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Abstract. LetA=A, , ,. denote the moduli scheme ov&[1/n] of p.p.g-dimensional abelian varieties
with a leveln structure; its generic fibre can be described as a Shimura variety. We study its ‘Shimura
subvarieties’. Ifz € A is an ordinary moduli point in characteristic then we formulate a local
‘linearity property’ in terms of the Serre—Tate group structure on the formal deformation space (
formal completion ofA atz). We prove that an irreducible algebraic subvarietyAdf a ‘Shimura
subvariety’ if, locally at an ordinary point, it is ‘formally linear’. We show that there is a close
connection to a differential-geometrical linearity property in characteristic 0.

We apply our results to the study of Oort’s conjecture on subvarigfiessA with a dense
collection of CM-points. We give a reformulation of this conjecture, and we prove it in a special case.
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Introduction

In this second part of our work on ‘linearity properties’, which for a large part is
independent of Part I={ [19]), we continue our investigation of subvarieties of
Hodge type in a given Shimura variety. We study their properties, and in particular
the question of how such subvarieties of Hodge type can be characterized. Here we
are not looking for alescriptionof all subvarieties (which can be given in terms of

the Deligne formalism of Shimura varieties) but rather for diaracterizations

of when an algebraic subvariety— Shx (G, X) is of Hodge type. The conjectures

of Coleman and Oort (see the introduction of Part |; for Oort’'s conjecture see also
below and Section 5) can be seen as motivating problems.

In this paper, we restrict our attention to subvariefies+ A, 1 ,, of the moduli
space ofg-dimensional abelian varieties-(polarization and a level structure).
Similar to Th. 4.3 in Part |, we prove that an algebraic subvariety of Hodge
type if and only if it satisfies a certain ‘linearity property’. In this case, however,
we work with a linearity property (called ‘formal linearity’) of more arithmetic
flavour than the ‘total geodesicness’ considered in Part I. The set-up is as follows.

LetZ — A1, ® F be an absolutely irreducible algebraic subvariethpf ,,
over a number field”. Let p be a prime ofOx not dividing n, write A, =
Ag1n ® O,, and defineZ — A, as the Zariski closure of inside.A,. Suppose
x € Z ® k(p) is a closed ordinary moduli point. Taking formal completions
at the pointz, we obtain formal scheme®, — 2, over SpfA), whereA =

https://doi.org/10.1023/A:1000411631772 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000411631772

4 BEN MOONEN

W (k(2)) ®w (x(p)) (’A)p. By Serre-Tate theoryl, has a natural structure of a
formal torus. We say thag is formally linear atz if 3, — 2, is a formal
subtorus.

Our study of this notion of formal linearity was motivated by results of Rutger
Noot ([21], see also [22]). He proved that if we start with a subvateof Hodge
type, then the modeE as above is formally linear at all closed ordinary points
x (possibly excluding finitely many primgg. We give a precise formulation of
Noot's results in Section 4.

One of our objects in this paper is to prove that, conversely, a weakened version
of formal linearity implies that the subvariefyis of Hodge type. More precisely:

THEOREM. LetZ — A, 1, ® F be an irreducible algebraic subvariety of the
moduli spaceA, 1, defined over a number field. Suppose there is a prime
of Op such that the modeE of Z (as in Sectior8.3) has formally quasi-linear
components at some closed ordinary pairg (£ ® x(p))°. ThenZ is of Hodge
type, i.e., every irreducible componentof » C is a subvariety of Hodge type.

Notice that this statement is very similar to Corollary 5.5 in Part I, to which,
in fact, we reduce the proof. The definitions and preliminaries that are needed to
establish the main results, are discussed in Sections 1-3. The above theorem is
proved in Section 4.

Next we try to apply our characterization to Oort’s conjecture. Recall that this
conjecture says that an irreducible algebraic subvafietys A, 1, ® C containing
a Zariski dense collection of CM-points should be a subvariety of Hodge type.
What we would like to prove therefore, is that the existence of such a Zariski dense
collection of CM-points implies that, for some primgwe obtain a mode£ which
is formally linear at some ordinary point Unfortunately, we can only prove this
under an additional assumption. Although this does not settle Oort’'s conjecture
in general, we think that both the methods used and the resulting variant of the
conjecture (see 5.3) are interesting in their own right.

We conclude with some applications. In Section 5 we apply the main results
discussed above to prove Oort’s conjecture in a particular situation. For a precise
statement, see 5.7. In the last section we study the Zariski closure of the moduli
point of X" where X is an ordinary abelian variety in characterigtiqnot
necessarily defined over a finite field). First we show that this Zariski closure,
call it Z, is a subvariety of Hodge type. Knowing this, one wonders how(dim
compares to the dimension of the Zariski clos{izg“® C A, 1, ® F, of the
moduli point of X. Clearly, if z is a closed point, then both dimensions are zero.
In general, diniZ) > dim({z}#2"). We show (joint work with A.J. de Jong and
F. Oort) that there exist ordinary moduli pointswith dim({z}#?®) = 1 and
dim(Z) =g(g +1)/2.
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1. Definitions and preliminaries

1.1. Recall that a Shimura datui@, X) is a pair consisting of an algebraic group
G overQ and aG (R)-conjugacy clasg C Hom(S, Gr) satisfying the axioms [8,
(2.1.1.1-3)]. We write Sh(G, x) for the canonical model, defined over the reflex
field E(G, X), of the Shimura variety associated to a Shimura dattink) and a
compact open subgroup C G(Ay); by definition we thus have

Shi (G, )(C) = G(Q)\x x G(Ay)/K.

In this context, we adopt the notational convention that symbglsetc. represent

the conjugacy classes which are part of a Shimura datum, and that sykbdls

etc. represent connected components (which are hermitian symmetric domains).
Let f: (G1,X1) — (G2,X2) be a morphism of Shimura data (i.e., a homomor-

phismf: G, — G, of algebraic groups ovep inducing a map fronx to X») and

let K1 C G1(Ar), K2 € G2(Ay) be compact open subgroups withk1) C Ko.

We obtain a morphism

f(k1, k) Shic, (G1, X1) = Shi, (G2, X2)

of associated Shimura varietiesSlif— Shy, (G2, X») is an irreducible component
of the image off k) then we callS a subvariety of Shimura type.

In general, the class of subvarieties of Shimura type is not stable under Hecke
correspondences. We say that an algebraic subvaSiety Shy (G, X) is a sub-
variety of Hodge type if there is a subvariefy — Shy (G, X) of Shimura type
and a Hecke corresponderigg (with n € G(Af)) such thatS is an irreducible
component of the imag@, (S’). For further discussion of this notion we refer to
[19]; here we only recall the following fact (loc. cit., Section 2).

PROPOSITION 1.2LetS C Shi (G, X) be asubvariety of Hodge type. Then there
exists a compact open subgrof of G(Af) contained inK, a representation
&G — GL(V), and an algebraic subgrouf C GL(V'), such thafi) ¢ induces a
polarizable VHS/(£) overShy/ (G, X), and(ii) S is the image under the natural
map Shy/ (G, X) — Shg (G, X) of an irreducible subvarietyy’ C Shy/ (G, X)
such thatS’ is a maximal irreducible subvariety with generic Mumford—Tate group
M.

1.3. Let ' be a field withE = E(G,x) C F C C. We extend the previous
definitions by defining an irreducible subvariefy— Shx (G, %) ® F' to be of
Hodge type (resp. of Shimura type) if all irreducible componenis ®f- C are of
Hodge (resp. Shimura) type.

For such a subvariety to be of Hodge type, it then suffices to check that
oneof the irreducible components 6. = S ®F C is of Hodge type. (Similarly
for subvarieties of Shimura type.) This is because the class of subvarieties of
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Hodge type is stable under the action of GBIE) on the (non-connected) variety
Shi (G, X) ® C — an easy consequence of the results on conjugation of Shimura
varieties, discussed in [17, Sect. 11.4].

1.4. Let CSp, be the group scheme of symplectic similitudes of the Spée
with its standard symplectic formp, and Ieth;t denote the Siegel double space,
considered as a C§gR)-conjugacy class ofhomomorphisfiss — CSp, ;.. Set
K,={g¢€ CSng(i) | g = 1(modn)}. As is well-known (see [7, Sect. 4]), we
can identify the Shimura variety &h(CSp,,, h;) with A, 1 , ® Q. Here we write
Ag1,, for the (coarse) moduli scheme ovgil /] of principally polarized abelian
varieties with a Jacobi level structure (by which we mean a levelstructure
which, for somechoice of annth root of unity, is symplectic in the sense of [12,
p. 121]). Ifn > 3thenA, 1, is a fine moduli scheme.

1.5 FORMAL SCHEMES. The theory of formal schemesis setupin[13,I. Sect. 10
and lll, Sects 3-5]. Unfortunately, not everything we need is treated there. Lacking
a good reference, let us briefly discuss some definitions. Conveamtlidiormal
schemes we use are noetherian and adic.

Let ¥ be a formal scheme. We write,q for the associated reduced scheme
([13, 1, Sect. 10.5]), which has the same underlying topological spaces call
X connected if the underlying topological space is connected. We: dalimally
reduced, if for all pointsz € X the local ringQ, is reduced. Le®); and9),
be closed formal subschemesXfdefined by coherent ideal sheavgsandZ,
respectively. We define the closed formal subsch®@me 2, C X by the sheaf of
idealsZ; N Z,, which again is coherent.

Suppose is formally reduced. We say is formally irreducible if for all closed
formal subscheme®)1,2), with X = 91 U 2, we havel; = X or 9, = X.

An excellent formal schem& has a well-defined decomposition into (formal)
irreducible components.

Let f: X — 92 be a finite morphism of formal (noetherian and adic) schemes
(as defined in [13, Ill, Sect. 4.8]). Th@y-algebraf.O is coherent (loc. cit.,
Proposition 4.8.6), hend€ = Ker(Oy — f.Ox) is also coherent (op. cit., 0
Corollary 5.3.4). We define the image 6f(in the sense of formal schemes) as
the closed formal subschenf¢x) C 9 defined by the ideak’. It is the smallest
closed formal subscheme 9fthrough whichf factors.

The following two lemma’s will be used in Section 3. We leave the proofs to
the reader (or see [18, Chap. I, Sect. 3]).

LEMMA 1.6. LetO be a complete discrete valuation ring, and wiite= Spf(O).

Let x and 9 be formally reduced, noetherian, adic formal schemes which are
flat and of finite type ove®. Suppose eq and Y eq are equidimensional of the
same dimension. Let X — 9 be a finiteG-morphism. Then for every irreducible
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component C X, the imagep(¢) C 9 (in the sense of formal schemes) is an
irreducible component a¥.

LEMMA 1.7. Let® be acomplete discrete valuation ring, and wiste- Spe¢(§),
6 = Spf(@). Letf: X — S be anS-scheme, flat and of finite type ov&rWrite
f:ae — 6 for the formal completion ofX" along its closed fibre. LeR be a
complete local domain which is finite and flat ov@r and lett: Spe¢R) — X
be anS-morphism. Write: Spf(R) — % for the inducedS-morphism. Assumie
maps the generic point @pe¢R) into the regular locus ofX. Then there is a

unique irreducible componertC x such that factors throughe.

2. Local moduli of abelian varieties

2.1. Fix an integen > 3 and a prime number with p  n. We also fix a perfect
field k of characteristip. Write W = W (k) for its ring of (infinite) Witt vectors,
andwriteA, forA, 1, ®W.Let(A,®Fk)° be the ordinary locus in characteriggic
This is a locally closed subschemef, hence we can take the formal completion
along it to obtain a formal schem@g = Ay/(a,0k)° OVEr Sp{Ww).

LetU C A, be an open subscheme such that the ordinary I6d0$A, ® k)°
is a closed subscheme©f defined by an ideal sheaf. Form > 0, letY,, be the
subscheme df’ defined by7™ and let(X,,, A\, ,,) be the universal object over
Y,.. ThenX,, is an ordinary abelian scheme owu§}, and the multiplicative part
X [p), of its p-torsion is a finite, locally free subgroup schemeXof of rankp?,
which moreover is maximal totally isotropic for the Weil pairiag,, . It follows
that the abelian schem¥), = X,,/X,,[p], has a principal polarizatioh], such
thatm*\, = p - A\, Wherer: X,,, — X/ is the canonical map. Also, singe n,
the leveln structured,,, naturally induces a level structured!, on X/, .

The newtriplet X7, A7, 6;,,) corresponds to a morphisi,: Y, — A, which
factors throught,,,. These morphismé,, form a projective system. Taking the
inverse limit we obtain an endomorphishy;: U—U on the formal completion.
Finally, we can glue thesg;; to obtain a morphisn®can A, — A, over Sp{iv).
(Alternatively, we can take fot/ the complement of the non-ordinary locus in
characteristigp, in which casd/ = A,.) It lifts the endomorphism ofA4, ® k)°
which is obtained by pulling back the Frobenius endomorphis(igf , ® F,)°
via Spe¢k) — SpecF,).

2.2. Let(Xp, Ao, 8o) be a principally polarized abelian variety of dimensjonith
aJacobilevel structure over Spég). It corresponds to some closed pairuf A,.
Let2, — Spf(W) be the formal completion ofl, atx. If 2 is an ordinary point
(i.e., if X is ordinary) then, by Serre—Tate theay, has a canonical structure of

a formal torus ove® = Spf(IV). (See Section 3.1 for a brief discussion on formal
tori.) We will review some results that we need in the next sections. For proofs we
refer to [10], [15] and [16].
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2.3. We will work with categorie€y, andCy as in [27]. The objects dfyy are
the artinian local¥’ -algebragi such that the structure homomorphigi— R is
local and induces an isomorphigm= R/mz. ThenCyy is defined as the category
of complete noetherian loc#l -algebrask such thaiR /m%, is in Cyy for all i. We
have a formal deformation funct@efox,: Cyw — Sets, given by

Defox,(R)

isomorphism classes of paifX, ¢), whereX is an abelian
| scheme over SpéR) andy is an isomorphisnp: X @ k =5 X |

In a similar way one defines deformation functoffo y, , and
Defox,,x0,00) Of the pair(Xo, Ao), and the triplet Xo, Ao, 6o), respectively. Since
we consider leveh structures wittp { n, the natural morphisr®efo x; o0, —
Defo x,,5,) 1S @n isomorphism. The funct@fo x, », g,) IS represented b,

Letk be an algebraic closure bf and writeW = W (k) for its ring of Witt vec-
tors. WriteT), Xo = 1, Xo(k) for the ‘physical’ Tate module aX. Overk we have
an isomorphism of functor@efoX()@E 5 Hom(TpX(?Z,@m). The deformation

spacel := 21, ® W is isomorphic to the formal subtorus H¢8yn?(7, Xo), Gm)-

24. Leto:W — W be the Frobenius automorphism @f. Assume thatt
is finite. The Frobenius morphism Frally — X((,”) induces an isomorphism
Xo/Xolpl, = X(gp). Using this we see that the formal completion.4f at the
point ®can(z) is isomorphic tozlf,f’) =, Xg, 6. The morphismbca,introduced
in 2.1 therefore induces a morphisity — 21&;"), which we again calfd¢y, (Cf.
[10, p. 135]). It is not difficult to see that this is a group homomorphism. If
N = Plog(#k) (i.e., k = F,~) then®l is an endomorphism dfi,. It is the
endomorphism ‘raising to the th power’ in the group,..

The next lemma, which we quote from the appendix to [10] by Katz, shows

that the group structure is uniquely determined by the fact that it is compatible

LEMMA 2.5 (Katz, [10, A.1]). Letk be a perfect field of characteristic> O, let
W = W (k) its ring of Witt vectors, and let: W = W be the automorphism
induced by the Frobenius automorphismkoLet M be a formally smooth affine
formal scheme of finite type ov#r, i.e., M = Spf(W{t1, ..., t,]). Suppose we
are given a morphisr®: M — M(9) of formal schemes ové¥ whose reduction
modulop is the Frobenius morphisirob: M Qs k — (M @y k)®).

(i) Given(M, @), there exists at most one structure of commutative formal group
overW on M for which the given mag: M — M) is a group homomor-
phism.
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(i) If this structure exists, it make®! into a formal torus and the gived is the
unique homomorphism lifting Frobenius.

(iii) 1f (Mq, ®1) and (M, ®2) both admit group structures as {i), then a mor-
phismf: M; — M, of formal schemes ovéV is a group homomorphism if
and only if®, o f = f(?) o &,

2.6. Choose d,-basisas, . . ., a, for T, Xo. Writing A := W{gi; — 1]/(qij — ;i)
we obtain an isomorphism = Hom(Syn?(7,Xo),Gm) = Spf(A), whereg;;
represents the character sending Homg (Synm?(7,Xo), Gm) t0 (e ® ;) €
Gm(R) = 1+ mpg.

Let X — 2 be the universal (polarized) formal abelian scheme. Zhraodule
H = Hig(x/2) with the GauR-Manin connectidv and its Hodge filtration

FO=H D F' = HA(X, 0% 9

has the structure of an ordinary HodBecrystal of level 1 (see [10] and [15]). To
the chosen basis,, . . .,y One associates elemeants. . ., a, andby, ..., b, of H
suchthatF! = A-b1®---® A-b, andH is the direct sumol/ = A-a1®--- A-q,
andF?. For the connectioW we have

V(a;) =0, V(bj) = Zai & 14
i
for certain formsy;; € Q;/W (continuous differential forms). Furthermore,

F(Poan)®ian(@\”) = ai,  F(@can)@iar(b”)) = phi,
(I)éan(nz(;)) =pni; and dy; =0.

In particular,U is a unit subF'-crystal of H.
Let K be the fraction field o#¥/ (k) and writer;; = log(¢;;) € K[gi; — 1].
Let B = K[ri;]/(7i; — 75:), then we obtain a homomorphist— B by sending

qi; to exp(ti;). We have the identitie@gan(qgj)) = q, @éan(ri(;’)) = pr;; and
nij = dri;. If 0: A — W (k) is the Teichniller lift of the augmentation mag — &
with respect tab¢an theng;;(0) = 1 andr;;(0) = 0.

Writec; = b; — Y, 7;ja;. The elementay, ..., ag, ¢y, . . . , ¢4 form a horizontal
B-basis forH® 4B, and the Hodge flagF'® 4 B is spanned by the elements

¢+ EZ Tij Q-

2.7. As above, assume thatis finite, and letN = Plog(#k). We still assume
that Xy is an ordinary abelian variety. Write = 7x,: Xo — X for the Froben-
ius endomorphism oy (so ‘= = Frob"’). Let R be an object oty and let
s:Spf(R) — 2, be anR-valued point of, over SpfiV). Let X denote the
corresponding abelian scheme over S@Ec
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We say that an abelian schetieover Spe¢R) is of CM-type if End(X @ R)
contains a commutative semi-simyglesubalgebra of rank@overQ. HereR =
RAW. If R is a normal domain theX is of CM-type if and only if its generic
fibre is of CM-type.

LEMMA 2.8. (i) The following conditions are equivalent.
(a) s is the identity element af, (R ).
(b) Endk (X,) = Endk(Xo).
(c) =™ lifts to an endomorphism of ; for somem > 1.
In caseR = W (k), these conditions are also equivalent to
(d) the Frobeniusrob: Xo — X lifts to a homomorphisni: X — X(@),

(i) The following conditions are equivalent.

(a) s is atorsion element o, (R).

(b) Enck (X,) ® Z[1/p] 5 Endk(Xo) ® Z[1/p].

(c) X, isisogenous to the liftind(; (wherel € 2, (R) is the identity element).
(d) X, is of CM-type.

Up to some details (which we leave to the reader), a proof is obtained by
combining [16, Appendix] and [6, Sect. 3].

DEFINITION 2.9. Suppos® € Cy is a flati¥-algebra. The lifting ofX, over
Spe¢R) corresponding to the identity element®f(R) is called the canonical
lifting of Xo. We denote it byX§". The liftings of X, over Spe¢R) corresponding
to the torsion elements af,(R) are called quasi-canonical liftings; by (ii) of the
lemma these are precisely the CM-liftings.Jo§.

The property in 2.8(i) that Frob lifts can be formulated in term®gf,. Let us
give the statement in the form we need it. The proof of the following lemma is left
to the reader.

LEMMA 2.10. Consider the formal schem@Q over Spf(W) as in SectiorQ.Al
with k = F,~ . Letk — k' be afinite field extension, and letSpf(W (k")) — A,
be aW (k')-valued point, giving rise to a tripletX, A, 6) over Sped¢W (£')). Let
Frob = Froby,, jp: Xir — X,E’,’) be the Frobenius morphism. df is a multiple
of N thenFrol# lifts to a morphismi: X — X(@*) overSpe¢W ) if and only if

e 05 =s500%

2.11. Sofar we only discussed the ‘unramified’ case, studying formal completions
of the schemé\, 1 ,, over a ring of Witt vectors. By base change we can extend
most of the above results to a slightly more general situation, which is what we
need for the next sections. Since most of this is obvious, the following remarks are
mainly intended to fix notations, which agree with the ones used before.
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Let F' be a number field with ring of integexS,, and letp be a prime of
Or lying over p. We write O, for the completion of the local ring@,. Write
Ay =Ay1, ® O,, and letd, be the formal completion afl, along the ordinary
locus in characteristip. We obtain a morphisrcan A, — A, over Sp{O,) by
pulling back thebca, defined in 2.1 via SgD,) — Spf(W (x(p))).

Let z be a closed point of the ordinary locgd, ® x(p))°. Consider the ring
A=W (K(2)) @w () O,, which is a complete local ring with residue fiel(),
and write& = Spf(A). We let, — & be the formal completion ofl, atz (which
has a natural morphism ®). It is obtained via base change— Spf(W (x(z)))
from a formal deformation space as studied above, and therefore has the structure
of a formal torus ove6. Via this base change and the results of 2.6 we also get a
description of the de Rham cohomologf{x/2() in this more general setting.

2.12. Recallthat p-isogeny between principally polarized abelian scheffies,)
and(X’, \') of relative dimensiog over a base schen$gs anisogeny: X — X'
such thatf*\" = p© - X for somee € Z . If this holds thenf has degreg. If X
andX’ are equipped with level structure®) andd’ (p t n) then we further require
that f*¢’ = 0 (meaning that ‘=" ¢’ via the isomorphisfT?X = T?X' on the
‘prime-top Tate modules’ induced by).

Let A, be the moduli stack of principally polarized abelian schemes, as in [12,
Chap. I, 4.3]. Thep-isogenies form a stach-Isog, with two natural morphisms
pry, pry: p-lsog — A, obtained by associating to an isogefiyf X, A\) — (X', \')
its source( X, \), and its targef X', \'), respectively. Bounding the degree of the
isogeny gives a substackefilsog which is representable by a relative scheme over
Ay x Ay. We writelsog(p®?) for the stack op-isogenies of degrge (it is empty
if the degree is not a power pf).

As a variant, we can take level structures into account. Choose an integ@r
with p t n and, as before, writd, 1 ,, for the moduli scheme over Spgif1/7)) of
principally polarized;-dimensional abelian varieties with a Jacobi levsiructure.

It is a fine moduli schemen(> 3). By considering isogenies which respect level
structures we obtain a schertseg(p®) overA, 1, x Agy1,; to keep notations
simple we here omit the subscrigt 1, n'.

2.13. We use the notatior§ p andO, of 2.11, and we writed, = A, 1,, ® O,
Zsog(p®9) = Isog(p®) ® @p. Write Ay C A, for the open subscheme obtained by
deleting the non-ordinary locus in characterigtid he isogenies lying ovedy x

A; form an open subschenigog(p“?)° of Zsog(p®?). The restricted projection
morphisms pf: Zsog(p®)° — A, are finite and flat.

The ordinary locu€sog(p?)° ® k(p) in characteristigp is a locally closed
subscheme dfsog(p®?). We can take the formal completion along it to obtain a
formal schem&sog(p®?)”" over Sp’(@p), with projection maps prZsog(p®?)" —

Ayg.
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PROPOSITION 2.14There is an open and closed formal subschemeC
Zsog(p®)" such that the restrictiopr,:Z — A, is an isomorphism, and such
that the composition

~—1 ~
~ pr -~ pr. ~
Ay =T =3 A,

is equal to the morphis®g,,, whered®q,,is defined as i2.1and2.11 The reduced
underlying schem@eq is a disjoint union of irreducible components. R

Proof. This is essentially [12, Prop. VII. 4.1]; in the notation of loc. cit., @ur
is the formal completion along the subschemésog(p©?) classifying isogenies
of type LmL with m = diag(p® - I1dg4, 1 -1d,). In other words is the formal
completion along the pull-back (via Sgeg¢p)) — SpecF, )) of the graph of the
Frobenius morphism. Let us nevertheless sketch a proof.

Except for the last statement, it suffices to prove the propositionZyesince
all ingredients ove@,g are obtained via pull-back over Sﬁ?p) — Spf(Z,). We
only do the case = 1; the general argument only differs in that the notations are
more complicated.

Write (X, Am, Om) for the universal object ovedy ® (Z/p™). In Section 2.1,

we have define@g,0n ﬁg as the limit of morphism$,,, such tha®}, (X,,, A,
Om) = (X, \l,,0;,), obtained by dividing outX,,[p],. (Here we apply the
discussion of Section 2.1 6 = Ay, in which case7 =p - Oy .)

We obtain a section,, of pr;:Zsog(p?)° ® (Z/p™) — Ay ® (Z/p™) by
associating tq X,,, A, 0,) the natural isogeny,,,: X,, = X/, = X,/ X [plu
(compatible with polarizations and level structures). Clearly,ops,, = ®,, on
Y.
Definel,, C Zsog(p?)° ® (Z/p™) as the (scheme-theoretic) imagesgf. The
sections,, maps into the open subschemeZafog(p?)° @ (Z/p™) of isogenies
with a kernel of multiplicative type. Over this locus, the first projection is finite
etale (by rigidity of group schemes of multiplicative type). It follows thgtis an
open and closed subschem&ebg(p?)° ® (2 /p™), With s,,,: AS @ (Z /p™) = L.
Moreover,l;, = Itk ®(z /pm+r) (Z/p™) for everyk > 0.

DefineZ C Zsog(p®?)" as the formal subscheme with® (Z /p™) = I, for
everym > 0. It follows from the preceding remarks tgﬁﬁs an open and closed
formal subscheme dfsog(p©9)”. The sectiors: A, — 7 obtained by taking the
limit over all s,,, is anisomorphism, angr, o s = ®¢an. This proves the proposition,
except for the statement thBLyis a disjoint union of irreducible components. To
see this, remark that the topological space underlyiagis homeomorphic to
that of (A, ® k(p))° = Ay ® k(p). Since this is the disjoint union of irreducible

components, the same holds ﬁpgd. O
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3. Formal linearity

3.1. Letk be a perfect field of characterisjic> 0, letk an algebraic closure @f,

and writeW = W (k), W = W (k). Let A be a complete local noetherian ring with
residue fields. A formal groupM over SpfA) (defined as in [11, Expé@sVIig])

is called a formal torus ifM®A is isomorphic toG¢, for somed > 0, where

A = A®w W (which again is a complete local noetherian ring). Such a formal
torus is completely determined by its fibké® A k. In particular, every formal torus

is defined oveiV, and there is an (anti-)equivalence of categories

formal tori ]°
over SpfA)
eq | freeZ,-modules of finite rank with a
— _ —
continuous action of Galn(A/A) = Gal(k/k)

by associating toV! its character groug * (M) = Hom(M®&A, G,).

For a Galois submodule C X*(M) we write N (Y) for the common kernel
of the characterg € Y. If Y is primitive (meaning that the quotient group is
torsion free) this is a formal subtorus 84 with character grougX*(M)/Y . For
generalY it has the form\V(Y) = T - N, where\ is a formal subtorus o and
% is a torsion subgroup.

LEMMA 3.2. Let k be a finite field, and leWW, M and ® be as in Lemma.5.
SupposeM has the structure of a formal torus such thetM — M) is a
group homomorphism. Let be a complete discrete valuation ring with residue
field £, and letN' C M, be an irreducible closed formal subschemetdf, =

M X sprwy SP(A) which is flat overA. Take an integern > 1 such that the
automorphisna™ of W lifts to an automorphism of A.

(i) The following properties are equivalent.

(a) NV is a formal subtorus oM 4.
(b) There is a primitive Galois submoduie C X*(M) such that\" = N (Y)4.

) "N — MX), obtained by restricting
O™ @ Id: My — M) Xy SPRA) = MY

to NV, factors throughV(™ < M7 = (Mm@,

(ii) The following properties are equivalent.

(a) N = T-Nis the translate of a formal subtoré’ C M, over anirreducible
closed formal subschemieflat overA, contained in the"-torsion subgroup
M [p"] for somen > 0.

(b) There is a (possibly non-primitive) Galois submodule X* (M) such that
N is an irreducible component of (Y) .
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(c) There are integers, [ > 1 such that the morphis@ 0| \: N — M(ATHZ)
factors through(@ (') ™): A7) — m(),

Proof. Statement (i) is proven in [5]. In (ii), the implications (&) (b) = (c)
are clear. Assume that (c) holds, andAét be the image of®!™|,,. ThenN" is
mapped intd \")(™*) underd*m: M(ATI) — MXW). By (i), it follows that N is
a formal subtorus aM (™), compatible with®™. From the description b over
A it readily follows that

(¢"™)~HNE) € M5[p'™] - N, hence
N C (™) HN") C Ma[p™] - N

Because we assumgdto be irreducible we conclude that (a) holds. O

3.3. At this point, let us set up the situation that we will study in the next sections.
Fix n > 3, and writeA;, = A, 1,. We consider a closed, absolutely irreducible
algebraic subvariety of A, ® F', whereF is a number field.

Next we introduce models in mixed characteristic. Sop le¢ a finite prime of
F with residue field: of characteristip > 0, withp { n. Write A, = A, 1, ® O,
and definez — A, as the Zariski closure of inside A,. We write Z — A,
for the formal completion along the ordinary locus in characterjstiand for a
closed ordinary point € (£ ® (p))°, let 3, — A, over& = Spf(A) (with
A=W (k(z)) @w(r(p)) (5,,) be the formal completion at.

DEFINITION 3.4. We say thag is formally linear at the closed pointe (Z ®
k(p))° if 3, is a formal subtorus oft,. If all irreducible components df, have
the properties described in (i) of Lemma 3.2 (w}. and® 5 then we say that
Z is formally quasi-linear at.

If 3, has at least one irreducible component which is a formal subtorfig of
(respectively the translate of a formal subtorus over a torsion point) then we say
that Z has formally linear (respectively formally quasi-linear) componenis at

DEFINITION 3.5. LetX be an abelian variety of CM-type, defined over a number
field K. If p is a finite prime ofK then we say thakX is canonical ap if there exists

an abelian schem&, over Spe(Og ,) with generic fibreX and ordinary special
fibre X, ® x(p), such thatt, is the canonical lifting oft, ® x(p). We say that a
CM-pointt € A, 1, (K) is canonical ap if the corresponding abelian variety has
this property.

3.6. Suppose tha has formally quasi-linear components at the closed ordinary

pointz. LetR be a complete local algebra which is finite and flat aveaind lett €
3z(R) be atorsion point. The formal abelian scheme ove(Bpfcorresponding
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to ¢ is algebraizable, so we get an abelian schetne X; over Spe¢R), andt
extends to a sectiohe Z(R). It follows from Lemma 2.8 that’ is of CM-type.

Let 7 be the collection of all pointg € 3z(R), whereR ranges over all
complete local domains, finite and flat over andt is a torsion point 0B.(R).
Let 7 be the collection of corresponding poirit&s Z(R). We claim that7 is
Zariski dense inZ. To see this, writeZ’ C Z for the Zariski closure ofl. By
assumption, there is an irreducible componemnt 3, which is the translate of a
formal subtorus of(, over a torsion point. From the definition of the Setwe
see that is contained in the formal completion & atz. The claim follows by
a dimension argumeng’ and Z are flat over Spe@©,) of relative dimensions
d" < d. Then the closed fibreg’ ® x(p) and Z ® x(p) are equidimensional of
dimensiond’ andd respectively, and& C (2') ¢,y implies thatd’ = d. Since
Z ® Q(0,) is irreducible, the generic fibre &' is equal toZ ® Q(0,), and by
definition of Z this implies thatz’ = Z.

Let@ = Q(R) denote the quotient field of a complete domRias above, then
we have a collectioff’ of CM-pointst € Z(Q), corresponding to the characteristic
zero fibresX; of the abelian scheme¥;. From the fact tha¥ is Zariski dense
in Z it follows thatT is dense inZ. Notice that the abelian varietie; are all
p-isogenous, i.e., given two torsion pointsc 3,(R) and# € 3,(R') in the
collection7, then over a common field extension@fR) andQ(R’) the abelian
varietiesX; and X are isogenous via an isogeny whose degree is a power of
This is becaus&’; andX; are CM-liftings of the same ordinary abelian variety in
characteristig.

Choose one of the points= T', and consider the corresponding abelian variety
X;. As X, is of CM-type, it is defined over some number fidlg O F', which we
take large enough so that all endomorphismXp§ K; are defined ovek;. The
endomorphism ring Er(c;) is an order in Eny(X;). It has a well-determined
index in a maximal order of ER@X;), which we call the conductor of Efd;),
and which we denote by X;).

Now choose a prime numbét£ p, with the following properties:

(x) ¢ does not divide the conductf(tX,), i.e., EndX;) is maximal a¥,

(x+) the prime¢ splits completely in the endomorphism algebra #ad), i.e.,
End(X;) ® Q is a product of algebras Q).

Possibly after first replacing; by a finite extensionX; has good reduction
X, at all primesl above/. The fact that splits completely in EMYX;) implies
that the reduction is ordinary (using [32, Lem. 5]). By Lemma X 8is isogenous
to the canonical lifting ofX; , so End(X;) = End(X,,). The conductors of the
endomorphism rings can only differ by &power, see [24, Lem. 2.1], and it then
follows from the first condition o that End.X;) = End X, ;). We conclude that
X, is canonical at all primes dt; above.

https://doi.org/10.1023/A:1000411631772 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000411631772

16 BEN MOONEN

As remarked, all abelian varietié§ with ¢ € T arep-isogenous. Therefore, the
above conditions oAdo not depend on the chosemnd our conclusion s valid for
all X; simultaneously. This shows that#f has formally quasi-linear components
at an ordinary point in characteristig, then there is a different characteristic
and a Zariski dense collectidhi of CM-pointst € Z(K;) such that eaclX, is
canonical at all primesof K; above/.

We will now show that, conversely, this last property implies thétas formally
linear components at some of its ordinary points in prime characteristic.

PROPOSITION 3.7Let Z, p, Z etc. be as irB.3. Suppose there is a collectidh
of CM-pointst € Z(K;) (K; a number field containing’) which is Zariski dense
in Z (overF). Also suppose that eacty is canonical at some primgof K; above
p. Then there is a non-empty unidéhof irreducible components ¢ ® x(p))°
such thatZ has formally linear components at all closed poiats U.

Proof. For each, choose a prime of K; abovep such thatX; is canonical at
q. Write R, = W (k(q)) ®@w(x(p)) Op» then X, gives rise to ark,-valued point
tq- Spe¢R,) — Z, corresponding to the abelian schefig overR,.

Let N = Plog(#x(p)). The automorphism?™ of W (x(q)) lifts to an automor-
phismr of R,. Since, , is the canonical lifting oft; ; ® x(q), the morphism
™)

FrobN: Xt,q ® Iﬁ?(q) — (Xt,q 02y H(q))(p

lifts to a morphismF;: &; ; — Xt(;) over Spe€R,). We consider this as a point
F, € Tsog°(R,), whereZsog = Zsog(p™?). Definey C Zsog° as the Zariski
closure over Speé(?)p) of these points.

For the projection maps pZsog® — Ag we have py(F;) = t, and pp(Fy;) =
t, o 7, and since the points, (hence also the points, o 7) are Zariski dense
in Z° = 2N Ay, it follows that pr (i € {1,2}) restricts to a finite surjective
morphism py: Y — Z°. Possibly after replacing the collection of CM-poifitdy
asubcollectior™” (which is still dense ir%), and replacing’ by the Zariski closure
of the pointsF; with ¢ € T', we may assume that, moreover, every irreducible
component off maps surjectively to an irreducible componenot

Write £ = x(p). By construction,y and Z° are flat over Spg©,) and, as
remarked above, the projections pre finite. The closed fibre¥;, and Z; are
therefore equidimensional of the same dimension, and every irreducible component
of )V, maps surjectively to an irreducible component3jt

We have seen before that there is a disjoint union of irreducible components
T, C Isogy, classifying theNth power of Frobenius. Thel, = ;. U Y}/, where
Vi, and) are unions of connected componentg&f chosen such thaf, C 7
and); N7, = (. Now pr1|I:Ik — Ay ® k is an isomorphism and (by our choice
of N) the composition pro (prl‘I)—lsAg ® k — Aj @ k is the identity on the
underlying topological space. The image YJf under both projections t&; is
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therefore the same; call&;’ C Zp. Itis a union of irreducible components 8§,
which is non-empty because the special fibre of evgriactors througly;.

Next we look at formal completions. Wrifg, )’ and Z for the formal comple-
tions ofy, Y, Z along)y, ;. andZ; respectively. Notice that these formal schemes
are formally reduced, noetherian and adic, flat and of finite type ové@;‘.pfsince
Y and Z° are excellent schemes (being of finite type over a complete local ring)
with the corresponding properties.

Since); andY; are disjoint,)’ is an open and closed formal subscheme of
Y. LetZ = Uae 2, be the decomposition & into irreducible components. The
projectionspr;: )’ — Z are finite (using [13, lll, Cor. 4.8.4]), so by Lemma 1.6
we have

preV' S U Zay )= | Za

aEA; ac€Ay

for someA; C A, A, C A. Proposition 2.14 shows that the composition

proe ()™ U 2o U Za

a€A; a€A;

is the restriction ofbly,,

At this point we apply Lemma 1.7. We take= T" (the subcollection with which
we replaced the origindl) corresponding to a point in the regular locusfThis
is certainly possible, since the collectiiis Zariski dense ir¥. We conclude that
there is a unique componest, ;) € 2 with «(t) € A; such that,: Spf(R,) —

Z factors throuth’a(t). Let V. (¢) be the unique irreducible component with
By Yoty = Za(n- Sincet, = pr; o F, the sectionf: Spf(R,) — ' factors
throughY,,). The image of),(;) underpr, is some irreducible componest,
through whichpr, o F; factors. Butpr, o F; = 7 o £,: Spf(R,) — Z and,r being
an automorphism oR, we see that, factors throughéal(t). By assumption we
haveZ’a(t) = Aa,(t). This shows that for every € T' corresponding to a point
in the regular locus of, the formal irreducible componelﬁa(t) is mapped into
itself underdl,

Let z be a closed point on the compon@ﬁ,;(t). The formal completion of
fa(t) at z is the union of a number of irreducible components, &ay. ., ¢, of
3. If m is a suitable multiple of botlV and?log(#x(z)) then @2, induces a
finite morphism®Z;; A, — 2, of formal schemes, and it follows from the above
that this mapsJ;¢; C 2, onto itself. Then®d{Z, acts by permutations on the set
{¢1,...,¢,}, so after replacingr. by a suitable multiple it preserves ali. By
Lemma 3.2 these irreducible componeaysc 3, are therefore formal subtori of
Ay O
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COROLLARY 3.8.Let Z,p, Z = Z, be as in3.3and suppose, has formally
quasi-linear components at some closed ordinary poiiihen there exist infinitely
many primes of O such that the modeg, of Z overSpecO,) is formally linear
at all closed pointg in a non-empty open subset(@; ® (1))°.

Proof. We start as in 3.6. We have seen that for primeatisfying conditions
(x) and =), there is a Zariski dense collectidhof CM-pointst € Z(K;) such
that eachX; is canonical at all primes df; above.

We consider primesof O such that the residue characterigtgatisfies these
conditions ¢) and =) of 3.6, and such that no irreducible componengp® «([)
is contained in the singular locus &f. This last condition excludes only finitely
many primes. The modelZ, being an excellent scheme, it follows that for generic
y € Z;® k(l), the completed local ring)g of Z, aty is regular. The corollary now
results from the previous proposition and the remark (&g, is irreducible if
O, is regular. O

Remark 3.9A posteriori we will get a much stronger conclusion, see
Theorem 4.5.

4. Formal linearity and subvarieties of Hodge type

4.1. Our main motivation for introducing the concept of formal linearity is its
relation to Shimura varieties, or rather to subvarietie& of ,, of Hodge type. The
first main result in this direction was established in the Ph.D. thesis of Noot ([21],
see also [22]).

THEOREM 4.2 (Noot). (i)Let F' be a number field, and lef — A, 1, ® F be
a subvariety of Shimura type. Lebe a prime off” abovep, and writeS, for the
Zariski closure ofS insideA, 1,, ® O,. Letz be a closed point in the ordinary
locus (S, ® k(p))°. ThenS, is formally quasi-linear at:. For p outside a finite
set¥ of primes ofOF, the formal completio®, of S, at z is a union of formal
subtori of2l,.. If S is non-singular then we can choose the (finite)Setuch that
S, forp ¢ X is formally linear at all closed ordinary points € (S, ® x(p))°.

(i) LetS — A1, ® F be a subvariety of Hodge type, and &t andz be
as in(i). For p outside a finite set of primes 6fr, the formal completio® . is a
union of formal subtori ofl,,.

For a proof of this result we refer to [21, Prop. 2.2.3] and [22, Th. 3.7]; see also
[18, Chap. Ill, Sect. 4].

The main theorem of this section is a converse to Noot’'s theorem. Taken together,
the two results provide a characterization of subvarieties,af,, of Hodge type
in terms of formal linearity. Notice that Theorem 4.5 below is very similar to
Corollary 5.5 in Part I. Since we will actually reduce the proof of (4.5) to this
corollary, let us briefly recall its statement, as well as the method used to prove it.
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4.3. Let(G, x) be an arbitrary Shimura datum, and IétC G(A) be a torsion-
free compact open subgroup. In [19, Sect. 5] we have introduced a ‘Serre—Tate
group structure’ on the formal completion of S(G, X)c at an arbitrary closed
pointz. The definition works as follows.

The pointz lies in the image Shof a uniformization map: X — Sh (G, %),
which, by our assumption oK, is a topological covering. Choogee X with
u(Z) = z. We have a Borel embeddiny — X = G23C)/P;(C), where
P; ¢ G¥is the parabolic subgroup stabilizing the pointUsing the Hodge
decomposition oy with respect to Ad hz, we obtain a parabolic subgroup
P, C G opposite toP;. Write U, for the unipotent radical of; , which is
isomorphic toG¢ for d = dim(X). The natural ma@/; (C) — X gives an iso-
morphism ofU_ (C) onto its imageé/ C X which is the complement of a divisor
DcCX.

On formal completions we obtain an isomorphism

U 1= Uy jpay = Upgzy = X1z = Sty = &,

and in this waysh, inherits the structure of a formal vector group. This is our
Serre—Tate group structure ov@rIn this context we define the notion of formal
linearity analogous to the definition in 3.4.

In Part | we proved the following statement.

THEOREM ([19, Cor. 5.5]). An irreducible algebraic subvariety
Z — Shg (G, X)c is of Hodge type if and only ifi) Z is formally linear at
some closed point, ar@d) Z contains a CM-point.

4.4. Letus sketch a proof of the ‘if’ statement in the theorem. (For details see [19,
Sect. 5].) So, assume th4tis formally linear at the point and that, moreovey]
contains a CM-point. Possibly after passing to a higher level 6Sk), we may
assume thak is torsion-free.

We compare” with the smallest subvariety of Hodge ty§e— Shx (G, X) con-
taining it. There is a closed immersion of Shimura da&/,9) <
(G, %), a connected componeYitC 9, and a clasgK € G(Ay)/K, such thats
is the image ot x nK in Shi (G, %). If £ G — G — GL(V) is arepresentation
inducing a VHSV(¢) over Sh (G, X), thené(M) is the generic Mumford—Tate
group ofV(§), ;. Our goal is to prove that = S.

Write ug: Y — S for the uniformization map, and Iéig Y be a connected
component ofugl(Z). For simplicity, let us assume that is analytically irre-
ducible. In the general case the argument is essentially the same, but notationally
more involved. The situation is summarized by the following diagram:
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53
m
N
N
b.<
N
b
N
R
Q

us

T € VA - S - S C Shk(G, x) [, nK]

Choose an isomorphisti; = G¢, and letty, . .. ,tq denote the corresponding
coordinates otV . Thet;, viewed as functions dd C X, extend to global sections
t; € I'(X, L), whereL = Oy (k- D) for a suitablek > 0. This bundleZ is a
G&-bundle overX . (Strictly speaking, this is not completely trugis in general
only a projectiveG2%-bundle. In this sketch of the argument we shall ignore this.)
Definel = {s € I'(X, L) | 517 = 0}, and writeV (1) for the zero locus of . From

the assumption thaf is formally linear atz one deduces thé is an irreducible
componento¥ (1) N X.

At this point we invoke a monodromy argument. Corresponding to the local
system underlyiny(£),, we have a monodromy homomorphiggt 71(Z, x) —
¢(M)(Q) € GAY(Q), and sinceC is aG3%-bundle overX this induces an action of
m1(Z,z) onT(X, £). An easy lemma (see [19, Lem. 3.5]) shows that the subspace
I is stable under this action. It follows thats also stable under the action of the
Zariski closure of the image ¢f7 in £(M)c C G2 However, sinceZ contains
a CM-point, it follows from a theorem of Y. Anér([2, Prop. 2]) that this Zariski
closure is the full derived groug(M)2". (In this sketch of the argument it may
seem that one needsegularCM-point for this, but this condition can be avoided.)
Consequently)/ (I) N X is stable under the action @f%"(R)*, and since this
group acts transitively ol it follows thatZ = S. O

THEOREM4.5.LetZ — A, 1, ® F be an irreducible algebraic subvariety of

the moduli spacé\, 1 ,,, defined over a number field. Suppose there is a prime

p of O such that the modek of Z (as in Sectior8.3) has formally quasi-linear

components at some closed ordinary pairg (£ ® x(p))°. ThenZ is of Hodge

type, i.e., every irreducible componentof » C is a subvariety of Hodge type.
Proof. We divide the proof in a number of steps.

Step 1.First we reduce to the case thdtis absolutely irreducible ang is
formally linear atz:. Choose a finite extensidif of F such that every irreducible
componentZ’ — A, 1, ® F' of Z @ F' is absolutely irreducible. There exists a
componentZ’ and a primey’ of O abovep, such that the modet’ of Z' over
Spe¢O,/) has formally linear components at some paihin the preimage of.

By the remarks in 1.3, it suffices to prove the theoremAarHowever, sinceZ’
is absolutely irreducible, we can apply Corollary 3.8, and it follows that we may
even assume th&’ is formally linear at the point’.
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From now on we may therefore assume thas absolutely irreducible and that
Z is formally linear atr.

Step 2.Let us make 4.3 more explicit in the cag@, x) = (Csng’Q,fJ;t).
The compact duabg of 9, is the flag variety ofg-dimensional subspaces of
C?9 which are totally isotropic for the (standard) symplectic fofm Suppose
ai,...,ag,c1,. . .,cqiSasymplectic basis @, and writeF = Spar{cy, . .., ¢, }.
Theno, = Sp, /P (F), where P(F) is the stabilizer ofF, which is a par-
abolic subgroup of Sp.. Let P(F)~ C Sp, be the stabilizer ofF~ =
Sparday,...,aq}, Which is a parabolic subgroup opposite ®¢F). The image
U of P(F)~ in &y is the complement of a divisdp.

In terms of flagsl/ is the open part osf);/ corresponding to flags of the form

]—"T:Span<{cj+2tij-ai} > ,
=1 j=1,...,n

whereT' = (t;;) is a symmetrig; x g matrix. The coefficients;; of the matrixT’
are well-determined regular functions &n

Suppose thaF corresponds to a poiate $,. We thus have a polarized Hodge
structureh;: S — CSp, ,, on the spac@? for which F = Fil}(C%) = (C%)10.
Assume, moreover, tha~ = (C%)%1, In this case we see that the isomorphism
53/{5}1 =~ G¢ giving rise to the Serre—Tate group structure as in 4.3, is given by
the coordinateg;;, in the sense that it is obtained from the isomorphign=
Spec¢Clti;]/(ti; — t;;)) by formal completion at the poink (with coordinates
ti; = 0).

Step 3.Let x(z) be an algebraic closure af(z), writt W = W (x(z)), and
letA =W QW (k(p)) @p. For the rest of the proof we fix compatible embeddings
A — CandF < C. Using this, we obtain a moduli point?" € Z: of the
canonical lifting ofz. Write (X, A, #) for the triplet corresponding to the point
and (X" \ean gcan) for its canonical lifting.

Similar to the discussion in Section 2.6 (cf. 2.11), wiite- 2, ®A = Spf(A),
with A = Afg;; — 1]/(qi; — ¢ji)- Our assumption thak is formally linear atz

implies that3 = 3,®A can be described &= Spf(A/a) — 2A, wherea C Ais
mij

an ideal generated by elements of the fgif); qij ) — 1, withm;; € Zy,.
Let K be the quotient field of. We have an isomorphism

K[rij]/(ri5 — i) = Klai; — 1/ (aij — g0),
given by 7;; — log(g;;). The element”,;; m;j7;; maps toy-;; m;;log(gi;) =

log(IT;; qZ-L” ), which, up to aunitirk [gi;—1]/(gij—g;i), is equal t(I;; ¢;; 7 ) 1.
Using the chosen embeddingfinto C, we obtain a ring homomorphism

A = Ngij — 1/(qij — g5i) — Ac = C[;]/(7ij — 75i)
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such that the idealc = a - A is generated by elements of the fobny; m;7;j,
where the coefficients:;; (as above) are now viewed as element<£pfia the
chosen embedding, C A — C.

In the ring A, let us consider the ideal generated by the elemenjs — 1,
and the maximal ideah = (n,p). The universal polarized deformatioh — 2
is algebraizable, i.e., it is the formal completion along the closed fibra{adic
completion) of an abelian schemé — Spe¢A). Write X’ — 2’ for the formal
completion oft' /Spe¢ A) along the canonical lifting of. So:2" = Spf(A), where
A is now considered with its-adic topology, and’ is the formal completion of
X along the closed subschemex 4 ey, A corresponding to the canonical lifting
of z. (Here eg: A — A is the map ‘evaluation at the origin’ given lgy; — 1.)

We claim that the moduled = Hig(x/2) and H' = His(x'/2) are iso-
morphic asA-modules fot as topologicalA-modules), and that the notion of
horizontality is the same for the two modules. This follows from the fact Hiat
andQCAO/r% (continuous forms w.r.t. the-adic topology) are finitely generated over

A andA is m-adically complete.

Pulling back the formal abelian scheme— 2’ via the continuous homomor-
phismA — Ac (n-adic topology omd) thus yields a formal abelian schexg —
2 = Spf(Ac) for which we have a description of the de Rham cohomology in
terms of the elements;. Namely, there is a horizontal basisg . .. , a4, c1, ..., ¢4
for the Ac-moduleH = Hiz(%¢ /%) such that the Hodge flag? is spanned by
the elements; + >, 7;5a;. The basisuy,. .., a4, c1,...,c, IS symplectic for the
alternating bilinear form oi{- associated to the (pull-back of the) polarization
onx.

Write Xz — Spe¢Ac) for the pull-back oft — Spec¢A) via A — Ac; its
formal completion along the closed fibrexis — 2. The corresponding morphism
Spe¢Ac) — Ay 1, ® C sends the point with coordinateg = 0 to the points&",
and it follows from the given description of the de Rham cohomologythat> ¢
is the universal deformation oX&2". We thus have an isomorphism of $4dt)
with the formal completion oA, 1, ® C atz¥". The comparison isomorphism
between de Rham and singular cohomology gives an isomorgisgy,. ey, C =
HY(X*®" C). Under this isomorphism the subspace Span..,a,) ®4. ey, C
obtained from the ‘unit subcrystal’ (cf. 2.6), is mapped X" C) and the
Hodge flag Spa@s, . . . , ¢y) ®a4. ey, C maps to H(X " C).

Step 4.The assumption thaZ is formally linear atz implies that the poink
lies in the locus where the structure morphisip — SpegA) is smooth. Since
this is an open locus, the same is true for the pofff, and by the results of [13,
Chap. IV, Sect. 17] it follows that&" is a non-singular point ofc. We claim
that the isomorphism of Spfl¢) with the formal completion oA, 1, ® C atzg"
restricts to an isomorphism

3c i= Spf(Ac/ac) = (Zc) jazny € (Agn ® C) jaeany. @)
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First we remark that the composite morphism
Spe¢Ac/ac) — Spe¢Ac) = Ay 1, ®C

factors throughZc. The closed formal subscheme &pf/ac) — (Ag1n ®

C) /{acany is therefore contained i(Zc) /,cany. The pointz¢®" € Zc being non-
singular, the claim then follows from the fact that the dimension$Qfac andZ

are equal.

Combining (1) with the description of the de Rham cohomolog¥of: as
in Step 3 and the remarks in Step 2, we conclude Zpas formally linear at the
pointzZ2", in the sense explained in 4.3. (Recall thais generatedinear forms
>_ij mijTij.) By Corollary 5.5 of Part | (see above), this implies tiatis of Hodge
type, which, after Step 1, was what we had to prove. O

5. Oort’s conjecture

The following conjecture was formulated by Oort (cf. [23]). Notice that one could

formulate the conjecture for general Shimura varieties (in which case we would
use the terminology ‘special points’ rather than ‘CM-points’). Here, however, we
restrict our attention to moduli spaces of abelian varieties.

CONJECTURE 5.1 (Oort).Let Z — A; 1, ® C be an irreducible algebraic
subvariety such that the CM-points @ghare dense for the Zariski topology. Then
7 is a subvariety of Hodge type, as defined in Section

Remark 5.2In [1, Chap. X, Sect. 4], a number of problems are suggested, the
first of which is equivalent to the above conjecture for @ = 1. Notice that in
Part I, we gave a counterexample to loc. cit., Problems 2 and 3.

Let Z be a subvariety as in the conjecture. THeims defined over a number
field, since itis the Zariski closure of a set of points which are rational @{erven
over the uniomlQ®™ ¢ @ of all CM-subfields). It follows from the results of the
previous sections (in particular Corollary 3.7 and Theorem 4.5) that the conjecture
is equivalent to the following statement.

CONJECTURE 5.3 (Variant of 5.1)Let F' be a number field, and lef —
A, 1, ® F be an irreducible algebraic subvariety such that the CM-points on
Z are dense for the Zariski topology. Then there is a colleciioof CM-points

t € Z(K;) (K; a number field containing’) and a prime numbep such that the
collectionT is Zariski dense ir#Z, and such that every; is canonical at a prime

q: of Ky lying overp.

Given an abelian variet; of CM-type over a number fiel&; we know that
X, is canonical at infinitely many primes @&;. However, it is not true that for
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any infinite collection of CM-points € A,(K;) there is always a prime number

p such that infinitely many of the abelian varieti&s are canonical at a primg
abovep. For example, le€1, &2, . . ., be elliptic curves of CM-type such that the
conductor of En(f;) (see 3.6) is divisible by the firgtrational prime numbers.

By [24, Lem. 2.2] we conclude that for every given prime numbieéhere are only
finitely many&; which are canonical at a prime abgweOf course this does not
provide a counterexample to the conjecture: the Zariski closure of our collection of
CM-pointsé; is the whole moduli spack, 1 ,, (assuming that th&; were equipped

with a leveln structure), which is certainly of Hodge type.

5.4. In the proof of the next result we will use the Galois representation on the
£-torsion and on the Tatémodule of an abelian varietyf defined over a number
field. General theory about this can be found in [31], [26] and in the letters of Serre
to Ribet and Tate [28], [29]; part of the material of these letters is given in Chi’s
paper [4]. Here we only record some facts needed further on.

Let X be an abelian variety over a number fidgldand writep,: Gal(Q/F) —
Aut(T,X) andp,: Gal(Q/F) — Aut(X (Q)[¢]) for the Galois representation on its
Tate4-module and itg-torsion respectively. We writ@), for the algebraic envelope
of the image ofy. Its connected component of the identity is a reductive algebraic
group over), containing the grou@n, - Id of homotheties. Its Lie algebra does not
change if we replacé’ by a finite extension, buf, itself may be non-connected
and may become smaller after such an extension.

Choose an embedding F — C, and writeV = H3(X,(C),Q) andV, =
Ty X ®z, Q. There is a natural comparison isomorphigpn= V' ® @, and, by
the results of Borovoi, Deligne and Piatetski-Shapiro (see {192)i,s an algebraic
subgroup of MTX,) ® Q. The Mumford—Tate conjecture (stated in [20] and in a
more refined version in [30]) asserts that the two groups are equal.

It is known that the representation of NIX,,) on V' is defined by miniscule
weights. By this we mean the following: first we write NIX,; )5 as the almost
direct product of its cente¥ and a number of simple factofds, ..., M,. Then
every irreducible submoduley C V5 decomposes as a tensor product =
X ® Wi(w1) ® --- @ W, (w, ), Wwherey is a character of,, and wheréV;(w;) is
an irreducibleM;-module with highest weight; (with respect to a chosen Borel
subgroup ofM;). The representatioW is said to be defined by miniscule weights
if all weightsw; are miniscule in the sense of [3, Chap. VIII, Sect. 7, No. 3].

An immediate consequence of the Mumford—Tate conjecture would be that the
representation aff, onV; is also defined by miniscule weights. So far this has not
been proved in genefaHowever, Zarhin proved it under the additional assumption
thatX has ordinary reduction at a set of places of density 1; see [33, Th. 4.2].

! This has recently been proven by Pink, see R. Pfrglic monodromy groups, cocharacters,
and the Mumford-Tate conjectyré. reine angew. Math. 495 (1998), 187—237.
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LEMMA5.5. LetK be an algebraically closed field of characteristic zero(ldie
areductive algebraic group ovéf and letV be a finite-dimensional representation
of G which is defined by miniscule weights. Wite= Wfll @® - ©Win, where
W1, ..., W,, are mutually non-isomorphic irreducible representation&:oflf w
is a weight ofi¥; then it has multiplicityd; in the representatior’. The total
number of different weights that occur in the representatiois therefore equal
todim(Wy) + - - - +dim(Wp,).

Proof. Supposegj is a simple Lie algebra ove, w is a miniscule weight of
g (with respect to a chosen Cartan subalgebra)i@nid an irreducibleg-module
with highest weighto. The lemma follows directly from the following two facts,
proven in [3, Chap. VIII, Sect. 7, No. 3]: (i) all weights Bf have multiplicity 1,
(i) the Weyl group acts transitively on the set of weight3iof O

5.6. LetX be defined over the number field, and letv be a finite place of
such thatX has good reduction at If £ 1 v thenp, is unramified aw. By the
choice of a place of Q extending we get a well-determined action of a Frobenius
elementpy(Fr;) € Aut(V,X). Alternatively, X having good reduction atmeans
that it extends to an abelian scheriigover SpeO, ), whose special fibré(, is

an abelian variety over the finite fieldv). Letr, be the Frobenius endomorphism
of X, which acts on the Tate modulgX,. Via the choice of the placewe get an
isomorphisml; X = T,X,, and the action ofr, onT,X obtained in this manner
is given by the element,(Fr;).

Associated taX, there is an algebraic torug, over Q, called a Frobenius
torus. As a module under G&l/Q), its character grougX*(T;,) is isomorphic
to I',/TorgI',), whereI', C Q" is the subgroup generated by the eigenvalues
of p¢(Frz). This description determin€B, up to isomorphism. The choice of a
placev as above induces an injective homomorphi§m® Q; — G,. For more on
Frobenius tori we refer to [4, Sect. 3].

The following facts were proved by Serre (see [4]): (i) the rank/pfloes not
depend od, (ii) we can replacé” by a finite extension such that all grou@g and
all Frobenius toril’, (for placesv of good reduction) are connected, and (iii) after
replacingF’ by such an extension, there is a Zariski open and dense diiliset,
suchthatif? 1 v andp,(Fry) € U(Q), thenT, ® Q, is a maximal torus of7, (the
set of place® for which this holds thus has density 1).

THEOREM 5.7.Let (X, A, 6) be a principally polarized abelian variety with a
Jacobi leveln structure, defined over a number fieltl Suppose that for some
finite field extensio® C F’, the set

P°(F") = {finite places of F’ | X ® F' has good and ordinary reductiomst

has Dirichlet density 1. For each € P°(F') with residue characteristip, not
dividingn, let (X, Ay, 0,,) be the reduction at, and letz{?" € A, 1, ® Q be the
moduli point of its canonical lifting. Defing C A, 1, ® Q as the Zariski closure
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of the set{z53®" | v € P°(F),p, t n}. ThenZ is a union of subvarieties of Hodge
type; more precisely:

Z@: U S(U)U{Sl,..-,sr},
o€GalQ/Q)

whereS — A, 1, ® Q is the smallest subvariety of Hodge type containing the
moduli point of( X, A, 8) ® p Q for some embedding — Q, and wheresy, ..., s,
(r € Z0) are CM-points.

Proof. SupposeF” is a finite extension of’ such thatP°(F’) has Dirichlet
density 1. LetF"” be a Galois extension df’ of degreed, and write Q for the
set of primes of” which split completely inF”’ / F'. Using theCebotarev density
theorem we see that the set(F”) N Q has Dirichlet density Ad, which means
that the function

> N(p)*+1/d-log(s — 1)
pEPC(F)NQ

extends to a holomorphic function g8 € C | Re(s) > 1}. If R is the set of
primes of I’ lying overP°(F') N Q, then it follows that the function

> N(p')~* +log(s — 1)

p'ER

also extends to a holomorphic functionsfor Re(s) > 1. Clearly,R C P°(F"),
and almost all elements ¢°(F") \ R have degree at least 2 ow@r It readily
follows from this thatP°(F") has Dirichlet density 1.

The preceding remarks show that, in proving the theorem, we may replace
by a finite extension. We claim that, after such an extension, there exists an infinite
subsetP’ C P°(F) and a prime of O such that each of the abelian varieties
X with v € P’ is canonical at some primgabovep. Before we prove this, let
us show how the result would follow from it.

So, suppose we have such a®étand writeZ’ C Z for the Zariski closure
of the corresponding set of CM-poin{s$" | v € P’,p, t n}. It follows from
Theorem 4.2 that almost all point§?" lie on

Upeca@/e)S'” = Agin;

S0 Z% C Zg is contained in the union of,cgag)q)S'” and a finite number
of CM-points. On the other hand, from 3.7 and 4.5 we see that all irreducible
components of’ are of Hodge type. Therefore, we are done if we show that the
moduli pointz  of (X, ), 0) lies onZ'. This we can see as follows.

First we may replac®’ by an infinite subset such that its Zariski closufe
is irreducible overQ. Over some open patf = Spe¢Z[1/N]) of Spe¢Z), the
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point z» extends to a section: Spe¢Or[1/N]) — Ay 1,. We definez’ as the
Zariski closure ofZ’ insideA, 1, ® Z[1/N]. Then we have an infinite collection
P" = {v € Spe€¢Or[1/N]) | v € P',p, 1 N} such that (by construction) every

Ty Spedr(v)) — Agin @ Z[1/N]

with v € P" factors throughZ’. Because the collectior®” is dense in
Spe¢Or[1/N]) it then follows that: factors throughZ’, which means that  is

a point of Z'. We conclude that the theorem follows if we can construct #5at
above.

From now on we use the notations and results discussed in 5.4 up to 5.6 above.
We replace” by a finite extension such th&P (F') has Dirichlet density 1 and such
that the groups/, and the Frobenius tofi, are connected (for alland all places
v whereX has good reduction). This implies that all endomorphism& ab Q
andX, ® x(v) are defined oveF’ andx(v), respectively. We writg¢ = j(X) for
the conductor of the endomorphism ring EAG, i.e., the index of EndX) in a
maximal order of En{ X ), and if X has good reduction at a placef F' then we
simply write f, for the conductor of EndY, ).

Suppos¢ is a prime number and is an element ofP°(F') such that’ ¢ f,
and such that splits completely in the field)(,)"™™ C Q generated by the
eigenvalues ofr,. We claim that under these assumptiofig" (which is defined
over some number fiel O F’) is canonical at all prime& of K abovel (where
we takeK large enough such thaf:2" has good reduction at all primes &f). In
fact, the assumption thasplits completely irQ(r, )" implies that the reduction
Y, of X" moduloA is ordinary (using [32, Lem. 5]) and sinéeloes not divide
the conductor of EndX;2"), the endomorphism rings df ;2" andY, are the same
(see Lemma 2.8), s& ;@"is the canonical lifting ol. Therefore, we are done if
we show that there are primésuch that the set

P°(0) = {v € P°(F) | £ 1}, andl splits completely in the field)(r, )"}

is infinite.

SupposeX’ is an abelian variety which iB-isogenous to¥, say by an isogeny
f:X — X' of degreed. For a placev where X and X' have good reductions
X, and X!, the associated fieldg(r(X,))"™" andQ(=(X"))"™ are naturally
isomorphic and there is an isogefiy. X, — X, of degreed, cf. [12, Chap. |,
Prop. 2.7]. It follows that for alt, the set$P° (¢) associated t& andX' differ only
by finitely many elements. We may therefore assumeihat Y;"* x - -- x ¥,
whereYs, ..., Y, are mutually non-isogenous simple abelian varieties évand
ma,...,m, are positive integers.

Choose a place of F' and a places of Q extendingv, such thatX has
good reduction av and such thaf, ® @, C G, is a maximal torus for every
¢ # p,. Choose a primg with p # p, which splits completely in Ef§X),
i.e., End(X) ® Q, is a product of matrix algebras ovey,. Let Y be one of
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the simple factord;, let E be the center of ERdY’), and letpy, ..., p. be the
primes ofO abovep. By the choices we have made, E(H) ® Q, = My(Q,)°

with e = [E : Q]. The representatiop, of Gal(Q/F) onV,Y = T,Y ®;, Q,

decomposes as

VY 2vig.. .oV,

whereVy,...,V, are mutually non-isomorphic and absolutely irreducitlg-
modules such thaf acts onV; through its completiotr,, = Q,. Write g, for the
representation ofr, onVy @ - - - @ V..

LetP,(t) = dett-1d—p,(Frz) | V1&- - - @V, ) be the characteristic polynomial
of p,(Frz), which has coefficients iri. We definely € Z as the discriminant of the
polynomial P, (), and we puby = dy, - - - dy,. We observe thaix # 0. In fact,
the eigenvalues ¢i, (Fr;) are the elements (r,) € Q,, wherew runs through the
set of weights (counted with multiplicities) gf with respect to the maximal torus
T, ® Q,. SinceTy, is generated by the element, we havew(r,) = w'(w,) if and
only if w = w’. By Zarhin’s result [33, Th. 4.2], the representatjgnis defined
by miniscule weights, and using Lemma 5.5 we conclude that all eigenvalues of
pp(Fry) have multiplicity 1, hencéx # 0.

Next we consider prime numbe¥ssatisfying the following conditions: (i)
¢ splits completely in Ef{X,), (i) ¢  dx - j(X). We claim that for every
such/ the setP°(¢) is infinite. To see this, consider the representarof
Gal(@Q/F) on X(Q)[¢], and writey = p,(Fry) € Aut(X(Q)[¢]) = GLag(F),
whereg = dim(X).

As above, letY be one of the simple factors of, and writeyy for the
restriction ofy to Y (Q)[¢]. The assumption thdtt j(X) implies that EndY) ® Z,
is a maximal order of ENd") ® Q, which by (i) is isomorphic to M(Qy)®.
Thus EndY') ® Z, = My(Z,)¢, and we conclude from this that there exists a
decomposition of the Tate module (a%amodule with an action of Gél)/ F))

TY =T{&--- & T,

whereT; is a freeZ,module of rank 2 dim(Y') /ed andT; ® Q, is an absolutely
irreducible representation @f,. The above argument shows that all eigenvalues
of Fr; on(T1 & - - - ® T,.) ® Q, have multiplicity 1. Moreover, assumption (i) én
implies that all these eigenvalues lieZn. Now

Y(@)[f) = ((T1/€T1) @ - -- & (T /£T,))"

and we assumed thétf dx, so the 2dinfY’)/d different eigenvalues of Frare
also different moduld. It follows thatyy € Aut(Y(Q)[¢]) = GLygim(y)(Fe) is
diagonalizable oveF, with eigenvalues all of multiplicity.

Now we start working backwards. Suppesés a place in the sé®°(F'), andw
is an extension o to Q, such that # p,,, andp,(Frg) = 7. Since Aut X (Q)[¢])
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is finite andP° (F) has density 1, there are infinitely many such plaegby the
Cebotarev density theorem. Therefore, the proofis finished if we show that all such
w lie in the setP°(¢), i.e., 1 f, and? splits completely in the fiel@(r,, )"°"™.

First we reduce to the case that= Y is absolutely simple. Sinc@(r,, )" is
the compositum of the field3(ry; ,,)"°"™ associated to the simple factdrs the
prime ¢ splits completely inQ(m,, )"°™ if and only if it splits completely in each
of the fieldsQ(ry; ,,)"°"™. Also, we claim that | ,, if and only if ¢ divides one
of the factors,, (Y;). In the ‘if’ direction this is clear, so let us assume thaoes
not divide any of the factorg, (Y;). Supposed C Y; ,, andA’ C Y}, are simple
factors which are isogenous. Then Bpd) = EnoO(A’) is a CM-field (sinceA
and A’ are ordinary) and, by assumption, both orders (Edand EndA’) are
maximal at/. Using Tate’s theorem that HdqM, A') ® Z, = Homga(Ty A, T, A")
we conclude tha#d and A’ are prime-to¢ isogenous. From this remark and our
assumption tha is the product of the factors;™ it then follows that¢ does
not dividef,, = f,(X). From now on we may therefore assume that= Y is
absolutely simple.

The characteristic polynomidt, (¢) of the action of Fg onT; & - - - ® T, has
coefficients inZ. Modulo 2 it is a product of linear factors, and all zeroes have
multiplicity 1. By Hensel's lemmaP,, (t) = (t — a1) - - - (t — a,) In Z[t], with all
a; € Zgdifferentandy = 2-dim(Y') /d. Lety," ), ..., Y bethe simple factors of
the reductiort,,, and letr!?) be the Frobenlus automorphlsmiéﬁf’ Then? splits
completely in each of the fleld@(ww )™M C Q generated by the eigenvalues of

7 hence it splits completely iQ(m,, )"°"™. Finally, the eigenvalues; of Fr; on
T1 @ --- & T, are all different and}Y = (T1 & --- ® T,)?, so we get

End(Yw) QR Ly = Enctrw (TZY) = Md(sz) — Md(@zj)
=~ Endy, (V2Y) =2 EndY,) ® Q,

and we see thatt f,,. This finishes the proof. O

Remark 5.8(i) It was conjectured by Serre in [29] thRf (F') has density 1 for
all abelian varieties over a number figl whereF should be taken large enough
such that the groups, are connected.

(ii) It is easy to see that in the statement of the theorem, we must allow a finite
number of ‘exceptional’ CM-pointsy, .. ., s,.

6. The canonical lifting of a moduli point

6.1. So far we only considered canonical liftings of ordinary abelian varieties over
a finite field. However, we can associate a moduli pefit € A, 1, ® Q to any
pointz € (A, 1., ®F,)°. Namely, writex(z) for the residue field af, and lets(z)

be an algebraic closure. Singés an ordinary moduli point, we have a canonical
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lifting of s,: Spedk(z)) — Ay1, to a sections: Spe¢W (k(x))) — Ay, and
we definer®@" as the image underof the generic point of Spéw (x(x))). The
pointz*@"is easily seen to be independent of any choices.

In order to understand the behaviour of the canonical lifting under specialization,
we have to generalize our notion of canonical lifting to abelian schemes over a
perfect ring. This is done as follows.

Let R be a domain of characteristic> 0 with fraction field K. Write K Pe"f
for the perfect closure ak’, and letRPe' be the integral closure af in KPe",
which is a perfect closure aR. The ringW (RP®") of Witt vectors is a domain,
complete and separated for thadic topology, and (RPe") /p = RPe. Suppose
Xo — Spe¢R) is an ordinary abelian scheme. By extending scalars we get an
ordinary abelian schemg over Spe¢RPe"), and becausgP®" is a perfect ring of
characteristig, thep-divisible groupX [p] is the direct sunX [p>°] = X [p*>°], ®
X [p™]g of atoroidal and aktale part. These summands each have a unique lifting
to ap-divisible group, say,, andG ¢ respectively, over Spéd (RPe™)), using [13,
IV.18.3.4] and Cartier duality. Applying a theorem of Serre and Tate (see [15]), we
get a liting X3"of X over Spe¢W (RP®)) whosep-divisible group isG, @ Gt

This construction is functorial in the obvious sense. For exampledf R is a
maximal ideal then the quotient homomorphi&m» x = R/m naturally extends
to a homomorphisnRPe™ —. kPe" and we get a canonical mapy (RP®") —

W (kPe). It is clear from the construction thatcan @y ( Rpery W (kPe) is the
canonical lifting ofXo ® . Likewise, X " @y (pper W (KPe) is the canonical
lifting of Xo ®r K.

LEMMA 6.2. Letz, y be points of A, 1, ® F,,)° such thatz specializes tg. Then
x“@ specializes tg“@".

Proof. (See also [25, Proof of Lemma 1.3].) L&}, be the local ring oA, 1, ®
F, aty, and letp, C O, be the prime ideal corresponding to the paintLet
R = O,/p,, then we have an ordinary abelian schefever RP®", and, as just
explained, we can form a canonical liftifg®®" of X over Spe¢W (RP®)). The
lemma readily follows from the functoriality of this construction (as explained
above). O

LEMMA 6.3. Let W be ap-adically complete and separated domain such that
p € W is prime. Let] be an index set, and leffp, € W | a« € I} be a
collection of prime ideals such that ¢ p,. Assume that the intersection of the
idealsq, = (/p + po Mmodp) in W/p is the zero ideal. Then the sgt, | « € I}
is Zariski dense irspe¢W).

Proof If f € Naecrpe then(f modp) € Nuecrge = (0), hencef = p - f' for
somef’ € W. Sincep ¢ p, we havef’ € Nuecrpa, and by induction we then see
thatf € p" - W for everyn. As W is p-adically separated, this impligs= 0. O
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PROPOSITION 6.4Letz € (Ag 1, ® Fp)°, and defineZ — A, 1, ® Q as the
Zariski closure of its canonical lifting:°@". ThenZ is a subvariety of Hodge
type.t

Proof. LetY — A, 1, ®F, be the Zariski closure af, and consider the sgt
of closed ordinary points &f . If Z’ — A, 1, ® Qs the Zariski closure of the set
{y®@| y € Y} then by Lemma 6.2 we ha& C Z. First we show thaZ and Z’
are in fact equal.

LetU = Spe¢B) C (Ay,1,» ® F,)° be an affine open subscheme witte U.
Write C = U NY = Spe¢B/J), thenC is irreducible and: € C. The ringR =
B/J is adomain of finite type ovet, . As above, lelz”* be a perfect closure dt,
letW (RPe) be its ring of Witt vectors, and lef2™ Spe¢W (RP™)) — A, 1,®7Z,
be the canonical lifting of: Spe¢RPe™) — (Aj1, ® F,)°. If m C RPis a
maximal ideal with quotient field = RP®/m, then the morphisrg: Sped¢k) —
Spe¢RPe") lifts to W (g): SpedW (k)) — Sped¢W (RPe™)), ands®"o W (g) is
the canonical lifting of o g.

Let {m, | « € I} be the set of maximal ideals ¢t"®". For eachn € I the
kernel of W (RP®) — W (RP®f/m,) is a prime ideab, C W (RP®"). Clearly,
the collection{p,, | « € I} satisfies the assumptions of the previous lemma, and
therefore it is Zariski dense in Sp@& (RP®™)). By construction, every,, maps
into Z’" unders®", It follows thatz®@"also maps intdZ’, henceZ = 7'.

We thus have an irreducible algebraic subvariéty+ A, 1, ® Q with a dense
collection of CM-points (namely the points2") which are all canonical at some
prime in characteristip. Applying Corollary 3.8 we conclude that the modebf
Z overZyis formally linear at some of its ordinary points, and by Theorem 4.5 we
conclude tha¥ is of Hodge type. O

Ouir final results are joint work with A. J. de Jong and F. Oort. The results were
announced in [23], where also a sketch of the arguments was given. We keep the
above notations, i.e., we fix an integer> 3 and we consider an ordinary (but
not necessarily closed) moduli poiate A, 1, ® F,. The problem that we are
interested in is to compare

tr.deg (z) = dim({z}*) and trdegqr(z") = dim({z*"}2%).

We have an inequality tleg;, x(z) < tr.degyrx(z*"). Our result shows that in
general the two numbers are not equal. Before we state the precise result, we
introduce some notations and we formulate a lemma.

Let R be a ring such that is invertible in R. Given a morphismf:S —
Ag1n ® Spe¢R) of schemes oveR, we simply write X s for the corresponding
abelian scheme ové, if it is clear which morphisnf we take. Leg be a geometric
point of S, and le¥ be a prime number which is invertible R The polarization on

1 This result was obtained independently by M. Nori (unpublished).
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X5 induces a non-degenerate alternating bilinear fegron T, X ;, and the image
of the monodromy representation

ps- 7T1(S, §) — AUt(Tng)

is an /-adic Lie subgrougi, = G,(S) of CSPTy X5, ¢¢). Via the choice of a
symplectic basis fof; X5 we can identifyG, with a subgroup of CSp(Z,). If S
is connected then, up to conjugation, the groufs) is independent both of the
chosen basis and the choice of the base point

If = is a point of Ay 1, then we writeG,(z) for G,(Spec¢r(z))). Write
S = {z}# for the Zariski closure of z} inside A, 1,, then the monodromy
representatiopspeq . (+)) factors throughs, hencejy(z) = Ge({z}%®"). From this
we see that if: specializes to a point, theng,(y) is conjugated to a subgroup of

Go(z).

LEMMA 6.5. Given a positive integey and two different prime numbepsand/,
not dividingn, there exists an irreducible curve C A, 1,, ® F,, such thatlC meets
the ordinary locugA 1, ® Fp)° andG,(C) = Spy, (Ze).

Proof. Choose a primitive:th root of unity inF,. We will constructC' as a
subvariety of the moduli spage= A, 1 (,) ®z(¢, 1/n] F, of abelian varieties with a
symplectic leveh structure, which can be identified with an irreducible component
of Ag,]_’n Xz Fp.

First we remark that, for some fixed, sufficiently large integerit suffices to
construct an irreducible curv@ which intersects the ordinary locus and for which
Ge(C) maps surjectively to Sp(z/¢™). (In fact, for¢ # 2 we can taken = 2; for
¢ = 2 we takem = 3. We omit the proof of this fact; a similar statement can be
found in [30, Chap. IV, 3.4]).

Consider the Galois covering

g. AI = Ag,l,(émn) ® Fp — A= Ag,l,(n) ® Fp,

which has Galois group Sp(Z/¢™). Write d = g(g + 1)/2, which of course is

the dimension oA. By first choosing an embeddiry— PN and then projecting
from a sufficiently general linear subvariety of codimensich 1, we can find an
affine open subschenieC A for which there exists a finite morphisfaU — A9,
Write U’ for the inverse image dfl in A'.

Starting from the morphisnfi o g: U’ — A? and applying [14, Th. 6.3] — 1
times, we find a linel. ¢ A? such that(f o g)~1(L) is an irreducible curve in
U’. LetC C A andC’ C A’ be the Zariski closure of ~1(L) and(f o g)~(L),
respectively. The diagram
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C,;’AI

g‘ol g9
C——A

is Cartesian and’ andC" are irreducible curves. It follows thgf..: C' — C'is
a Galois covering with group $p(Z/¢™). By what was said before, this implies
thatC has the required properties. O

THEOREM 6.6 (A. J. de Jong, B. M., F. Oortkiven a prime number not divid-
ingn and an integey > 1, there exists a fielé of characteristigp and ak-valued

ordinary moduli pointz € A¢ ; ,, (k) such that

tr'deng”($) =1 and trdean(xca’B = 9(97;_1)

Proof. We take a curv& C Ay 1, ® F, as in the lemma. Fat € Ay 1, ®
F, we take the generic point &', which is an ordinary moduli point. Clearly,
tr.deg; r(z) = 1.

By Proposition 6.4, the Zariski closuté of the pointz®®" € A, 1, ® Qis a
subvariety of Hodge type. We are done if we show that it is equalto, ® Q.
To see this we use that, by construction, the monodromy representatiohas a
‘large’ image.

Write Z for the Zariski closure ofZ over Spe(Z,), and let;; be a geometric
point of Z which factors through the generic poiptThens specializes te;, and
asg(z) 2 Sp,,(Ze) (by construction of”) we have Sp,(Z,) C Gi(n) = Go(Z).

Next we choose a number fieldsuch that there exists drtrational pointz €
Z(F).If zis ageometric point factoring througtthen we have a homomorphism
z.. GallQ/F) — m(Z,z), which is a section on G@D/F) of the natural map
m1(Z,7) — Gal(@/Q). B

Let M be the generic Mumford—Tate group ¢h and write Z = Z ®q
Q. The homomorphismg: m1(Z, 2) — m(Z,z) — CSPTiX:,¢¢) andp o
2. GallQ/F) — CSPTyX;, ) both factor throughV/(Qy). We conclude that
there is a subgroup of finite index C 71(Z, z) such thatp(r) C M(Q,) C
CSpy, (Qr). SinceM ®(Q, is an algebraic subgroup of CH® Q, with Gm-1d C M,
and since Sp (Z,) C G,(Z) we conclude thad/ = CSp,, ® Q andZ = Ay 1.
This finishes the proof. O
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