hennessy et al., 2016; CBA, 2019). There is an opportunity for 
Australia to undertake a national risk assessment and to develop a 
national climate adaptation implementation plan that is aligned with 
Paris Agreement expectations of a national-level system for adaptation 
planning, monitoring and reporting (Morgan et al., 2019).

New Zealand’s Climate Change Response Act 2019 creates a legal 
mandate for national climate change risk assessments (first one 
completed) (MfE, 2020a) and national adaptation plans (first in 
preparation), as well as a Climate Change Commission to monitor and 
report on adaptation implementation. Preparation of natural and built 
environment, strategic planning and climate change adaptation acts is 
under way, including provision for funding and managed retreat (MfE, 
2020c). National coastal guidance is available for adaptation planning 
to address changing climate risks (MfE, 2017a) (Table  11.15b). 
Meanwhile, several local authorities have developed integrated climate 

change strategies and plans and revised policies and rules to enable 
adaptation (Table 11.15b). Different adaptation approaches continue 
to create confusion and inertia while development pressures continue 
(Schneider et al., 2017). Opportunities for integrated adaptation and 
mitigation planning in regional policies and plans have arisen through 
the Resource Management Amendment Act 2020 (Dickie, 2020), the 
National Policy Statement on Freshwater Management (MfE, 2020b) 
and the revised national coastal guidance (MfE, 2017a), but rely on 
funding instruments to be in place and statutes are aligned for their 
effectiveness (very high confidence) (Boston and Lawrence, 2018; 
CCATWG, 2018).

There is growing awareness of the need for more proactive adaptation 
planning at multiple scales and across sectors, and a better 
understanding of future risks and limits to adaptation is emerging 
(medium confidence) (Evans et al., 2014; Archie et al., 2018; Christie 
et al., 2020; MfE, 2020a). Disaster risk reduction is being positioned as 
part of climate change adaptation (Forino et al., 2017; CDEM, 2019; 
Forino et al., 2019; CoA, 2020e; CSIRO, 2020). Public and private climate 
adaptation services are informing climate risk assessments, but they 
are characterised by fragmentation, duplication, inconsistencies, poor 
governance and inadequate funding; addressing these gaps presents 
adaptation opportunities (CCATWG, 2018; Webb et  al., 2019; NESP 
ESCC, 2021) (Table 11.15a, Table 11.15b). Large infrastructure asset 
planning is starting to factor in climate risks, but implementation is 
uneven (Gibbs, 2020). Local governments in Australia are increasingly 
implementing adaptation plans, but few monitor or evaluate actual 
outcomes or know how to (Scott and Moloney, 2021).

Observed and projected rates of sea level rise (SLR) (Box 11.6) and 
increased flood frequency (11.3.3) are challenging established uses of 
modelling, risk assessment and cost-benefit analysis, where climate 
change damage functions cannot be projected or are unknown (deep 
uncertainty) or impacts on communities are ambiguous (Infometrics 
and PSConsulting, 2015; Lawrence et  al., 2019a; MfE, 2020a). New 
tools are available in the region (Table 11.17), but uptake cannot be 
assumed (high confidence) (Lawrence and Haasnoot, 2017; Palutikof 
et al., 2019c).

Resilience and adaptation approaches are beginning to converge 
(White and O’Hare, 2014; Aldunce et  al., 2015) (Supplementary 
Material SM 11.1) but widespread ‘bounce-back’ resilience-driven 
responses that lock in risk by discounting ongoing and changing 
climate risk (Leitch and Bohensky, 2014; O’Hare et al., 2016; Wenger, 
2017; Torabi et al., 2018) can create maladaptation and impede long-
term adaptation goals (high confidence) (Glavovic and Smith, 2014; 
Dudney et al., 2018).

Local government engagement with communities on adaptation is 
starting to motivate a change towards more collaborative engagement 
practices (Archie et  al., 2018; Bendall, 2018; MfE, 2019; Schneider 
et al., 2020). Nature-based adaptations (Colloff et al., 2016; Lavorel 
et al., 2019; Della Bosca and Gillespie, 2020) and ‘green infrastructure’ 
(medium confidence) (Lin et al., 2016; Alexandra and Norman, 2020) 
are increasingly being adopted (Rogers et al., 2020a).
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Table 11.15a |  Examples of Australian adaptation strategies, plans and initiatives by government agencies at national, sub-national and regional or local levels. These examples 
have not been assessed for their effectiveness (see Supplementary Material Table SM11.1a).

Jurisdiction Strategies/Plans/Actions

National Level

Australia
National Climate Resilience and Adaptation Strategy 2015 (CoA, 2015)
National Disaster Risk Reduction Framework (2018) (CoA, 2018b)
National Recovery and Resilience Agency and Australian Climate Service (CoA, 2021)

Sub-national

Australian Capital Territory (ACT)
ACT Climate Change Strategy 2019–2025 (ACT Government, 2019)
Canberra’s Living Infrastructure Plan: Cooling the City (ACT Government, 2020b); ACT Well-being Framework (ACT Government, 2020a)

New South Wales NSW Climate Change Policy Framework (NSW Government, 2016)

Coastal Management Framework (OEH, 2018b) including
Coastal Management Act 2016, State Environmental Planning Policy (Coastal Management) 2018, NSW Coastal Management Manual (OEH, 
2018c; OEH, 2018a)

Northern Territory Northern Territory Climate Change Response: Towards 2050 (DENR, 2020b) three-year action plan (DENR, 2020a)

Queensland Pathways to climate-resilient Queensland: Queensland Climate Adaptation Strategy 2017–2030 (DEHP, 2013)

Sector adaptation plans: https://www.qld.gov.au/environment/climate/climate-change/adapting/sectors-systems

State heatwave risk assessment, 2019 (QFES, 2019)

Planning Act 2016 (Queensland Government, 2020) and the Coastal Protection and Management Act 1995 (Queensland Government, 1995), plus 
supporting initiatives: Coastal Management Plan (DEHP, 2013) and Shoreline Erosion Management Plans (DES, 2018)
Queensland’s QCoast2100 program

South Australia Directions for a Climate Smart South Australia (SA Government, 2019a)

Tasmania Climate Action 21: Tasmania’s Climate Change Action Plan 2017–2021 (State of Tasmania, 2017a)

Tasmania’s 2016 State Natural Disaster Risk Assessment (White et al., 2016a)

Tasmanian Planning Scheme—State Planning Provisions 2017, Coastal Inundation Hazard Code and a Coastal Erosion Hazard Code (Government 
of Tasmania, 2017).

Victoria
In accordance with the Climate Change Act 2017, Victoria has a Climate Change Adaptation Plan 2017–2020 (Victoria State Government DELWP, 
2016) including a Monitoring, Evaluation, Reporting and Improvement (MERI) framework for Climate Change Adaptation in Victoria (DELWP, 
2018), Victorian Climate Projections (2019) and multiple resources for regions and local government (Victoria DELWP 2020).

Heatwaves in Victoria. A 2018 vulnerability assessment of the state to heatwaves using a Damage and Loss Assessment methodology (Natural 
Capital Economics, 2018)

Western Australia
Western Australian Government Adapting to our changing climate
2012 (WA Government, 2016)

State Planning Policy 2.6 – Coastal Planning (SPP2.6)

Regional and local (examples only)

104 have declared climate emergencies to leverage climate action as of September 2021 covering 36.6% of the Australian population (Climate Emergency Declaration, 2022)

Tasmania
2017: Tasmanian Planning Scheme – State Planning Provisions. State of Tasmania, 514.
(State of Tasmania, 2017a; State of Tasmania, 2017b)

South Australia Regional integrated vulnerability assessments (IVAs) and adaptation plans (SA Government, 2019a)

NSW Enabling Regional Adaptation (Jacobs et al., 2016)

Victoria
Every region and catchment management authority in Victoria has an adaptation plan, as does virtually every local government. There are also 
three alliances of multiple local governments working on climate change and new initiatives such as the Climate Change Exchange: https://www.
parliament.vic.gov.au/967-epc-la/inquiry-into-tackling-climate-change-in-victorian-communities

NSW Coastal Zone Management Plan for Bilgola Beach (Bilgola) and Basin Beach (Mona Vale) (Haskoning Australia, 2016)

Queensland Torres Strait Climate Change Strategy (TSRA, 2014), Torres Strait Regional Adaptation and Resilience Plan 2016–2021 (TSRA, 2016)

Climate Risk Management Framework for Queensland Local Government (Erhart et al., 2020)

Douglas Shire Coast Strategic Plan 2019 (Douglas Shire Council, 2019)

Northern Territory Climate Change Action Plan (2011–2020) (Darwin City Council, 2011)
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Some businesses have initiated active adaptation (Aldum et al., 2014; 
Linnenluecke et al., 2015; Bremer and Linnenluecke, 2017; CCATWG, 
2017; MfE, 2018), with most focused on identifying climate risks 
(Aldum et  al., 2014; Gasbarro et  al., 2016; Cradock-Henry, 2017). 
Businesses are more likely to engage in anticipatory adaptation when 
the frequency of climate events is known (McKnight and Linnenluecke, 
2019). Effective cooperation and a positive innovation culture can 
contribute to the collaborative development of climate change 
adaptation pathways (medium confidence) (Bardsley et al., 2018).

Some areas in northern Australia and New Zealand, especially those 
with higher proportions of Indigenous populations, face severe housing, 
health, education, employment and services deficits that exacerbate 
the impacts of climate change (Kotey, 2015) (11.3.5; 11.4; 11.6). 

Where adaptation relies upon an ageing population and an overstretched 
volunteer base, vulnerability to climate change impacts is being 
exacerbated (Astill and Miller, 2018; Davies et al., 2018). Adaptation 
options that succeed within remote Indigenous communities are 
founded on connections to traditional lands, alignment with cultural 
values and contribute to social, cultural and economic goals (Nursey-

Bray and Palmer, 2018). Knowledge co-production for Indigenous 
adaptation pathways can enable transformative change from colonial 
legacies (Hill et  al., 2020). Learning and experimentation across 
governance boundaries and between agencies and local communities 
enable adaptation to be better aligned with changing climate risks 
and community (high confidence) (Fünfgeld, 2015; Howes et al., 2015; 
Bardsley and Wiseman, 2016; Lawrence et al., 2019b).

There is increasing focus on improving adaptive capacity for transitional 
and transformational responses, but reactive responses dominate (very 
high confidence) (Smith et  al., 2015; Schlosberg et  al., 2017; Boston 
and Lawrence, 2018). While extreme events can provide opportunities 
for positive transitions within communities (Cradock-Henry et  al., 
2018b) (e.g., Queensland Reconstruction Authority Building Back 
Better scheme), often rebuilding occurs in at-risk places to aid quick 
recovery (Lawrence and Saunders, 2017). Community-based adaptation 
innovations (Bendall, 2018; Kench et  al., 2018; Forino et  al., 2019) 
include relationship building; use of new decision tools, pathways 
planning with communities, visualisation and serious games (Lawrence 
and Haasnoot, 2017; Schlosberg et al., 2017; Flood et al., 2018; Reiter 

Table 11.15b |  Examples of New Zealand’s adaptation strategies, plans and initiatives by government agencies at national, sub-national and regional or local levels. NB: These 
examples have not been assessed for their effectiveness (see Supplementary Material Table SM11.1b)

Jurisdiction Strategies/Plans/Actions

New Zealand central Government

The New Zealand Government’s adaptation policy framework is based on the following legislation: Resource Management Act 1991, Local 
Government Act 2002, National Disaster Resilience Strategy 2019 (CDEM, 2019) and the Climate Change Response (Zero Carbon Amendment) Act 
2002 (CCRA 2002)
Adaptation preparedness report 2020/2021 baseline is the reporting organisation responses from the first information request under the CCRA 
2002 (MfE, 2021) to assist the monitoring of progress and effectiveness of adaptation by the Climate Change Commission
The Department of Conservation’s Climate Change Adaptation Action plan sets out a long-term strategy for climate research, monitoring and 
action; DOC climate adaptation plan

Local Government

In July 2017, a group of 66 local government mayors and council chairs (of 78 in total) endorsed a 2015 local government declaration calling for 
urgent responsive leadership and a holistic approach on climate change, with the government needing to play a vital enabling leadership role 
(LGNZ, 2017; Schneider et al., 2017).
Seventeen councils have declared climate emergencies to leverage climate action plans as of September 2021, covering 75.3% of the New Zealand 
population.
The MfE adaptation preparedness report states that 18% of councils (11 of 61 surveyed in 2021) have some sort of plan or strategy to increase 
resilience to climate impacts (MfE, 2021). Out of New Zealand’s 15 regional and unitary councils, 2 have climate adaptation strategies in place. 
One council has conducted a climate risk assessment, and four have one in development. Five councils have climate action plans, and three are in 
development.

Regional Councils (examples only)

Bay of Plenty Regional Council Climate Action Plan July 2019 (non-statutory) Climate Action Plan

Waikato Regional Council Long-Term Plan 2018–2028 (LTP)

Greater Wellington Regional Council
GWRC’s Climate Change Strategy (October 2015) Climate change strategy implementation
Hutt River Flood Risk Management Plan

Unitary Authorities (examples only)

Auckland Council

Auckland Unitary Plan
AUP RPS B10
Table B11.9 (bottom of doc)
E36. Natural hazards and flooding

Marlborough District Council Marlborough Environment Plan first to integrate DAPP into plan policies.

Gisborne District Council Tairāwhiti Resource Management Plan (District Plan) March 2020

District Council (example only)

Waimakariri District Council
Infrastructure Strategy in the Long Term Plan 2017.
Long-Term-Plan-Further-Information-Document-WEB.pdf
Page 113/31
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et al., 2018; Serrao-Neumann and Choy, 2018); communities of practice; 
and climate information sharing (Astill et al., 2019; Stone et al., 2019).

11.7.2	 Barriers and Limits to Adaptation

Major gaps in the adaptation process remain across all sectors 
and at all levels of decision-making (very high confidence) (11.3; 
Table  11.115a, Table  15b). Efforts to build, resource and deploy 
adaptive capacity are slow compared to escalating impacts and risks 
(Stephenson et al., 2018; CoA, 2020e). Barriers to effective adaptation 

include governance inertia at all levels, hindering the development of 
careful and comprehensive adaptation plans and their implementation 
(Boston and Lawrence, 2018; MfE and Hawke’s Bay Regional Council, 
2020; White and Lawrence, 2020). Lack of clarity about mandate, roles 
and leadership and inadequate funding for adaptation by national and 
state governments and sectors, are slowing adaptation (Lukasiewicz 
et al., 2017; Waters and Barnett, 2018; LGNZ, 2019; MfE, 2020c) (11.3; 
11.7.1). Established planning tools and measures were designed for 
static risk profiles, and practitioners are slow to take up tools better 
suited to changing climate risks (CoA, 2020e; Schneider et al., 2020) 
(11.5; Box  11.5). The communication of relevant climate change 

Table 11.16 |  Examples of barriers to adaptation action in the region

Barrier Source

Governments

Lack of consistent policy direction from higher levels and frequent policy reversals (Dedekorkut-Howes et al., 2020)

Conflicts between community-based initiatives, city councils and business interests (Forino et al., 2019)

Different framings of adaptation between local governments (risk) and community groups 
(vulnerability, transformation)

(Smith et al., 2015; Schlosberg et al., 2017; McClure and Baker, 2018)

Competing planning objectives (McClure and Baker, 2018)

Divergent perceptions of risk concepts (Button and Harvey, 2015; Mills et al., 2016b; Tonmoy et al., 2018)

Focus on climate variability rather than climate change (Dedekorkut-Howes and Vickers, 2017)

Low prioritisation of climate change adaptation among competing institutional objectives (Glavovic and Smith, 2014; Lawrence et al., 2015; McClure and Baker, 2018)

Constraints in using new knowledge (Temby et al., 2016)

Lack of institutional and professional capabilities and capacity (e.g., to monitor and evaluate 
adaptation outcomes)

(Lawrence et al., 2015; Scott and Moloney, 2021)

Lack of understanding of Indigenous knowledge and practices (Parsons et al., 2019)

Lack of authority and political legitimacy (Hayward, 2008; Boston and Lawrence, 2018; CCATWG, 2018; Parsons et al., 2019)

Fear of litigation (Tombs et al., 2018; Iorns Magallanes and Watts, 2019; O’Donnell et al., 2019)

Upfront costs of adaptation relative to competing demands on government expenditure (Gawith et al., 2020; Warren-Myers et al., 2020b)

Private sector

Governance and policy uncertainty, lack of cross-sector coordination, lack of capital 
investment in climate solutions

(CCATWG, 2017; Forino et al., 2017; IGCC, 2021a)

Inconsistent hazard information and incomplete understanding of adaptation (CCATWG, 2017; Harvey, 2019)

Mismatch in duration of insurance cover (annual) lending (decades) and infrastructure and 
housing investment (50–100 years)

(Storey and Noy, 2017; O’Donnell, 2020)

Perceived unaffordability of adaptation, lack of client demand and awareness of climate 
change risks and limited and inconsistent climate risk regulation in the construction industry

(Hurlimann, 2008; Hurlimann et al., 2018)

Translating information into organisations to address disinterest among clients in the 
property industry

(Warren-Myers et al., 2020b; Warren-Myers et al., 2020a)

Erosion of adaptive capacity and challenges of transformational adaptation in agriculture 
and rural communities

(Jakku et al., 2016)

Communities

Nature of government engagement with communities (Public Participation, 2014; MfE, 2017a; Archie et al., 2018; OECD, 2019b)

Lack of clarity regarding roles and responsibilities (Gorddard et al., 2016; Elrick-Barr et al., 2017; Goode et al., 2017; Waters and Barnett, 2018)

Lack of resourcing of adaptation (Singh-Peterson et al., 2015; Lukasiewicz et al., 2017; Brookfield and Fitzgerald, 2018)

Lack of deep engagement with climate change (Kench et al., 2018; Pearce, 2018)

Diverging perceptions, values and goals within communities (Austin et al., 2018; Fitzgerald et al., 2019; Marshall et al., 2019)

Inequities within and between communities (Eriksen, 2014; Parkinson, 2019)

Lack of sustained engagement, learning and trust between community, scientists and policy 
makers

(Serrao-Neumann et al., 2020)
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information remains ad hoc (Stevens and O’Connor, 2015; CCATWG, 
2017; Palutikof et al., 2019c; Salmon, 2019). In Australia, the lack of 
national guidance or adaptation laws creates barriers to adaptation, 
reflected in uneven coastal adaptation based on a wait-and-see 
approach (Dedekorkut-Howes et al., 2020).

There are many barriers to starting adaptation pre-emptively (very 
high confidence) (CCATWG, 2018) (Table 11.16). Recent institutional 
changes in New Zealand indicate that this is changing (11.7.1; 
Table 15b). Many groups are yet to engage deeply with climate change 
adaptation (Kench et al., 2018), and some adaptation processes are 
being blocked (Pearce et al., 2018; Garmestani et al., 2019; Alexandra, 
2020) or exploited to deflect from mitigation responsibilities (Smith 
and Lawrence, 2018; Nyberg and Wright, 2020). Some actors 
are resistant to using climate change information (Tangney and 
Howes, 2016; Alexandra, 2020). Fear of litigation and demands for 
compensation can contribute to this reluctance (Tombs et  al., 2018; 
O’Donnell et al., 2019)and is increasingly inviting litigation and other 
costs (Hodder, 2019; Bell-James and Collins, 2020). Jurisprudence 
is evolving from cases on projects to cases about decision-making 
accountability in the public and private sectors (Bell-James and Collins, 
2020; Peel et  al., 2020) and rights-based cases (Peel and Osofsky, 
2018). National and sub-national governments may become exposed 
to unsustainable fiscal risk as insurers of last resort, which can lead 
to inequitable outcomes for vulnerable groups and future generations 
(11.3.8), path dependencies and negative effects on physical, social, 
economic and cultural systems (Hamin and Gurran, 2015; Boston and 
Lawrence, 2018). Cross-scale governance tensions can prevent local 
adaptation initiatives from performing as intended (Tschakert et  al., 
2016; Piggott-McKellar et al., 2019). Adaptation that draws on Māori 
cultural understanding in partnership with local government in New 
Zealand can lead to more effective and equitable adaptation outcomes 
(MfE, 2020a).

Communities’ vulnerabilities are dynamic and uneven (high confidence). 
In Australia, 435,000 people in remote areas face particular challenges 
(CoA, 2020e). Some groups do not have the time, resources or oppor-
tunity to participate in formal adaptation planning as it is currently or-
ganised (Victorian Council of Social Service, 2016; Tschakert et al., 2017; 
Mathew et al., 2018). Linguistically diverse groups can be disadvantaged 
by social isolation, language barriers and others’ ignorance of the knowl-
edge and skills they can bring to adaptation (Shepherd and van Vuuren, 
2014; Dun et al., 2018) (11.1.2). Social, cultural and economic vulnerabil-
ities, biases and injustices, such as those faced by many women (Eriksen, 
2014; Parkinson, 2019) and non-heterosexual groups and gender mi-
norities (Dominey-Howes et al., 2016; Gorman-Murray et al., 2017), can 
deepen impacts and impede adaptation; (Fitzgerald et al., 2019; Mar-
shall et al., 2019) (Cross-Chapter Box GENDER in Chapter 18).

Potential biophysical limits to adaptation for non-human species and 
ecosystems where impacts are projected to be irreversible, with limited 
scope for adaptation, are signalled in key risks 1–4 (11.6). In some 
human systems, fundamental limits to adaptation include thermal 
thresholds and safe freshwater (Alston et al., 2018) (Table 11.14) and 
the inability of some low-lying coastal communities to adapt in place 
(Box 11.6) (very high confidence). Some individuals and communities 
are already reaching their psycho-social adaptation limits (Evans et al., 

2016). A lack of robust and timely adaptation means key risks will 
increasingly manifest as impacts, and numerous systems, communities 
and institutions are projected to reach limits (Table 11.14, Figure 11.6), 
compounding current adaptation deficits and undermining society’s 
capacity to adapt to future impacts (very high confidence).

11.7.3	 Adaptation Enablers

Adaptation enablers include understanding relevant knowledge, 
diverse values and governance, institutions and resources (very high 
confidence) (Gorddard et  al., 2016). Skills and learning, community 
networks, people–place connections, trust-building, community 
resources and support and engaged governance build social resilience 
that support adaptation (Maclean et al., 2014; Eriksen, 2019; Phelps 
and Kelly, 2019). A multi-faceted focus on the role societal inequalities 
and environmental degradation play in generating climate change 
vulnerability can enable fairer adaptation outcomes (McManus et al., 
2014; Ambrey et al., 2017; Schlosberg et al., 2017; Graham et al., 2018).

The feasibility and effectiveness of adaptation options will change 
over time depending on place, values, cultural appropriateness, social 
acceptability, ongoing cost-effectiveness, leadership and the ability 
to implement them through the prevailing governance regime (Singh 
et al., 2020). The capacity and commitment of the political system can 
drive early action that can reduce risks (Boston, 2017).

Decision makers face the challenge of how to adapt when there are 
ongoing knowledge gaps and uncertainties about when some climate 
change impacts will occur and their scale, for example coastal flooding 
(Box  11.6) or extreme rainfall events and their cascading effects 
(Box  11.4) (very high confidence). No-regrets decisions are likely to 
be insufficient (Hallegatte et  al., 2012). A perception exists in some 
sectors that all climate risks are manageable based on past experience 
(CCATWG, 2017). Projected impacts, however, are outside the range 
experienced, meaning that decisions must be made now for long-lived 
assets, land uses and communities exposed to the key risks (Paulik 
et  al., 2019a; Paulik et  al., 2020) often under contested conditions 
where adaptation competes with other public expenditures (Kwakkel 
et al., 2016). New planning approaches being used across the region 
can enable more effective adaptation, for example continual iterative 
adaptation (Khan et  al., 2015), rapid deployment of decision tools 
appropriate for addressing uncertainties (Marchau et  al., 2019) 
and transformation of governance and institutional arrangements 
(Boston and Lawrence, 2018) (Table 11.17). Recognising co-benefits 
for mitigation and sustainable development can help incentivise 
adaptation (11.3.5.3, 11.8.2).

11.7.3.1	 Planning and Tools

Adaptation decision support tools enable a shift from reactive to 
anticipatory planning for changing climate risks (high confidence). The 
available tools are diversifying with futures and systems methodologies 
and dynamic adaptive policy pathways being increasingly used 
(Bosomworth et al., 2017; Prober et al., 2017; Lawrence et al., 2018a; 
CoA, 2020e; Rogers et al., 2020a; Schneider et al., 2020) (11.5; Box 11.6) 
to facilitate the shift from static to dynamic adaptation by highlighting 
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path dependencies and potential lock-in of decisions, system 
dependencies and the potential for cascading impacts (Table 11.17) 
(Wilson et al., 2013; Clarvis et al., 2015; Pearson et al., 2018; Cradock-
Henry et al., 2020b; Lawrence et al., 2020b). Modelling and tools to 
test the robustness and cost-effectiveness of options (Infometrics and 
PSConsulting, 2015; Qin and Stewart, 2020) can be used alongside 
adaptation strategies with decision-relevant and usable information 
(Smith et  al., 2016; Tangney, 2019; Serrao-Neumann et  al., 2020), 
particularly when supported by effective governance and national and 
sub-national guidance (Box 11.6).

More inclusive, collaborative and learning-oriented community 
engagement processes are fundamental to effective adaptation 
outcomes (11.7.3.2) (very high confidence) (Boston, 2016; Lawrence 
and Haasnoot, 2017; Sellberg et  al., 2018; Serrao-Neumann et  al., 
2019a; Simon et al., 2020). More participatory vulnerability and risk 
assessments can better reflect different knowledge systems, values, 
perspectives, trade-offs, dilemmas, synergies, costs and risks (Jacobs 
et  al., 2019; Ogier et  al., 2020; Tonmoy et  al., 2020). A shift from 
hierarchical to more cooperative governance modalities can assist 
effective adaptation (Vermeulen et al., 2018; Steffen et al., 2019; CoA, 
2020e; Lawrence et al., 2020b; MfE, 2020a; Hanna et al., 2021).

Regular monitoring, evaluation, communication and coordination of 
adaptation are essential for accelerating learning and adjusting to 
dynamic climate impacts and changes in socioeconomic and cultural 

conditions (high confidence) (Moloney and McClaren, 2018; Palutikof 
et al., 2019a; Cradock-Henry et al., 2020a). Training to improve decision 
makers’ ‘evaluative capacity’ can play a role (Scott and Moloney, 
2021). Climate action benchmarking, diagnostic tools and networking 
can enhance the adaptation process across diverse decision settings 
(e.g., water, coasts, protected areas and Indigenous Peoples) (Ayre and 
Nettle, 2017; Davidson and Gleeson, 2018; Coenen et al., 2019; Gibbs, 
2020). Effective adaptation requires cross-jurisdictional and cross-
sectoral policy coherence and national coordination (Delany-Crowe 
et al., 2019; Rychetnik et al., 2019; MfE, 2020c).

11.7.3.2	 Attitudes, Engagement and Accessible Information as 
Enablers

Concern for climate change has become widespread (Hopkins, 2015; 
Borchers Arriagada et  al., 2020), giving climate adaptation social 
legitimacy (high confidence). Over three quarters of Australians 
(77%) agree that climate change is occurring, and 61% believe 
climate change is caused by humans (Merzian et al., 2019). A growing 
proportion of Australians perceive links between climate change and 
high temperatures experienced during heatwaves and extremely hot 
days (Summer 2018/2019) (48%), droughts and flooding (42%) and 
urban water shortages (30%) (Merzian et al., 2019). Rural populations 
in NSW perceive climate change impacts as stressing their well-being 
and mental health and requiring leadership and action (Austin et al., 
2020). In New Zealand, between 2009 and 2018, the proportion of New 

Table 11.17 |  Key enablers for adaptation

Enabler Example

Governance 
frameworks

Clear climate change adaptation mandate
Measures that inform a shift from reactive to anticipatory decision-making (e.g., decision tools that have long time frames)
Institutional frameworks integrated across all levels of government for better coordination
Revised design standards for buildings, infrastructure, landscape such as common land use planning guidance and codes of practice that integrate consideration 
of climate risks to address existing and future exposures and vulnerability of people and physical and cultural assets
(11.3.1, 11.3.2, 11.3.3, 11.3.4.3, 11.3.5, 1.3.6, 11.4.1, 11.4.2, 11.5.1, 11.5.2, 11.6, 11.7.1, 11.7.2, 11.8.1, 11.8.2, Table 11.7, Table 11.14, Box 11.1, Box 11.3, 
Box 11.5, Box 11.6)

Building capacity for 
adaptation

Provision of nationally consistent risk information through agreed methodologies for risk assessment that address non-stationarity
Targeted research including understanding the projected scope and scale of cascading and compounding risks
Education, training and professional development for adaptation under changing risk conditions
Accessible adaptation tools and information
(11.1.2, 11.3.4, 11.3.5, 11.4.1, 11.5.1, 11.6, 11.7.1, 11.7.2, Table 11.14, Table 11.16, Table 11.18, Box 11.6)

Community partnership 
and collaborative 
engagement

Community engagement based on principles that consider social and cultural and Indigenous Peoples’ contexts and an understanding of what people value and 
wish to protect (e.g., International Association of Public Participation) (Public Participation, 2014)
Use of collaborative and learning-oriented engagement approaches tailored for the social and informed by the cultural context
Community awareness and network building
Building on Indigenous Australian and Māori communities’ social-cultural networks and conventions that promote collective action and mutual support
(11.3.5, 11.4, 11.7.1, 11.7.3.2, Table Box 11.1.1, Table 11.14, Box 11.6)

Dynamic adaptive 
decision-making

Increased understanding and use of decision-making tools to address uncertainties and changing risks, such as scenario planning and DAPP to enable effective 
adaptation as climate risk profiles worsen
(11.7.3.1, 11.7.3.2, Table 11.14, Table 15b, Table 11.18, Box 11.4, Box 11.6)

Funding mechanisms
Adaptation funding framework to increase investment in adaptation actions
New private-sector financial instruments to support adaptation
(11.7.1, 11.7.2, Table 11.16)

Reducing systemic 
vulnerabilities

Economic and social policies that reduce income and wealth inequalities
Strengthening social capital and cohesion
Identifying and redressing rigid or fragmented administrative and service delivery systems
Reviewing land use and spatial planning to reduce exposure to climate risks
Restoring degraded ecosystems and avoiding further environmental degradation and loss.
(11.1.1, 11.1.2, 11.3.5, 11.3.11, 11.4.1, 11.5.1.3, 11.7.2, 11.8.1; Table 11.10, Table 11.13)
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Zealanders who agreed or strongly agreed that climate change is real 
increased from 58% to 78% (a 34.5% increase), while those agreeing 
or strongly agreeing that it was caused by humans increased from 
41% to 64% (a 56.1% increase) (Milfont et al., 2021). Nevertheless, 
New Zealanders have a tendency to overestimate the amount of sea 
level rise (SLR), especially among those most concerned about climate 
change and incorrectly associate it with melting sea ice, which has 
implications for engagement and communication strategies (Priestley 
et al., 2021).

The use of more systemic, collaborative and future-oriented engagement 
approaches is facilitating adaptation in local contexts (high confidence) 
(Rouse et al., 2013; MfE, 2017a; Leitch et al., 2019). Local ‘adaptation 
champions’ and experimental and tailored engagement processes 
can enhance learning (McFadgen and Huitema, 2017; Lindsay et  al., 
2019). Dynamic adaptive pathways planning (Lawrence et al., 2019a) 
and inclusive community governance (Schneider et al., 2020) can help 
progress difficult decisions such as the relocation of cultural assets 
and managed retreat, and contestation about which public goods 

Table 11.18 |  Examples of adaptation decision tools

Tools Application Source

Scenario analysis, modelling, futures 
narratives

For futures planning in coastal, urban, 
agriculture and health sectors

(Randall et al., 2012; Jones et al., 2013; CSIRO, 2014; Bosomworth et al., 2015; Infometrics and 
PSConsulting, 2015; Knight-Lenihan, 2016; Maier et al., 2016; Stephens et al., 2017; B. Frame et al., 
2018; Stephens et al., 2018; Ausseil et al., 2019a; Coulter et al., 2019; Serrao-Neumann et al., 2019b)

Dynamic Adaptive Pathways Planning 
(DAPP)

For conditions of deep uncertainty for 
short-term and long-term options and 
flexibility, and with communities

(Cradock-Henry et al., 2018b; Cradock-Henry et al., 2020a) (agriculture); (Lawrence et al., 2019b) 
(flood risk management)
(Lawrence and Haasnoot, 2017; Colliar and Blackett, 2018) (coastal communities)
(Tasmanian Climate Change Office, 2012; Lin et al., 2017; Ramm et al., 2018) (capacity building)
(Moran et al., 2014; Colloff et al., 2016; Dunlop et al., 2016; Bosomworth et al., 2017) (natural 
resource, management)
(Hadwen et al., 2012; Barnett et al., 2014; Fazey et al., 2015; Lazarow, 2017; Ramm et al., 2018) 
(coastal)
(Siebentritt et al., 2014; Zografos et al., 2016) (regional development)
(Maru et al., 2014) (disadvantaged communities)
(Hertzler et al., 2013; Sanderson et al., 2015) (agriculture)
(Ren et al., 2011) (infrastructure and resilient cities)
(Cunningham et al., 2017) (social network analysis with communities)

Serious Games
To catalyse learning, raise awareness 
and explore attitudes and values

(Lawrence and Haasnoot, 2017; Colliar and Blackett, 2018; Flood et al., 2018; Edwards et al., 2019)

Signals and Triggers for monitoring 
DAPP

For where there is near-term certainty 
and longer-term deep uncertainty 
(e.g., SLR)

(Stephens et al., 2017; Stephens et al., 2018)

Shared Socioeconomic Pathways
For where there is deep uncertainty 
and scenarios are used

(B. Frame et al., 2018)

Hybrid Multi-criteria analysis and DAPP 
(deep uncertainty)

For conditions of deep uncertainty for 
short-term and long-term options and 
flexibility desired

(Lawrence et al., 2019a)

Real Options Analysis (ROA) For conditions of deep uncertainty (Infometrics and PSConsulting, 2015; Infometrics, 2017; Lawrence et al., 2019a; Wreford et al., 2020)

Scenario-based cost-benefit analysis For conditions of deep uncertainty (Guthrie, 2019)

Portfolio analysis For uncertainties in the land use sector (Monge et al., 2016; Awatere et al., 2018; West et al., 2021)

Cost Benefit Analysis Where decisions can be easily reversed (Hadwen et al., 2012; Little and Lin, 2015; Stewart, 2015; Luo et al., 2017; Thamo et al., 2017)

Vulnerability assessment

For assessing and prioritising physical 
and social place-based risks, using 
indices, modelling and participatory 
approaches

(Ramm et al., 2017; Moglia et al., 2018; Pearce et al., 2018; Tonmoy and El-Zein, 2018)

Statutory tools
For planning direction
For planning and design of adaptation

(DoC NZ, 2010; DoC NZ, 2017a; DoC NZ, 2017b; NSW Government, 2018)
(MfE, 2017a)

Standards For adaptation best practice (ISO, 2019)

Jurisprudence
For adaptation implementation and 
legal interpretation

(O’Donnell and Gates, 2013; McAdam, 2015; Iorns Magallanes and Watts, 2019; Peel et al., 2020)

Guidance
For adaptation and use of uncertainty 
tools

(CSIRO and BOM, 2015; MfE, 2017a; Lawrence et al., 2018b; Palutikof et al., 2019b)

Information delivery and decision 
support portal

For adaptation decision making https://coastadapt.com.au/

Monitoring, evaluation and reporting 
on adaptation progress (incl. adaptation 
indices and web-based tools)

For local government, private sector 
and finance sector to benchmark, track 
progress

(Goodhue et al., 2012; Little et al., 2015; IGCC, 2017; Lawrence et al., 2020a; LGAQ and DES, 2020; 
Rogers et al., 2020b; WAGA, 2020)
(Moloney and McClaren, 2018)
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to prioritise and how adaptation should be implemented (Kwakkel 
et al., 2016) (Colliar and Blackett, 2018). Participatory climate change 
scenario planning can test assumptions about the present and the 
future (Mitchell et  al., 2017; Serrao-Neumann and Choy, 2018; 
Chambers et al., 2019; Serrao-Neumann et al., 2019c) and help envision 
people-centred, place-based adaptation (Barnett et al., 2014; Lindsay 
et  al., 2019). Social network analysis can inform engagement and 
communication of adaptation (Cunningham et al., 2017). Knowledge 
brokers, information portals and alliances can help communities, 
governments and sector groups to better access and use climate 
change information (Shaw et al., 2013; Fünfgeld, 2015; Lawrence and 
Haasnoot, 2017). Novel approaches to building climate change literacy 
and adaptation capability go hand in hand with dedicated expert 
organisational support (Stevens and O’Connor, 2015; CCATWG, 2018; 
Palutikof et al., 2019c; Salmon, 2019). All of these approaches depend 
on adequate resourcing (very high confidence).

11.7.3.3	 Knowledge Gaps and Implementation Enablers

There are two priority areas where new knowledge is critical for 
accelerating adaptation implementation.

1)	 System complexity and uncertainty in observed and projected 
impacts

•	 Regionally relevant projections of rainfall, runoff, compound and 
extreme weather (11.2.1, 11.3.3; Box 11.4)

•	 Inclusion of cascading and compounding impacts in integrated 
assessments (11.5.1), including for infrastructure (11.3.5), tourism 
(11.3.7) and health (11.3.6) and for different groups, including 
Aboriginal and Torres Strait Islander Peoples and Tangata Whenua 
Māori communities (11.4)

•	 Impacts on terrestrial and freshwater ecosystems, including in 
situ monitoring to detect ongoing changes especially in New 
Zealand (11.3.1), and marine biodiversity, including environmental 
tolerances of key life stages (11.3.2)

•	 Repository of indigenous species distribution data for monitoring 
responses to climate change and climate advisory services for New 
Zealand (11.3.1.3)

•	 National risk assessment for Australia (11.7.1)
•	 The interactions between adaptation and mitigation, particularly 

where land carbon mitigation is impacted by climate change 
(11.3.4.3; Box 11.5)

2)	 Supporting adaptation decision making

•	 Better understanding of who and what is exposed and where and 
their vulnerability to climate hazards (11.3, 11.4)

•	 National assessments of the costs and benefits of climate change, 
with and without different levels and timings of adaptation and 
mitigation (11.5.2.3) (11.7.1)

•	 Understanding available adaptation strategies and options, their 
feasibility and effectiveness as the climate changes, including their 
intended and unintended outcomes (11.7, 11.8)

•	 Understanding how to embed robust planning approaches into 
decision making that retain flexibility to change course in the 
future (11.7.1).

•	 Mechanisms for sharing knowledge and practice of adaptation 
(11.7).

•	 The role of development paradigms, values and political economy 
in adaptation framing and effective implementation (11.8).

•	 Understanding social transitions and social licence, for timely, 
robust and transformational adaptation (11.8.2).

11.8	 Climate Resilient Development Pathways

Adaptation to climate risks and global mitigation of greenhouse 
emissions determine whether development pathways are climate-
resilient (Chapter 18). In the near term, progress towards climate resilient 
development can be monitored by progress on the SDGs. According to 
government reports (Figure 11.6) (OECD, 2019a), current and projected 
trajectories fall short of meeting all targets (Allen et  al., 2019). Key 
climate risks for the region (11.6, Table 11.14) affect all of the SDGs, 
and pre-existing societal inequalities exacerbate climate risks (11.3.5). 
Projected climate risks combined with underlying SDG indicators will 
increasingly impede the region’s capacity to achieve and maintain a 
number of SDGs, including sustainable agriculture, affordable and clean 
energy, sustainable cities and communities, life below water and life on 
land (OECD, 2019a). Reducing these risks would require significant and 
rapid emission reductions to keep global warming to 1.5°C–2.0°C and 
robust and timely adaptation (IPCC, 2018).

11.8.1	 System Adaptations and Transitions

A step change in adaptation action is needed to address climate 
risks and to be consistent with climate resilient development (very 
high confidence). Current adaptation falls short on the assessment of 
complex risks, implementation, monitoring and evaluation. It is largely 
incremental and temporary given the scale of projected impacts; it has 
limits and is mainly reactive rather than anticipatory. Furthermore, 
risks are projected to cascade and compound, with impacts and costs 
that challenge adaptive capacities (11.5) and call for transformational 
responses (11.6, Table  11.15a, Table  11.15b; Supplementary Tables 
SM11.1a and SM11.1b).

Current global emissions reduction policies are projected to lead to a 
global warming of 2.1°C–3.9°C by 2100 (Liu and Raftery, 2021), leaving 
many of the region’s human and natural systems at very high risk and 
beyond adaptation limits (high confidence). With higher levels of warming, 
adaptation costs increase, loss and damages grow, and governance and 
institutional responses reduce adaptive capacity. Underlying social and 
economic vulnerabilities and injustices further reduce adaptive capacity, 
exacerbating disadvantage in particular groups in society. Sustainable 
development across and beyond the region will help reduce shared 
adaptation challenges (11.5.1.2). Effective adaptation avoids lock-in and 
path dependency, reduces vulnerabilities, increases flexibility to change, 
builds adaptive capacity and advances SDGs, thereby improving intra- 
and intergenerational justice (11.5, 11.6, 11.7). Reducing greenhouse 
gas emissions and structural inequalities is key to achieving the SDGs 
and contributing to climate resilient development.
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Integrated and inclusive adaptation decision-making can contribute to 
climate resilient development by better mediating competing values, 
interests and priorities and helping to reconcile short- and long-
term objectives, as well as public and private costs and benefits, in 
the face of rapidly and continuously changing risk profiles (very high 
confidence) (Gorddard et al., 2016; MfE, 2017a; Schlosberg et al., 2017) 
(11.5.2). Use of new tools and approaches (Table 11.18) to address 
system interactions that match the scale and scope of the problem 
can result in more effective adaptation, including proactive and 
anticipatory governance and institutional enablers (11.7, Table 11.17) 
(Schlosberg et al., 2017; Boston and Lawrence, 2018). Building cities 
and settlements that are resilient to the impacts of climate change 
requires the simultaneous consideration of infrastructural, ecological, 
social, economic, institutional and political dimensions of resilience, 
including political will, leadership, commitment, community support, 
multi-level governance and policy continuity (Torabi et al., 2021).

11.8.2	 Challenges for Climate Resilient Development 
Pathways

Implementing enablers can help drive adaptation ambition and action 
consistent with climate resilient development (very high confidence) 
(11.7.3, Table  11.17). However, the scale and scope of cascading, 
compounding and aggregate impacts (11.5.1) calls for new and timely 
adaptation, including more effective ongoing monitoring, evaluation, 
review and continual adjustment (11.7.3) towards the transformations 
that can break through the path dependencies that define the way things 
are done now (Cradock-Henry et al., 2018b; UN et al., 2018; Head, 2020). 
However, complex interactions between objectives can create social and 
economic trade-offs (Table 11.1, 11.3.5.3, 11.7.3.1, Box 11.6).

Delay in implementing climate change adaptation and emissions re-
ductions will impede climate resilient development, resulting in more 
costly climate impacts and greater scale of adjustments in the future 

Frequently Asked Questions

FAQ 11.2 | What systems in Australia and New Zealand are most at risk from ongoing climate change?

The nine key risks to human systems and ecosystems in Australia and New Zealand from ongoing climate change are shown in Figure FAQ 
11.2.1. Some risks, especially on ecosystems, are now difficult to avoid. Other risks can be reduced by adaptation if global mitigation is effective.

Risk is the combination of hazard, exposure and vulnerability. For a given hazard (e.g., fire), the risk will be greater 
in areas with high exposure (e.g., many houses) and/or high vulnerability (e.g., remote communities with limited 
escape routes). The severity and type of climate risk varies geographically (Figure  FAQ11.2.1). Everyone will be 
affected by climate change, with disadvantaged and remote people and communities the most vulnerable.

Frequently Asked Questions

FAQ 11.1 | How is climate change affecting Australia and New Zealand?

Climate change is affecting Australia and New Zealand in profound ways. Some natural systems of cultural, environmental, social and economic 
significance are at risk of irreversible change. The socioeconomic costs of climate change are substantial, with impacts that cascade and 
compound across sectors and regions, as demonstrated by heatwaves, wildfire, cyclone, drought and flood events.

Temperature has increased by 1.4°C in Australia and 1.1°C in New Zealand over the last 110  years, with more 
extreme hot days. The oceans in the region have warmed significantly, resulting in longer and more frequent 
marine heatwaves. Sea levels have risen and the oceans have become more acidic. Snow depths have declined 
and glaciers have receded. Northwestern Australia and most of southern New Zealand have become wetter, while 
southern Australia and most of northern New Zealand have become drier. The frequency, severity and duration 
of extreme wildfire weather conditions have increased in southern and eastern Australia and northeastern New 
Zealand.

The impacts of climate change on marine, terrestrial and freshwater ecosystems and species are evident. The 
mass mortality of corals throughout the Great Barrier Reef during marine heatwaves in 2016–2020 is a striking 
example. Climate change has contributed to the unprecedented south-eastern Australia wildfires in the spring 
and summer of 2019–2020, loss of alpine habitats in Australia, extensive loss of kelp forests, shifts further south in 
the distribution of almost 200 marine species, decline and extinction in some vertebrate species in the Australian 
wet tropics, expansion of invasive plants, animals and pathogens in New Zealand, erosion and flooding of coastal 
habitats in New Zealand, river flow decline in southern Australia, increased stress in rural communities, insurance 
losses for floods in New Zealand, increase in heatwave mortalities in Australian capital cities and fish deaths in the 
Murray-Darling River in the summer of 2018–2019.

https://doi.org/10.1017/9781009325844.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009325844.013


11

Australasia � Chapter 11

1649

The risks to natural and human systems are often compounded by impacts across multiple spatial and temporal 
scales. For example, fires damage property, farms, forests and nature with short- and long-term effects on 
biodiversity, natural resources, human health, communities and the economy. Major impacts across multiple sectors 
can disrupt supply chains to industries and communities and constrain delivery of health, energy, water and food 
services. These impacts create challenges for the adaptation and governance of climate risks. When combined, they 
have far-reaching socioeconomic and environmental impacts.

Loss of alpine biodiversity
in Australia

Key risks for Australasia

Loss of kelp forests in coastal 
waters in southern Australia and 

southeast New Zealand

Disruption and decline in agricultural production
and increased stress in rural communities in south-
western, southern and mainland eastern Australia

Loss and degradation of coral reefs
in tropical Australia Cascading compounding and aggregate  

impacts on cities, settlements, infrastructure,  
supply-chains and services

Inability of institutions and governance  
systems to manage climate risks

Loss of natural and human systems in  
low-lying coastal areas

Risks across Australia and New Zealand

Increase in heat-related mortality and 
morbidity across Australia

Transition or collapse of alpine ash, 
snowgum woodland, pencil pine and 

northern jarrah forest in southern Australia

Figure FAQ11.2.1 |  Key risks from climate change

Box FAQ 11.2 (continued)
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Frequently Asked Questions

FAQ 11.3 | How can Indigenous Peoples’ knowledge and practice help us understand contemporary climate impacts 
and inform adaptation in Australia and New Zealand?

In Australia and New Zealand, as with many places around the world, Indigenous Peoples with connections to their traditional country and 
extensive histories hold deep knowledge from observing and living in a changing climate. This provides insights that inform adaptation to 
climate change.

Indigenous Australians—Aboriginal and Torres Strait Islanders—maintain knowledge regarding previous sea level 
rise, climate patterns and shifts in seasonal change associated with the flowering of trees and emergence of food 
sources, developed over thousands of generations of observation of their traditional country. Knowledge of localised 
contemporary adaptation is also held by many Indigenous Australians with connections to traditional lands. With 
assured free and prior informed consent, this provides a means for Indigenous-guided land management, including 
for fire management and carbon abatement, fauna studies, medicinal plant products, threatened species recovery, 
water management and weed management.

Tangata Whenua Māori in New Zealand are grounded in Mātauranga Māori knowledge, which is based on human–
nature relationships and ecological integrity and incorporates practices used to detect and anticipate changes 
taking place in the environment. Social-cultural networks and conventions that promote collective action and 
mutual support are central features of many Māori communities and these customary approaches are critical to 
responding to, and recovering from, adverse environmental conditions. Intergenerational approaches to planning 
for the future are also intrinsic to Māori social-cultural organisation and are expected to become increasingly 
important, elevating political discussions about conceptions of rationality, diversity and the rights of non-human 
entities in climate change policy and adaptation.

Frequently Asked Questions

FAQ 11.4 | How can Australia and New Zealand adapt to climate change?

There is already work under way by governments, businesses, communities and Indigenous Peoples to help us adapt to climate change. 
However, much more adaptation is needed in light of the ongoing and intensifying climate risks. This includes coordinated laws, plans, 
guidance and funding that enable society to adapt and the information, education and training that can support it. Everyone has a part to 
play working together.

We currently mainly react to climate events such as wildfires, heatwaves, floods and droughts and generally rebuild 
in the same places. However, climate change is making these events more frequent and intense, and ongoing 
sea level rise and changes in natural ecosystems are advancing. Better coordination and collaboration between 
government agencies, communities, Aboriginal and Torres Strait Islanders and Tangata Whenua Indigenous 
Peoples, not-for-profit organisations and businesses will help prepare for these climate impacts more proactively, in 
combination with future climate risks integrated into their decisions and planning. This will reduce the impacts we 
experience now and the risks that will affect future generations.

Some of the risks for natural systems are close to critical thresholds and adaptation may be unable to prevent 
ecosystem collapse. Other risks will be severe, but we can reduce their impact by acting now, for example coastal 
flooding from sea level rise, heat-related mortality and managing water stresses. Many of the risks have the 
potential to cascade across social and economic sectors with widespread societal impacts. In such cases, really 
significant system-wide changes will be needed in the way we currently live and govern. To facilitate such changes, 
new governance frameworks, nationally consistent and accessible information, collaborative engagement and 
partnerships with all sectors, communities and Indigenous Peoples and the resources to address the risks are needed 
(Figure FAQ11.4.1).

However, our ability to adapt to climate change impacts also rests on every region in the world playing its part in 
reducing greenhouse gas emissions. If mitigation is ineffective, global warming will be rapid and adaptation costs 
will increase, with worsening losses and damages.
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Figure FAQ11.4.1 |  Developing adaptation plans in the solutions space showing system tipping points, thresholds and limits to adaptation, 
unsustainable pathways, critical systems and enablers to climate resilient development

Box FAQ 11.4 (continued)
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(IPCC, 2018) (11.5.1, 11.5.2, Box 11.6) and legal risks for those with 
adaptation mandates and for financial institutions (11.5.1) (very high 
confidence). The scale and scope of societal change needed for the 
region to transition to more climate resilient development pathways 
requires close attention to governance, ethical questions, the role 
of civil society and the place of Aboriginal and Torres Strait Islander 
Peoples and Tangata Whenua Māori in the co-production of ongoing 
adaptation at multiple scales (Loorbach et  al., 2017; Koehler et  al., 
2019; Hill et al., 2020).

The region faces an extremely challenging future that will be highly 
disruptive for many human and natural systems (IPCC, 2018) (UNEP, 
2020; AAS, 2021; IPCC, 2021) (11.5.1, 11.6, 11.7; Boxes 11.1–11.6; 
Table 11.14). The extent to which the limits to adaptation are reached 
depends on whether global warming peaks this century at 1.5°C, 2°C 
or 3+°C above pre-industrial levels. Whatever the outcome, adaptation 
and mitigation are essential and urgent (very high confidence).
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