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SPECIFICATION TESTING IN
NONPARAMETRIC INSTRUMENTAL

QUANTILE REGRESSION

CHRISTOPH BREUNIG
Emory University

There are many environments in econometrics which require nonseparable model-
ing of a structural disturbance. In a nonseparable model with endogenous regressors,
key conditions are validity of instrumental variables and monotonicity of the model
in a scalar unobservable variable. Under these conditions the nonseparable model is
equivalent to an instrumental quantile regression model. A failure of the key con-
ditions, however, makes instrumental quantile regression potentially inconsistent.
This article develops a methodology for testing the hypothesis whether the instru-
mental quantile regression model is correctly specified. Our test statistic is asymp-
totically normally distributed under correct specification and consistent against any
alternative model. In addition, test statistics to justify the model simplification are
established. Finite sample properties are examined in a Monte Carlo study and an
empirical illustration is provided.

1. INTRODUCTION

Regression models that involve instrumental variables are widely used in eco-
nomics to overcome endogeneity problems. In these models, assuming the struc-
tural disturbances to be additively separable implies that marginal effects do not
depend on unobserved characteristics, which may be difficult to justify. This is
why their nonseparable extension has received a lot of attention recently. Un-
der certain key conditions, the nonseparable model is equivalent to an instrumen-
tal quantile regression model. These conditions are validity of instruments and
monotonicity of the model in a scalar unobservable. If one of these conditions is
violated, however, the quantile regression representation is misspecified.

In this article, we propose a specification test of the instrumental quantile re-
gression model

Y = ϕ(Z ,q)+U(q), where P(U(q)� 0|W )= q (1.1)
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584 CHRISTOPH BREUNIG

for each 0 < q < 1, where Y is a scalar dependent variable, Z a vector of poten-
tially endogenous regressors, W a vector of instruments, and U(q) an unobserv-
able disturbance.1 This quantile regression model is equivalent to a nonseparable
model (cf. Horowitz and Lee, 2007) given by

Y = ϕ(Z ,V ), (1.2)

where

(a.1) the instrumental variable W is independent of V ,

(a.2) the function ϕ is strictly monotonic increasing in the scalar disturbance
V , and

(a.3) V ∼ U(0,1).
Condition (a.3) can be assumed without loss of generality if V is continuously

distributed with positive density on its support which we assume to hold through-
out the article. The quantile regression model (1.1) for all 0 < q < 1 is thus mis-
specified if in its nonseparable version (1.2) the instrument is not valid, that is, W
is not independent of V , or the function ϕ is not monotonic in V .

Specification testing in instrumental variable models is a subject of consid-
erable literature. In the context of nonparametric instrumental mean regression
Y = g(Z)+ U with E[U |W ] = 0, tests for correct specification have been pro-
posed by Gagliardini and Scaillet (2017), Horowitz (2012), and Breunig (2015).
These tests are, however, not robust against potential nonseparability of the struc-
tural disturbance. On the other hand, by considering the nonseparable model (1.2)
with Conditions (a.1)–(a.3), a failure of the exclusion restriction of the instru-
ments might only be one source of misspecification. Indeed, as argued by Hoder-
lein and Mammen (2007), in certain applications, such as consumer demand,
the monotonicity restriction (a.2) might be highly unrealistic. As such, provid-
ing a specification test of model (1.2) together with Conditions (a.1)–(a.3) seems
paramount but, as far as we know, has not yet been addressed in the literature.

Research on identification and estimation in nonparametric instrumental quan-
tile regression has been active in the last decade. Chesher (2003) establishes
nonparametric identification of derivatives of the unknown functions in a tri-
angular array structure. Chernozhukov and Hansen (2005) and Chernozhukov,
Imbens, and Newey (2007) give identification conditions and develop a nonpara-
metric minimum distance estimator. Sufficient conditions for local identification
are given by Chen, Chernozhukov, Lee, and Newey (2014). Horowitz and Lee
(2007) propose an estimator based on Tikhonov regularization, Chen and Pouzo
(2012) study penalized sieve minimum distance estimation, and Dunker, Florens,
Hohage, Johannes, and Mammen (2014) consider an iteratively regularized Gauß-
Newton method. Furthermore, Gagliardini and Scaillet (2012) obtain asymptotic

1 Since conditional expectations are defined only up to equality almost surely, all (in)equalities with conditional
expectations and/or random variables are understood as (in)equalities almost surely.
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distribution results of a Tikhonov regularized estimator. There is also a large lit-
erature on testing quantile regression models with exogenous covariates. In this
context particularly relevant is quantile regression testing using an infinite num-
ber of quantiles for parametric functions, see Escanciano and Velasco (2010) and,
in the nonparametric context, Escanciano and Goh (2014).

In instrumental quantile regression (1.1) for a fixed quantile 0 < q < 1,
Horowitz and Lee (2009) established a test of parametric specification of ϕ. Chen
and Pouzo (2015) consider functionals of semi/nonparametric conditional mo-
ment restrictions with possibly nonsmooth generalized residuals. A test of mono-
tonicity in unobservables of ϕ has been proposed by Hoderlein, Su, White, and
Yang (2016) but requires conditional exogeneity of Z , and hence is not related
to instrumental variables methodology. Recently and independently of this arti-
cle, Fève, Florens, and Van Keilegom (2018) developed a test of whether Z is
independent of the nonseparable disturbance V in the model (1.2).

Our test statistic is based on the L2–norm of the empirical conditional quantile
restriction and involves sieve methodology. The sieve approach makes the statistic
easy to implement and further is convenient to impose additional constraints on
the structural function ϕ. As an example, we discuss a test of additivity of ϕ with
respect to the vector of regressors Z . In addition, we establish a test statistic for
testing exogeneity which is robust against nonseparability. More precisely, we
establish a test of exogeneity of the regressors Z at some quantile 0< q < 1, that
is, whetherP(Y � ϕ(Z ,q)|Z)= q . This extends the results on nonparametric tests
of exogeneity in mean regression suggested by Blundell and Horowitz (2007) and
Breunig (2015) to the quantile regression case.

It should also be noted that the test proposed in this article is a joint test of
monotonicity and instrument validity. This is the nature of many nonparametric
tests, see, for instance, Chiappori, Komunjer, and Kristensen (2015) or Lewbel,
Lu, and Su (2015). On the other hand, we show in this article how the sign of
P(Y � ϕ(Z ,q)|W )−q can be exploited to make inferences on the validity of the
instrumental variables. As such, in many cases, it is possible to detect the cause
of a rejection of our test.

We establish the asymptotic distribution of our test statistic under the null hy-
pothesis and its consistency against fixed alternatives. We study the power of our
test against a sequence of local alternatives. By Monte Carlo simulations, we
demonstrate the power properties of our test in finite samples. As an empirical
illustration, we study a nonseparable model of the effects of class size on test
scores of 4th grade students in Israel. We reject the hypothesis of exogeneity of
class size but fail to reject the instrumental variable model.

The remainder of this work is organized as follows. In Section 2, we propose
a test statistic and obtain its asymptotic distribution. We further establish consis-
tency of our test. The power of the test is judged by considering a sequence of
local alternatives. Section 3 gives several extensions of the previous results. In
Sections 4 and 5, we study the finite sample properties of our test and give an
empirical illustration. All proofs can be found in the appendix.
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2. THE TEST STATISTIC AND ITS ASYMPTOTIC PROPERTIES

This section begins with the definition of the test statistic and states assumptions
required to obtain its asymptotic distribution under the null hypothesis. Moreover,
we study power and consistency properties of our test.

2.1. Definition of the Test Statistic

The quantile regression model (1.1) leads to a nonlinear operator equation, as we
see in the following. LetΦ be a Banach space endowed with the norm ‖φ‖Z ,p :=
(E |φ(Z)|p)1/p for some integer p > 0 and if p = ∞ then ‖φ‖Z ,∞ := supz |φ(z)|.
For simplicity let ‖φ‖Z := ‖φ‖Z ,2. Furthermore, let us introduce the Hilbert space
L2

W := {ψ : ‖ψ‖2
W := E |ψ(W )|2 <∞}. We define a nonlinear operator T :Φ →

L2
W with

T φ := E[�{Y � φ(Z)}|W ] (2.1)

for any φ ∈Φ where � denotes the indicator function. Thereby, model (1.1) can be
rewritten as the operator equation T ϕq = q with ϕq(·) := ϕ(·,q) for all 0< q < 1.

In many economic applications, for instance, when estimating a demand func-
tion or Engel curves, the structural function of interest may be assumed to
be smooth. This a priori knowledge is captured by a set B ⊂ Φ which we
introduce below. The set B may also contain constraints on the function ϕq

such as monotonicity, concavity/convexity, or additivity (see also Section 3.2)
and can also ensure uniqueness of ϕq (see Example 2.1 below). Let us intro-
duce the set B(0,1) = {φ : φ(·,q) ∈ B for all q ∈ (0,1)}. We consider the null
hypothesis

H0 : there exists a function ϕ ∈ B(0,1) such that T ϕq = q for all q ∈ (0,1). (2.2)

The alternative is that there exists no function ϕ ∈ B(0,1) solving T ϕq = q for
all q ∈ (0,1).

We construct in the following a test statistic based on the L2–distance.
Throughout the article, we assume that an independent and identically distributed
n-sample of (Y, Z ,W ) is available. Let { fj }j�1 be a sequence of approximating
functions in L2

W . Then, for any integer k � 1 we denote fk(·)= ( f1(·), . . . , fk(·))t
and Wk = (

fk(W1), . . . , fk (Wn)
)t which is a n × k matrix. A series least square

estimator of E[�{Y � φ(Z)}− q|W = ·] then writes

fln (·)t (Wt
ln Wln )

−
n∑

i=1

(�{Yi � φ(Zi )}− q) fln (Wi ),

where (·)− denotes a generalized inverse. Furthermore, we define the sieve least
square estimator of ϕq by
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ϕ̂qn ∈ argmin
φ∈Bkn

( n∑
i=1

(�{Yi � φ(Zi )}− q) fln (Wi )
)t
(Wt

ln Wln )
−

×
n∑

i=1

(�{Yi � φ(Zi )}− q) fln (Wi ), (2.3)

where Bkn is a kn–dimensional sieve space that becomes dense in B as the sample
size n tends to infinity. If B contains additional constraints then these are imposed
in Bkn on the finite dimensional functions. Here, kn and ln grow with sample
size n. Clearly, kn � ln for each n is required and in our simulations we choose
ln = Ckn for some constant C > 1 (see also Chen and Christensen (2015) in
the case of nonparametric instrumental mean regression). The estimator ϕ̂qn is a
simplified version of the penalized sieve minimum distance estimator suggested
by Chen and Pouzo (2012).

The test statistic is then given by

Sn =
∫ 1

0

( n∑
i=1

(�
{
Yi � ϕ̂qn(Zi )

}− q) fmn (Wi )
)t
(Wt

mn
Wmn )

−

×
n∑

i=1

(�
{
Yi � ϕ̂qn(Zi )

}− q) fmn (Wi )dq, (2.4)

where mn grows with sample size n. As the test is one sided, we reject the null
hypothesis at level α when the standardized version of Sn , namely, 3

√
5/mn

(
Sn −

mn/6
)
, is larger than the (1−α)–quantile of N (0,1). The asymptotic distribution

of Sn is derived below under mild restrictions on the dimension parameters kn , ln ,
and mn . We require that the number of unconditional moment restrictions deter-
mined by mn is asymptotically larger than the dimension of the sieve space Bkn .
This corresponds to the test of overidentifying restrictions in parametric models.
In contrast to the parametric setting, however, also the number of unconditional
moment restrictions used to construct the estimator (determined by ln) must be
asymptotically smaller than the number of moment restrictions used for the test
statistic. This ensures that the estimation error in the test statistic becomes asymp-
totically negligible as we see below.

Our test statistic builds on the nonparametric specification test in instrumen-
tal mean regression suggested by Breunig (2015). Testing in instrumental quan-
tile regression, on the other hand, requires a different methodology. First, the
test statistic is a discontinuous function of the unknown structural effect ϕq .
Second, instrumental quantile regression leads to a nonlinear inverse problem
and hence deriving asymptotic results is more challenging. Third, to verify
the conditional moment restrictions for all quantiles we need to integrate over
them. In the appendix, we show that the mapping q 
→ ϕq is continuous under
mild assumptions. This justifies the use of our L2–type rather than a sup norm
statistic.
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2.2. Assumptions and Notation

In order to obtain our asymptotic result, we state the following assumptions.
Our first assumption gathers conditions which we require for the basis functions
{ fj }j�1. In the following, the supports Z of Z and W of W are assumed to be
bounded (see also Assumption 4). The probability density function (p.d.f.) of W ,
denoted by pW , is assumed to be uniformly bounded from above and away from
zero.

Assumption 1. (i) There exists a constant C > 0 and a sequence of positive
integers (mn)n�1 satisfying supw∈W ‖ fmn (w)‖2 � Cmn . (ii) The smallest eigen-
value of the matrix E[ fm(W ) fm (W )t ] is bounded away from zero uniformly in m.

Assumption 1(i) holds for sufficiently large C if { fj }j�1 are trigonometric basis
functions, B-splines, or wavelets. Assumption 1(ii) is satisfied if the marginal
density of W is uniformly bounded away from zero on W and fmn forms a vector

of orthonormal basis functions. For any φ ∈ B(0,1) we write φq(·) := φ(·,q) for
all 0< q < 1. We denote the Fréchet derivative of T at ϕq by

Tqφ := E
[

pY |Z ,W
(
ϕ(Z ,q), Z ,W

)
φ(Z)

∣∣W ]
,

where pY |Z ,W denotes the density of Y conditional on (Z ,W ). We introduce the

notation |||φ|||Z ,p = (∫ 1
0 ‖φ(·,q)‖p

Z ,pdq
)1/p and |||ψ|||W = (∫ 1

0 ‖ψ(·,q)‖2
W dq

)1/2
for functions φ(·,q) ∈Φ and ψ(·,q) ∈ L2

W for all q ∈ (0,1).
Assumption 2. (i) If |||T φ−T ϕ|||2W = 0 for some function φ ∈ B(0,1), then it

holds |||φ− ϕ|||2Z ,p = 0. (ii) There exists some constant 0 < η < 1 such that for

all 0 < q < 1 and all functions φ ∈ {
φ ∈ B : ‖φ−ϕq‖Z ,p � ε

}
for some ε > 0 it

holds

‖T φ−T ϕq − Tq(φ−ϕq)‖W � η‖Tq(φ−ϕq)‖W . (2.5)

Assumption 2(i) ensures identification of ϕq for almost all 0 < q < 1 on the
set B which we introduce below. Assumption 2(ii) specifies an upper bound on
the Taylor remainder of T in a small neighborhood around ϕq . It is also known
as the tangential cone condition and frequently used in the analysis of nonlinear
operator equations (cf. Hanke et al., 1995 or Dunker et al., 2014 in case of instru-
mental variable estimation). We provide sufficient conditions for the tangential
cone condition in Example 2.1 below and refer to Chen et al. (2014) for further
discussions.

Assumption 3. There exists a sequence (rn)n�1 with rn = o(1) such that for
constants C > 0 and κ ∈ (0,1] it holds

max
1� j�mn

E

[∫ 1

0
sup
φ∈Bn

∣∣�{Y � φ(Z ,q)}−�{Y � ϕ(Z ,q)}∣∣2dq f 2
j (W )

]
� Cr2κ

n ,

(2.6)
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where Bn := {φ ∈ B(0,1) : |||φ−ϕ|||2Z ,p � r2
n }.

Assumption 3 states that the function ϕq 
→ (�{Y � ϕ(Z ,q)} − q) f j (W ),
1 � j � mn , is locally uniformly L2

W continuous for almost all 0 < q < 1. This
condition has also been exploited by Chen, Linton, and Van Keilegom (2003)
(Theorem 3), Chen (2007) (Lemma 4.2 (i)) or Chen and Pouzo (2012) (Remark
c.1). Example 2.2 below gives primitive conditions under which Assumption 3
holds true.

Let Z ⊂R
dz and for any vector of nonnegative integers k = (k1, . . . ,kdz ) define

|k| = ∑dz
j=1 kj and Dk = δ|k|/(δzk1

1 . . . δz
kdz
dz
). For some integer p > 0, we define

the norms

‖φ‖α,p =
( ∑

|k|�α+α0

∫
Z

∣∣Dkφ(z)
∣∣p

dz
)1/p

, ‖φ‖α,∞ = max|k|�α sup
z∈Z

∣∣Dkφ(z)
∣∣,

where α and α0 are positive integers. We denote the Sobolev spaces associated
with the norm ‖ · ‖α,p by

Wα,p := {
φ : Z → R : ‖φ‖α,p <∞}

. (2.7)

For some constant ρ > 0, define B as the Sobolev ellipsoid of radius ρ given
by

B := B(α) := {
φ ∈ Wα,p : ‖φ‖α,p � ρ

}
. (2.8)

On the other hand, our sieve space Bkn used to approximate B is compact un-
der ‖ · ‖Z and thus, penalization is not necessary for consistent estimation (see
also Chen and Pouzo, 2012). Also, additional constraints such as monotonicity
can be imposed by B = {

φ ∈ Wα,p : ‖φ‖α,p � ρ, infz∈Z φ′(z) > 0
}

for scalar z.
Such a monotonicty constraint does not necessarily lead to faster rates of conver-
gence, in contrast to an additivity restriction on ϕq . Consequently, we do not treat
shape restrictions like monotonicty explicitly but only discuss a test of additivity
in Section 3.2. In this context, we also refer to Chetverikov and Wilhelm (2017)
for using shape restriction for sieve estimation in instrumental mean regression.
The following assumption gathers regularity conditions imposed on the structural
functions ϕ and the supports Z and W .

Assumption 4. (i) Let α0 > dz/p and α > dz/κ . (ii) Z is bounded, convex and
satisfies a uniform cone property. (iii) W is bounded. (iv) The marginal density
of W, denoted by pW , is bounded from above and uniformly bounded away from
zero on W . (v) pY |Z ,W (·, Z ,W ) is bounded from above.

Assumption 4(i) requires α to be large if (2.6) holds only for small κ > 0 or
the dimension dz is large. Assumption 4(ii) imposes a weak regularity condition
on the shape of Z . For the uniform cone property see, for instance, Paragraph
4.4 in Adams and Fournier (2003). This property was also used by Santos (2012).
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Assumption 4(v) ensures that ‖Tqφ‖W �C‖φ‖Z for all φ ∈ L2
Z and some constant

C > 0.

Example 2.1 (Primitive Conditions for Assumption 2)
LetΦ coincide with the Hilbert space L2

Z := {φ : ‖φ‖Z <∞}. If for any 0< q < 1
the operator Tq is compact then there exists an orthonormal basis in L2

Z denoted
by {ej }j�1 satisfying ‖Tqφ‖2

W =∑∞
j=1 s2

q j E[φ(Z)ej (Z)]2 where (sq j )j�1 are the
singular values of Tq . If

B ⊂ Bsource,q :=
⎧⎨
⎩φ ∈ L2

Z :
∞∑

j=1

s−2
q j E[(φ(Z)−ϕ(Z ,q))ej (Z)]2 < c0

⎫⎬
⎭

for some constant c0 > 0 then, under mild assumptions on the joint distribution
of (Y, Z ,W ), the function ϕq is identified on B (cf. Theorem 6 of Chen et al.
(2014)). A similar restriction was also imposed by Horowitz and Lee (2007). If
B ⊂ ⋂

q∈(0,1)Bsource,q then Assumption 2(i) holds true. Under further assump-
tions, imposing bounds on the generalized Fourier coefficients is equivalent to
imposing smoothness restrictions. To illustrate this relation, let Z be a scalar uni-
formly distributed random variable and assume sq j = j−ζ , j � 1, for some con-
stant ζ > 0. In this case, if

{
ej
}

j�1 are the usual trigonometric basis functions
then Bsource,q coincides with the Sobolev space of ζ–times differentiable func-
tions with periodic boundary conditions, while if s2

q j = exp(− j2ζ ), j � 1 and
ζ > 1, Bsource,q contains only analytic functions (see also Kress, 1989). In this
sense, Bsource,q links the smoothness of φ−ϕq to the degree of ill-posedness de-
termined by the degree of decay of (sq j )j�1, which is also known as a so-called
source condition (cf. Chen and Reiß, 2011 or Dunker et al., 2014 for a further
discussion).

Under the singular value decomposition of Tq , it is also possible to provide
primitive conditions for the tangential cone Condition (2.5). Assume that the con-
ditional p.d.f. of Y given (Z ,W ), denoted by pY |Z ,W , is continuously differen-
tiable with |∂pY |Z ,W (·, Z ,W )/∂y| � c1 and the conditional p.d.f. of Z given W
satisfies pZ |W (·,W ) � c2 pZ(·), for some constants c1,c2 > 0. Then, by Theorem
6 of Chen et al. (2014) it holds

‖T φ−T ϕq − Tq(φ−ϕq)‖W � c1 c2 ‖φ−ϕq‖2
Z . (2.9)

We further obtain for all φ ∈ Bsource,q by making use of the Cauchy–Schwarz
inequality

‖φ−ϕq‖2
Z =

∞∑
j=1

sq j

sq j
E[(φ(Z)−ϕ(Z ,q))ej (Z)]

2

�
( ∞∑

j=1

s−2
q j E[(φ(Z)−ϕ(Z ,q))ej (Z)]

2
)1/2( ∞∑

j=1

s2
q j E[(φ(Z)−ϕ(Z ,q))ej (Z)]

2
)1/2

� c1/2
0 ‖Tq (φ−ϕq )‖W .
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Consequently, the tangential cone Condition (2.5) is satisfied if we assume
c1/2

0 c1 c2 < 1. We also note that for our test of exogeneity in Section (3.1) only
the weaker Condition (2.9) is required.

Example 2.2 (Primitive Conditions for Assumption 3)
Let FY |Z W denote the cumulative distribution function of Y given (Z ,W ) and as-
sume that it is Lipschitz continuous with constant CL > 0, that is, |FY |Z W (y)−
FY |Z W (y ′)| � CL |y − y ′| for all (y, y ′). Because of Assumption 4, the Sobolev
space Wα,p can be embedded in Wα,∞ (cf. Theorem 6 of Adams and Fournier
(2003)). In particular, the supremum norm is bounded on B and, moreover, As-
sumption 3 holds true. Indeed,

∫ 1
0 ‖φq −ϕq‖2∞dq � r2

n implies ‖φq −ϕq‖∞ � crn

for almost all 0 < q < 1 and some constant c > 0. Hence, ϕ(Z ,q)− crn �
φ(Z ,q)� ϕ(Z ,q)+crn for almost all 0< q < 1 and following Chen et al. (2003)
(page 1599 – 1600) we observe

E

[∫ 1

0
max
φ∈Bn

(
�{Y � φ(Z ,q)}−�{Y � ϕ(Z ,q)})2

dq
∣∣∣W]

�
∫ 1

0
E

[
�

{
Y � ϕ(Z ,q)+ crn

}−�

{
Y � ϕ(Z ,q)− crn

}∣∣∣W]
dq

=
∫ 1

0
E

[
FY |ZW

(
ϕ(Z ,q)+ crn

)− FY |ZW
(
ϕ(Z ,q)− crn

)∣∣∣W]
dq

� CL crn

which implies Assumption 3 with κ = 1/2.

Remark 2.1 (Local overidentification). In this remark, we discuss local overi-
dentification restrictions in nonparametric instrumental quantile regression for
some 0 < q < 1. As Chen and Santos (2018) point out in their Example 5.2,
the range of the Fréchet derivative Tq is given by

Rq =
{
ψ ∈ L2

W : ψ = Tqφ for some φ ∈ L2
Z

}
.

Local overidentification corresponds to the case where the closure of the range
Rq is a strict subset of L2

W . In this article, the class of structural functions ϕ is
restricted to belong to an ellipsoid B and, thus, we consider for each q:

Rq (B)=
{
ψ ∈ L2

W : ψ = Tqφ for some φ ∈ B
}
.

Mild restrictions on the ellipsoid B imply local overidentification and, hence,
the class of functions in the alternative model is not empty.

The next result formalizes the discussion of the previous remark and shows that
the regularity conditions imposed on the function set B ensure overidentification.

PROPOSITION 2.1. Let Φ coincide with the Hilbert space L2
Z and let As-

sumption 4(v) be satisfied. Then we have local identification, i.e., for any 0< q <
1 the closure of Rq (B) is a strict subset of L2

W .
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The proof of Proposition 2.1 relies on the fact that the functions in B are
bounded by some constant ρ > 0 and, in particular, no smoothness restrictions
are employed here to achieve overidentification.2 It is also possible to achieve
overidentification for classes containing unbounded functions, as long as they sat-
isfy minimal smoothness conditions.

The following result is due to Chen and Santos (2018, Lemma 4.1) and gives
a condition for local overidentification without imposing a priori restrictions on
the set of functions B.

LEMMA 2.2 (Chen and Santos, 2018). The model is locally overidentified if
and only if{
ψ ∈ L2

W : E[pY |Z ,W (ϕ(Z ,q), Z ,W )ψ(W )|Z ] = 0
}

�= {0}.
Lemma 2.2 provides a necessary and sufficient condition for local overidentifi-

cation without imposing regularity or other shape restrictions. This result involves
the adjoint of the Fréchet derivative Tq and can be characterized more explicitly in
different cases. For instance, assume that the vector of instruments can be decom-
posed such that W = (W1,W2) with pY |Z ,W = pY |Z ,W1, i.e., W2 has no additional
information on Y which is not contained in (Z ,W1). In this case, we have

E[pY |Z ,W (ϕ(Z ,q), Z ,W )ψ(W )|Z] = E
[

pY |Z ,W1(ϕ(Z ,q), Z ,W1)E[ψ(W )|W1, Z]
∣∣Z]

and hence, the model is locally overidentified when there exists a nontrivial
function ψ such that E[ψ(W )|Z ,W1] = 0. The last criterion is satisfied, for in-
stance, if W2 is independent of (Z ,W1) for all ψ which only depend on W2 and
E[ψ(W2)] = 0.

Notation. For any φ ∈ B we introduceΠknφ ∈ Bkn satisfying ‖Πknφ−φ‖Z ,p =
o(1). Furthermore, we define

ωn = max
(

n−1ln, max
φ∈Bkn

∑
j>ln

E[(T φ(W )− q) f j (W )]2, |||T·(Πknϕ−ϕ)|||2W
)
.

The rate ωn captures the variance and bias part for estimating T φ for a fixed
function φ and also contains the bias for approximating the structural function ϕ
in the weak norm induced by the Fréchet derivative of T . Following Chen and
Pouzo (2012) we introduce the sieve measure of local ill-posedness by

τkn := max
φ∈Akn

( |||φ−ϕ|||2Z ,p
|||T·(φ−ϕ)|||2W

)
,

where Akn =
{
φ ∈ B(0,1)kn

: |||T·(φ−ϕ)|||2W > 0
}

. We write an ∼ bn when there

exist constants c,c′ > 0 such that cbn � an � c′bn for sufficiently large n.

2 I thank an anonymous referee for suggesting this argumentation.

https://doi.org/10.1017/S0266466619000288 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000288


SPECIFICATION TESTING 593

2.3. Asymptotic Distribution under the Null Hypothesis

The following theorem establishes asymptotic normality of the test statistic Sn

after standardization under the null hypothesis H0.

THEOREM 2.3. Let Assumptions 1–4 be satisfied. Assume that

m−1
n = o(1), mn = o(n1/2) (2.10)

and in addition

nωn = o(
√

mn) and |||Πknϕ−ϕ|||2Z ,p + τknωn = o
(
m−(1+ε)/κ

n
)

(2.11)

for some ε > 0. Then we have under H0

3
√

5/mn
(
Sn − mn/6

) d→ N (0,1).

To motivate the constants in the sieve mean and variance, respectively, we ob-
serve∫ 1

0
E[(�{Y � ϕ(Z ,q)}− q)2|W ]dq =

∫ 1

0
q(1 − q)dq = 1/6

and∫ 1

0

(
E[(�{Y � ϕ(Z ,q)}− q)(�

{
Y � ϕ(Z ,q ′)

}− q ′)|W ]
)2

d(q,q ′)

= 2
∫ 1

0
(min(q,q ′)− qq ′)2d(q,q ′) = (3

√
5)−2,

see also the proof of Lemma A.3. The required rate imposed in (2.10) on mn is
milder than the rate requirement mn = o(n1/3) imposed by Breunig (2015) in case
of nonparametric instrumental mean regression. This is due to the fact that in the
latter case we do not have a lower bound for the sieve standard deviation in gen-
eral, whereas in case of quantile regression, the sieve standard deviation is

√
mn

within a positive constant. This can be exploited to weaken rate restrictions on
mn . Furthermore, note that restriction (2.11) implies kn = o(

√
mn) (by using that

ln � kn). This requirement essentially determines the degree of overidentification
required for inference.

The rate restriction τknωn = o
(
m−(1+ε)/κ

n
)

imposed in Condition (2.11) im-
plies that the dimension parameter mn dominates the effect of estimation of the
structural function. Consequently, the asymptotic behavior of our test statistic is
not affected by the estimation of ϕ, regardless of the underlying degree of ill-
posedness. Note that this rate restriction can be ensured by choosing kn relative
to decay of the sieve measure of local ill-posedness, which is described in more
detail in Example 2.3 below. We illustrate below that Condition (2.11) is satisfied
under common smoothness restrictions on ϕ and mapping requirements of the
Fréchet derivative Tq .
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Remark 2.2. Consider the Hilbert space case Φ = L2
Z and let {ej }j�1 be an

orthonormal basis in L2
Z . In this case, Πknφ =∑kn

j=1E[φ(Z)ej (Z)]ej . Let us as-
sume the following two conditions.

(i) Sieve approximation error: ‖Πknφ−φ‖Z = O(k−α/dz
n ) for all φ ∈ B.

(ii) Link condition:
∫ 1

0 ‖Tq(Πknφ − φ)‖2
W dq �

∑
j�1υj E[(Πknφ −

φ)(Z)ej (Z)]2 for all φ ∈ B and some positive nonincreasing sequence
(υj )j�1.

If the p.d.f. pZ of Z ∈ [0,1]dz is bounded, then it is well known that the sieve ap-
proximation error condition holds for splines, wavelets, and Fourier series bases.
Because of Assumption 4(v) the link condition is always satisfied with υj = 1
for all j � 1. The link condition implies an upper bound for the sieve measure
of ill-posedness; that is, τkn � Cυkn for some constant C > 0 and all n � 1 (cf.
Lemma B.2 of Chen and Pouzo, 2012). Consequently, the first part of Condition
(2.11) simplifies to

max
(
ln,n l−2β/dw

n ,nυkn k−2α/dz
n

)= o(
√

mn)

if {T φ : φ ∈Bkn } belongs to a Hölder space with Hölder parameter β. In addition,
in the setting of Example 2.2, the second part of Condition (2.11) simplifies to

m1+ε
n max

(
n−1ln, l−2β/dw

n ,k−2α/dz
n

)= o(1)

for some ε > 0.

In the next example, we illustrate different mapping properties of the operator
Tq which are usually studied in the literature.

Example 2.3
Consider the Hilbert space setting of Remark 2.2 with Conditions (i) and
(ii). In addition assume that the reverse link condition

∫ 1
0 ‖Tqφ‖2

W dq �
c
∑

j�1υj E[φ(Z)ej (Z)]2 for φ ∈ B and some constant c > 0 is satisfied. In the

setting of Example 2.1, we have
∫ 1

0 s2
q j dq > υj for all j � 1 implying that Tq

is nonsingular for almost all 0 < q < 1 (since any countable union of null sets is
null). For simplicity, let Z and W be scalars. Furthermore, let max

(
n−1ln,l

−2β
n

)∼
n−1kn and kn ∼ nχ for some constant χ > 0 which is specified in the following
two cases.

(i) Mildly ill-posed case: If υkn ∼ k−2ζ
n for some ζ � 0 then in order for (2.11)

to hold we require mn ∼ nι with 0< ι < 1/3 and

(1 − ι/2)/(2α+ 2ζ ) < χ < ι/2.
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Furthermore,
∫ 1

0 ‖Πknϕq −ϕq‖2
Z dq +τknωn = O(k−2α

n +k2ζ+1
n n−1) which

is o(m−2/κ
n ) if ι/(ακ) < χ < (1 − 2ι/κ)/(2ζ + 1). Thus, Condition (2.11)

is satisfied if

max
(
(1− ι/2)/(2α+2ζ ), ι/(ακ)

)
< χ <min

(
ι/2,(1−2ι/κ)/(2ζ +1)

)
.

(ii) Severely ill-posed case: If υkn ∼ exp
( − k2ζ

n
)

for some ζ > 0 then∫ 1
0 ‖Πknϕq −ϕq‖2

Z dq +τknωn = O(k−2α
n +exp(k2ζ

n )knn−1). Thereby, Con-
dition (2.11) is satisfied if, for example, mn = o

(
(logn)ακ/ζ

)
and kn ∼

(logn)1/ζ .

In both situations, we conclude that the dimension parameter mn is required to
be larger than the dimension kn of the sieve space for n sufficiently large. Roughly
speaking, we require more moment restrictions implied by the instrument than
the number of parameters we want to estimate. This corresponds to the test of
overidentification in the parametric framework. �

In contrast to a test integrated over all quantiles, one might be interested to
check model (1.1) for one specific quantile. In this case, we consider the test
statistic

Sn(q)=
( n∑

i=1

(�
{
Yi � ϕ̂qn(Zi )

}− q) fmn(Wi )
)t
(Wt

mn
Wmn )

−

×
n∑

i=1

(�
{
Yi � ϕ̂qn(Zi )

}− q) fmn (Wi ) (2.12)

If Sn(q) becomes too large, then we reject the null hypothesis H0. The deriva-
tion of the asymptotic behavior of Sn(q) is similar as in Theorem 2.3. Indeed,
only the Lebesgue measure over (0,1) has to be replaced by the Dirac measure
which has its mass at the quantile of interest.

COROLLARY 2.4. Let Assumptions 1 and 4 be satisfied. For a fixed quantile
q ∈ (0,1), let Assumptions 2, 3, and Conditions (2.10) and (2.11) hold. If there
exists a function ϕq ∈ B with T ϕq = q then

(2mn)
−1/2

( 1

q(1 − q)
Sn(q)− mn

)
d→ N (0,1).

In addition, one might be interested in certain regions of quantile functions. Let
μ denote any measure on (0,1). Again, the next result is a direct implication of
Theorem 2.3 and hence we omit its proof.

COROLLARY 2.5. Let Assumptions 1 and 4 be satisfied. For all q in the
support of μ, let Assumptions 2, 3, and Conditions (2.10) and (2.11) hold. If there
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exists a function ϕ ∈ B with
∫ |T ϕq − q|dμ(q)= 0 then

(
2mn

∫ 1

0
(min(q,q ′)− qq ′)2dμ(q)dμ(q ′)

)−1/2

×
(∫ 1

0
Sn(q)dμ(q)− mn

∫ 1

0
q(1 − q)dμ(q)

)
d→ N (0,1).

As mentioned in the introduction, our test is a joint test of instrument validity
and monotonicity of ϕ in its second entry. The following remark illustrates how
the test statistic Sn(q) integrated over a subset of (0,1) can be useful to detect
which kind of deviation exists.

Remark 2.3 (Detecting the kind of deviation). Suppose that the structural func-
tion is strictly monotonically increasing in its second entry for values q ∈ (0,q ′)
given some q ′ ∈ (0,1) (can be checked using Corollary 2.5). Furthermore, let
q 
→ ϕ(·,q) be either nonincreasing or decreasing on (q ′,q ′′). This can be as-
sured by letting q ′′ close to q ′ and assuming that ϕ does not oscillate for q � q ′. If
W is a valid instrument, employing model equation (1.2) and V ∼ U(0,1) yields

P(Y � ϕ(Z ,q)|W )= P(ϕ(Z ,V )� ϕ(Z ,q)|W )

� P(V � q|W )

= q

for all q � q ′′ and q ′′ sufficiently close to q ′. The last inequality holds regardless
whether the function q 
→ ϕ(·,q) is strictly monotone or not. Consequently, if
infw∈W P(Y � ϕ(Z ,q)|W = w) > q for some q ∈ (q ′,q ′′) we may conclude that
W is not a valid instrument. The analysis of a one-sided test based on this inequal-
ity is beyond the scope of this article. On the other hand, we can check the kind of
deviation by using the estimator infw∈W fmn (w)

t
[
n−1∑n

i=1(�
{
Yi � ϕ̂qn(Zi )

}−
q) fmn (Wi )

]
. Furthermore, confidence statements can be achieved by using re-

sampling methods. �

Remark 2.4 (Implementation of the test statistic). This remark provides some
details on the implementation of our test. First, discretize the (0,1)–integral by
using the grid 1/N,2/N, . . . , (N −1)/N for some integer N . In different simula-
tions, we found that a grid size of N = 20 was sufficiently large. Also note that by
the choice of the grid we avoid evaluation at boundary points zero or one. Second,
for any integer mn � n1/2 estimate the structural effect ϕq given in (2.3) for each
grid point q , each parameter kn with k2

n � mn and ln = 2kn . Third, compute the
standardized test statistic Sn such that it is maximized w.r.t. mn and minimized
w.r.t. kn . That is, we choose kn to provide a good model fit and mn to increase
the power of the test. The choice of the dimension parameters capture essential
rate requirements imposed to achieve asymptotic normality and is also motivated
by simulation results. This leads to a so-called minimum-maximum principle, see
also Section 4.1 for more details. �
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2.4. Consistency against a Fixed Alternative

Let us first establish consistency when H0 does not hold, that is, there exists
no function ϕ belonging to B(0,1) which solves T ϕq = q for all 0 < q < 1.
The following proposition shows that our test has the ability to reject a false
null hypothesis with probability 1 as the sample size grows to infinity. In the
following analysis of the asymptotic power of our testing procedure we let
ϕq = argminφ∈B ‖T φ− q‖W . So if H0 is false then

∫ 1
0 ‖T ϕq − q‖2

W dq > 0 since
pW is uniformly bounded from below.

PROPOSITION 2.6. Assume that H0 does not hold. Let Assumptions 1–4 be
satisfied. Consider a sequence (γn)n�1 satisfying γn = o(n/

√
mn). If Conditions

(2.10) and (2.11) hold we have

P

(
3
√

5/mn
(
Sn − mn/6

)
> γn

)
= 1 + o(1).

2.5. Limiting Behavior under Local Alternatives

In the following, we study the power of the test, that is, the probability to reject a
false hypothesis against a sequence of linear local alternatives that tends to zero
as the sample size tends to infinity. We proceed similarly as Ait-Sahali, Bickel,
and Stoker (2001) (Section 3.3). More precisely, let (ϕqn)n�1 be a sequence of

(nonstochastic) functions satisfying n
∫ 1

0 ‖T ϕqn − T ϕq‖2
W dq = o(

√
mn) where

ϕq = argminφ∈B ‖T φ− q‖W . Then, we consider alternative models defined by
ϕqn with

∫ 1

0

∥∥T ϕqn − q − δnξq
∥∥2

W dq = o(δ2
n) where δ2

n = √
mn/(3

√
5n). (2.13)

Here, ξq ∈ L2
W is a function satisfying

∫ 1
0 ‖ξq‖2

W dq > 0. The next result estab-
lishes asymptotic normality for the standardized test statistic Sn .

PROPOSITION 2.7. Let Assumptions 1–4 be satisfied. Assume that (ϕqn)n�1

satisfies (2.13) and n
∫ 1

0 ‖T ϕqn −T ϕq‖2
W dq = o(

√
mn). If Conditions (2.10) and

(2.11) hold we have

3
√

5/mn
(
Sn − mn/6

) d→ N
( ∞∑

j=1

∫ 1

0
E[ξq(W ) fj (W )]2dq,1

)
.

From Proposition 2.7, we see that our test can detect local linear alternatives at
the rate δn . If { f j }j�1 forms an orthonormal basis in L2

W , then δn coincides with

m1/4
n n−1/2 within a constant. Hence, our test has the same power against local

linear alternatives as the test of Hong and White (1995) who consider parametric
specification testing.
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2.6. Inference Based on Bootstrap

Nonparametric tests that rely on the asymptotic normal approximation may
perform poorly in finite samples. An alternative approach is to use bootstrap ap-
proximation. It is known that bootstrap-based procedures could approximate finite
sample distributions more accurately. In the following, we propose a bootstrap
version of our test statistic Sn .

The bootstrap procedure is based on a sequence of independent and identically
distributed random variables εi , 1 � i � n, drawn independently of the original
data (Yi ,Xi ,Wi ), 1 � i � n. Following Chen and Pouzo (2015), we then consider
the bootstrap residual function

εi
(
�{Yi � ϕq(Zi )}− q

)
.

Let ϕ̂∗
qn be the bootstrap version of the sieve least squares estimator (2.3), which

is computed in the same way but where only
(
�{Yi � φ(Zi )}− q

)
is replaced by

εi
(
�{Yi � φ(Zi )}− q

)
. The bootstrap version S∗

n of our test statistic Sn given in
(2.4) builds on ϕ̂∗

qn . More precisely, S∗
n is computed as the test statistic Sn but

where only
(
�{Yi � ϕ̂qn(Zi )}− q

)
is replaced by εi

(
�{Yi � ϕ̂∗

qn(Zi )}− q
)
.

Assumption 5. Let (εi )i�1 be an independent and identically distributed se-
quence of random variables drawn independently of (Y, Z ,W ) such that E[ε] = 1,
Var(ε)=: σ 2

ε ∈ (0,∞) and E[|ε− 1|4]<∞
Assumption 5 corresponds to Assumption Boot.1 of Chen and Pouzo (2015).

We slightly strengthen their assumption by imposing a fourth moment restriction,
which we require to derive asymptotic validity of the bootstrap procedure. Be-
cause of the bootstrap innovations εi , the constants in the sieve mean and sieve
standard deviation change. For the bootstrap test S∗

n , we obtain the sieve mean
constant∫ 1

0
E[ε2(�{Y � ϕ(Z ,q)}− q)2|W ]dq = (σ 2

ε + 1)/6

and the sieve standard deviation constant(∫ 1

0

(
E[ε2(�{Y � ϕ(Z ,q)}− q)(�

{
Y � ϕ(Z ,q ′)

}− q ′)|W ]
)2

d(q,q ′)
)1/2

= (σ 2
ε + 1)/(3

√
5).

Chen and Pouzo (2015) show that the bootstrap version of the sieve estimator
ϕ̂∗

qn converges at the same rate as ϕ̂qn . Thus, following line by line the proof of
Theorem 2.3 and using the imposed restrictions on the weights εi , we obtain the
following result.

COROLLARY 2.8. Let the assumptions of Theorem 2.8 be satisfied. Under
Assumption 5 and null hypothesis H0 we have

3
√

5/(mn(σ 2
ε + 1)2)

(
S∗

n − mn(σ
2
ε + 1)/6

) d→ N (0,1).
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It should be emphasized the asymptotic validity of the bootstrap procedure is,
in particular, due to the rate Condition (2.11), which ensures that the asymptotic
distribution of S∗

n is not affected by the estimation of the structural function. The
next result establishes consistency of the bootstrap test against fixed alternatives.

COROLLARY 2.9. Assume that H0 does not hold and that the assumptions
of Proposition 2.6 are satisfied. Under Assumption 5 we have

P

(
3
√

5/(mn(σ 2
ε + 1)2)

(
S∗

n − mn(σ
2
ε + 1)/6

)
> γn

)
= 1 + o(1).

3. EXTENSIONS

As we see in this section, our testing procedure can potentially be applied to a
much wider range of situations. We now discuss corollaries that generalize the
previous results in different ways. For the following analysis, we focus on a fixed
quantile q ∈ (0,1).

3.1. Testing Exogeneity

Falsely assuming exogeneity of the regressors leads to inconsistent estimators
while on the other hand treating exogenous regressors as if they were endogenous
can lower the rate of convergence dramatically. In this subsection, we develop a
nonparametric test of exogeneity that is robust against possible nonseparability of
unobservables. The test statistic is similar to the statistic Sn(q) given in (2.12) but
where ϕ̂qn is replaced by an estimator of the conditional quantile function.

In contrast to the previous section, we assume here that there exists a unique
function ϕq satisfying Y = ϕq(Z)+Uq with P(Uq � 0|W )= q and for some q ∈
(0,1). The relation between Z and W is thus restricted through this maintained
hypothesis. Under the maintained hypothesis, we propose a test whether the vector
of regressors Z is exogenous at a quantile q ∈ (0,1), that is,

H e
0 : P(Uq � 0|Z)= q.

In the following, we denote the conditional quantile function by ϕe
q which

satisfies P(Y � ϕe
q(Z)|Z) = q . The null hypothesis H e

0 is satisfied if and only
if the structural function ϕq coincides with the conditional quantile function
ϕe

q . Furthermore, under nonsingularity of the operator T , hypothesis H e
0 is equiv-

alent to

T ϕe
q = q. (3.1)

Our test of exogeneity, which we propose below, is based on this equation or
equivalently on P(Y � ϕe

q(Z)|W ) = q . More precisely, to test exogeneity we re-
place in the statistic Sn(q) given in (2.12) the estimator of ϕq by an estimator
of ϕe

q .
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In the following, ϕ̂e
qn denotes an estimator for the conditional quantile function

ϕe
q . For instance, an estimator of ϕe

q is given by

ϕ̂e
qn = argmin

φ∈Bkn

n∑
i=1

�q
(
Yi −φ(Zi )

)
, (3.2)

where �q (u) = |u| − (2q − 1)u is the check function and here, Bkn = {
φ ∈ B :

φ(·)=∑kn
j=1βj ej (·)

}
. For B-spline basis functions and an additional penalty this

estimator was proposed by Koenker, Ng, and Portnoy (1994). In the following, let
pZ and pZ |W denote the marginal density of Z and the conditional density of Z
given W , respectively.

Assumption 6. (i) There exists a function ϕq ∈ B such that T ϕq = q . (ii)
pY |Z ,W (·, Z ,W ) is continuously differentiable, |∂pY |Z ,W (·, Z ,W )/∂y| � C and
pZ |W (·,W ) � CpZ (·) for some constant C > 0. (iii) There exists a sequence
(Re

n)n�1 with Re
n = o(1) such that ‖ϕ̂e

qn −ϕe
q‖2

Z = Op(Re
n).

Assumption 6(i) formalizes the maintained hypothesis of a correctly specified
nonparametric instrumental quantile moment equation. Section 2 provides a test
for it. Because of Assumption 6(ii) , we do not require Assumption 2(ii) but can
rather rely on an upper bound of the Taylor reminder of T obtained by Chen
et al. (2014). In this sense, the test of exogeneity presented below requires weaker
restrictions on the local curvature of T than in the case of specification testing.
Assumption 6 specifies a rate requirement for the L2

Z distance of the estimator
ϕ̂e

qn . For instance, under H e
0 , Assumption 6(iii) is satisfied with Re

n = kn/n +k−2r
n

when ϕ̂e
qn is given by the estimator (3.2) with the B-splines basis functions {ej }j�1

and Z is scalar, see He and Shi (1994). The same rate is obtained by Horowitz and
Lee (2005) in the case of multivariate Z in an additive quantile regression model.

For a test of the null hypothesis H e
0 we replace in the definition of Sn(q) given

in (2.12) the estimator ϕ̂qn by ϕ̂e
qn . That is,

Se
n(q)=

( n∑
i=1

(�{Yi � ϕ̂e
qn(Zi )}− q) fmn(Wi )

)t
(Wt

mn
Wmn )

−

×
n∑

i=1

(�{Yi � ϕ̂e
qn(Zi )}− q) fmn(Wi )

We reject the hypothesis H e
0 if Se

n(q) becomes too large. The next result estab-
lishes asymptotic normality of our test statistic Se

n(q) under the null hypothesis.

COROLLARY 3.1. Let Assumptions 1, 2(i), 3, 4 and 6 hold. Let mn satisfy
Condition (2.10). Consider the estimator ϕ̂e

qn given in (3.2) where kn satisfies

n Re
n = o(

√
mn) and Re

n = o
(
m−(1+ε)/κ

n
)

(3.3)
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for some ε > 0. Then, we have under H e
0

(
2mn

)−1/2
( 1

q(1 − q)
Se

n(q)− mn

)
d→ N (0,1).

Example 3.1
Let us illustrate when Condition (3.3) holds true. Let mn ∼ nι with 0 < ι < 1/3.
Then for (3.3) to hold let kn ∼ nχ where χ > 0 satisfies

max
(1 − ι/2

2r
,
ι

rκ

)
< χ <min

( ι
2
,1 − 2ι

κ

)
.

Hence, we require r > 2/κ which is a slightly stronger restriction than Assump-
tion 4(i).

In the following, we study the power of the test, that is, the probability to reject
a false hypothesis against a sequence of linear local alternatives that tends to zero
as the sample size tends to infinity. More precisely, let (ϕe

qn)n�1 be a sequence of
(nonstochastic) functions satisfying

∥∥T ϕe
qn − q − δnξ

e
q

∥∥2
W = o(δ2

n) where δ2
n =√

2mn/n. (3.4)

Here, ξ e
q ∈ L2

W is a function satisfying ‖ξ e
q‖2

W > 0. The next result establishes
asymptotic normality for the standardized test statistic Se

n(q).

COROLLARY 3.2. Let Assumptions 1, 2(i), 3, 4, and 6 be satisfied. Let mn

satisfy condition (2.10). Assume that (ϕe
qn)n�1 satisfies (3.4). If Condition (3.3)

holds true we have

(
2mn

)−1/2
( 1

q(1 − q)
Se

n(q)− mn

)
d→ N

( ∞∑
j=1

∫ 1

0
E[ξ e

q (W ) fj (W )]2dq,1
)
.

3.2. Testing Additivity

The test statistic given in (2.4) is also convenient to check additional restrictions
on the structural effect ϕq for 0< q < 1. These additional restrictions can be easily
imposed by constraints on the functions of the sieve space Bkn . For instance, one
may impose an additive structure of the quantile structural effects.

By assuming an additive structure of ϕq one might reduce the effect of dimen-
sionality of the regressors on the convergence rate of an estimator (cf. Chen and
Pouzo (2012) in case of instrumental quantile regression). Applying this structure
leads, however, to inconsistent estimators in general if the function ϕq does not
obey an additive form. Our aim in the following is to test whether

Hadd
0 : there exist functions ϕ1

q ,ϕ
2
q ∈ B such that P(Y � ϕ1

q (Z
′)+ϕ2

q (Z
′′)|W )= q.
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Similarly as above we obtain the test statistic

Sadd
n (q)=

( n∑
i=1

(�{Yi � ϕ̂add
qn (Zi )}− q) fmn(Wi )

)t
(Wt

mn
Wmn )

−

×
n∑

i=1

(�{Yi � ϕ̂add
qn (Zi )}− q) fmn(Wi )

Here, the estimator ϕ̂add
qn = (ϕ̂1

qn, ϕ̂
2
qn) of ϕq = (ϕ1

q ,ϕ
2
q) is given by (2.3) where

the sieve basis is a tensor product of basis functions that depend either on Z ′
or Z ′′. For a more detailed discussion we refer to Section 6 of Chen and Pouzo
(2012). The next asymptotic normality result is a direct consequence of Corollary
2.4 and hence its proof is omitted.

COROLLARY 3.3. Given the conditions of Corollary 2.4 we have under
H add

0(
2mn

)−1/2
( 1

q(1 − q)
Sadd

n (q)− mn

)
d→ N (0,1).

4. MONTE CARLO SIMULATION

In this section, we study the finite sample performance of our test by presenting
the results of a Monte Carlo investigation. There are 1000 Monte Carlo replica-
tions in each experiment. Results are presented for the nominal levels 0.05. Let
� denote the cumulative standard normal distribution function. Throughout this
simulation study, realizations (Z ,W ) were generated by Z =�

(
ζω+√

1 − ζ 2 ε
)

and W = �(ω) where ω is independent of ε and ω, ε ∼ N (0,1). Here, the con-
stant ζ > 0 determines the degree of correlation between Z and W and is varied
in the experiments.

4.1. Testing a Nonparametric Specification

We begin with the finite sample analysis of our test statistics in case of nonpara-
metric specification testing. To analyze the finite sample power we distinguish in
the following between a failure of the null hypothesis caused either by a lack of
instrument validity or by nonmonotonicity of the structural function in unobserv-
ables.

Failure of instrument validity. We first generate realizations of Y under
the null hypothesis H0. Recall that under H0 there exists a function ϕ ∈
B(0,1) such that P(Y � ϕ(Z ,q)|W ) = q for all q ∈ (0,1). In the following finite
sample analysis, we restrict B(0,1) to contain continuously differentiable functions
only. Under H0, we generate realizations of Y from the nonseparable model

Y = φ(Z)(1 + V/6)+ V/2, (4.1)
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where V = ϑ ε+√
1 −ϑ2 ε with ε ∼N (0,1) independent of (ω,ε) and ϑ = 0.7.

We consider the function φ(z)=∑∞
j=1 j−4 cos( jπz). For computational reasons,

we truncate the infinite sum at 100. The resulting function is displayed in Fig-
ure 1. Since φ is continuously differentiable, the null hypothesis H0 is satisfied
with ϕ(z,q)= φ(z)

(
1+ F−1

V (q)/6
)+ F−1

V (q)/2, where F−1
V denotes the quantile

function of V .

FIGURE 1. Graphs of φ and ϕe.

When H0 is false we generate realizations of Y from

Y = (φ(Z)+ρj (Z))(1 + V/6)+ V/2, (4.2)

where ρj (z)= 10 j (z�{z � 0.25}+ (z − 1)�{z > 0.25}) for j = 1,2 and ρj (z)=
(z/2cj )�{0.5 − cj � z < 0.5 + cj } for j = 3,4, with c3 = 0.1 and c4 = 0.05.
Here, the variable V is generated as in (4.1). Under (4.2), the structural func-
tion ϕ satisfying the quantile restriction P(Y � ϕ(Z ,q)|W ) = q is given by
ϕ(z,q) = (φ(z)+ ρj (z))(1 + F−1

V (q)/6)+ F−1
V (q)/2. So ϕ(·,q) is not continu-

ously differentiable and thus, H0 is false. Because of the ill-posed inverse problem
estimation of ϕ(·,q) we cannot choose kn sufficiently large to capture such irreg-
ularities which implies finite sample power of our test against those alternatives.
This corresponds to the analysis of Horowitz (2011) in the instrumental mean
regression case.

For each quantile 0 < q < 1, we estimate the structural function using the es-
timator ϕ̂qn given in (2.3) with B-splines as approximation basis functions. More
precisely, for the sieve space Bkn , we use B-splines of order 2 with 1 knot or 2
knots (hence kn = 4 or kn = 5) and for the criterion function we use B-splines
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of order 2 with 5 knots or 7 knots (hence ln = 2kn), respectively. We thus follow
Chen and Christensen (2015) and choose ln to be a constant multiple of kn . Also,
for the vector of basis functions fmn , used to construct the test statistic, we use B-
spline basis of order 2 with knots varying between 17, 22 or 27 (hence mn = 20,
mn = 25 or mn = 30).

The empirical rejection probabilities of our standardized test statistic
3
√

5/mn
(
Sn − mn/6

)
at nominal level 0.05 are shown in Table 1. We approxi-

mate the integral over the quantiles on (0,1) by the mean of a random sample
from the uniform (0,1) distribution. As we see from Table 1, our test is less sen-
sitive with respect to the choice of mn than to the choice of kn , which is not
surprising and well known from nonparametric instrumental variable estimation
problems, see also Chen and Pouzo (2015). Table 1 shows the empirical rejection
probabilities for the sample sizes 500 and 1000. We see that as the sample size
increases the finite sample rejection probabilities become larger in the alternative
models. For kn = 4, we see that the finite sample coverage improves slightly as

TABLE 1. Empirical rejection probabilities for the standardized test statistic
3
√

5/mn
(
Sn − mn/6

)
and its bootstrap version 3

√
5/(mn(σ 2

ε + 1)2)
(
S∗

n −
mn(σ

2
ε + 1)/6

)
with varying dimension parameters kn and mn

with ln = 2kn.

Sample Model Emp. rejection prob. Emp. rejection prob.
Size using Sn using S∗

n
������

kn
mn 20 25 30 20 25 30

500 H0 true 4 0.085 0.083 0.082 0.064 0.052 0.050
ρ1 0.317 0.289 0.259 0.252 0.224 0.196
ρ2 0.337 0.302 0.289 0.298 0.248 0.215
ρ3 0.393 0.354 0.341 0.356 0.308 0.301
ρ3 0.739 0.701 0.670 0.748 0.680 0.658

H0 true 5 0.076 0.076 0.080 0.044 0.032 0.048
ρ1 0.195 0.179 0.169 0.106 0.106 0.047
ρ2 0.200 0.194 0.174 0.130 0.116 0.064
ρ3 0.171 0.153 0.152 0.082 0.082 0.064
ρ3 0.270 0.257 0.228 0.168 0.140 0.095

1000 H0 true 4 0.077 0.082 0.081 0.060 0.074 0.076
ρ1 0.630 0.587 0.553 0.576 0.540 0.502
ρ2 0.636 0.582 0.549 0.576 0.544 0.492
ρ3 0.738 0.697 0.670 0.710 0.662 0.638
ρ3 0.905 0.882 0.864 0.938 0.924 0.896

H0 true 5 0.203 0.192 0.178 0.098 0.104 0.094
ρ1 0.554 0.518 0.495 0.420 0.396 0.380
ρ2 0.629 0.596 0.549 0.532 0.478 0.460
ρ3 0.423 0.410 0.385 0.338 0.314 0.272
ρ3 0.622 0.593 0.574 0.576 0.550 0.520
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the sample size increases. This is not the case for kn = 5 which appears to be an
inappropriate choice implying a large variance.

In Table 1, we also compare our testing procedure to a bootstrap version of
it. We consider the generalized residual bootstrap as proposed in Section 2.6.
We generate the bootstrap weights by ε ∼ N (1,σ 2

ε ), independently of (Y,X,W ),
where σε = 0.5. We run 200 bootstrap evaluations per Monte Carlo replication.
We see from Table 1 that the bootstrap leads to an improvement in the finite
sample coverage in the true model. In this sense, the bootstrap test statistic is less
sensitive to the choice of kn under the true model. Similar to Chen and Pouzo
(2015) (see p. 1059), we see only a minor improvement of the bootstrap test in
the alternative models but we expect that it improves further as the number of
bootstrap runs is increased.

As we fix the dimension parameter ln = 2kn, two dimension parameters re-
main to be chosen by the econometrician, namely, kn and mn . While proposing an
adaptive testing procedure is beyond the scope of this article, we want to provide
an heuristic argument for the parameter choice. Intuitively, we want to choose
kn such that we have a good model fit, i.e., a small value of the test statistic,
and mn to have good power properties, i.e., a large value of the test statistics.
Moreover, the choice should reflect the rate requirement from our theory, that is,
kn � ln = o(m1/2

n ) and mn = o(n1/2). We implement such a heuristic parame-
ter choice criterion via the following minimum-maximum principle. That is, if
{s(kn,mn)} denotes the standardized value of our test Sn with dimension parame-
ters kn and mn , then we choose these parameters such that

min
kn<n1/4

max
k2

n�mn<n1/2
{s(kn,mn)}.

The values of this minimum–maximum principle (over the range mn ∈
{20,25,30} and kn ∈ {4,5}) are shown in bold in Table 1. Note that the require-
ment kn < n1/4 implies kn � 4 when n = 500 and kn � 5 when n = 1000. Further-
more, mn < n1/2 implies mn � 22 for n = 500 and mn � 31 for n = 1000. We see
that this criterion helps to avoid choosing the dimension parameter kn too large
which would yield inaccurate coverage. Such a rule, however, does not account
for ill-posedness of the estimation problem and hence, kn might still be chosen too
large. We thus could calculate the sieve measure of ill-posedness by estimating the
first kn minimal eigenvalues of Tq (see also Chen and Pouzo, 2015).

Failure of monotonicity in unobservables. We study the finite sample power
of our test when ϕ is not strictly monotonic in the structural disturbance V . Real-
izations of Y were generated from

Y =�(Z + V )V 2, (4.3)

where V =�
(
(ϑ ε+√

1 −ϑ2 ε)/4
)

with ε ∼ N (0,1) and where ϑ = 0.8. When
H0 is false we generate

Y =�(Z + V )(V − 0.5)2 j (4.4)
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or

Y =�(Z + V )�−2 j (V ) (4.5)

for j = 1,2. In the alternative models, the structural disturbance enters the model
in a nonmonotonic way. We construct the statistic Sn and its bootstrap counterpart
S∗

n as described in the previous paragraph.
Table 2 depicts the empirical rejection probabilities of our test against the alter-

native models (4.4) and (4.5). Again, we observe that our test is not very sensitive
to the choice of the dimension parameter mn . Our test becomes somewhat less
powerful for large kn . But in contrast to the alternatives involving discontinuous
functions in the previous paragraph, the choice of kn is not as sensitive. For each
choice of parameter kn , our test becomes more powerful as the sample size in-
creases from 500 to 1000. For n = 1000 we see that the parameter choice kn = 5
leads to a more accurate finite sample coverage. This is captured by the minimum-
maximum principle as introduced above. Again, the resulting values of the test
statistic using this criterion over the range mn ∈ {20,25,30} and kn ∈ {4,5} are
shown in bold. Again, we observe that the boostrap version of the test statistic
behaves similarly as the statistic Sn .

TABLE 2. Empirical rejection probabilities for the standardized test statistic
3
√

5/mn
(
Sn − mn/6

)
and 3

√
5/(mn(σ 2

ε + 1)2)
(
S∗

n − mn(σ
2
ε + 1)/6

)
using vary-

ing dimension parameters kn and mn with ln = 2kn .

Sample Model Emp. rejection prob. Emp. rejection prob.
Size using Sn using S∗

n
�����kn

mn 20 25 30 20 25 30

500 (4.3) 4 0.043 0.066 0.079 0.022 0.044 0.058
(4.4) with j=1 0.390 0.433 0.393 0.338 0.324 0.298
(4.4) with j=2 0.966 0.967 0.959 0.984 0.970 0.964
(4.5) with j=1 0.441 0.492 0.435 0.376 0.372 0.342
(4.5) with j=2 0.976 0.979 0.968 0.994 0.982 0.978

(4.3) 5 0.048 0.063 0.083 0.024 0.030 0.036
(4.4) with j=1 0.183 0.247 0.215 0.132 0.126 0.110
(4.4) with j=2 0.671 0.710 0.649 0.722 0.662 0.602
(4.5) with j=1 0.219 0.278 0.259 0.154 0.144 0.112
(4.5) with j=2 0.721 0.746 0.672 0.766 0.704 0.650

1000 (4.3) 4 0.042 0.080 0.082 0.032 0.037 0.038
(4.4) with j=1 0.717 0.712 0.681 0.696 0.677 0.636
(4.4) with j=2 1.000 1.000 0.999 1.000 1.000 1.000
(4.5) with j=1 0.751 0.768 0.737 0.752 0.733 0.694
(4.5) with j=2 1.000 0.999 0.999 1.000 1.000 1.000

(4.3) 5 0.044 0.055 0.057 0.030 0.030 0.042
(4.4) with j=1 0.452 0.435 0.394 0.414 0.368 0.332
(4.4) with j=2 0.966 0.953 0.932 0.982 0.974 0.968
(4.5) with j=1 0.515 0.490 0.441 0.490 0.442 0.400
(4.5) with j=2 0.971 0.961 0.950 0.984 0.982 0.982
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4.2. Testing Exogeneity

Realizations Y were generated by

Y = ϕe(Z)+ V/2,

where V is generated as described in model (4.1), that is, V = ϑ ε+ √
1 −ϑ2 ε

with ε ∼ N (0,1) independent of (ω,ε). The function ϕe is given by ϕe(z) =∑∞
j=1(−1) j+1 j−2 sin( jπz). Again, for computational reasons we truncate the

infinite sum at 100. The resulting function is displayed in Figure 1. Note that
ϑ determines the degree of endogeneity of Z and is varied among the ex-
periments. The null hypothesis H0 : P(Y � ϕe(Z)|Z) = q holds true if ϑ =
0 and is false otherwise. In the following, we perform a test at the me-
dian q = 0.5. As our test relies on the equation P(Y � ϕe(Z)|W ) = q , we
expect our test to have more power as the correlation between W and Z
increases.

The test statistic is implemented as described in Section 4.2. To estimate the
structural effect, we make use of the estimator ϕ̂e

qn of He and Shi (1994) given
in (3.2). Here, we use B-splines of order 2 with 1 knot (hence kn = 4) or 2 knots
(hence kn = 5). In contrast to the previous section, the choice of the dimension pa-
rameter kn is not affected by the ill-posedness of the underlying inverse problem.
As above, the vector of basis functions fmn is also constructed with B-spline basis
of order 2 with knots varying between 17, 22 or 27 (hence mn = 20, mn = 25 or
mn = 30).

Table 3 depicts the empirical rejection probabilities with varying number of ba-
sis functions. As we see from Table 3, our test becomes more powerful for larger
ζ ; that is, for instruments with a stronger correlation to the covariates Z . From
Table 3, we see that the test of exogeneity becomes somewhat less powerful for
larger values of mn . On the other hand, the test seems not to be too sensitive with
respect to the choice of the dimension parameters kn and mn . We also see from
Table 3 that the finite sample coverage and power properties of the test improve
as the sample size increases from 500 to 1000.

Similarly as above, a guideline for smoothing parameter choice in practice is

given by the following minimum-maximum principle. That is, if
{

se
q (kn,mn)

}
denotes the standardized value of our test Se

n(q) with dimension parameters kn

and mn then choose these parameters such that

min
kn<n1/4

max
k2

n�mn<n1/2

{
se

q (kn,mn)
}
.

Again, this criterion takes the rate condition for the asymptotic theory into ac-
count. In Table 3, the resulting values of the test statistic using this criterion over
the range mn ∈ {20,25,30} and kn ∈ {4,5} are shown in bold.
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TABLE 3. Empirical rejection probabilities for the standardized test statistic
(2mn)

−1/2
(
4 Se

n(0.5)− mn
)

with varying dimension parameters kn and mn .

ζ ϑ Emp. rejection prob. Emp. rejection prob.
using Se

n(0.5) with n = 500 using Se
n(0.5) with n = 1,000

�����
kn mn 20 25 30 20 25 30

0.4 0.00 4 0.064 0.064 0.064 0.064 0.062 0.056
0.30 0.172 0.161 0.139 0.350 0.290 0.264
0.35 0.231 0.204 0.176 0.497 0.436 0.392
0.40 0.319 0.275 0.256 0.659 0.605 0.546
0.45 0.425 0.389 0.334 0.821 0.775 0.717

0.7 0.00 0.067 0.067 0.057 0.054 0.059 0.049
0.30 0.273 0.246 0.219 0.664 0.584 0.542
0.35 0.393 0.363 0.321 0.859 0.800 0.755
0.40 0.571 0.515 0.465 0.970 0.947 0.908
0.45 0.746 0.680 0.619 0.997 0.990 0.982

0.4 0.00 5 0.065 0.067 0.063 0.059 0.057 0.055
0.30 0.170 0.154 0.148 0.335 0.287 0.264
0.35 0.227 0.202 0.179 0.501 0.428 0.388
0.40 0.315 0.278 0.256 0.667 0.598 0.553
0.45 0.429 0.386 0.355 0.824 0.775 0.715

0.7 0.00 0.061 0.057 0.055 0.049 0.041 0.045
0.30 0.247 0.221 0.201 0.647 0.581 0.525
0.35 0.393 0.353 0.318 0.858 0.797 0.727
0.40 0.571 0.495 0.438 0.966 0.940 0.905
0.45 0.725 0.658 0.598 0.997 0.990 0.983

5. AN EMPIRICAL ILLUSTRATION

To illustrate our testing procedure, we present an empirical application concerning
estimation of the effects of class size on students’ performance on standardized
tests. Angrist and Lavy (1999) studied the effects of class size on test scores of
4th and 5th grade students in Israel. In this empirical illustration, we focus on
4th grade reading comprehension, a feature that was also considered by Horowitz
(2011).

In this empirical example, we study the model

Ysc = ϕ(Zsc,Vsc)+ Dscβ(Vsc), (5.1)

where Ysc is the average reading comprehension test score of 4th grade students
in class c of school s, Zsc is the number of students in class c of school s, Dsc is
the fraction of disadvantaged students in class c of school s with unknown scalar
function β, Vsc = Us +εsc where Us is an unobserved school-specific random ef-
fect, and εsc is an unobserved, independently over classes and schools distributed
random variable.
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The class size Zsc may be endogenous, for instance, due to the socioeconomic
background of the students. To identify the causal effect of class size on scholar
achievement, Angrist and Lavy (1999) use Maimonides’ rule as instruments. Ac-
cording to this administrative rule, maximum class size is given by 40 pupils and
will be split if the number of enrolled students exceeds this number. More pre-
cisely, assuming that cohorts are divided into classes of equal size, Maimonides’
rule is described by

Wsc = Es/�1 + (Es − 1)/40�,
where Es denotes enrollment in school s and �x� denotes the largest integer less
or equal to x . Note that Horowitz (2011) could show that a linear relation be-
tween class size and scholar achievement as used by Angrist and Lavy (1999) is
misspecified. To apply our tests, we consider a subsample where only one repre-
sentative class per school is considered. By doing so, we avoid that rejection of
a hypothesis may be caused by within class correlation. Moreover, only schools
with at least two classes are considered which leads to a sample size of 707.

In the following, we want to test nonparametrically whether class size is en-
dogenous at the 0.5–quantile. The null hypothesis is that P(Ysc � ϕ(Zsc,q)+
Dsc β(q)|Zsc) = q where q = 0.5. The value of our test statistic Se

n(0.5) =
(2mn)

−1/2
(
4 Se

n(0.5)− mn
)

is given by 1.885. For the choice of smoothing pa-
rameters kn and mn we applied the minimum-maximum principle as described in
Section 4.2. The resulting dimension parameters are kn = 4 and mn = 23.3 We
thus reject the hypothesis of exogeneity at the 0.05 nominal level. In particular, in
model (5.1) under Conditions (a.1)–(a.3)we conclude that Zsc is not independent
of Vsc.

We now test whether the model (5.1) with Conditions (a.1)–(a.3) is cor-
rectly specified. We construct our test statistic using B-splines as described in
Section 4.1. For the choice of smoothing parameters kn and mn we applied
the minimum-maximum principle as described in Section 4.2. As in the Monte
Carlo section we choose ln = 2kn. Our test statistic attains the value 1.4152
and thus fails to reject the nonseparable model (5.1) with Conditions (a.1)–
(a.3) at the 0.05 nominal level. This value of the test statistic is obtained when
kn = 4 and mn = 26. For the fixed quantile q = 0.5, we also performed a test of
P(Ysc � ϕ(Zsc,q)+ Dscβ(q)|Wsc) = q . In this case, our test statistic attains the
value 0.981 and again fails to reject the hypothesis.4

For the full sample, Figure 2 depicts estimators of the structural effect ϕq for
the quantiles q ∈ {0.75, 0.5, 0.25} where the number of disadvantaged students
is restricted to be smaller than 15% (which implies n = 688). The solid lines are
the estimators and the dashed lines are the 90% pointwise bootstrap confidence

3 The value of the test for other choices of kn is 2.254 for kn = 3 and 2.182 for kn = 5 where ln = 2kn and mn is
maximized over the range k2

n to 26 (being the largest integer smaller than
√

707).
4 This is not the case if kn is chosen too small or too large. For instance if kn = 4 or kn = 9, respectively, then the
value of the test statistic is 2.064 or 3.420 (as above maximized of mn and ln = 2kn ).
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FIGURE 2. Estimated structural effects (solid lines) for q ∈ {0.75, 0.5, 0.25} and 90%
confidence intervals (dashed lines).

intervals using 1000 bootstrap iterations (we account for within school correlation
by using schools as the bootstrap sampling units, see also Horowitz, 2011). We
can see that the confidence intervals are tight enough to reject the hypothesis that
the quantile structural effects are overall upward sloping. In particular, we see that
the effect of class size variation on test scores is more severe for lower performing
classes.

6. CONCLUSION

In this article, we develop a nonparametric specification test for the quantile re-
gression model (1.1). The power of the test derives either from violations of regu-
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larity conditions imposed on the structural function, such as bounds or smoothness
requirements, or a failure of monotonicity in the nonseparable unobservable vari-
able. The test statistic is easy to implement and a natural extension of specification
testing in a parametric framework. As the test builds on the sieve methodology, it
allows to incorporate restrictions under the null hypothesis directly on the sieve
space. As examples of tests of constraint hypotheses, we consider in detail a test of
exogeneity and a test of additivity of the structural function. We establish the large
sample behavior of our test statistics and show that our tests work well in finite
sample experiments. We also obtain reasonable results in an empirical illustration
concerning the analysis of class size on students’ performance. While we provide
some heuristic guideline how to choose the sieve dimension in finite samples, an
interesting future research area remains to provide asymptotic justification for it
via adaptive testing.
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APPENDIX

A.1. Proofs of Section 2

In the appendix, fmn denotes an mn dimensional vector with entries f j for 1 � j � mn .
Moreover, ‖ · ‖ is the usual Euclidean norm. For ease of notation, let Xi = (Yi , Zi ,Wi ) for
1 � i � n with realizations x = (y, z,w) ∈ Y ×Z ×W . Let H be a class of measurable
functions with a measurable envelope function H . Then, N(ε,H,L2

X ) and N[ ](ε,H,L2
X ),

respectively, denote the covering and bracketing numbers for the set H. In addition, let
J[ ](1,H,L2

X ) denote a bracketing integral of H, that is,

J[ ](1,H,L2
X )=

∫ 1

0

√
1+ log N[ ](ε ‖H‖X ,H,L2

X )dε.

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may
be different in different uses. Furthermore, for ease of notation we write

∫
for

∫ 1
0 ,

∑
i

for
∑n

i=1, and
∑

i ′<i for
∑n

i=1
∑i−1

i ′=1. For any φ,ψ ∈ L2
W , the inner product in L2

W
is denoted by

〈
φ,ψ

〉
W = E[φ(W )ψ(W )] and let Fmnφ = ∑mn

j=1

〈
φ, f j

〉
W fj . In the fol-

lowing, we denote Q̂n = n−1∑
i fmn (Wi ) fmn (Wi )

t . By Assumption 1, the eigenvalues

of E[ fmn (W ) fmn (W )t ] are bounded away from zero and hence, it may be assumed that

E[ fmn (W ) fmn (W )t ] = Imn where Imn denotes the mn dimensional identity matrix (cf.
Newey, 1997, p. 161).

In the following result, we establish continuity of the mapping q 
→ ϕ(·,q) under the
tangential cone condition and a mild assumption on the sieve approximation error for ϕq .

LEMMA A.1. Let Assumption 2 be satisfied. Assume for almost all q ∈ (0,1) there exists
a function ϕq with T ϕq = q, let Tq be compact, and ‖ϕq −Πkϕq‖Z = o(1) as k → ∞.
Then, the mapping q 
→ ϕ(·,q) is continuous.

Proof. For some q ∈ (0,1), since the linear operator Tq is compact, there exists singular
value decomposition of it denoted by {sq j ,ej , f j }j�1. For any ε > 0 and k sufficiently
large, let us define δ = (1−η)ε sqk/3. We consider q′ ∈ (0,1) such that |q −q′|< δ. Since
q,q′ satisfy the quantile restriction we have ‖T ϕq −T ϕq ′ ‖W < δ. Let us further denote
rk(q) = ‖Πkϕq −ϕq‖W . We have rk(q) � ε/6 by assumption for all q. By Assumption
2(ii) and the triangular inequality it holds

‖T ϕq−T ϕq′ ‖W � (1−η)‖Tq (ϕq −ϕq′ )‖W

= (1−η)‖TqΠk (ϕq −ϕq′ )− Tq (Πkϕq −ϕq )+ Tq (Πkϕq′ −ϕq′ )‖W

� (1−η)
(
‖TqΠk (ϕq −ϕq′ )‖W −‖Tq (Πkϕq −ϕq )‖W −‖Tq (Πkϕq′ −ϕq′ )‖W

)
� (1−η)sqk

(
‖Πk (ϕq −ϕq′ )‖Z − rk (q)− rk (q

′)
)

� (1−η)sqk

(
‖ϕq −ϕq′ ‖Z −2rk (q)−2rk (q

′)
)
,

using that (sq j )j�1 is a nonincreasing sequence. This implies
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‖ϕq −ϕq ′ ‖Z � (1−η)−1 s−1
qk δ+2rk (q)+2rk (q

′)

� (1−η)−1 s−1
qk δ+2ε/3

� ε,
which proves the result. �

Proof of Proposition 2.1. Let ‖Tq‖o,2 be the operator norm of the Fréchet derivative
Tq given by ‖Tq‖o,2 = sup{φ∈L2

Z :‖φ‖Z�1} ‖Tqφ‖W . From Assumption 4(v) we infer that

the operator Tq is bounded since

‖Tq‖2
o,2 � sup

{φ∈L2
Z :‖φ‖Z�1}

E |E [pY |Z ,W
(
ϕ(Z ,q), Z ,W

)
φ(Z)

∣∣W]|2
� C sup

{φ∈L2
Z :‖φ‖Z�1}

E |φ(Z)|2

� C.

Since ‖ ·‖Z � ‖ ·‖α,p for any integer p > 0 (see, e.g., Lemma A.2 of Santos (2012)) we
have supφ∈B ‖φ‖Z � ρ by the definition of B. Consequently, for any φ ∈ B, we obtain

‖Tqφ‖W � ‖Tq‖o,2‖φ‖Z � ρ ‖Tq‖o,2.

We conclude that the range Rq (B) is uniformly bounded by the constant ρ ‖Tq‖o,2 and
hence, Rq (B) is a strict subset of L2

W , which completes the proof. �

Proof of Theorem 2.3. Since we have ‖Q̂n − Imn ‖2 = op(m2
n/n) it is sufficient to prove

that 3
√

5/mn
(∑mn

j=1

∫ |n−1/2∑
i (�{Yi � ϕ̂qn(Zi )}−q) fj (Wi )|2dq −mn/6

) d→N (0,1).
The proof is based on the decomposition

mn∑
j=1

∫ ∣∣n−1
∑

i

(�{Yi � ϕ̂qn (Zi )}−q) f j (Wi )
∣∣2dq

=
mn∑
j=1

∫ ∣∣n−1
∑

i

(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )
∣∣2dq

− 2

n2

mn∑
j=1

∫ (∑
i

(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )
)

×
(∑

i

(
�{Yi � ϕ̂qn (Zi )}−�{Yi � ϕ(Zi ,q)}

)
f j (Wi )

)
dq

+
mn∑
j=1

∫ ∣∣n−1
∑

i

(
�{Yi � ϕ̂qn(Zi )}−�{Yi � ϕ(Zi ,q)}

)
f j (Wi )

∣∣2dq = In −2I In + I I In . (A.1)

Consider In . We calculate further

m−1/2
n

(
nIn −mn/6

)= 1√
mnn

∑
i

mn∑
j=1

(∫
|(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )|2dq −1/6

)

+ 1√
mnn

∑
i �=i′

mn∑
j=1

∫ (
�{Yi � ϕ(Zi ,q)}−q

)(
�{Yi′ � ϕ(Zi′ ,q)}−q

)
f j (Wi ) f j (Wi′ )dq,
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where the first summand tends in probability to zero as n → ∞. Indeed,we have

E

∫
|(�{Y � ϕ(Z ,q)}−q) fj (W )|2dq = E[ f 2

j (W )]
∫

q(1−q)dq = 1/6

for all j � 1 and hence,

E

∣∣∣ 1√
mnn

∑
i

mn∑
j=1

(∫
|(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )|2dq −1/6

)∣∣∣2

� 1

mnn

∫
E

∣∣∣ mn∑
j=1

|(�{Y � ϕ(Z ,q)}−q) f j (W )|2 −E |(�{Y � ϕ(Z ,q)}−q) f j (W )|2
∣∣∣2dq

� 1

mnn
sup
w∈W

‖ fmn (w)‖4
∫

E |�{Y � ϕ(Z ,q)}−q|4dq

� O(mn/n) = o(1)

by using supw∈W ‖ fmn (w)‖2 � Cmn . Therefore, to establish 3
√

5/mn (nIn − mn/6)
d→

N (0,1) it is sufficient to show

3
√

5√
mnn

∑
i �=i′

mn∑
j=1

∫ (
�{Yi � ϕ(Zi ,q)}−q

)(
�{Yi′ � ϕ(Zi′ ,q)}−q

)
f j (Wi ) f j (Wi′ )dq

d→ N (0,1).

This follows from Lemma A.3. Consider I I In . Let us denote Bn := {φ ∈ B(0,1) : |||φ−
ϕ|||2Z ,p �m−(1+c)/κ

n } for some constant c> 0 and Bqn := {φq : φ ∈Bn}⊂B. Furthermore,
we denote for 1 � j � mn and 1 � i � n

hq j (Xi ,φq )= (
�{Yi � φ(Zi ,q)}−�{Yi � ϕ(Zi ,q)}

)
f j (Wi )

and the classes Hq jn = {hq j (·,φq ) : φq ∈ Bqn} and Hq j = {hq j (·,φq ) : φq ∈ B}. We
observe

I I In =
mn∑
j=1

∫ ∣∣n−1
∑

i

hq j (Xi , ϕ̂qn)
∣∣2dq

� 2ηp |||T ϕ̂·n −T ϕ|||2W +2
mn∑
j=1

∫ ∣∣n−1
∑

i

hq j (Xi , ϕ̂qn)−
〈
T ϕ̂qn −T ϕq , f j

〉
W

∣∣2dq.

From (A.4) in Lemma A.2 together with condition nτn = o(
√

mn)we deduce n |||T ϕ̂·n −
T ϕ|||2W = op(

√
mn). Furthermore, we observe for every φq ∈ Bqn that

∣∣hq j (Xi ,φq )
∣∣2 � max

φq∈Bqn

∣∣(�{Yi � φ(Zi ,q)}−�{Yi � ϕ(Zi ,q)}
)

f j (Wi )
∣∣2 =: H2

q j (Xi )

and hence, Hq j is an envelope function of the class Hq jn and due to Assumption 3 we have

E[
∫

H2
q j (X)dq] � Cm−(1+c)

n . Moreover, (A.5) in Lemma A.2 together with Condition

https://doi.org/10.1017/S0266466619000288 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000288


616 CHRISTOPH BREUNIG

(2.11) implies |||ϕ̂·n −ϕ|||2Z ,p = op
(
m−(1+c)/κ

n
)

and thereby

P

( mn∑
j=1

∫ ∣∣n−1
∑

i

hq j (Xi , ϕ̂qn )−
〈
T ϕ̂qn −T ϕq , f j

〉
W

∣∣2dq > ε
)

�
mn∑
j=1

ε−1
E sup
φ∈Bn

∫ ∣∣∣n−1/2
∑

i

hq j (Xi ,φq )−Ehqj (X,φq )
∣∣∣2dq +o(1)

�
mn∑
j=1

ε−1
∫

E max
φq∈Bqn

∣∣∣n−1/2
∑

i

hq j (Xi ,φq )−Ehqj (X,φq )
∣∣∣2dq +o(1)

�
mn∑
j=1

ε−1
∫ (

E max
φq∈Bqn

∣∣∣n−1/2
∑

i

hq j (Xi ,φq )−Ehqj (X,φq )
∣∣∣+(

E |Hqj (X)|2
)1/2)2

dq +o(1),

where the last inequality is due to Theorem 2.14.5 of van der Vaart and Wellner (2000).
We further conclude by applying the last display of Theorem 2.14.2 of van der Vaart and
Wellner (2000)

E max
φq∈Bqn

∣∣∣n−1/2
∑

i

hq j (Xi ,φq )−Ehq j (X,φq )
∣∣∣� C J[ ](1,Hq jn,L2

X)
(
E |Hq j (X)|2

)1/2

for all 0< q < 1. Now since max1� j�mn E
∫ |Hq j (X)|2dq � Cm−(1+c)

n for n sufficiently

large it is sufficient to show that max1� j�mn J[ ](1,Hq jn,L2
X) <C for all 0< q < 1. From

Lemma 4.2(i) of Chen (2007) we deduce

N[ ](ε
(
E |Hq j (X)|2

)1/2
,Hq jn,L2

X)� N[ ]

(
ε,
(
E |Hq j (X)|2

)−1/2Hq jn,L2
X

)
� N[ ]

(
ε,Hq j ,L2

X

)
� N

(( ε

2C

)2/κ
,B,‖ · ‖Z ,p

)
� N

(( ε

2C

)2/κ
,B,‖ · ‖∞

)
.

Employing condition α0 > dz/p and Theorem 6.2 Part II of Adams and Fournier (2003)
yields that Wα,p is compactly embedded in Wα,∞. Thereby, B ⊂ Wα,p is totally bounded
in Wα,∞ which implies ‖φ‖α,∞ �C for all φ ∈B. Let Wα,∞

C := {Wα,∞ : ‖φq‖α,∞ �C}.
Now Theorem 2.7.1 of van der Vaart and Wellner (2000) gives

log N
(
ε2/κ,B,‖ · ‖∞

)
� log N

(
ε2/κ ,Wα,∞

C ,‖ · ‖∞
)
� Cε−2dz/(ακ),

where C depends on the diameter of Z. Now due to Assumption 4(i) it is straightforward
to see that max1� j�mn J[ ](1,Hq jn,L2

X) < C and hence, nI I In = op(
√

mn).
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Consider I In . We observe

nI In =
mn∑
j=1

∫ (∑
i

(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )
)(

n−1
∑

i

hq j (Xi , ϕ̂qn)
)

dq

=
mn∑
j=1

∫ (∑
i

(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )
)(

n−1
∑

i

hq j (Xi , ϕ̂qn)−
〈
T ϕ̂qn −T ϕq , f j

〉
W

)
dq

+
mn∑
j=1

∫ (∑
i

(�{Yi � ϕ(Zi ,q)}−q) f j (Wi )
)〈
T ϕ̂qn −T ϕq , f j

〉
W dq

= Cn1 + Cn2.

The Cauchy Schwarz inequality implies for all ε > 0

P(|Cn1|> ε√mn)� (ε
√

mn)
−1
(∫

q(1−q)dq
)1/2

×
mn∑
j=1

(∫
E max
φq∈Bqn

∣∣n−1/2
∑

i

hq j (Xi ,φq )−Ehq j (X,φq )
∣∣2dq

)1/2 +o(1)

= o(1),

where the last equality follows similarly to the proof of nI I In = op(
√

mn). Consider Cn2.
Let us introduce the function for 1 � j � mn and 1 � i � n

tqn(Xi ,φq ) := (
�{Yi � ϕ(Zi ,q)}−q

)(
FmnT φq − FmnT ϕq

)
(Wi )

and the sets Dn :=
{
φ ∈ B(0,1) : n|||T φ−T ϕ|||2W � √

mn

}
, Dqn := {

φq : φ ∈ Dn
} ⊂ B,

Gq := {tqn : φ ∈ B}, and Gqn := {tqn : φ ∈ Dqn}. We calculate

P
(|Cn2|> ε√mn

)
�

√
n(ε

√
mn)

−1
E

∫
max

φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi ,φq )
∣∣∣dq +o(1).

Since pW is uniformly bounded away from zero, n|||T φ − T ϕ|||2W � √
mn , and

‖Fmn (T φq − T ϕq )‖W � C‖T φq − T ϕq‖W for all φ ∈ Dn we have |Fmn (T φq −
T ϕq )(w)| � C m1/4

n n−1/2 for almost all 0 < q < 1 and pW –almost all w. Consequently,

tqn(x,φq )� C m1/4
n n−1/2 pW –almost surely. We conclude by again applying the last dis-

play of Theorem 2.14.2 of van der Vaart and Wellner (2000)

E max
φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi ,φq )
∣∣∣� C J[ ](1,Gqn ,L2

X)m
1/4
n n−1/2.

As above, it can be seen that J[ ](1,Gqn,L2
X) < C for all 0 < q < 1. Indeed, from As-

sumption 2(ii) we conclude ‖T φ − T ϕq‖W � (1 + η)‖Tq (φ− ϕq )‖W and further, As-
sumption 4(v) yields ‖Fmn (T φ−T ϕq )‖W � C(1+η)ηp‖φ−ϕq‖Z . Hence, the mapping
φ 
→ FmnT φ is Lipschitz continuous at ϕq and we may apply Theorem 2.7.11 of van der
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Vaart and Wellner (2000) which yields

N[ ](ε
(
n−1√mn

)1/2
,Gn ,L2

X)� N[ ](ε,Gq ,L2
X)

� N[ ]
(
ε,{FmnT φ− FmnT ϕq : φ ∈ B},L2

W
)

� N
( ε

2C
,B,‖ · ‖∞

)
.

Thereby, Cn2 = op(
√

mn), which completes the proof. �

In the following we make use of the notation gq j (Xi ,φ) := (�{Yi � φ(Zi )}−q) f j (Wi ),
1 � j � mn , 1 � i � n, for any φ ∈ B.

Proof of Proposition 2.6. For the proof it is sufficient to show
n−1Sn �

∫ ‖T ϕq − q‖2
W dq/2 + op(1). Since

∫ ‖n−1∑
i (�{Yi � ϕ̂qn(Zi )} −

�{Yi � ϕq (Zi )}) fmn (Wi )‖2dq = op(1) (cf. proof of Theorem 2.3 together with
Lemma A.2) we obtain∫ ∥∥n−1

∑
i

(�{Yi � ϕq (Zi )}−q) fmn (Wi )
∥∥2dq

=
∫ ∥∥E[((T ϕq )(W )−q) fmn (W )]

∥∥2dq +op(1)

�
∫

‖T ϕq −q‖2
W dq/2+op (1),

which proves the result. �

Proof of Proposition 2.7. Since ϕq = argminφ∈B ‖T φ−q‖W we obtain as in the proof
of Theorem 2.3 by employing the results of Lemma A.2 that

Sn =
mn∑
j=1

∫ ∣∣∣n−1/2
∑

i

gq j (Xi ,ϕq )
∣∣∣2dq +op(

√
mn).

Furthermore, we calculate

mn∑
j=1

∫ ∣∣∣n−1/2
∑

i

gq j (Xi ,ϕq )
∣∣∣2dq =

mn∑
j=1

∫ ∣∣∣n−1/2
∑

i

(
gqj (Xi ,ϕq )−Egqj (Xi ,φ)

)∣∣∣2dq

+2
mn∑
j=1

∫ (
n−1/2

∑
i

(
gqj (Xi ,ϕq )−Egqj (X,ϕq )

))√
nEgqj (X,ϕq )dq

+n
mn∑
j=1

∫ ∣∣∣Egqj (X,ϕq )
∣∣∣2dq

= In + 2I In + I I In .

We have 3
√

5/mn
(
In − mn/6

) d→ N (0,1). Furthermore, since E[(�{Y � ϕ(Z ,q)} −
q)2|W ] � 1 we obtain

https://doi.org/10.1017/S0266466619000288 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000288


SPECIFICATION TESTING 619

E |I In |2 � nE
∫ ∣∣(�{Y � ϕ(Z ,q)}−q)

mn∑
j=1

Egq j (X,ϕq )
∣∣2dq

� n
∫ ∣∣∣ mn∑

j=1

Egq j (X,ϕq)
∣∣∣2dq � n

∫
‖T ϕq −q‖2

W dq (A.2)

and hence I In = Op((n
∫ ‖T ϕq − q‖2

W dq)1/2). Moreover, since n
∫ ‖T ϕqn −

T ϕq‖2
W dq = o(

√
mn) and by employing relation (2.13) it is easily seen that

3
√

5√
mn

I I In = 3
√

5n√
mn

∫
‖T ϕqn −q − δnξq‖2

W dq +
∞∑

j=1

∫
E[ξq (W ) f j (W )]2dq +o(1),

which proves the result. �

Proof of Corollary 2.9. For the proof it is sufficient to show n−1S∗
n �

∫ ‖T ϕq −
q‖2

W dq/2 + op∗ (1) with probability approaching one. Chen and Pouzo (2015) show that
the bootstrap version of the sieve estimator ϕ̂∗

qn converges at the same rate as ϕ̂qn . In light
of the proof of Proposition 2.6, it is sufficient to show∫ ∥∥n−1

∑
i

εi (�{Yi � ϕq (Zi )}−q) fmn (Wi )
∥∥2dq

=
∫ ∥∥E[((T ϕq )(W )−q) fmn (W )]

∥∥2dq +op(1)

�
∫

‖T ϕq −q‖2
W dq/2+op (1),

using that ε is independent of W and E[ε] = 1 as well as Var (ε) <∞, which proves the
result. �

Proof of Corollary 3.1. In light of the proof of Theorem 2.3 it is sufficient to prove
n‖T ϕ̂e

qn −T ϕq‖2
W = op(

√
mn). Because of Assumption 6(ii) we obtain as in the proof

of Theorem 6 of Chen et al. (2014) that

‖T ϕ̂e
qn −T ϕq − Tq (ϕ̂

e
qn −ϕq )‖W � C‖ϕ̂e

qn −ϕq‖2
Z

and consequently,

‖T ϕ̂e
qn −T ϕq‖W � C

(‖Tq (ϕ̂
e
qn −ϕq )‖W +‖ϕ̂e

qn −ϕq‖2
Z
)
.

Moreover, by applying supy pY |Z ,W (y, Z ,W )� C and Jensen’s inequality we have

‖Tq (ϕ̂
e
qn −ϕq )‖2

W =
∫
W

|
∫
Z

pY |Z ,W (ϕ(z,q), z,w)(ϕ̂e
qn −ϕq )(z)pZ |W (z,w)dz|2 pW (w)dw

� C‖ϕ̂e
qn −ϕq‖2

Z

= Op(R
e
n)

= op(
√

mn/n),
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by employing the rate Conditions (3.3) and Assumption 6(iii). �

Proof of Proposition 3.2. Due to the rate restriction (3.3) we may follow the proof of
Theorem 2.3 and Corollary 3.1 and hence obtain

Se
n(q)=

mn∑
j=1

∣∣∣n−1/2
∑

i

(�{Yi � ϕe
q (Zi )}−q) fj (Wi )

∣∣∣2 +op (
√

mn).

Thus, by following line by line the Proposition 2.7, we obtain the result. �

A.2. Technical Assertions

We cannot apply the consistency and rate of convergence results of Chen and Pouzo
(2012) when the null hypothesis H0 fails. The following Lemma extends their results to
possibly misspecified instrumental quantile regression. Recall that under misspecification
ϕq = argminφ∈B ‖T φ−q‖W does not satisfy T ϕq = q.

LEMMA A.2. Let Assumptions 1–4 hold true. Then

|||ϕ̂·n −ϕ|||2Z ,p = op(1), (A.3)

|||T ϕ̂·n −T ϕ|||2W = Op

(
ωn +

∫
‖T ϕq −q‖2

W dq
)
, (A.4)

|||ϕ̂·n −ϕ|||2Z ,p = Op

(
|||Πkn ϕ−ϕ|||2Z ,p + τkn

(
ωn +

∫
‖T ϕq −q‖2

W dq
))
. (A.5)

Proof. Proof of (A.3). We define Rn := max
(
n−1ln,maxφ∈Bkn

∑
j>ln E[(T φ(W )−

q) fj (W )]2). From the proof of Proposition 2.6 we have that

ln∑
j=1

E max
φ∈Bkn

∣∣∣n−1
∑

i

�{Yi � φ(Zi )} f j (Wi )−E[�{Y � φ(Z)} f j (W )]
∣∣∣2 = O(n−1ln).

(A.6)

Consequently, we observe∫ ∥∥n−1
∑

i

(�{Yi �Πknϕq (Zi )}−q) fln (Wi )
∥∥2dq � 2

∫
‖T Πknϕq −q‖2

W dq+Op (Rn).

Furthermore, using the elementary inequality (a −b)2 � a2/2−b2 and again applying
relation (A.6) gives∫ ∥∥n−1

∑
i

(�{Yi � φq (Zi )}−q) fln (Wi )
∥∥2dq �

∫
‖Fln (T φq −q)‖2

W dq/2

−
ln∑

j=1

max
φ∈Bkn

∣∣∣n−1
∑

i

�{Yi � φ(Zi )} f j (Wi )−E�{Y � φ(Z)} f j (W )
∣∣∣2

� C
∫

‖T φq −q‖2
W dq − Op(Rn).
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Let us denote Akn = {φ ∈B(0,1)kn
: |||φ−ϕ|||2Z ,p � ε} for some ε > 0. Since T is continu-

ous and ϕq = argminφ∈B ‖T φ−q‖W is unique we have that minφ∈Akn

∫ ‖T φq −q‖2
W dq

is strictly positive for all n � 1. Therefore, we obtain

P

(
|||ϕ̂·n −ϕ|||2Z ,p � ε

)
� P

(
min
φ∈Akn

∫ ∥∥∑
i

(�{Yi � φ(Zi ,q)}−q) fln (Wi )
∥∥2dq

�
∫ ∥∥∑

i

(�{Yi �Πknϕ(Zi ,q)}−q) fln (Wi )
∥∥2dq

)

� P

(
min
φ∈Akn

∫
‖T φq −q‖2

W dq �
∫

‖T Πknϕq −q‖2
W dq + Op(Rn)

)
= o(1)

since
∫ ‖T Πknϕq − q‖2

W dq = ∫ ‖T ϕq − q‖2
W dq + o(1), Rn = o(1), and making use of

minφ∈Akn

∫ ‖T φq −q‖2
W dq >

∫ ‖T ϕq −q‖2
W dq +o(1). Proof of (A.4). For some ε > 0

let us denote Dkn = {φ ∈ B(0,1)kn
: |||T φ−T ϕ|||2W � εωn}. Therefore, we obtain as above

P

(
|||T ϕ̂·n −T ϕ|||2W � εωn

)
� P

(
min
φ∈Dkn

∫
‖T φq −q‖2

W dq �
∫

‖T Πknϕq −q‖2
W dq + Op(Rn)

)
.

Furthermore, it holds
∫ ‖T Πknϕq − q‖2

W dq � 2|||T Πknϕ − T ϕ|||W + 2
∫ ‖T ϕq −

q‖2
W dq. We thus obtain

P

(
|||T ϕ̂·n −T ϕ|||2W � εωn

)
�P

(
min
φ∈Dkn

∫
‖T φq −q‖2

W dq � 2|||T Πknϕ−T ϕ|||2W +2
∫

‖T ϕq −q‖2
W dq+Op (Rn)

)
.

For all φ ∈ Dkn and 0< q < 1 we have

‖T φq −q‖2
W � ‖T ϕq −q‖2

W � ‖T φq −T ϕq‖2
W /2−‖T φq −q‖2

W

and hence, ‖T φq −q‖2
W � ‖T φq −T ϕq‖2

W /4. Thereby, we obtain

P

(
|||T ϕ̂·n −T ϕ|||2W � εωn

)
� P

(1

4
min
φ∈Dkn

|||T φ−T ϕ|||2W � 2|||T Πknϕ−T ϕ|||2W +2
∫

‖T ϕq −q‖2
W dq + Op(Rn)

)

� P

( ε
4
ωn � 2η

∫
‖Tq (Πknϕq −ϕq )‖2

W dq +2
∫

‖T ϕq −q‖2
W dq + Op(Rn)

)
,

which goes to zero for all n � 1 as ε→ ∞. Proof of (A.5). Note that ‖Tq (φ−ϕq )‖W � (1−
η)−1‖T φ−T ϕq‖W for all φ in a sufficiently small neighborhood around ϕq . Thereby, due
to (A.3), we obtain

|||ϕ̂·n −ϕ|||2Z ,p = Op

(
|||Πkn ϕ−ϕ|||2Z ,p + τkn |||T ϕ̂·n −T ϕ|||2W

)
.

Hence, the result follows by applying (A.4). �

https://doi.org/10.1017/S0266466619000288 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000288


622 CHRISTOPH BREUNIG

The following lemma is similar to Lemma A.2 of Breunig (2015). In the following, how-
ever, we provide the proof for the sake of completeness. For all φ ∈ B recall the definition
gj (Xi ,φ)= (�{Yi � φ(Zi )}−q) f j (Wi ) for all 1� j �mn and 1� i � n. Let us introduce

Xii ′ := 6
√

5/(
√

mnn)
∑mn

j=1

∫
gj (Xi ,ϕq )gj (Xi ′ ,ϕq )dq and

Qni :=
{∑i−1

l=1 Xli , for i = 2, . . . ,n,
0, for i = 1 and i > n.

(A.7)

Then clearly

3
√

5/(
√

mnn)
∑
i �=i ′

mn∑
j=1

∫
gj (Xi ,ϕq )gj (Xi ′ ,ϕq )dq

= 6
√

5/(
√

mnn)
∑
i<i ′

mn∑
j=1

∫
gj (Xi ,ϕq )gj (Xi ′ ,ϕq )dq =

∑
i<i ′

Xii ′ =
n∑

i=1

Qni .

Let Bni := B((Z1,Y1,W1), . . . , (Zi ,Yi ,Wi )), 1 � i � n, n � 1, be the σ -algebra gener-
ated by (Z1,Y1,W1), . . . , (Zi ,Yi ,Wi ). Since gj (Xi ,ϕq ), 1 � i � n, are centered random

variables it follows that {(∑i
i ′=1 Qni ′ ,Bni ), i � 1} is a Martingale for each n � 1 and

hence {(Qni ,Bni ), i � 1} is a Martingale difference array for each n � 1.

LEMMA A.3. Let Qni be defined as in (A.7). Let Assumption 1 and Condition (2.10)

be satisfied. Then, we have
∑∞

i=1 Qni
d→ N (0,1).

Proof. For the proof, we have to show that the Martingale difference array
{(Qni ,Bni ), i � 1}, n � 1, satisfies the conditions
∞∑

i=1

E |Qni |2 � 1 for all n � 1, (A.8)

∞∑
i=1

Q2
ni = 1+op (1), (A.9)

sup
i�1

|Qni | = op(1). (A.10)

Then, the result follows by Awad (1981). Proof of (A.8). Since E[(�{Y � ϕ(Z ,q)}−
q)(�

{
Y � ϕ(Z ,q′)

}−q′)|W ] = min(q,q′)−qq′ we have∫ (
E
[
gj (X,ϕq )gj ′(X,ϕq ′)

])2
d(q,q′)=

∫
(min(q,q′)−qq′)2d(q,q′)�{j= j ′}

= �{j= j ′}/90,

where we used that E[ f j (W ) fj ′(W )]2 = �{j= j ′} and∫
(min(q,q′)−qq′)2d(q,q′)=

∫ (∫ q

0
(q′ −qq′)2dq′ +

∫ 1

q
(q −qq′)2dq′)dq

= 2

3

∫
q3(1−q)2dq

= 1/90.
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Observe that E[X1iX1i ′ ] = 0 for i �= i ′ and thus, for i = 2, . . . ,n we have

E |Qni |2 = E |X1i +·· ·+Xi−1,i |2
= (i −1)E |X12|2

= (6
√

5)2(i −1)

n2mn
E
∣∣ mn∑

j=1

∫
gj (X1,ϕq )gj (X2,ϕq )dq

∣∣2

= 180(i −1)

n2mn

mn∑
j, j ′=1

∫ (
E[gj (X,ϕq )gj ′(X,ϕq ′)]

)2d(q,q′)

= 2(i −1)

n2
.

Thereby, we conclude

n∑
i=1

E |Qni |2 = 2

n2

n−1∑
i=1

i = n(n −1)

n2
= 1− 1

n
(A.11)

which proves (A.8).
Proof of (A.9). Using relation (A.11) we observe

E
∣∣ n∑

i=1

Q2
ni −1

∣∣2 =
n∑

i=1

EQ4
ni +2

∑
i<i ′

EQ2
ni Q2

ni ′ −1+o(1) =: In + I In −1+o(1).

Consider In . Observe that

E |Qni |4 = E
∣∣ i−1∑

i ′=1

Xi ′ i
∣∣4 �

∫
E

∣∣∣ 6
√

5

n
√

mn

mn∑
j=1

gj (Xi ,ϕq )

i−1∑
i ′=1

gj (Xi ′ ,ϕq )
∣∣∣4dq

� C

n4m2
n

sup
w∈W

‖ fmn (w)‖4
(
(i −1)E‖ fmn (W )‖4 +3(i −1)(i −2)(E‖ fmn (W )‖2)2

)

where we used that E[gj (X,ϕq )] = 0 for 0 < q < 1. Since
∑n

i=1 3(i −1)(i −2) = n(n −
1)(n −2) we conclude

In � C
(n(n −1)

2n4
E‖ fmn (W )‖4 + n(n −1)(n −2)

n4
(E‖ fmn (W )‖2)2

)
= o(1)

since (E‖ fmn (W )‖2)2 � E‖ fmn (W )‖4 � Cm2
n . We calculate for i < i ′

Q2
ni Q2

ni ′ =
( i−1∑

k=1

X 2
ki

)( i ′−1∑
k=1

X 2
ki ′
)

+
( i−1∑

k=1

X 2
ki

)( i ′−1∑
k �=k′

Xki ′Xk′i ′
)

+
( i−1∑

k �=k′
XkiXk′i

)( i ′−1∑
k=1

X 2
ki ′
)

+
( i−1∑

k �=k′
XkiXk′i

)( i ′−1∑
k �=k′

Xki ′Xk′ i ′
)

=: Aii ′ + Bii ′ +Cii ′ + Dii ′ .
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Consider Aii ′ . Exploiting relation (A.11) and using
∑

i<i ′ (i −1) =∑n
i ′=1(i

′ −1)(i ′ −
2)/2 = n(n − 1)(n − 2)/6 and further

∑
i<i ′ (i − 1)(i ′ − 3) = ∑n

i ′=1(i
′ − 3)(i ′ − 2)(i ′ −

1)/2 = n(n −1)(n −2)(n −3)/8 we obtain

2
∑
i<i ′

E Aii ′ = 4EX 2
12X

2
23

∑
i<i ′

(i −1)+2(EX 2
12)

2
∑
i<i ′

(i −1)(i ′ −3)+o(1)

� C
n(n −1)(n −2)

n4m2
n

mn∑
j,l=1

∫
E
[
g2

j (X,ϕq )g
2
l (X,ϕq ′ )

]
d(q,q′)

+ n(n −1)(n −2)(n −3)

n4
+o(1)

since
∫
E[gj (X,ϕq )gj ′(X,ϕq ′)]d(q,q′) = �{j = j ′}/90. Moreover, applying Cauchy

Schwarz’s inequality twice gives

mn∑
j,l=1

∫
E
[
g2

j (X,ϕq )g
2
l (X,ϕq ′ )

]
d(q,q′)� sup

w∈W
‖ fmn (w)‖4 � Cm2

n .

Thereby, it holds 2
∑

i<i ′ E Aii ′ = 1+o(1). Now consider Bii ′ . Since { fl}l�1 forms an
orthonormal basis on the support of W we obtain

E

( i−1∑
k=1

X 2
ki

)( i ′−1∑
k �=k′

Xki ′Xk′i ′
)

= 2
i−1∑
k=1

EX 2
kiXki ′ X̧ii ′

� C(i −1)

n4m2
n

mn∑
j, j ′=1

∫
E

∣∣∣gj (X1,ϕq )gj ′(X1,ϕq )gj (X2,ϕq )gj ′(X2,ϕq ′ )

×q(1−q)
mn∑
l=1

g2
l (X1,ϕq )

∣∣∣d(q,q′,q′′)

� C(i −1)

n4mn

( mn∑
j, j ′=1

∫
E |gj (X,ϕq )gj ′(X,ϕq )|2d(q,q′)

)
� C(i −1)mn

n4
.

This, together with relation (A.11), yields
∑

i<i ′ E Bii ′ = o(1). Furthermore, it is easily
seen that

∑
i<i ′ ECii ′ = o(1). Consider Dii ′ . Using twice the law of iterated expectation

gives

EDii ′ = E

( i−1∑
k �=k′

XkiXk′ i
)( i ′−1∑

k �=k′
Xki ′Xk′ i ′

)
= 4

i−1∑
k<k′

EXkiXk′ iXki ′Xk′ i ′

= 4
i−1∑
k<k′

E
[
XkiXk′ i E[Xki ′Xk′ i ′ |(Yk , Zk ,Wk),(Yk′ , Zk′ ,Wk′ ),(Yi , Zi ,Wi )]

]

� C

n2mn

i−1∑
k<k′

E

[
E[XkiXk′ i |(Yk , Zk ,Wk),(Yk′ , Zk′ ,Wk′ )]

×
mn∑

j, j ′=1

∫
E[gj (X,ϕq )gj ′(X,ϕq ′ )]gj (Xk ,ϕq)gj ′(Xk′ ,ϕq ′)d(q,q ′)

]
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� C

n4m2
n

∫
E

∣∣∣ mn∑
j, j ′=1

E[gj (X,ϕq )gj ′(X,ϕq ′ )]gj (X1,ϕq)gj ′(X2,ϕq ′)
∣∣∣2d(q,q ′)(i −1)(i −2)

� C

n4mn
(i − 1)(i − 2).

again using that E[gj (X,ϕq )gj ′(X,ϕq ′)] is only different from zero whenever j = j ′. Con-
sequently, we obtain

∑
i<i ′

E Dii ′ �
C

n4mn

∑
i<i ′

(i −1)(i −2)= C n(n −1)(n −2)(n −3)

mnn4
= o(1)

and hence 2
∑

i<i ′ EQ2
ni Q2

ni ′ = 1+o(1).

Proof of (A.10). Note that P
(

supi�1 |Qni | > ε
)
�
∑n

i=1 P
(
Q2

ni > ε
2) and, hence the

assertion follows from the Markov inequality. �
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