
ONTARIO MATHEMATICAL MEETING 

The twelfth Ontar io M a t h e m a t i c a l Meeting was held on Saturday, October 
25, 1969, at M c M a s t e r U n i v e r s i t y . R e s e a r c h p a p e r s w e r e p r e sen t ed in the 
morn ing in t h r ee s e p a r a t e s e s s i o n s : topology and ana lys i s (Abs t r ac t s 69 .16 to 
69 .21) , a lgeb ra (Abs t r ac t s 69 .22 to 69 .27) and s t a t i s t i c s , n u m e r i c a l m a t h e m a t i c s 
and c o m b i n a t o r i c s (Abs t r ac t s 69 .28 to 6 9 . 3 3 ) . The invited a d d r e s s given by 
P r o f e s s o r D. Zel insky was ent i t led: Galois theory of r i n g s . 

69 .16 L . D . Nel (Car le ton Univers i ty ) 
Spaces De te rmined by thei r La t t i ces of Lower Semi-cont inuous Func t ions 

Let C (Y) denote the la t t ice of al l lower s emi -con t inuous functions 
L 

on Y into [ 0 , 1 ] . Does the la t t ice C (Y) d e t e r m i n e the topological 

space Y ? The p r o b l e m can be reduced at once to T - s p a c e s . 

THEOREM. C (Y) is i somorph ic to C (X) where X is the 
L L 

T - ident i f ica t ion of Y . LEMMA. The topology of a T - s p a c e X is the 
o o 

s m a l l e s t for which al l f e C (X) a r e lower s e m i - c o n t i n u o u s . Call 

p e C (X) a p r i m e if p < 1 and p = u A v only if p = u or p = v . 
L 

Define e (x) = k if x e A and = 1 if x e X - A , for 0 < k < 1 
kA — 

and i r r e d u c i b l e closed se t s A / 0 . LEMMA, p is a p r i m e if and 
only if p has the fo rm e . This l e m m a e s t a b l i s h e s a link between 

the la t t ice and topological s t r u c t u r e s which can be exploited in 
T - s p a c e s which have no i r r e d u c i b l e c losed se t s o ther than point 

o 
c l o s u r e s . Such s p a c e s (call them p c - s p a c e s ) have been cons ide red 
a l so by B l a n k s m a [Doctora l t h e s i s , U t r ech t , 1968] in connect ion with 
the la t t ice C(X) of c losed subse t s of X . THEOREM. If X is a 
pc - space , then C (X) d e t e r m i n e s X . THEOREM. F o r any topological 

space Y the l a t t i ces C (Y) and C(Y) d e t e r m i n e each o t h e r . It is 

nin 

_K X is a T.^- space , C (X) d e t e r m i n e s X . 
D L 

known that C(X) d e t e r m i n e s X when X is a T - s p a c e . COROLLARY. 

69 .17 L. Jonker (Queen 's Univers i ty ) 
A T h e o r e m on Min ima l Surfaces 

Let M be a connected two-d imens iona l manifold, R the n - d i m e n s i o n a l 

Euc l idean space , A the Lap lac ian on M , < . . , . . > the inner p roduc t 
n 

on R . O s s e r m a n [ R e m a r k s on m i n i m a l s u r f a c e s , Comm. P u r e and 
Appl . M a t h . , 12 (1959) 233-239] proved the following THEOREM. 

If x : M -*• R is an i s o m e t r i c i m m e r s i o n such that for s o m e a e R , 

we have A < a , x > = 0 , then M2 is a m i n i m a l su r face , or e l se a 
local ly cy l i nd r i ca l su r face with i ts g e n e r a t o r s p a r a l l e l to a . The 
p r e s e n t author gene ra l i zed this to a h igher cod imens ion : THEOREM. 

SuppDse x : M -*• R is an i s o m e t r i c i m m e r s i o n , and A an n - 2 
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d imens iona l l inear subspace of R . Suppose fur ther that A < a , x > = 0 

for a l l a G A . Then the re a r e only two pos s ib i l i t i e s : 1. M is 

min ima l ly i m m e r s e d in R ; (yr_ 2. There is a se t {m.} C M of 

isolated points so that each p e M - {m.} has a neighbourhood U so 

that the or thogonal p ro jec t ion of x(U) jon A is a r e g u l a r curve y , 
and so that x : U -+• y X A is m i n i m a l . 

69 .18 R. J. Loy (Car le ton Univers i ty) 
Uniqueness of the Complete Norm Topology and Continuity of Der iva t ions 
on Banach Algebras 

We a r e concerned with the following two propos i t ions r ega rd ing a 
complex Banach a lgebra A : 

ft A has unique complete n o r m topology . 

$ Der iva t ions on A a r e n e c e s s a r i l y cont inuous. 

(If A does not satisfy ft the validity of $ m a y depend on the choice 
of topology.) Although no f o r m a l r e l a t ion is known between ft and $, 
a survey of the l i t e r a t u r e shows that posi t ive r e s u l t s r ega rd ing ft for 
a c l a s s of Banach a l g e b r a s have been para l l e led by posi t ive r e s u l t s for 
$ for the s a m e c l a s s . The m o s t g e n e r a l r e s u l t s a r e those of Johnson 
and Sinclair that s e m i s i m p l e Banach a l g e b r a s satisfy both ft and $ . 
F o r the n o n - s e m i s i m p l e ca se Lindberg has r ecen t ly shown that c e r t a in 
a lgeb ra i c extens ions of commuta t ive s e m i s i m p l e Banach a l g e b r a s 
sat isfy ft, and it is not difficult to show they a lso satisfy $ . We 
cons ide r the ca se of a Banach a lgebra of power s e r i e s , A , over a 
commuta t ive Banach a lgebra A . Such a l g e b r a s always sat isfy $ , and, 
provided A is s e m i s i m p l e , they also sat isfy ft . Whether or not ft 
is t rue in g e n e r a l is not known. The proofs make e s s e n t i a l use of the 
coord ina te pro jec t ions which in a sense take the p lace of the mul t ip l i ca t ive 
l inear functionals in the work of Johnson. The r e s u l t s a r e only of i n t e r e s t 
if A is not s e m i s i m p l e , and c e r t a i n r e s u l t s concerning the s e m i s imp lie ity 
of A a r e given. 

69.19 R . G . Lintz (McMaster Univers i ty) 
Homotopy for g-functions and Genera l ized Re t r ac t i on 

It can be shown, with s imple examples , that the usua l concepts of 
continuous deformat ions , i . e . , homotopy, r e t r ac t i on , e t c . a r e not 
adequate in many r e s p e c t s if we want to extend them to topological 
s p a c e s whose points a r e not n e c e s s a r i l y of countable type, i . e . , with 
base of neighbourhoods which is not countable . To o v e r c o m e those 
difficulties the re was introduced by us , a few y e a r s ago, a genera l i za t ion 
of the concept of continuous function, actual ly called g-functions 
[Annali di Mat . P u r a ed Applicata (Italy) 67 (1965) 301-348; i b . 67 
(1965) 215-234; ib . 72 (1966) 45-48; ib . 72 (1966) 97-104] . 
F ina l ly , we succeeded in defining the concept of homotopy for g-functions 
and as a consequence a genera l i za t ion of the concept of deformat ion 
r e t r a c t was obta ined. As a by -p roduc t we got a new proof of the 
c l a s s i c a l r e s u l t that nomotopic m a p s induce the s ame h o m o m o r p h i s m 
in the Cech homology g r o u p s . The definitions a r e too long to be given 
h e r e . 
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69.20 I. M. Michae l (McMaste r Unive r s i ty , Un ive r s i ty of Dundee) 
The Spec t rum of a Second Orde r P a r t i a l Dif ferent ia l Opera to r 

The s p e c t r a l p r o p e r t i e s of d i f ferent ia l o p e r a t o r s can be de sc r ibed 
e i ther by Hi lber t space theory or , to obtain detai led r e s u l t s , by ana lys i s 
of the solu t ions of the c o r r e s p o n d i n g d i f ferent ia l equa t ions . It is not 
a lways c l ea r that the two se t s of definit ions of the va r ious p a r t s of the 
s p e c t r u m a g r e e , but in a r e c e n t paper [ P r o c . Roy. Soc. of Edin . 68A 
(1969) 95-119] Chaudhuri and E v e r i t t proved a g r e e m e n t in the ca se of 
c e r t a i n o r d i n a r y d i f ferent ia l e x p r e s s i o n s of the fo rm L[*], where 

L[f] = - (pf) ' + qf 

We p rove s i m i l a r r e s u l t s for the co r r e spond ing p a r t i a l d i f ferent ia l 
o p e r a t o r s . 

Explici t ly , we cons ide r o p e r a t o r s a s soc i a t ed with the t w o - d i m e n s i o n a l 
equation 

fc) A I|J (x) + {X - q(x)} 4J(X) = 0 

where the equat ion holds over the whole plane and q is r e a l - v a l u e d , 
has continuous f i r s t - o r d e r p a r t i a l de r iva t i ve s and is such as to e n s u r e 
the s y m m e t r y of the a s soc i a t ed m a x i m a l o p e r a t o r . (It is fa i r ly s t r a i g h t ­
forward to extend the theory to higher d imens ions and to r e l a x the 
continuity condit ions on q. ) This o p e r a t o r is e s s e n t i a l l y se l f -adjoint , 
and so has a unique a s soc i a t ed s p e c t r a l t heo ry . 

The cons t ruc t ive definit ion of the s p e c t r u m is in t e r m s of the function 
H , where 

H(x, £ , \ ) = l im f im G(x, £ , cr + iv) d cr 
~ ~ v - 0 0 " " 

and G is the G r e e n ' s function, unique by our condit ions on q, 
a s soc ia t ed with (a) . We p r o v e that the s tandard definit ion of the 
s p e c t r u m a g r e e s with the cons t ruc t i ve one, while the e igenva lues of 
the se l f -adjo in t o p e r a t o r a s soc i a t ed with (a) a r e exact ly the points 
of d iscont inui ty of H(x , £ , * ) . 

69 .21 D. Lovelock (Univers i ty of Water loo) 
D e g e n e r a t e Lag range Dens i t i e s involving G e o m e t r i c Objects 

Let g.. and r .. (i , j , h , . . . , = 1 , . . . , n) be r e s p e c t i v e l y the 

components of a s y m m e t r i c t enso r and the components of a s y m m e t r i c 
affine connect ion . With any given Lagrang ian 
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(1) L = L { g . . ; r . . ; T.. . } 

(where the c o m m a denotes p a r t i a l differentiat ion) we may a s soc i a t e the 
E u l e r - L a g r a n g e equations 

(2) I k _ -§_ r 9F 
( ) arh. axk {arh. J 

IJ l J > k 

( summat ion convention) in which the g.. a r e r ega rded as auxi l ia ry 

p r ea s s igned v a r i a b l e s and a r e not to be v a r i e d . In genera l , these 
equat ions (2) r e p r e s e n t second o rde r p a r t i a l di f ferent ia l equat ions in 

the r h . 
IJ 

In one approach to the field equations of g e n e r a l re la t iv i ty [1, page 106 
et s e q . ] a specific Lagrang ian (which is a lso a s ca l e r densi ty) of the 
type (1) is used . However the resu l t ing E u l e r - L a g r a n g e equations (2) 

a r e not of second o rde r in T.., but a r e indeed independent of both 
ij 

T . . and T . . i . e . they a r e of z e r o o rde r in T . . . In this c a se 
l j , r s i j , r ij 

the E u l e r - L a g r a n g e equations a r e p r e c i s e l y those equations which 

e n s u r e that the r . . a r e the Christoffel symbols of the second kind 

(for n > 2). 

In this r e p o r t we a s s u m e that L given by (1) is a s ca l a r densi ty 
which the re fo re e n s u r e s that (2) a r e t e n s o r i a l in c h a r a c t e r [2] . 
N e c e s s a r y and sufficient conditions for the second o r d e r equations (2) 
to degene ra t e into f i r s t and ze ro o r d e r equations a r e obtained. F u r t h e r ­
m o r e we show that (for n > 2) if the g.. m a y be r ega rded as independent 

v a r i a b l e s then the only E u l e r - L a g r a n g e equations which a r i s e f rom (1) 

and which a r e of z e r o o r d e r in r . . a r e those which ensu re that the 
ij 

T . . a r e the Christoffel symbols of the second kind. 

Cer ta in other degenera te Lagrange dens i t i e s of impor t ance in g e n e r a l 
r e l a t iv i ty have a lso been t rea ted [3; 4; 5 ] . 

R E F E R E N C E S 

1. E. Schrbdinger , Space - t ime s t r u c t u r e . (Cambr idge Univer s i ty 
P r e s s , 1963). 

2 . H. Rund, Invar iant theory of va r i a t iona l p r o b l e m s for geome t r i c 
ob jec t s . Tensor (N. S. ) 18 (1967) 239-258. 

3 . D. Lovelock, The uniqueness of the Eins te in field equations in a 
fou r -d imens iona l s p a c e . A r c h . Rat ional Mech. Anal . 33 (1969) 
54-70 . 
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4. D. Lovelock, Divergence-free tensorial concomitants. 

Aequationes Mathematicae (to appear, 1970). 

5. D. Lovelock, Degenerate Lagrange densities for vector and 

tensor fields. Joint Math. Coll., Universities of South Africa 

and Witwatersrand. (1967) 237-269. 

69.22 Ahmad Shafaat (Carleton University) 

Quasivarieties and Structure of Algebras 

For a definition of quasivarieties of £2 -algebras see, for example, 
P.M. Cohn: Universal Algebra, Harper and Row, 1965. Many-
varieties and quasivarieties K of algebras have the following property: 

(• ) There exist in K. finitely many finite algebras A , . . . , A such 

that every algebra in K is isomorphic to a subcartesian product of 

some of the algebras A, , . . . , A . 
I n 

Semilattices, distributive lattices, Stone algebras and normal 
idempotent semigroups are only few of the examples of varieties 
satisfying (•) . In this paper we prove that if K is a locally finite 
quasivariety with finitely many subquasivarieties, then K satisfies 
(• ) . This result is an example of how a study of the lattice of sub­
quasivarieties of a quasivariety can give useful information about the 
structure of its algebras. 

69.23 K.B. Lee (McMaster University) 
Equational Classes of Distributive Pseudo-complemented Lattices 

A pseudo-complemented lattice is a lattice L with zero such that for 
each a e L, there exists a* e L such that for all x e L, 
a A x = 0 if and only if x <C a* . One can construct a distributive 
pseudo-complemented lattice B from a Boolean algebra B by adjoining 
a new unit 1 . Let 8 be the equational classes of distributive pseudo-

n 

complemented lattices generated by B , where B are 2 -element 
n n 

Boolean algebras (n j> 0); (8 be the class of all one-element pseudo-

complemented lattices; 8 the class of all finite distributive pseudo-

complemented lattices; 8 the class of all distributive pseudo-

complemented lattices. 

THEOREM 1. Let L be a distributive pseudo-complemented lattice. 
Then the following conditions are equivalent (n _> 1): 

(1 ) L satisfies the equation 

n 

V \ / (x A . . . A x* A . . . A x ) * = 1 ; 
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(3) every prime filter in L is contained in at most n distinct 
maximal filters; 

(4) every (proper) prime ideal in L contains at most n distinct 
minimal prime ideals; 

n + 1 
(5) L = \ / Q. for any n + 1 distinct minimal prime ideals in L. 

i = l 1 

THEOREM 2. Let G be an equational class of distributive pseudo-
complemented lattices. Then G d 8 -*- 8 . C G (n > -l) . 

1 J. n n ^ _ _ 

THEOREM 3. 8 = HSP(B ). 

THEOREM 4. fi, C 8 c e . C . . . C I 5 C . . . C 8 is the whole lattice 
- 1 0 1 n oo 

of equational classes of distributive pseudo-complemented lattices. 

69.24 V.D. Belousov, (Institute of Math, of the Academy of Sciences of 
Moldavian S.S.R., Kishinev, U.S.S. R. and University of Waterloo) 
A Functional Equation of Generalized Associativity on Quasigroups 

Following G. Cupona we denote by x. the sequence 

x. , x. , . . . . x. , , x. , (i < i) . If i > i, then x. is an empty set. 
l ' 1+1' J-1' j ~ J / J ' l F y 

A n-ary quasigroup operation (shortly quasigroup) A defined on the 

set Q is the mapping A : Q -*• Q such that A(a , x , a . ) = b 

has a unique solution for all a e Q > b e Q . The integer n is called 

the arity of A and is denoted by | A | . The functional equation 

», ^*ni>^'4r tq 
where | B | , | D | > 1 is called generalized associativity. If A and B 
are given quasigroups then the left side of (1) defines a binary operation 
i i 2 i-1 i+n-1 r 

(+) on the set of all quasigroups: (A + B)(x, ) = A(x, , B(x ) , x. ) , 
1 1 l+n 

i i . . 
The operation (+) is partial, A + B exists only if [A| _> i . The set 
of all quasigroups including nullary operations (i.e. the operations 
i 

(+) , i = 1 , 2 , . . . becomes a partial algebra with some properties. 
These properties taken as axioms define an abstract partial algebra in 
which the equality 

(2) A + B = C + D 

corresponds to the functional equation (1). 
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In o r d e r to solve the equat ion (2) five poss ib le c a s e s (I II ) a r e 
I , 2 , 1 ,2 ,3 

c o n s i d e r e d . The m o s t impor t an t is the c a s e II ' i < j , j < i + n < j + q , 

whe re n = IB I , q = DI . The solut ion in this c a s e is 

A = K + Y o F , B = v _ 1 ( E o S), C = K + E o 0 , D = 6~ *(S o F) 

whe re "Y , 0, E , F , S , K a r e a r b i t r a r y opera t ions of a r i t y 1 , 1 , 
k = j - i , q - n + k , n - k , p - k co r r e s p o n d i n g l y . The (o) is a 

1 2 

group opera t ion , i . e . (o) + (o) = (o) + (o) and A o B is defined 
2 i 

by A o B = ((o) + B) + A . If i < j , i + n < j (Case II ) the solut ion 

i -n+1 i 
is given by A = KJ + D , C = K + B , whe re B , D , K a r e a r b i t r a r y 
opera t ions of a r i t y n , q , p - n + 1 . The solut ions for o ther c a s e s a r e 
s i m i l a r to II j . The c a s e i = 1 , j = q , j < n , cons ide red by 

M. Hosszu is a p a r t i c u l a r c a s e of II . r 3 

The m o r e g e n e r a l equat ion 

(A + B) (x*) = (C + D ) ( y * ) , 

whe re y is a p e r m u t a t i o n of x is a l so solved. The obtained 

r e s u l t s a r e used to give a d e s c r i p t i o n of (i , j ) - a s s o c i a t i v e quas ig roups 
A , i . e . A sa t i s f i e s (2) for A = B = C = D . 

69 .25 John D. Dixon (Car le ton Univers i ty ) 
The Number of Steps r e q u i r e d in Applying the Euc l idean Algo r i t hm 

The object of this pape r is to give a ske tch of the proof of the following 
THEOREM. F o r al l pos i t ive i n t ege r s u , v with u <_ v we define 
L(u , v) to be the number of s t eps r equ i r ed in applying the Euc l idean 
a l g o r i t h m to find the g r e a t e s t common d iv i sor of u and v . Then for 
each e > 0 

(*) | L ( u , v ) - (12Tr"2log 2) log v | < (log v ) 2 + £ 

for a l m o s t all p a i r s u , v . Indeed the p ropor t ion of p a i r s u _< v <ç x 
which fail to sat isfy this condit ion is c e r t a in ly l e s s than any power 

(log x) as x -» oo . 

The only r e s u l t of this kind that had been known e a r l i e r is a t h e o r e m of 
H. Hei lbronn (1968) which showed that for each v the a v e r a g e of 
L(u , v) over the u r e l a t i v e l y p r i m e to v is a sympto t i c to 

(12TT log 2) log v with e r r o r "term at w o r s t 0 ( ( log logv) ); his r e s u l t 
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is proved by pu re ly a r i t hme t i c m e t h o d s . In c o n t r a s t our t h e o r e m is 
based on r e s u l t s in the m e t r i c theory of continued f rac t ions (initiated 
by Gauss) , and m a k e s use of a paper by W. Ph i l ipp . [Das Gese tz vom 
i t e r i e r t e n Loga r i thmus m i t Anwendungen auf die Zah len theo r i e . Math . 
Ann. 180 (1969) 75-94] . 

69 .26 V. Dlab (Car le ton Univers i ty) 
S t ruc tu re of P e r f e c t Rings 

The concept of a pe r fec t r ing was introduced by S. Ei lenberg in [3]. 
La t e r , H. B a s s [1] gave s e v e r a l c h a r a c t e r i z a t i o n s of pe r fec t r i n g s . 
To his l is t , we may add the following one: 

A r ing R is (right) per fec t if and only if R p o s s e s s e s a (left t r a n s -
r 

finite) soc le sequence and R = ® L. with indecomposab le (left) 
i = i 

idea l s L. . As a consequence , each L. contains a unique (left) ideal 

K. of R which is m a x i m a l in L . 
l i 

By m e a n s of the s tandard m a t r i x r e p r e s e n t a t i o n of R , one can show 
that t h e r e i s a one - to -one c o r r e s p o n d e n c e between non - i somorph i c 
pe r fec t r ings and n o n - i s o m o r p h i c finite addit ive ca t ego r i e s A such that 
[A , A] a r e local pe r fec t r i ngs for al l A e A . Consequently, p a r t i c u l a r 
types of pe r fec t r i n g s can be c h a r a c t e r i z e d e i ther i n t r in s i ca l ly or in 
t e r m s of m a t r i c e s or addit ive ca t ego r i e s (cf. [2]). 

R E F E R E N C E S 

1. H. B a s s , F i n i s t i c d imens ion and a homological gene ra l i za t ion of 
s e m i - p r i m a r y r i n g s . T r a n s . A m e r . Math. Soc. 95 (I960) 466-488 . 

2 . V. Dlab, M a t r i x r e p r e s e n t a t i o n of pe r fec t r i n g s . 

3 . S. E i l enbe rg , Homological d imens ion and syzyg ie s . Ann. of 
Math. 64 (1956) 328-336. 

69 .27 Tae Ho Choe (McMaster Univers i ty) 
Local ly Compact La t t i ces with Small La t t i ces 

In the Symposia P u r e Math. (Lat t ice theory) Vol . I I , A. M . S . , 
L. Ander son conjectured that any locally compact connected topological 
la t t ice has a b a s e consis t ing of open sub la t t i ces ( i . e . has s m a l l l a t t i ce s ) . 
We f i r s t d i s c u s s that this conjec ture is not t rue in g e n e r a l . Recent ly , 
J. D. Lawson has given an example of a compact connected m e t r i z a b l e 
d i s t r ibu t ive la t t ice which admi t s no non t r iv ia l la t t ice h o m o m o r p h i s m s 
into the unit i n t e r v a l . We sha l l see that this la t t ice does not have any 
s m a l l l a t t i ces , and it is infinite d imens iona l . 

However , if a la t t ice is finite d imens iona l , we a r e able to show that 
any local ly compact connected la t t ice of finite codimens ion has s m a l l 
l a t t i c e s . 
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Since finite d imens iona l i ty of a la t t ice is c l e a r l y not a n e c e s s a r y 

condit ion for the la t t ice to have s m a l l la t t ice , (for example , I ) it 
m a y not be easy to obtain a condit ion in t e r m s of d imens ion of the 
l a t t i c e . We sha l l next show that if L is a local ly compac t connected 
la t t ice , then L has s m a l l l a t t i ces if and only if for each pa i r of 
e l emen t s x and y with x ^ y , every neighbourhood U of x with 
U ^ y (u ^ y for al l u e U) has an e lement z such that 

x G (z A L) , and dual ly . 

F o r a complemented la t t i ce we have the following: any locally 
compac t r e l a t i ve ly complemented la t t ice which has s m a l l l a t t i ces 
is total ly d i sconnec ted . This y ie lds that any local ly compac t 
o r thomodu la r la t t ice which has s m a l l l a t t i ces is total ly d i sconnec ted . 

F o r the d imens ion and the cen te r of a la t t ice , we have the following: 
if L is a local ly compac t connected la t t ice with 0 and 1 and if the 

cod imens ion of L is n , then Card . (Cen(L)) < 2 . M o r e o v e r , 
n -1 

if the la t t ice L is not compact , then Card . (Cen(L)) <_ 2 

69.28 D . R . B e u e r m a n (Queen 's Univers i ty ) 
On the L imi t Dis t r ibu t ion of the T ime of F i r s t P a s s a g e Over a 
Curv i l inea r Boundary 

Let X , X ,X , . . . be a sequence of independent and ident ica l ly 
1 2 3 

dis t r ibu ted r a n d o m v a r i a b l e s which belong to the domain of a t t r ac t i on 
of a s tab le law of index a and d i s t r i bu t ion function G . Let B be 

n 
n 

the no rming cons tan t s and S = S X. . 
n i 

i = l 

Take the cons tan t (3 e [0 , 1). Our p r i m a r y i n t e r e s t is in the r andom 

v a r i a b l e , T (X) = min[k : S, > x k H , which r e p r e s e n t s the f i r s t 
(3 k 

p a s s a g e t ime for the r a n d o m walk S over the c u r v i l i n e a r boundary 

XÏÏ . Seve ra l r e la ted r a n d o m v a r i a b l e s m a y be cons ide red in t e r m s 
of T (x) . F o r example , if we define 

M = m a x {0 , S , Z~^ S , . . . , n"^ S } 
n ,p i 2 n J 

we note that, for x > 0 , M > x if and only if T (x) < n . 
n,(3 y (3V -

The m a i n r e s u l t s a r e the following. Take 1 < of < 2 , (JL = £ [X.] > 0 , 

this being one of the c a s e s of "dr i f t " for the r a n d o m walk S . Then 
n 

we have these l imit r e s u l t s . 
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lira 
< 

/ 1-6 
M n , 6 " n ^ 

. n"P B 

(1) l i m P > M _ < a = G(a 

T (x) - X - a 

x-*-oo \ (j. B ( x ) ~P 
(2) l i m P I —& > ] = G(a ) 

1 / ( 1 - 6 ) 
w h e r e X = (|i x) , B ( x ) ~ B 

S i e g m u n d [ A n n . M a t h . S t a t . , 3 9 , p a g e s 1 4 9 3 - 1 4 9 7 ] h a s o b t a i n e d 
s i m i l a r r e s u l t s f o r t h e n o r m a l (a = 2) c a s e , b u t w i t h t h e c o n d i t i o n 
t h a t t h e X . b e i d e n t i c a l l y d i s t r i b u t e d r e l a x e d to c o m m o n m e a n and 

l 

v a r i a n c e . 

F o r ( 3 = 0 , (1) r educes to a r e s u l t of Heyde [J . Appl. P r o b . , Vol. 4, 
pages 144-150] . 

D r . C. C. Heyde, now at the Aus t r a l i an National Univers i ty , guided m e 
in this work while we were at the Manchester-Sheff ie ld School of 
P robab i l i ty and S ta t i s t i c s . 

69.29 I. S. Chorneyko and S. G. Mohanty (McMaster Univers i ty) 
On the Enumera t ion of P s e u d o - s e a r c h Codes 

A codeword c is a finite sequence of non-negat ive i n t e g e r s . Any 
finite se t of codewords is called a code C . A codeword b is a pref ix 
of the codeword c if t he r e exis ts a codeword a such that c = ba , 
where ba is the concatenat ion of b and a . The empty se t and the 
code consis t ing of the empty codeword a r e called the empty and t r iv i a l 
codes r e s p e c t i v e l y . Denote by Z the se t of a l l codewords . F u r t h e r ­
m o r e , for any code C and a e Z , C is the set of a l l codewords 

a 
b e Z such that ab e C . 

We m a k e the following defini t ions: 

(1) A code C is branched if and only if one of the following o c c u r s : 
(i) C is the empty code; (ii) C is the t r i v i a l code; (iii) C does 
not contain the empty codeword and t h e r e ex is t s an in teger b(C) >_ 
such that for k , the codeword consis t ing of the single le t te r k , 
k = 0 , 1 , 2 , . . . , the code C is empty or not according as 
k > b(C) or <b(C) . 

(2) b(C) is the branching number of the code C . 

(3) A code C is a p s e u d o - s e a r c h code if C is branched for eve ry 

a e Z . 

695 

https://doi.org/10.1017/S0008439500030940 Published online by Cambridge University Press

https://doi.org/10.1017/S0008439500030940


(4) If C is a p s e u d o - s e a r c h code, any a e Z for which b(C ) > 1 , 

is cal led the b ranch ing point of C and b(C ) is the b ranch ing 

number of a . 

These defini t ions and the following r e s u l t s a r e mot iva ted by an 
unpublished paper of A. Renyi , p r e sen t ed at M c M a s t e r Un ive r s i ty in 
June, 1969. 

Let S ( q i , q2 , be the se t of p s e u d o - s e a r c h codes such that the 

ith b ranching point (in lex icographic o r d e r ) has q. as i ts b ranch ing 

n u m b e r . A o n e - t o - o n e c o r r e s p o n d e n c e is es tab l i shed be tween 
S(q , . . . , q ) and the set of la t t ice paths in the plane f rom (0 , 0) to 

(a , k) , not c r o s s i n g the la t t ice path de te rmined by the vec to r 
k 

( 0 , a , 
k - 1 ' 

where a. 
J 

J 

i = l 
q , - J » J i , 2 ; 1 is 

the hor i zon ta l d i s t ance f rom (a , k - j - 1) to the path and 

k 
a = 2 q. - k + 1 . Using this c o r r e s p o n d e n c e , the number in 

K . 1 

i = l 
s(q1 q, ) i s o b t a i n e d a s d e t ( d . . ) . , . , „ . , w h e r e H k v IJ ( k - l ) x ( k - 1 ) 

d. . < / a i • + d 

vj - i + 1 

if i > j + 1 , 

o t h e r w i s e . 

Other s i m i l a r r e s u l t s follow f rom this c o r r e s p o n d e n c e . 

.30 A . K . B a s u (Queen ' s Unive r s i ty ) 
On Dis t inguishabi l i ty of Sets of Dis t r ibu t ion Func t ions 

According to Hoeffding and Wolfowitz [Ann. Math . Stat . 29 (1958) 
700-718] two subse t s £ and }( of J of d i s t r i bu t ion functions a r e 
d i s t ingu i shab le in the given c l a s s Z of t e s t s if t h e r e ex is t s a t e s t with 
m a x i m u m e r r o r p robab i l i ty in P U M less than any p r e a s s i g n e d 
pos i t ive n u m b e r . We have extended t h e s e concepts to the k - d e c i s i o n 
p r o b l e m s when the chance v a r i a b l e s a r e independent ly and ident ica l ly 
d i s t r ibu ted 

" k - d i s t i n g u i s h a b l e " if t h e r e ex is t s a t e s t <\> = (<\> 

The subse t s J? , ££ , . . , 3\ of $ wil l be cal led 
1 2 k 

) such that 

the sum of e r r o r p robab i l i t i e s in J U 5 . . . . U ï . is l e s s than one . 
1 2 k 

If we r e s t r i c t o u r s e l v e s to the c l a s s of fixed s a m p l e s ize t e s t s then 
the above d i s t ingu ishab i l i ty is cal led "finite d i s t ingu ishab i l i ty" ; o ther ­
wise it is cal led " sequen t i a l d i s t ingu i shab i l i t y" . 

Like Hoeffding and Wolfowitz we have t r ied to find n e c e s s a r y a n d / o r 
sufficient condi t ions for ex i s t ence of such t e s t s . We have shown that 
"k -d i s t i ngu i shab i l i t y " is s t r o n g e r than p a i r w i s e d i s t ingu i shab i l i ty . 
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Then we have extended "dis t inguishabi l i ty of se t s of d i s t r i b u t i o n s " to 
Two-Sample P r o b l e m s . We have shown that t w o - s a m p l e p r o b l e m about 
equali ty of two med ians is not "finitely d i s t ingu i shab le" but " sequent ia l ly 
d i s t i ngu i shab le" . Then we have cons t ruc ted a p r a c t i c a l n o n - p a r a m e t r i c 
sequent ia l t e s t for equali ty of two med ians which a r i s e s na tu ra l ly in the 
c o u r s e of proving sequent ia l d is t inguishabi l i ty of two- sample m e d i a n 
p r o b l e m . This sequent ia l p r o c e d u r e converges with probabi l i ty one. 
Upper bounds of two types of e r r o r p robab i l i t i e s a r e a lso calcula ted 
h e r e . This t e s t is s i m i l a r to Ma th i e sen ' s t w o - s a m p l e t e s t . 

69 .31 D. N. B e h a r a 
A Computat ional Ma t r ix Algor i thm for the Shor tes t Route P r o b l e m 

This paper p r o p o s e s a computa t ional m a t r i x a lgo r i thm for the s h o r t e s t 
rou te p r o b l e m . The p r o b l e m dea ls with de t e rmina t i on of the s h o r t e s t 
rou te f rom one point to another in a network, G = [N, A] subject to 
non-nega t ive d i s t ances , d.. a ssoc ia ted with each a r c ( i , j ) e A 

whe re 

k . i t j , k.. > 0 
i j i j 

d 
i j 

i = J 

if no single a r c connects 
node i to node j . 

The a lgor i thm c o n s i d e r s n X n d i s t ance m a t r i x [d. .] for the network 
i j 

where co lumns and rows r e p r e s e n t the nodes of the ne twork . Or ig in 
and des t ina t ion a r e label led . Minimum d..s a r e selected beginning 

with row 1 , and the r ema in ing en t r i e s appear ing in the se lected d.. 

column a r e cance l led . Then a m i n i m u m d.. is se lec ted f rom row 
i j 

i = k if the d . se lected above l ies in the column, j = k and the 
i j 

r e s p e c t i v e chain lengths for each pa i r of consecut ive d. .s a r e wr i t t en 

down bes ide the i r r e s p e c t i v e r o w s . Among the subsequent m i n i m u m 
d. .s the one which connects the m i n i m u m chain length noted above is 

s e l ec t ed . The p r o c e d u r e is repea ted until the des t ina t ion is r e a c h e d . 
The a lgor i thm is i l lus t ra ted by a n u m e r i c a l example . 

69 .32 J . Cs ima and B . A . Datta (McMaster Univers i ty) 
The DAD T h e o r e m for Symmet r i c Nonnegative M a t r i c e s 

A m a t r i x is nonnegative if i ts en t r i e s a r e nonnegat ive r e a l n u m b e r s . 
A nonnegative m a t r i x is dou-bly s tochas t i c if i ts row and column sums 
a r e al l equal to 1 . If A = (a..) is a nonnegative squa re m a t r i x of 

o r d e r n we say that the en t ry a., belongs to a posi t ive diagonal 

if t he re ex is t s a pe rmu ta t i on cr on the f i r s t n na tu r a l n u m b e r s such 

that n a. ... > 0 . 
i = l **M 
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Let A be a s y m m e t r i c nonnegat ive m a t r i x . We prove that a sufficient 
and n e c e s s a r y condit ion for the ex i s tence of a diagonal m a t r i x D such 
that DAD is doubly s tochas t i c is the following: eve ry nonze ro en t ry 
of A belongs to a pos i t ive d iagonal . Equivalent ly , in view of the 
P e r f e c t - M i r s k y c h a r a c t e r i z a t i o n of doubly s tochas t i c p a t t e r n s , such D 
ex i s t s if and only if t he re ex is t s a doubly s tochas t i c m a t r i x whose non­
z e r o p l aces coincide with the nonzero p l aces of A . . 

P r e v i o u s l y known sufficient condi t ions for the ex i s t ence of a D (D and 
A as above) a r e the following: (i) A is s t r i c t l y pos i t ive or pos i t ive 
semidef in i te without a z e r o row (Marcus and Newman); (ii) A has a 
s t r i c t l y pos i t ive m a i n d iagonal (Bruald i , P a r t e r and Schne ide r ) . 

Nei ther of these condit ions is n e c e s s a r y as i l l u s t r a t ed by A = 
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69 .33 P a u l de Witte (Univers i ty of Water loo and Un ive r s i t y of Antwerp) 
On an Analyt ic Method in the Combina to r ia l Study of F in i t e L inea r Spaces 

By a n o n - t r i v i a l finite l inear space , we m e a n a se t of p{>_ 2) points and 
q ( ^ 2) l ines with an inc idence r e l a t i on be tween them such that 

(1) The re is jus t one line pass ing through any two d i s t inc t po in t s . 

(2) Every line p a s s e s through at l eas t two po in t s . 

It m a y be noted that in the following the condit ion (2) can be weakened to: 

(21) Eve ry line p a s s e s through at l eas t one point . 

If any two l ines m e e t , we ca l l the space q u a s i - p r o j e c t i v e (and the p r o p e r t y 
QP for s h o r t ) . It is well known that in this c a s e p = q . Let now a 

denote the number of points on the ( r - th line, and b the number of l ines 
a 

th rough the a - t h point . The following r e s u l t s formed the background for 
the p r e s e n t p a p e r : 

(a) T r iv i a l ly : 2 b = Z a . 
a cr 

0 1 
1 0 
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(b) By a t h e o r e m due to de Brui jn and Erdos [Indag. Math. 10 (1948) 
421-423] : 

( b . l ) p < q-

(b.2) p - q impl ies QP . 

(c) By a t h e o r e m of mine [Bull . Soc. Math, de Belgique 18 (1966) 
430-438] : 

( c l ) 2 b 2 > 2 a 2 . 
a — cr 

(c .2) Z b 2 = 2 a2 impl ies QP . 

Let us now in t roduce the function F defined by 

_ , ^ u x + 1 v x + 1 

F(x) = 2 b - 2 a 

It is obvious that the above r e s u l t s can be neat ly exp re s sed by m e a n s of 
F(0) , F ( - l ) and F ( + l ) . This suggested the following analyt ic method : 
de r ive combina to r i a l r e s u l t s as those above f rom the behaviour of F . 
More p r e c i s e l y , p rove that F has only the t r i v i a l roo t nought un le s s 
it is ident ical ly z e r o , in which case QP m u s t hold. This conjecture 
had been c o r r o b o r a t e d by n u m e r i c a l evidence gathered by M r . Nico Benschop 
on the Water loo computer in 1967-1968 (work supported by NRC-Gran t 
A-4748) . 

This and m o r e has now been es tabl ished by proving the THEOREM. 
Both F and a l l i ts de r iva t ives satisfy the p r o p e r t y in f : f(x) >_ 0 and 
y _> x together imply f(y) >̂  f(x) . And, if QP does not hold, one even 
has the s t ronge r p rope r ty in f : f(x) _> 0 and y > x together imply 
f(y) > f(x) . 
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