ONTARIO MATHEMATICAL MEETING

The twelfth Ontario Mathematical Meeting was held on Saturday, October
25, 1969, at McMaster University. Research papers were presented in the
morning in three separate sessions: topology and analysis (Abstracts 69.16 to
69.21), algebra (Abstracts 69.22 to 69.27) and statistics, numerical mathematics
and combinatorics (Abstracts 69.28 to 69.33). The invited address given by
Professor D. Zelinsky was entitled: Galois theory of rings.

69.16 L.D. Nel (Carleton University)
Spaces Determined by their Lattices of Lower Semi-continuous Functions

Let CL(Y) denote the lattice of all lower semi-continuous functions
on Y into [0,1]. Does the lattice CL(Y) determine the topological
space Y ? The problem can be reduced at once to TO— spaces.

THEOREM. CL(Y) is isomorphic to CL(X) where X is the

To—identification of Y. LEMMA. The topology of a T -space X is the
identilicalion ol °

smallest for which all f ¢ CL(X) are lower semi-continuous. Call

chL(X) aprimeif p <1 and p = uAv onlyif p =u or p = v.
Define ekA(x):k if xe¢ A and =1 if xe¢ X-A, for 0 < k< 1

and irreducible closed sets A }é ®. LEMMA. p is a prime if and

only if p has the form CLA” This lemma establishes a link between

the lattice and topological structures which can be exploited in
To-spaces which have no irreducible closed sets other than point

closures. Such spaces (call them pc-spaces) have been considered

also by Blanksma [Doctoral thesis, Utrecht, 1968] in connection with

the lattice C(X) of closed subsets of X. THEOREM. K X is a
pc-space, then CL(X) determines X. THEOREM. For any topological

space Y the lattices CL(Y) and C(Y) determine each other. It is
known that C(X) determines X when X is a TD—space. COROLLARY.

If X is a TD— pace, CL(X) determines X.

69.17 L. Jonker (Queen's University)
A Theorem on Minimal Surfaces

Let M? be a connected two-dimensional manifold, Rn the n-dimensional
Euclidean space, A the Laplacian on M?*, < ..,..> the inner product

n
on R . Osserman [Remarks on minimal surfaces, Comm. Pure and
Appl. Math., 12 (1959) 233-239] proved the following THEOREM.

2 3 . A .
I x: M"— R° is an isometric immersion such that for some a ¢ R?,

we have A <a,x> = 0, then M? is a minimal surface, or else a
locally cylindrical surface with its generators parallel to a. The
present author generalized this to a higher codimension: THEOREM.

2 n . A .
Suppose x: M" = R is an isometric immersion, and A an n- 2
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dimensional linear subspace of Rn. Suppose further that A <a,x> =0

for all a ¢ A. Then there are only two possibilities: 1. M? is

minimally immersed in R ; or 2. There is a set {ml} c M? of

isolated points so that each p e M - {ml} has a neighbourhood U so

that the orthogonal projection of x(U) on A'L is a regular curve 7V,
and so that x: U - v X A is minimal.

69.18 R.J. Loy (Carleton University)
Uniqueness of the Complete Norm Topology and Continuity of Derivations
on Banach Algebras

We are concerned with the following two propositions regarding a
complex Banach algebra A:

N A has unique complete norm topology .
8 Derivations on A are necessarily continuous.

(If A does not satisfy h the validity of ® may depend on the choice

of topology.) Although no formal relation is known between h and 9,

a survey of the literature shows that positive results regarding h for

a class of Banach algebras have been paralleled by positive results for

8 for the same class. The most general results are those of Johnson

and Sinclair that semisimple Banach algebras satisfy both nh and 8.

For the non-semisimple case Lindberg has recently shown that certain
algebraic extensions of commutative semisimple Banach algebras

satisfy N, and it is not difficult to show they also satisfy 0. We
consider the case of a Banach algebra of power series, é, over a
commutative Banach algebra A . Such algebras always satisfy 8, and,
provided A is semisimple, they also satisfy N. Whether or not n

is true in general is not known. The proofs make essential use of the
coordinate projections which in a sense take the place of the multiplicative
linear functionals in the work of Johnson. The results are only of interest
if A is not semisimple, and certain results concerning the semisimplicity
of A are given.

69.19 R.G. Lintz (McMaster University)
Homotopy for g-functions and Generalized Retraction

It can be shown, with simple examples, that the usual concepts of
continuous deformations, i.e., homotopy, retraction, etc. are not
adequate in many respects if we want to extend them to topological
spaces whose points are not necessarily of countable type, i.e., with
base of neighbourhoods which is not countable. To overcome those
difficulties there was introduced by us, a few years ago, a generalization
of the concept of continuous function, actually called g-functions

[Annali di Mat. Pura ed Applicata (Italy) 67 (1965) 301-348; ib. 67
(1965) 215-234; ib. 72 (1966) 45-48; ib. 72 (1966) 97-104].

Finally, we succeeded in defining the concept of homotopy for g-functions
and as a consequence a generalization of the concept of deformation
retract was obtained. As a by-product we got a new proof of the
classical result that homotopic maps induce the same homomorphism

in the Cech homology groups. The definitions are too long to be given
here.
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69.20 I.M. Michael (McMaster University, University of Dundee)
The Spectrum of a S=cond Order Partial Differential Operator

The spectral properties of differential operators can be described

either by Hilbert space theory or, to obtain detailed results, by analysis
of the solutions of the corresponding differential equations. It is not
always clear that the two sets of definitions of the various parts of the
spectrum agree, but in a recent paper [Proc. Roy. Soc. of Edin. 68A
(1969) 95-119] Chaudhuri and Everitt proved agreement in the case of
certain ordinary differential expressions of the form L[-], where

L[f] = -(pf')' + qf .

We prove similar results for the corresponding partial differential
operators.

Explicitly, we consider operators associated with the two-dimensional
equation

(@) Ag(x) +{x - ax)} wx) =0,

where the equation holds over the whole plane and q is real-valued,

has continuous first-order partial derivatives and is such as to ensure
the symmetry of the associated maximal operator. (It is fairly straight-
forward to extend the theory to higher dimensions and to relax the
continuity conditions on q.) This operator is essentially self-adjoint,
and so has a unique associated spectral theory.

The constructive definition of the spectrum is in terms of the function
H, where

A
H(x, £,\) = lim [ im G(x, £, 0 +iv) do,
~o v—>0 0 v

and G is the Green's function, unique by our conditions on q,
associated with (a) . We prove that the standard definition of the
spectrum agrees with the constructive one, while the eigenvalues of
the self-adjoint operator associated with (o) are exactly the points
of discontinuity of H(x, £, *).

~ ~

69.21 D. Lovelock (University of Waterloo)
Degenerate Lagrange Densities involving Geometric Objects

Let gij and l"li'lj (i,j,h,..., =1,...,n) be respectively the

components of a symmetric tensor and the components of a symmetric
affine connection. With any given Lagrangian
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h h
(1) L = Ligs Ty Ty 0

(where the comma denotes partial differentiation) we may associate the
Euler- Lagrange equations

8L ] T
2) 8L 8
h k h
ar .. ox or ..
ij ij, k

(summation convention) in which the g‘j are regarded as auxiliary
i

preassigned variables and are not to be varied. In general, these
equations (2) represent second order partial differential equations in

h
the T'...
1)

In one approach to the field equations of general relativity [1, page 106
et seq.] a specific Lagrangian (which is also a scaler density) of the
type (1) is used. However the resulting Euler- Lagrange equations (2)

h
are not of second order in rij , but are indeed independent of both

h
b. 1‘1.'1. i.e. they are of zero order in I',.. In this case

ij, rs ij, r —_— ij
the Euler- Lagrange equations are precisely those equations which

h

ensure that the rij are the Christoffel symbols of the second kind
(for n > 2).
In this report we assume that L given by (1) is a scalar density
which therefore ensures that (2) are tensorial in character [2].
Necessary and sufficient conditions for the second order equations (2)

to degenerate into first and zero order equations are obtained. Further-
more we show that (for n > 2) if the gij may be regarded as independent

variables then the only Euler-Lagrange equations which arise from (1)

and which are of zero order in 1“},3. are those which ensure that the
i

I‘?j are the Christoffel symbols of the second kind.

Certain other degenerate Lagrange densities of importance in general
relativity have also been treated [3; 4; 5].
REFERENCES

1. E. Schrodinger, Space-time structure. (Cambridge University
Press, 1963).

2. H. Rund, Invariant theory of variational problems for geometric
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5. D. Lovelock, Degenerate Lagrange densities for vector and
tensor fields. Joint Math. Coll., Universities of South Africa
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69.22 Ahmad Shafaat (Carleton University)
Quasivarieties and Structure of Algebras

For a definition of quasivarieties of Q2-algebras see, for example,
P.M. Cohn: Universal Algebra, Harper and Row, 1965. Many
varieties and quasivarieties K of algebras have the following property:

() There exist in K finitely many finite algebras A . An such

R
that every algebra in K is isomorphic to a subcartesian product of
some of the algebras A1, Cee Arl

Semilattices, distributive lattices, Stone algebras and normal
idempotent semigroups are only few of the examples of varieties
satisfying (*). In this paper we prove that if K is a locally finite
quasivariety with finitely many subquasivarieties, then K satisfies
(-). This result is an example of how a study of the lattice of sub-
quasivarieties of a quasivariety can give useful information about the
structure of its algebras.

69.23 K.B. Lee (McMaster University)
Equational Classes of Distributive Pseudo-complemented Lattices

A pseudo-complemented lattice is a lattice L with zero such that for
each a € L, there exists a* ¢ L such that for all x ¢ L,
a A x = 0 if and only if x < a* . One can construct a distributive
pseudo-complemented lattice B from a Boolean algebra B by adjoinin
g y J g
a new unit 1. Let an be the equational classes of distributive pseudo-
complemented lattices generated by —Bn, where Bn are 2"-element
Boolean algebras (n > 0); 8 L be the class of all one-element pseudo-
complemented lattices; HF the class of all finite distributive pseudo-
complemented lattices; 0300 the class of all distributive pseudo-
complemented lattices.

THEOREM 1. Let L be a distributive pseudo-complemented lattice.
Then the following conditions are equivalent (n > 1):

(1) L satisfies the equation

n * n
(E) AN x V V (XA AXEA LA X )R = 1
i . 1 1 n
i=1 i=1
(2) Leﬁn;
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(3) every prime filter in L is contained in at most n distinct
maximal filters;

(4) every (proper) prime ideal in L contains at most n distinct
minimal prime ideals;

n+1
(5) L = \/ Qj for any n + 1 distinct minimal prime ideals in L.
i=1

THEOREM 2. Let G be an equational class of distributive pseudo-
complemented lattices. Then G ¢ ﬁn - 'Bn CG(n>-1).

+

THEOREM 3. 8 = HSP(B_).
o0 F

THEOREM 4. 8,

of equational classes of distributive pseudo-complemented lattices.

CB CB C...CR C... CRB is the whole lattice
0 1 n 0

69.24 V.D. Belousov, (Institute of Math. of the Academy of Sciences of
Moldavian S.S.R., Kishinev, U.S.S.R. and University of Waterloo)
A Functional Equation of Generalized Associativity on Quasigroups

Following G. éupona we denote by x) the sequence

[

X, , X ..

i’ 74+

A n-ary quasigroup operation (shortly quasigroup) A defined on the
i-1 n ) = b

1 0 %) 7

'Xj-'l’xj’ (i<j). ¥ i>j, then x’i is an empty set.

set Q is the mapping A : Qn -+ Q such that A(a

has a unique solution for all a;] c Qn, b e Q. The integer n is called

the arity of A and is denoted by IAl . The functional equation

i-1 ith-1\ r \ _ i1 jtg-1\ r
(1) A<x1 ; B<xi >,xi+n>— Céi ’D>'<Xj 'Xj+q

where |B|, |D| > 1 is called generalized associativity. I A and B
are given quasigroups then the left side of (1) defines a binary operation

i i i- i+n-
(+) on the set of all quasigroups: (A + B)(xi‘) = A(xi 1,B(x1+n 1)'X:+n) .

i i
The operation (+) is partial, A + B exists only if ,A, > i. The set
of all quasigroups including nullary operations (i.e. the operations

i
(+), i =1,2,... becomes a partial algebra with some properties.
These properties taken as axioms define an abstract partial algebra in
which the equality

(2) A+B =cip

corresponds to the functional equation (1).
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In order to solve the equation (2) five possible cases (I1 5 II1 , ) are
34,3

[t)

considered. The most important is the case II:i < j, j<i+n<j+q,
3
where n = |B|, q = IDI . The solution in this case is

; i i i
A=KJ+YOF,B=Y E0S),C=K+Eo06, D=0 (SoF)

where Y, 6,E,F,S,K are arbitrary operations of arity 1,1,

k =j-i, q-n +k, n-k,p-k correspondingly. The (o) isa
1 2

group operation, i.e. (o) + (o) = (o) + (0) and A o B is defined

1
by Ao B = (o) +B)+A. If i<j,i+n<]j (Caselll) the solution

~

i
K + B, where B, D, K are arbitrary
1. The solutions for other cases are
, J =49, J<mn, considered by

operations of arity n,q, p-

i-n+1
is givenby A = K} D, C
n
similar to I, . The case 1 =

+
1
M. Hosszu is a particular case of I_I3 .

The more general equation
i r j r
(A +B) () = (C*D)(y)),

r . . ro. .
where y, is a permutation of x, s also solved. The obtained

results are used to give a description of (i, j)-associative quasigroups
A, i.e. A satisfies (2)for A = B = C =D,

69.25 John D. Dixon (Carleton University)
The Number of Steps required in Applying the Euclidean Algorithm

The object of this paper is to give a sketch of the proof of the following
THEOREM. For all positive integers u,v with u < v we define
L(u,v) to be the number of steps required in applying the Euclidean
algorithm to find the greatest common divisor of u and v. Then for
each ¢ > 0

(*) lL(u,v) - (121T-Zlog 2) log vl < (log V)%+£

for almost all pairs u,v. Indeed the proportion of pairs u < v < x
which fail to satisfy this condition is certainly less than any power

(log x)-C as x = o,
The only result of this kind that had been known earlier is a theorem of

H. Heilbronn (1968) which showed that for each v the average of
L(u,v) over the u relatively prime to v is asymptotic to

(1 Zn_zlog 2) log v with error ‘term at worst O((loglogv)*); his result
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is proved by purely arithmetic methods. In contrast our theorem is
based on results in the metric theory of continued fractions (initiated
by Gauss), and makes use of a paper by W. Philipp. [Das Gesetz vom
iterierten Logarithmus mit Anwendungen auf die Zahlentheorie. Math.

Ann. 180 (1969) 75-94].

69.26 V. Dlab (Carleton University)
Structure of Perfect Rings

The concept of a perfect ring was introduced by S. Eilenberg in [3].
Later, H. Bass [1] gave several characterizations of perfect rings.
To his list, we may add the following one:

A ring R is (right) perfect if and only if R possesses a (left trans-
r
finite) socle sequence and R = ® L  with indecomposable (left)
i=i !
ideals Li . As a consequence, each L, contains a unique (left) ideal
i

Ki of R which is maximal in Li.

By means of the standard matrix representation of R, one can show
that there is a one-to-one correspondence between non-isomorphic
perfect rings and non-isomorphic finite additive categories A such that
[A,A] are local perfect rings for all A ¢ A. Consequently;‘particular
types of perfect rings can be characterized either intrinsically or in
terms of matrices or additive categories (cf. [2]).

REFERENCES

1. H. Bass, Finistic dimension and a homological generalization of
semi-primary rings. Trans. Amer. Math. Soc. 95 (1960) 466-488.

2. V. Dlab, Matrix representation of perfect rings.
3. S. Eilenberg, Homological dimension and syzygies. Ann. of

Math. 64 (1956) 328-336.

69.27 Tae Ho Choe (McMaster University)
Locally Compact Lattices with Small Lattices

In the Symposia Pure Math. (Lattice theory) Vol. II, A.M.S.,

L. Anderson conjectured that any locally compact connected topological
lattice has a base consisting of open sublattices (i.e. has small lattices).
We first discuss that this conjecture is not true in general. Recently,
J.D. Lawson has given an example of a compact connected metrizable
distributive lattice which admits no nontrivial lattice homomorphisms
into the unit interval. We shall see that this lattice does not have any
small lattices, and it is infinite dimensional.

However, if a lattice is finite dimensional, we are able to show that
any locally compact connected lattice of finite codimension has small
lattices.
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Since finite dimensionality of a lattice is clearly not a necessary

condition for the lattice to have small lattice, (for example, Iw) it
may not be easy to obtain a condition in terms of dimension of the
lattice. We shall next show that if L is a locally compact connected
lattice, then L has small lattices if and only if for each pair of
elements x and y with x i y, every neighbourhood U of x with
U i y (u i y for all u ¢ U) has an element z such that

x € (z A L)O, and dually.

For a complemented lattice we have the following: any locally
compact relatively complemented lattice which has small lattices

is totally disconnected. This yields that any locally compact
orthomodular lattice which has small lattices is totally disconnected.

For the dimension and the center of a lattice, we have the following:
if L is a locally compact connected lattice with 0 and 1 and if the

codimension of L is n, then Card.(Cen(L)) < 2", Moreover,

-1
if the lattice L is not compact, then Card.(Cen(L)) < 2"

69.28 D.R. Beuerman (Queen's University)
On the Limit Distribution of the Time of First Passage Over a
Curvilinear Boundary

Let X ,XZ ,X , ... be a sequence of independent and identically
1 3

distributed random variables which belong to the domain of attraction
of a stable law of index « and distribution function G. Let B be
n

n
the norming constants and Sn =z X

Take the constant B € [0,1). Our primary interest is in the random
variable, TB(X) = min[k : Sk > xkﬁ], which represents the first
passage time for the random walk Sn over the curvilinear boundary

p

xn" . Several related random variables may be considered in terms
of Tﬁ(x) . For example, if we define

= 0.s ,2Ps ..., P
Mn,[3 max { Sl S, , n Sn}

we note that, for x > 0, M 6 > x if and only if Tﬁ(x) < n.
2z n <

)

The main results are the following. Take 1 < o< 2, p = E[X,] > 0,
- = i
this being one of the cases of '"drift!" for the random walk S . Then
n

we have these limit results.
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“) lim Pl 22— < = G(a)
n-> o n FSB
n
T (x) -\ -a
(2) lim P (—f— > —> = G(a)
x> v B(x) 1-p
o 1/(-p)
where X\ = (p = x) , B(x) ~ Bn.

Siegmund [Ann. Math. Stat., 39, pages 1493-1497] has obtained
similar results for the normal (¢ = 2) case, but with the condition
that the Xi be identically distributed relaxed to common mean and

variance.

For B = 0, (1) reduces to a result of Heyde [J. Appl. Prob., Vol. 4,
pages 144-150].

Dr. C.C. Heyde, now at the Australian National University, guided me
in this work while we were at the Manchester-Sheffield School of
Probability and Statistics.

69.29 I.S. Chorneyko and S.G. Mohanty (McMaster University)
On the Enumeration of Pseudo-search Codes

A codeword c is a finite sequence of non-negative integers. Any
finite set of codewords is called a code C. A codeword b is a prefix
of the codeword c¢ if there exists a codeword a such that ¢ = ba,
where ba is the concatenation of b and a. The empty set and the
code consisting of the empty codeword are called the empty and trivial
codes respectively. Denote by Z the set of all codewords. Further-
more, for any code C and a ¢ Z, Ca is the set of all codewords

b ¢ Z suchthat ab ¢ C.
We make the following definitions:

(1) A code C is branched if and only if one of the following occurs:
(i) C is the empty code; (ii) C is the trivial code; (iii) C does
not contain the empty codeword and there exists an integer b(C) > 1
such that for k, the codeword consisting of the single letter k,
k =0,1,2, ..., the code Ck is empty or not according as
k > b(C) or <b(C).

(2) b(C) is the branching number of the code C.

(3) A code C is a pseudo-search code if Ca is branched for every

ace Z.
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(4) If C is a pseudo-search code, any a ¢ Z for which b(Ca) > 1,
is called the branching point of C and b(Ca) is the branching
number of a.

These definitions and the following results are motivated by an

unpublished paper of A. Renyi, presented at McMaster University in

June, 1969.

Let S(q1 L PRIERE qk) be the set of pseudo-search codes such that the

ith branching point (in lexicographic order) has q; as its branching

number. A one-to-one correspondence is established between
S(q1 ey qk) and the set of lattice paths in the plane from (0, 0) to

(ak ,k), not crossing the lattice path determined by the vector

J
. = -J,j=41,2, ..., k-1 1
(O’ai’ ’ak-i)' where aJ i%i q; A 2 is
the horizontal distance from (ak, k - j- 1) to the path and
k
a = = q - k + 1. Using this correspondence, the number in
i=1
S((Lly ey qk) is obtained as det(dij)(k-1)><(k-1) where
0 1> 41,
d = + 1
i] was
otherwise .
joi+1

Other similar results follow from this correspondence.

69.30 A.K. Basu (Queen's University)
On Distinguishability of Sets of Distribution Functions

According to Hoeffding and Wolfowitz [Ann. Math. Stat. 29 (1958)
700-748] two subsets € and M of JF of distribution functions are
distinguishable in the given class £ of tests if there exists a test with
maximum error probability in # U } less than any preassigned
positive number. We have extended these concepts to the k-decision
problems when the chance variables are independently and identically

distributed. The subsets 351 , 'JZ,. . 3k of ¥ will be called

"k-distinguishable'" if there exists a test ¢ = (<|>1 s ¢k) such that
the sum of error probabilities in 3, U 3, - U 3, 1is less than one.

If we restrict ourselves to the class of fixed sample size tests then
the above distinguishability is called '"finite distinguishability'; other-
wise it is called "sequential distinguishability''.

Like Hoeffding and Wolfowitz we have tried to find necessary and/or
sufficient conditions for existence of such tests. We have shown that
"k-distinguishability" is stronger than pairwise distinguishability.
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Then we have extended '"distinguishability of sets of distributions' to
Two-Sample Problems. We have shown that two-sample problem about
equality of two medians is not "finitely distinguishable'" but "sequentially
distinguishable'. Then we have constructed a practical non-parametric
sequential test for equality of two medians which arises naturally in the
course of proving sequential distinguishability of two-sample median
problem. This sequential procedure converges with probability one.
Upper bounds of two types of error probabilities are also calculated
here. This test is similar to Mathiesen's two-sample test.

69.31 D.N. Behara
A Computational Matrix Algorithm for the Shortest Route Problem

This paper proposes a computational matrix algorithm for the shortest
route problem. The problem deals with determination of the shortest
route from one point to another in a network, G = [N, A] subject to
non-negative distances, dij associated with each arc (i,]j) € A

where
k.. i#j,k.. >0
1] 1)
d . = 0 1=
1)
00 if no single arc connects

node i to node j.

The algorithm considers n X n distance matrix [dij] for the network

where columns and rows represent the nodes of the network. Origin
and destination are labelled. Minimum dijs are selected beginning

with row 1, and the remaining entries appearing in tbe selected dij
column are cancelled. Then a minimum dij is selected from row
i = k if the dij selected above lies in the column, j = k and the
respective chain lengths for each pair of consecutive dijs are written

down beside their respective rows. Among the subsequent minimum
dijs the one which connects the minimum chain length noted above is

selected. The procedure is repeated until the destination is reached.
The algorithm is illustrated by a numerical example.

69.32 J. Csima and B.A. Datta (McMaster University)
The DAD Theorem for Symmetric Nonnegative Matrices

A matrix is nonnegative if its entries are nonnegative real numbers.
A nonnegative matrix is doubly stochastic if its row and column sums
are all equalto 1. If A = (a_j) is a nonnegative square matrix of

i

order n we say that the entry aij belongs to a positive diagonal

if there exists a permutation o on the first n natural numbers such
n

that n a, () > 0.
j=q do(
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Let A be a symmetric nonnegative matrix. We prove that a sufficient
and necessary condition for the existence of a diagonal matrix D such
that DAD is doubly stochastic is the following: every nonzero entry
of A belongs to a positive diagonal. Equivalently, in view of the
Eerfect-Mirsky characterization of doubly stochastic patterns, such D
exists if and only if there exists a doubly stochastic matrix whose non-
zero places coincide with the nonzero places of A..

Previously known sufficient conditions for the existence of a D (D and
A as above) are the following: (i) A is strictly positive or positive
semidefinite without a zero row (Marcus and Newman); (ii) A has a
strictly positive main diagonal (Brualdi, Parter and Schneider).

01
Neither of these conditions is necessary as illustrated by A :<1 0> )
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69.33 Paul de Witte (University of Waterloo and University of Antwerp)
On an Analytic Method in the Combinatorial Study of Finite Linear Spaces

By a non-trivial finite linear space, we mean a set of p(> 2) points and
q(> 2) lines with an incidence relation between them such that

(1) There is just one line passing through any two distinct points.

(2) Every line passes through at least two points.

It may be noted that in the following the condition (2) can be weakened to:
(2') Every line passes through at least one point.

If any two lines meet, we call the space quasi-projective (and the property
QP for short). It is well known that in this case p = q. Letnow a
o

denote the number of points on the o -th line, and ba the number of lines

through the a-th point. The following results formed the background for
the present paper:

(a) Trivially: Zb = T a
o T
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(b) By a theorem due to de Bruijn and Erd8s [Indag. Math. 10 (1948)
421-423]:

(b.1) P

IN

q-.

(b.2) p q implies QP.

(c) By a theorem of mine [Bull. Soc. Math. de Belgique 18 (1966)
430-438]:

(c.1) =b?
-

A\
™
»

(c.2) =b® = Ta? implies QP.
a a

Let us now introduce the function F defined by

+1
F(x) = be+1 - za*
@

It is obvious that the above results can be neatly expressed by means of

F(0), F(-1) and F(+1). This suggested the following analytic method:
derive combinatorial results as those above from the behaviour of F.

More precisely, prove that F has only the trivial root nought unless

it is identically zero, in which case QP must hold. This conjecture

had been corroborated by numerical evidence gathered by Mr. Nico Benschop
on the Waterloo computer in 1967-1968 (work supported by NRC-Grant
A-4748).

This and more has now been established by proving the THEOREM.
Both F and all its derivatives satisfy the property in f: f(x) > 0 and
y > x together imply f(y) > f(x). And, if QP does not hold, one even
has the stronger property in f: f(x) > 0 and y > x together imply
f(y) > f(x) .
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