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Abstract The evolution of a rotationally symmetric surface by a linear combination of its radii of
curvature is considered. It is known that if the coefficients form certain integer ratios the flow is smooth
and can be integrated explicitly. In this paper the non-integer case is considered for certain values of the
coefficients and with mild analytic restrictions on the initial surface.

We prove that if the focal points at the north and south poles on the initial surface coincide, the flow
converges to a round sphere. Otherwise the flow converges to a non-round Hopf sphere. Conditions on
the fall-off of the astigmatism at the poles of the initial surface are also given that ensure the convergence
of the flow.

The proof uses the spectral theory of singular Sturm-Liouville operators to construct an eigenbasis
for an appropriate space in which the evolution is shown to converge.
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flow
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1. Introduction and results

The literature on extrinsic curvature flows in R3 primarily concerns flows whose normal
speed is a symmetric function in the radii of curvature [1], for which flows by mean
curvature, inverse mean curvature and powers of Gauss curvature are examples [4, 5,
13]. Symmetry is necessary for the normal speed to be well defined on general surfaces
[2] as the radii of curvature may be exchanged via re-parameterisation. However when
stationary solutions of such flows exist, they must necessarily be Weingarten surfaces
satisfying a symmetric Weingarten relationship – in which case if they are homeomorphic
to S 2 (we will call such surfaces simply spheres), they are in fact isometric to S 2 [7,
12], in which case we will call them round spheres. The current work differs from the
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2 B. Guilfoyle and M. Robson

literature in that the curvature flow considered, the linear Hopf flow, is not a symmetric
curvature flow, hence offers novelty in that stationary spheres of the (unscaled) flow
may be non-round. Rotationally symmetric surfaces support a canonical labelling of the
radii of curvature associated to the meridian and profile principal foliations, allowing
asymmetric curvature flows such as the linear Hopf flow to be sensibly defined on them.
Furthermore, rotational symmetry reduces the problem to one spatial variable, affording
extra tractability and allowing for a wider class of curvature flows to be considered on
such surfaces, e.g. [17, 18]. Explicitly, we consider in this paper solving for the curvature

flow ~X : S2 × [0,∞) → R3 satisfying

(
∂ ~X

t

)⊥

= (ar1 + br2 + c)n̂, and ~X(S2, 0) = S0, (1.1)

with the initial data S0 being a C 2-smooth, rotationally symmetric topological 2-sphere.
Here a, b, c ∈ R and ~X, n̂ and r1, r2 are respectively the position vector, normal vector
and radii of curvature of the evolving surface. A flow linear in the radii of curvature
is called a linear Hopf flow [11]. We will further assume that b> 0 which implies the
parabolicy of a related flow (cf. equation 3.4) and also that a is constrained by

−a/b = 2n+ 3, (1.2)

with n ∈ (−1, 1) – note this implies a < 0. The quantity −a/b is called the flow slope.
The flow slope places both topological and regularity restrictions on stationary solutions
to the flow: Stationary solutions of the flow can only be non-round, strictly convex and
topological 2-spheres when −a/b > 1, i.e. n > −1 ([12], Corollary 3.5.). In addition the
radii of curvature of such stationary solutions can only be smooth functions if n ∈ N0

(cf. Theorem 2.6). Convergence of the linear Hopf flow was shown in [11] when n ∈ N0,
wherein r1 and r2 are shown to converge as t→ ∞ through families of smooth functions
to limits that are also smooth – namely the radii of curvature of a stationary solution.
However in the non-integer case n ∈ (−1, 1) considered here, stationary solutions with
smooth radii of curvature do not exist and r1, r2 converge to functions which are not
smooth, complicating the analysis (cf. the discussion in S 3) To state the main results, let
θ be the angle between the normal of S at a point and the axis of rotational symmetry and
denote the second order Legendre differential operator for µ, ν ∈ R by L µ

ν (cf. equation
(3.6)). Let L2

sin θ(0, π) be the space of square integrable functions with weight sin θ on
the interval (0, π).

Theorem 1.1 Consider the linear Hopf flow ( 1.1) and ( 1.2) for n ∈ (−1, 1). Let
S0 be a C4-smooth strictly convex rotationally symmetric initial sphere. Assume that S0

satisfies the following conditions

(1) L n
n

(
s0(θ)

sinn+2 θ

)
∈ L2

sin θ(0, π),

(2) n · lim
θ→0

(
s0(θ)
sin2 θ

)
= n · lim

θ→π

(
s0(θ)
sin2 θ

)
= 0.
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On the Convergence of Non-Integer Linear Hopf Flow 3

If the focal points of S0 at the north and south poles coincide, the flow converges to a
round sphere of radius − c

a+b . Otherwise the flow converges to a non-round Hopf sphere
with astigmatism at the equator given by the signed distance between the focal points at
the poles of S0.

If S0 has isolated umbilic points at the north or south pole, a sufficient condition to
imply (2) can be given in terms of the surfaces umbilic slopes, which quantify the rate at
which S0 becomes umbilic (see S 2 for details).

1. (2∗) At each pole of S0, the umbilic slope is greater than 3.

It is not immediately obvious which classes of surfaces satisfy condition (1). However a
sufficient condition can be given in terms of the asymptotic fall-off of s and its derivatives
as θ → 0, π.

1. (3) s
(i)
0 ∼ ci sin

m−i θ at θ = 0, π for m > n + 3, i = 0, 1, 2 with possibly different
constants ci at θ=0 and θ = π.

Condition (3) is in fact enough for convergence as it implies both conditions (1) and (2).
Theorem 1.1 will be a consequence of the following more technical theorem.

Theorem 1.2 Let S0 be a C2-smooth strictly convex rotationally symmetric 2-sphere.
If the astigmatism s of S0 satisfies both of the following conditions

(i)
s

sinn+2 θ
∈ L2

sin θ(0, π),
ds

dθ
∈ ACloc(0, π),L

n
n

(
s

sinn+2 θ

)
∈ L2

sin θ(0, π),

(ii) lim
θ→0,π

(
sin2n+1 θ

d

dθ

(
s

sin2n+2 θ

))
= 0,

then the conclusion of Theorem 1.1 holds.

Theorem 1.2 has a weaker differentiability requirement of the initial surface than
Theorem 1.1. Indeed, (I) implies S0 is C 3-smooth everywhere apart from possibly at
the north and south umbilic points, and C 4-smooth almost everywhere. Under the addi-
tional assumption that S0 is C 4-smooth, conditions (I) and (II) are implied by (1) and
(2) respectively and Theorem 1.1 follows.
Our method of proof involves a spectral expansion in an eigenbasis of the non-integer

Legendre operator, defined on the weighted Hilbert space L2
sin θ(0, π). The eigenbasis is

adapted to contain the stationary solutions of the linear Hopf flow. The restriction n ∈
(−1, 1), is needed to guarantee such an eigenbasis expansion is possible. In Theorem 1.1
Condition (1) is a technical assumption needed to apply L2

sin θ(0, π) spectral theory. If
this assumption were dropped one may still expect convergence of the flow in a suitably
weak sense, just with geometric quantities becoming more singular at the poles θ = 0, π.
Condition (2) is controlled by the umbilic slope of the initial surface. In [11] it was shown
that if the initial surface umbilic slope is less than the flow slope, divergence of the linear
Hopf flow can occur. Hence one might expect such behaviour if condition (2) is removed.
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4 B. Guilfoyle and M. Robson

Section 2 fixes the notation used to describe geometrical quantities and derives some
consequences of rotationally symmetry. Section 3 discusses the geometrical properties
of possible stationary solutions of the linear Hopf flow and describes the evolution of
important geometric quantities under the flow. Critical to this description is the second
order Legendre differential operator L n

n .
Section 4 reviews the theory of singular Sturm-Liouville operators, which we require

to prove the existence of the adapted eigenbasis. In particular the LC property of a
singular Sturm-Liouville operator and boundary conditions required to generate possible
self-adjoint domains are discussed. An application of the Spectral Theorem 4.4 for LC
operators then guarantees the existence of a complete orthonormal basis of eigenfunctions
of such operators.
This is then applied in S 5 where the main results are proven. This done by showing

that L n
n is LC for n ∈ (−1, 1) and by finding boundary conditions (namely conditions

(I) and (II) of Theorem 1.2) to define a self-adjoint domain for L n
n , which is appropriate

for the flow.
The eigenbasis is then given explicitly in terms of Legendre functions and the various

geometric quantities are similarly expressed. Finally the evolution is solved in terms of the
eigenbasis as an expansion which decays exponentially in time to the stationary solution
of the flow.

2. Rotationally symmetric surfaces

The class of surfaces we concern ourselves within this work are elements of the set

W =

{
S ⊂ R3 : S is an embedded C2smooth topological 2-sphere which is

rotationally symmetric and strictly convex.

}
.

The terminology “topological sphere” which we will abbreviate as just “sphere” is taken
to mean a closed surface of genus 0. A given surface S ∈ W will be orientated with
outwards pointing normal n̂ in a right handed coordinate system ~X = (x1, x2, x3). Align
the x 3-axis with the axis of rotational symmetry of S. S is parametrized by pushing
forward the standard polar coordinates (θ, φ) of S 2 onto S by the inverse of the Guass
map N−1 : S2 → S. Hence θ ∈ [0, π] measures the angle made between the normal vector
n̂ of S, and the axis of rotational symmetry whereas φ ∈ [0, 2π] measures the angle made
by a clockwise rotation from the x2x3-plane. As a consequence of rotational symmetry
many quantities f : S → R are independent of φ, in which case we write for short-hand
f(θ) instead of f( ~X(θ, φ)). In particular the radii of curvature of S, r1 and r2, associated
to the meridian and profile principal foliations respectively, are functions of θ only. If S
is assumed strictly convex then away from the umbilic points of S, r1(θ) and r2(θ) are
Cm−2-smooth functions whenever S is Cm -smooth. In the case of rotational symmetry
the radii of curvature inherit the regularity of S even at the umbilic points of S (i.e. at
θ=0 and θ = π). If S is C 3, then the radii are C 1 even at the umbilics. If S is C 4

they are C 2. See [12, pg 6] for further details. Of critical importance to our study is the
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On the Convergence of Non-Integer Linear Hopf Flow 5

astigmatism of S given by

s = r2 − r1.

It is noted that s vanishes at, and only at, the umbilic points of S. In particular s(0) =
s(π) = 0 and s ≡ 0 if and only if S is a round sphere.
Our description of S in R3 will be facilitated by the support function r : S → R defined

by r = ~X · n̂. In the present setting r is a function of θ only and ~X(θ, φ) can be recovered
from r and its derivatives via:

x1 + ix2 = (sinφ+ i cosφ)

(
r sin θ +

dr

dθ
cos θ

)
, x3 = r cos θ − dr

dθ
sin θ.

Remark 2.1. For later convenience, note that the focal points [10] of S at θ=0 and
π lie on the axis of rotational symmetry with x 3 coordinates

f0 = r(0)− r1(0), fπ = −r(π) + r1(π).

This can be deduced by the above equation for ~X and the equations of the focal sheets
~Fi = ~X − rin̂, i = 1, 2.

We collect together some useful relationships between the above quantities on
rotationally symmetric surfaces.

Proposition 2.2. The following relationships hold

r1 =
cos2 θ

sin θ

d

dθ

( r

cos θ

)
, r2 =

d2r

dθ2
+ r, (2.1)

r = C2 cos θ + C1 +

∫
sin θ

[∫
s

sin θ
dθ

]
dθ, (2.2)

for constants C1,C2. If in addition surface is C3, the derived Codazzi-Mainardi equation
holds:

dr1
dθ

= (r2 − r1) cot θ. (2.3)

Proof. The derivation of equation (2.1) can be found in [8] or derived from the def-
inition of the support function. Equations (2.2) and (2.3) are derived by integrating or
differentiating equation (2.1) respectively, with respect to θ. �

Remark 2.3. Given S ∈ W with support function r, the transformation r 7→ r + C1

translates S at each point along its normal line by a distance C 1, i.e. S moves to a parallel
surface. The transformation r 7→ r+C2 cos θ translates the entire surface a distance of C 2

along the x 3-axis. Therefore s determines the oriented, affine normal lines of the surface.
See [9] for further details.
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6 B. Guilfoyle and M. Robson

2.1. The slope at an isolated umbilic

If S possesses isolated umbilic points at its north and south poles, i.e. at θ = 0, π, then
we define the umbilic slopes of S as

µ0 = lim
θ→0

(
r2(θ)− r2(0)

r1(θ)− r1(0)

)
, µπ = lim

θ→π

(
r2(θ)− r2(π)

r1(θ)− r1(π)

)
.

If S is C 3-smooth, the umbilic slopes are just
dr2
dr1

evaluated at θ=0 and π respectively.

We remark that coordinate substitution θ 7→ π− θ corresponds to reversing the direction
of the x 3 axis, transforming µ0 into µπ and vice-versa. Hence arguments that are made
concerning the umbilic at one pole will often hold at the other pole also. When this is the
case we will simply say the argument follows by reflection. The question of what values
of umbilic slope are possible on various spheres is an area of active research [7, 12, 14].
The derived Codazzi-Mainardi equation (2.3) is a necessary integrability condition for a
C 3-smooth surface to be rotationally symmetric and has some striking consequences in
this direction, two of which are the following proposition and theorem.

Proposition 2.4. Let S ∈ W be a C3 sphere with an isolated umbilic at θ= 0. For
any α ∈ R

(1) µ0 > α+ 1 =⇒ lim
θ→0

(
s

sinα θ

)
= 0,

(2) µ0 < α+ 1 =⇒ lim
θ→0

(
s

sinα θ

)
= ±∞.

If S has an isolated umbilic at θ = π then the value of µπ dictates the behaviour of s as
θ → π in the same way.

Proof. We prove the result for θ=0, the θ = π case follows by reflection. Since the
umbilic at θ=0 is isolated, there exists δ ∈ (0, π2 ) such that s ≠ 0 for θ ∈ (0, δ]. Therefore

by the Codazzi-Mainardi equation (2.3),
dr1
dθ 6= 0 on this interval also. Furthermore since

the surface is assumed strictly convex and C 3-smooth,
dr2
dθ is continuous and bounded.

Therefore
dr2
dr1

is continuous on (0, δ].

From the Codazzi-Mainardi equation and the definition of s one can derive the
separable ODE:

dr2
dr1

= 1 +
tan θ

s

ds

dθ
(θ).

Integrating from θ to δ gives

|s| = |s(δ)| exp

{∫ δ

θ

cot θ

(
1− dr2

dr1

)
dθ

}

=

∣∣∣∣ s(δ)sinα δ

∣∣∣∣ sinα θ · exp
{∫ δ

θ

cot θ

(
α+ 1− dr2

dr1

)
dθ

}
,
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On the Convergence of Non-Integer Linear Hopf Flow 7

for all θ ∈ (0, δ]. Dividing both sides by sinα θ we derive the relationship

∣∣∣∣ s(θ)sinα θ

∣∣∣∣ = ∣∣∣∣ s(δ)sinα δ

∣∣∣∣ exp
{∫ δ

θ

cot θ

(
α+ 1− dr2

dr1

)
dθ

}
∀θ ∈ (0, δ].

Now let θ→ 0. If µ0 > α + 1 the quantity in parenthesis diverges to −∞, implying
s/ sinα θ → 0. On the other hand if µ0 < α + 1 the quantity in parenthesis diverges to
+∞ which implies |s/ sinα θ| → ∞. �

Remark 2.5. Proposition 2.4 shows how the umbilic slopes dictate the rate of van-
ishing of s at the north and south poles. We remark that if it is the case that µ0 or µπ is
equal to α+1, then s/ sinα θ can exhibit either of the two behaviours in Proposition 2.4
or tend to a non-zero constant, as illustrated by the three examples s = sinα θ ·ln (2 csc θ)ε
for ε = −1, 0, 1.

Theorem 2.6 If the radii of curvature of S ∈ W are C∞ and S has an isolated umbilic
at the north or south pole, then the umbilic slope at that pole when it exists, takes a value
of an odd integer greater than or equal to 3.
If furthermore α+ 1 is the value of the umbilic slope at a given pole, the limit of

s/ sinα θ as we approach the pole is finite, non-zero.

Proof. Let µ be the umbilic slope at θ=0 and assume it is finite. Since S is strictly
convex, rotationally symmetric and smooth, s and all odd derivatives of s vanish at θ=0,
i.e. s(0) = s(2m+1)(0) = 0 for all m ∈ N.
Now assume for contradiction that all even derivatives also vanish. Then s(m)(0) = 0

for all m ∈ N0. In particular for any β ∈ N, by L’Hôpitals rule

lim
θ→0

(
s

sinβ θ

)
= . . . =

1

β!
s(β)(0) = 0.

Using the contrapositive of (2) in Proposition 2.4, it follows that µ ≥ β + 1 which
contradicts the assumption of µ being finite. Therefore there exists some k ∈ N such that
s(2k)(0) 6= 0, without loss of generality take k to be the smallest natural number such
that this holds, so s(m)(0) = 0 for all m < 2k. The smoothness assumption on S grantees
the existence of s(2k)(0) and therefore we have the following limit

lim
θ→0

(
s

sin2k θ

)
= . . . =

1

(2k)!
s(2k)(0) 6= 0,±∞.

This time using the contrapositive of both (1) and (2) in Proposition 2.4 we have
µ ≥ 2k + 1 and µ ≤ 2k + 1 which proves the first claim. The second claim follows from
the above limit. If the isolated umbilic is at θ = π we argue by reflection. �

Although the umbilic slopes are not generally quantised for non-smooth spheres with
isolated umbilic points, the regularity of a sphere still places restrictions on the possible
values of the umbilic slope.
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8 B. Guilfoyle and M. Robson

Proposition 2.7. If S ∈ W is of regularity C4 and has isolated umbilic points, then
the umbilic slopes of S are greater or equal to 3.

Proof. First argue at the θ=0 umbilic. By L’Hôpital and the assumed regularity of
S, we have the existence of the following limit:

lim
θ→0

(
s

sin2 θ

)
= lim

θ→0

(
ds
dθ

2 cos θ sin θ

)
=

1

2

d2s

dθ2

∣∣∣∣
θ=0

(2.4)

Hence by the converse of (2) in Proposition (2.4), we have that µ0 ≥ 3. The case at θ = π
follows by reflection. �

3. Linear Hopf flow

3.1. Stationary solutions

The stationary solutions of the linear Hopf flow (1.1) are surfaces satisfying the
curvature relationship

0 = ar1 + br2 + c. (3.1)

The surfaces in W for which a general linear curvature relationship such as equation (3.1)
holds are called linear Hopf spheres.

Proposition 3.1. The linear Hopf spheres which solve equation (3.1) for given
parameter values a, b and c have astigmatisms of the form

sHopf = C0 sin
2n+2 θ, (3.2)

and support functions of the form

rHopf = − c

a+ b
+ C1 cos θ + C0

[
sin2n+2 θ

2n+ 2
− cos θ

∫ θ

0

sin2n+1 θdθ

]
, (3.3)

where C0 and C1 are constants and −a/b = 2n+ 3.

Proof. Combing the derived Codazzi-Mainardi equation (2.3) with the curvature rela-
tionship (3.1) results in a separable ODE which is solved to give equation (3.2). The
support function (3.3) follows by integrating equation (3.2) by quadrature as in equation
(2.2), except with an extra constant other than C 0 and C 1. This additional constant
is then determined by requiring that the radii of curvature derived from the support
function satisfies equation (3.1). Equation (3.3) then follows. �
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On the Convergence of Non-Integer Linear Hopf Flow 9

Any surface with isolated umbilic points satisfying equation (3.1) necessarily has
umbilic slopes taking the common value

µ0 = µπ = −a/b.

Furthermore, if this surface is in W and smooth, Theorem 2.6 implies −a/b = 2n + 3
for some n ∈ N0. Therefore the only non-round strictly convex linear Hopf spheres with
smooth radii of curvature are ones with odd umbilic slope greater than or equal to 3. As
to allow for convergence of the linear Hopf flow to non-round, smooth and convex spheres,
the work undertaken in [11] investigated the linear Hopf flow with −a/b restricted to an
odd integer ≥ 3 with initial data in W . The central result is then:

Theorem 3.2 [11] Let S0 ∈ W be a smooth initial surface with equal umbilic slopes
µ = µ0 = µπ. The linear Hopf flow ( 1.1) and ( 1.2) behaves in the following manner:

(1) if 2n + 3 < µ, the evolving sphere converges exponentially through smooth convex
spheres to the round sphere of radius c

2(n+1) ,

(2) if 2n + 3 = µ, an initial non-round sphere converges exponentially thorough smooth
convex spheres to a non-round linear Hopf sphere,

(3) if 2n+ 3 > µ, the sphere diverges exponentially.

Since in the current paper we consider n which is generically non-integer, we cannot
expect non-round stationary solutions with smooth radii of curvature as in Theorem 3.2.
We also remark that the flow in Theorem 3.2 fixes b=1, whereas in this work we allow
b> 0. These conventions are equivalent up to a parabolic scaling t 7→ bt of equation (1.1).

3.2. Time evolution of geometric quantities

The curvature flow equation (1.1) is equivalent to the following evolution equation for
the support function

∂r

∂t
= b

∂2r

∂θ2
+ a cot θ

∂r

∂θ
+ (a+ b)r + c, (3.4)

as can be seen from the definition of r and equations (2.1). We remark that the coordinate
singularities in equation (3.4) prevent us from using regular Sturm-Liouville theory to
derive an associated eigenbasis, which motivates the singular theory discussed in S 4.
The solution r(t, θ) to equation (3.4) may be found by first considering the behaviour of

the astigmatism s(t, θ). The support function r(t, θ) may then be recovered via quadrature
by equation (2.2) up to two time-dependent constants determined by an initial condition
and equation (3.4).

Proposition 3.3. Under the linear Hopf flow the astigmatism evolves as

∂

∂t

(
s

sinn+2 θ

)
= b · L n

n

(
s

sinn+2 θ

)
, (3.5)
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10 B. Guilfoyle and M. Robson

where θ ∈ (0, π), −a/b = 2n+ 3 and

L µ
ν =

∂2

∂θ2
+ cot θ

∂

∂θ
+ (ν + 1)ν − µ2

sin2 θ
, (3.6)

is the Legendre operator.

Proof. Differentiating equation (2.2) twice gives a relationship between s and the
derivatives of r. The claim follows after inserting this relationship into equation (3.4) and
performing some algebraic manipulation. �

Remark 3.4. As expected the astigmatism of the appropriate linear Hopf sphere is
stationary under the flow since

sHopf

sinn+2 θ
= sinn θ ∈ Ker L n

n .

A crucial ingredient for solving equation (3.5) in the case n ∈ N0, is that the eigen-
functions of L n

n are the associated Legendre polynomials. The associated Legendre
polynomials, Pn

m(cos θ), are polynomials in sine and cosine and form an orthogonal basis
of C0[0, π]. In particular they span the higher index terms (l ≥ n) of the following
astigmatism decomposition for smooth surfaces:

s =
∞∑
l=0

(al + bl cos θ) sin
2l+2 θ. (3.7)

In [11] this decomposition enabled the flow to be solved explicitly when n ∈ N0 by
projecting the flow equation (3.5) into each eigenbasis of L n

n and solving for the time
dependency of the coefficients al(t),bl(t). The term with coefficient an is the astigmatism
of the linear Hopf sphere with umbilic slope 2n+ 3, therefore in the case of convergence
of s to a linear Hopf sphere, bl → 0 for all l ∈ N0 and al → 0 for all l ∈ N0\{n} as t→ ∞,
leaving only the linear Hopf term. In the case of convergence to a round sphere, an = 0.
We try to emulate the above argument in this paper for n /∈ N. In the non-integer case

there are some significant differences; the eigenfunctions of L n
n are no longer trigono-

metric polynomials and are not terms in the series expansion (3.7). Furthermore it is
no longer clear if the non-integer Legendre functions are orthogonal or form a basis.
Finally, when n /∈ N the astigmatism of the stationary solution sHopf is non-smooth,
hence we expect the eigen basis to be non-smooth. To address these points we will write
the Legendre operator in its Sturm-Liouville form

L µ
ν =

1

sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

)
+ ν(ν + 1) sin θ − µ2

sin θ

]
, (3.8)

and show using Singular Sturm-Liouville theory that we can find an orthogonal basis in
which the surfaces astigmatism can be decomposed.
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On the Convergence of Non-Integer Linear Hopf Flow 11

4. Singular Sturm-Liouville operators

In this section, we summarize the theory of singular Sturm-Liouville problems following
[21]. In S 5, the theory will be used to deduce the existence of an orthogonal eigenbasis
for the non-integer Legendre operator associated with the linear Hopf flow.
Consider the general Sturm-Liouville operator

T = − 1

w(x)

[
d

dx

(
p(x)

d

dx

)
+ q(x)

]
, (4.1)

where 1/p, q, w ∈ Lloc

(
(a, b);R

)
are locally Lebesgue integrable real-valued functions on

the interval (a, b) and w > 0. Operators of this form are called singular Sturm-Liouville
operators. The Legendre operator discussed in S 3 is an example of such.
View T as a linear operator on L2

(
(a, b), w(x)dx;C

)
, the Hilbert space of complex-

valued square integrable functions with weight w, denoted simply by L2
w(a, b). Under the

standard inner-product of the L2
w(a, b) spaces

〈f, g〉w =

∫ b

a

f(x) · g(x) · w(x)dx,

the operator T satisfies the so-called Greens formula

〈Tf, g〉w = p(x)
(
f(x)g′(x)− f ′(x)g(x)

) ∣∣∣∣x=b−

x=a+
+ 〈f, Tg〉w, (4.2)

where the evaluation of the boundary term is to be understood as a limit. Greens formula
allows us to investigate the symmetry of T in L2

w(a, b) so long as the functions f and
g are chosen to be such that the terms in (4.2) are well defined. For this purpose the
maximal domain is introduced:

Dmax =
{
f ∈ L2

w(a, b) : f, pf
′ ∈ ACloc(a, b), T f ∈ L2

w(a, b)
}
,

where ACloc(a, b) is the space of functions which are absolutely continuous on all compact
intervals of (a, b).
The requirement that f, pf ′ ∈ ACloc(a, b), is enough to ensure that f, pf ʹ are differ-

entiable almost everywhere and their derivatives are Lebesgue integrable, which gives
meaning to equation (4.2).
In the case that the coefficient p satisfies 1/p ∈ ACloc(a, b), the description of Dmax

simplifies to

Dmax =
{
f ∈ L2

w(a, b) : f
′ ∈ ACloc(a, b), T f ∈ L2

w(a, b)
}
, (4.3)

in particular the elements of Dmax must be C1(a, b) and have second derivative a.e. Such
is the case with the Legendre operator (3.8).
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12 B. Guilfoyle and M. Robson

Sturm-Liouville operators often come supplied with boundary conditions as to make
the boundary term in equation (4.2) vanish, i.e.

〈Tf, g〉w = 〈f, Tg〉w. (4.4)

These boundary conditions constitute part of T ’s domain of definition, which naturally
must be a subset of Dmax.
In non-singular Sturm-Liouville theory1 the well-known boundary conditions

α1f(a) + α2p(a)f
′(a) = 0, β1f(b) + β2p(b)f

′(b) = 0, α1, α2, β1, β2 ∈ C, (4.5)

define a domain DS.A. for T which make T |DS.A.
self adjoint [16]. It is for this reason

DS.A. will be referred to as a self adjoint domain for T.
In singular problems however, the quantities f (x ) and p(x)f ′(x) may not exist as x → a

or b, even if f ∈ Dmax. Therefore boundary conditions such as (4.5) are not appropriate.
To facilitate the description of boundary conditions for singular problems the Lagrange
bracket

[f, g]p(x) = p(x)
(
f(x)g′(x)− f ′(x)g(x)

)
, (4.6)

is introduced. Unlike the terms in boundary condition (4.5), the Lagrange bracket
[f, g]p(x) is finite in the limits x→ a, b so long as f, g ∈ Dmax.
In order to give appropriate boundary conditions in the singular case, we first give a

definition.

Definition 4.1. Given a singular Sturm-Liouville operator T, we say T is limit-circle
(LC) at x=a if for a given χ ∈ C all solutions of the eigenvalue equation

Ty = χy,

are in L2
w(a, c) for some c ∈ (a, b). Otherwise we say T is limit-point (LP) at a.

Similarly we say T is LC at x=b if correspondingly y ∈ L2
w(c, b) and LP at b

otherwise.
T is said to be LC(LP) if it is LC(LP) at both a and b.

Remark 2. T being LC or LP is independent of χ ∈ C [21].

The next theorem states the parallel of boundary condition (4.5) for LC Sturm-Liouville
operators.

Theorem 4.3 [21] Let T be a LC Sturm-Liouville operator and η, ψ be real valued
functions in Dmax such that [η, ψ]p(a) = 1 and [η, ψ]p(b) = 1. Consider the separated

1 which requires the stronger condition 1/p, q, w are Lebesgue integrable over (a, b)
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On the Convergence of Non-Integer Linear Hopf Flow 13

boundary condition

α1[u, η]p(a)− α2[u, ψ]p(a) = 0 (α1, α2) ∈ C2\{0} (4.7)

β1[u, η]p(b)− β2[u, ψ]p(b) = 0 (β1, β2) ∈ C2\{0}, (4.8)

where

[u, f ]p(a) = lim
x→a+

[u, f ]p(x) [u, f ]p(b) = lim
x→b−

[u, f ]p(x).

Then given αi, βi, i = 1, 2 as above, the domain

DS.A. = {y ∈ Dmax : equations(4.7)-(4.8) hold},

is a self adjoint-domain for T, i.e. T |DS.A.
is a self-adjoint operator.

In addition if T is a LC Sturm-Liouville operator then T has a compact resolvent [20].
Together Theorem 4.3 and LC operators having compact resolvents allow us to apply the
following spectral theorem once an appropriate DS.A. has been found.

Theorem 4.4 Spectral Theorem [19] Let H be a separable complex Hilbert space
with inner product 〈·, ·〉 and let T : Dom(T ) ⊆ H → H be a linear, self-adjoint operator
on H with compact resolvent. Then, there exists a sequence (λn)n ⊂ R and a complete
orthonormal basis (en)n of H with en ∈ Dom(T ) for all n ∈ N such that

(1) Ten = λnen,
(2) Dom(T ) = {x ∈ H|(λn〈x, en〉)n ∈ `2},
(3) Tx =

∞∑
n=1

λn〈x, en〉en for all x ∈ Dom(T ).

5. Proof of Theorem 1.2

We will solve equation (3.5) in terms of an eigenbasis expansion of the operator L n
n .

Theorem 1.2 will then follow by the asymptotic behaviour of the solution as t → ∞.
The proof is organised into three parts: Firstly we show the existence of the appropriate
eigenbasis using the theory in S 4. Secondly we determine the basis explicitly as the
Legendre functions {P−n

n+m(cos θ)}∞m=0 and derive the corresponding expansions for s, r1
and r. Finally, we use this basis to solve the time evolution problem

∂tu = b · L n
n u, [0,∞)× [0, π]

u(t, ·) ∈ DS.A., t ∈ [0,∞)

u = u0, {t = 0} × [0, π].

(5.1)

The function spaceDS.A. is a self adjoint domain for L n
n and plays the role of an effective a

parabolic boundary condition in (5.1). If s is the astigmatism of a rotationally symmetric
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14 B. Guilfoyle and M. Robson

surface, making the substitution u = s/ sinn+2 θ turns the time evolution problem (5.1)
into one describing the evolution of a surfaces astigmatism under the linear Hopf flow,
i.e. equation (3.5). The solution s(t, θ) is then integrated for the support function r(t, θ)
and both are shown to exhibit the asymptotic behaviour as t→ ∞

s(t, θ) ∼ γ̃ · sHopf, r(t, θ) ∼ rSphere + γ̃ · rHopf, (5.2)

where rSphere is the support function of a sphere with radius − c
a+b and γ̃ is the signed

distance between the focal points of the initial surface at θ=0 and π.

5.1. Existence of the eigenbasis and the self-adjoint domain

First we remark for which values of n that L n
n is LC.

Proposition 5.1. L n
n is LC if and only if n ∈ (−1, 1).

Proof. To check if L n
n is LC, solve the eigenvalue problem L n

n u = χu. Recall when
checking LC/LP, we are free to choose χ as we please. If we set χ := −n(n+ 1) we must
solve the problem

1

sin θ

d

dθ

(
sin θ

du

dθ

)
− n2

sin2 θ
u = 0.

If we can show that any two linearly independent solutions are square integrable (with
weight w = sin θ), it follows that every solution is square integrable by the triangle
inequality. First assume n =0. Then the eigenvalue problem is simply

1

sin θ

d

dθ

(
sin θ

du

dθ

)
= 0,

with two linearly independent solutions ln cot
(
θ
2

)
and a constant function. These are

square integrable. Now assume n ≠ 0, then two linearly independent solutions are

u± = cot±n

(
θ

2

)
.

We have then,

||u±||2L2
sin θ

(0,π)
=

∫ π

0

cot±2n

(
θ

2

)
· sin θdθ = 2

∫ π

0

[
cos

(
θ

2

)]1±2n

·
[
sin

(
θ

2

)]1∓2n

dθ,

which is convergent if and only if −1 < n < 1 and therefore L n
n is LC if and only if

n ∈ (−1, 1). �

For such values of n we may now use Theorem 4.3 to find self-adjoint domains for
L n

n . Furthermore, as to make the convergence obvious, we’d like the eigenbasis of L n
n
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On the Convergence of Non-Integer Linear Hopf Flow 15

to contain explicitly the stationary solution to equation (3.5):

sHopf

sinn+2 θ
,

it is therefore necessary that
sHopf

sinn+2 θ
∈ DS.A.. Finding such a self-adjoint domain will be

the content of the next proposition.

Proposition 5.2. The separated boundary condition

lim
θ→0

[
sin2n+1 θ

d

dθ

( u

sinn θ

)]
= 0, lim

θ→π

[
sin2n+1 θ

d

dθ

( u

sinn θ

)]
= 0, (5.3)

generates a self-adjoint domain for the Legendre operator

DS.A. = Dmax ∩
{
u ∈ L2

sin θ(0, π) : boundary condition (5.3)holds.
}
, (5.4)

where Dmax is given by equation (4.3) for (a, b) = (0, π) and T = L n
n . Furthermore

sHopf/ sin
n+2 θ ∈ DS.A..

Proof. The expression for Dmax for the Legendre operator takes the form

Dmax =
{
u ∈ L2

sin θ(0, π) :
du
dθ ∈ ACloc(0, π),L

n
n u ∈ L2

sin θ(0, π)
}
.

Theorem 4.3 tells us that all self adjoint domains of the Legendre operator generated by
separated boundary conditions are given by functions u ∈ Dmax satisfying

α1[u, η]sin θ(0) + α2[u, ψ]sin θ(π) = 0&β1[u, η]sin θ(0) + β2[u, ψ]sin θ(π) = 0,

where {η, ψ} ⊂ Dmax and [η, ψ]sin θ(0) = [η, ψ]sin θ(π) = 1, with (α1, α2), (β1, β2) ∈
C2\{0}.
Take (η, ψ) = 1√

n

(
sinn θ, sin−n θ

)
. It is straightforward to check that this choice of η

and ψ satisfy the above requirements. From Theorem 4.3, the boundary conditions with
this choice of η and ψ are

lim
θ→0

[
α1 sin

2n+1 θ
d

dθ

( u

sinn θ

)
+

α2

sin2n−1 θ

d

dθ
(u · sinn θ)

]
= 0, (5.5)

lim
θ→π

[
β1 sin

2n+1 θ
d

dθ

( u

sinn θ

)
+

β2

sin2n−1 θ

d

dθ
(u · sinn θ)

]
= 0. (5.6)

If we let uHopf = sHopf/ sin
n+2 θ then

sin2n+1 θ
d

dθ

( uHopf

sinn θ

)
≡ 0,

1

sin2n−1 θ

d

dθ
(uHopf · sinn θ) = 2nC cos θ,
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16 B. Guilfoyle and M. Robson

and so boundary conditions (5.5)-(5.6) are satisfied by uHopf only when α2 = β2 = 0.
Therefore setting α1 = β1 = 1 and α2 = β2 = 0, gives the self adjoint domain

DS.A. = Dmax ∩
{
u ∈ L2

sin θ(0, π) : lim
θ→0,π

[
sin2n+1 θ

d

dθ

( u

sinn θ

)]
= 0

}
.

It is quick to check that uHopf ∈ Dmax, completing the proof. �

Proposition 5.3. If s is the astigmatism of S ∈ W , then s/ sinn+2 θ ∈ DS.A. if and
only if (I) and (II) of Theorem 1.2 hold.

Proof. Making the substitution u = s/ sinn+2 θ turns the maximal domain conditions
(5.1) and boundary condition (5.3) into conditions (I) and (II) respectively. �

Under stronger assumptions on the surfaces regularity, conditions (I) and (II) can be
replaced by less technical, sufficient conditions, i.e. those which appear in Theorem 1.1.
First an elementary lemma is given concerning the asymptotic behaviour of functions in
L2
sin θ(0, π) near the boundary points θ = 0, π.

Lemma 5.4. If f ∈ C0((0, π);R) satisfies asymptotic conditions

f ∼ k0
sinp θ

as θ → 0 and f ∼ kπ
sinp θ

as θ → π, p < 1,

for constants k0 and kπ then f ∈ L2
sin θ(0, π).

Proposition 5.5. If S ∈ W is in addition C4-smooth, it is sufficient for s/ sinn+2 θ ∈
DS.A., that both (1) and (2) of Theorem 1.1 hold.

Proof. Under the assumption S is C 4 it will be shown that (1) implies (I) and (2)
implies (II).
Assume the astigmatism s of S satisfies (1). There are two sub-conditions of (I) left

to demonstrate. It immediately follows that ds
dθ ∈ ACloc(0, π) since S ∈ W and is C 4.

The last subcondition of (I) follows by first applying L’Hôpital’s rule to show s has the
following asymptotic behaviours near the boundary of (0, π);

s

sinn+2 θ
∼ 1

2 sinn θ

d2s

dθ2

∣∣∣∣
θ=0

as θ → 0 and
s

sinn+2 θ
∼ 1

2 sinn θ

d2s

dθ2

∣∣∣∣
θ=π

as θ → π.

Therefore since n < 1, Lemma 5.4 gives s/ sinn+2 θ ∈ L2
sin θ(0, π) and (I) is satisfied.

To show (II) holds, re-write (II) as

lim
θ→0,π

(
ds
dθ

sin θ
− 2(n+ 1) cos θ

s

sin2 θ

)
= 0.
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Again using L’Hôpital’s rule (remarking that condition (2) implies the existence of the
relevant limits) one can write condition (II) as the pair of equations

n · lim
θ→0

(
s

sin2 θ

)
= 0, n · lim

θ→π

(
s

sin2 θ

)
= 0,

which is (2). �

Proposition 5.6. Let S ∈ W be C4 and satisfy (3). Then both (1) and (2) of
Theorem 1.1 hold.

Proof. First we show that (3) implies (1). By lemma 5.4, it is enough to show that
(3) implies

L n
n

(
s

sinn+2 θ

)
∼ k

sinp θ
,

around θ=0 for some p< 1 and some k, and likewise at θ = π. We have

L n
n

(
s

sinn+2 θ

)
=

1

sinn+2 θ

d2s

dθ2
− (2n+ 3) cos θ

sinn+3 θ

ds

dθ
+

2(n+ 1)(1 + cos2 θ)s

sinn+4 θ
.

It is easily shown that if s and its derivatives have the asymptotic behaviour given
by (3), then by Lemma 5.4 the asymptotic fall off of L n

n

(
s/ sinn+2 θ

)
is sufficient for

L n
n

(
s/ sinn+2 θ

)
∈ L2

sin θ(0, π). To prove (2) we have

s

sin2 θ
=

s

sinm θ
· sinm−2 θ → 0as θ → 0, π,

since m > n+ 3 > 2 for n ∈ (−1, 1). �

5.2. The eigenbasis expansion

Now the domain DS.A. has been determined, the next proposition will determine
explicitly the eigenfunctions of L n

n when Dom(L n
n ) = DS.A..

Proposition 5.7. If u ∈ L2
sin θ(0, π) and n ∈ (−1, 1), then u can be decomposed in

L2
sin θ(0, π) as

u = γ0,n sin
n θ +

∞∑
m=1

γm,nP
−n
n+m(cos θ). (5.7)

where Pµ
ν is the Legendre function of order µ and degree ν.

Proof. Take L n
n to be the Legendre operator with the self-adjoint domain DS.A.

given by Proposition 5.2. Since by Proposition 5.1 L n
n is LC, it is a compact operator

and therefore by the Spectral Theorem 4.4, L2
sin θ(0, π) has a complete orthonormal basis
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18 B. Guilfoyle and M. Robson

consisting of L n
n ’s eigenfunctions and kernel. The kernel and eigenspaces of L n

n are
spanned by the following linearly independent sets of functions depending on if n =0 or
n ≠ 0 [3, pp. 352-353]:

n = 0 0 < |n| < 1

Kernel
{
Q0(cos θ), 1

} {
Pn
n(cos θ), sin

n θ
}

Eigenspaces
{
Qν(cos θ),Pν(cos θ)

} {
Pn
ν (cos θ),P

−n
ν (cos θ)

}
The functions {P−n

n+m(cos θ)}∞m=0 will be shown to be the only functions from the above
list belonging to DS.A., i.e. the only functions that satisfy the boundary conditions (5.3).
It is first remarked that the Legendre operator L µ

ν satisfies

L µ
ν = L µ

−ν−1, ∀µ, ν ∈ R.

This is easily checked by noting the quantity ν(ν + 1) is preserved under the transfor-
mation ν 7→ −ν − 1, corresponding to a reflection of the ν axis over the point ν = −1/2.
Since the set Eigenfunctions of L µ

ν are clearly invariant under such a transformation of
ν, it may be assumed without loss of generality that ν ≥ −1/2.
The function sinn θ and the constant function 1 are easily seen to satisfy the boundary

conditions (5.3). For the other functions, the derivative formula [3, p362]

sin θ
dRµ

ν (cos θ)

dθ
= (1− µ+ ν)Rµ

ν+1(cos θ)− (ν + 1) cos θRµ
ν (cos θ) (5.8)

for Rµ
ν (cos θ) being either Pµ

ν (cos θ) or Qµ
ν (cos θ), can be used to write the boundary

conditions (5.3) (with u = Rµ
ν (cos θ)) as

sin2n+1 θ
d

dθ

(
Rµ
ν (cos θ)

sinn θ

)
= sinn θ

{
(1− µ+ ν)Rµ

ν+1(cos θ)− (1 + n+ ν) cos θRµ
ν (cos θ)

}
.

(5.9)

Boundary term asymptotics at θ=0.
At θ=0, the asymptotic behaviour of Pµ

ν (cos θ) is given by [3, p361]

Pµ
ν (cos θ) ∼

1

Γ(1− µ)

(
2

sin θ

)µ

, µ 6= 1, 2, 3, . . . . (5.10)

It follows from equation (5.9) with Rµ
ν (cos θ) = Pµ

ν (cos θ) that near θ=0 the asymptotic
behaviour of the boundary term is

sin2n+1 θ
d

dθ

(
Pµ
ν (cos θ)

sinn θ

)
∼ −2µ(n+ µ)

Γ(1− µ)
sinn−µ θ,

which vanishes in the limit θ→ 0 if and only if either µ = −n or n − µ > 0. Recall
that in the above eigenfunctions µ = ±n and so the boundary condition at θ=0 is only
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On the Convergence of Non-Integer Linear Hopf Flow 19

met when µ = −n. Hence Pn
ν (cos θ) /∈ DS.A.. To show that Qν(cos θ) doesn’t satisfy the

boundary conditions, use the following asymptotic formula as θ→ 0 [3, p361] :

Qν(cos θ) =
1

2
ln

(
2

1− cos θ

)
− γ− ψ(ν + 1) +O(1− cos θ), ν 6= −1,−2,−3, . . . (5.11)

where γ is Euler’s constant and ψ is the logarithmic derivative of the Gamma func-
tion: ψ(ν) = Γ′(ν)/Γ(ν). Hence inserting equation (5.11) into equation (5.9) yields the
asymptotic behaviour of the boundary term for n =0:

sin θ
d

dθ
(Qν(cos θ)) =(1 + ν)

{
Qν+1(cos θ)− cos θQν(cos θ)

}
= (1 + ν)

{
cos θψ(ν + 1)− ψ(ν + 2) +

1

2
(1− cos θ) ln

(
2

1− cos θ

)}
+O(sin2 θ).

Letting θ→ 0 gives the limit

sin θ
d

dθ
(Qν(cos θ)) → (1 + ν)(ψ(ν + 1)− ψ(ν + 2)) 6= 0.

showing Qν(cos θ) does not satisfy the required boundary condition at θ=0. The
remaining eigenfunctions are therefore

n = 0 0 < |n| < 1

Kernel 1 sinn θ

Eigenspaces Pν(cos θ) P−n
ν (cos θ)

Boundary term asymptotics at θ = π.
The boundary term now takes the simpler form

sin2n+1 θ
d

dθ

(
P−n
ν (cos θ)

sinn θ

)
= (1+ n+ ν) sinn θ

{
P−n
ν+1(cos θ)− cos θP−n

ν (cos θ)
}
, (5.12)

and the possible values of ν such that the boundary term vanishes at θ = π will be
determined.

Case 1: n =0
Suppose that Pν(cos θ) satisfies the boundary condition at θ = π. From the connection

formula [3, p.362]:

2

π
sin((ν − µ)π)Q−µ

ν (cos θ) = cos((ν − µ)π)P−µ
ν (cos θ)− P−µ

ν (− cos θ),
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it follows that

Pν(cos θ) = cos(νπ)Pν(− cos θ)− 2

π
sin(νπ)Qν(− cos θ)

= cos(νπ)Pν(− cos θ)− 2 sin(νπ)

π

{
1

2
ln

(
2

1 + cos θ

)
− γ− ψ(ν + 1)

}
+O(1 + cos θ) (5.13)

as θ → π with the second equality following from the asymptotic behaviour of Qν given
by formula (5.11). Inserting this into the boundary term (5.12) with n =0 gives

sin θ
d

dθ
(Pν(cos θ)) =(1 + ν)

[
− cos(νπ)(Pν+1(− cos θ) + cos θPν(− cos θ))

+
sin(νπ)(1 + cos θ)

π

{
ln

(
2

1 + cos θ

)
− 2γ

}
− 2 sin(νπ)

π

(
ψ(ν + 2) + cos θψ(ν + 1)

)]
+O(1 + cos θ)

→ 2 sin(νπ)

π
(ψ(ν + 1)− ψ(ν + 2)) 6= 0,

as θ → π, where the limit of Pν(− cos θ) and Pν+1(− cos θ) have been calculated by
formula (5.10). Hence the boundary condition is not satisfied unless ν 6= 0, 1, 2, . . ..

Case 2: n ≠ 0
First the following representation for P−n

ν (cos θ) is introduced [3, p353]:

P−n
ν (cos θ) = 1

Γ(1+n)

(
1 + cos θ

1− cos θ

)−n/2

2F1

(
ν + 1,−ν; 1 + n;

1− cos θ

2

)
, (5.14)

where the the function 2F1(a, b; c, z) is the hyper-geometric series defined as

2F1(a, b; c, z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk, z ∈ {z ∈ C : |z| < 1}, (5.15)

with

(x)k =

x(x+ 1) . . . (x+ k − 1), k = 1, 2, 3, . . . ,

1, k = 0,

being the rising factorial. It is remarked that 2F1(a, b; c, z) is not defined when c is a
negative integer. Furthermore 2F1(a, b; c, 0) = 1 and the convergence of the series on
the circle |z| = 1 depends on the sign of c − a − b. To investigate the behaviour of the
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P−n
ν (cos θ) at θ = π the following transformation is used [3, p390]:

2F1(a, b; c, z) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) 2F1(a, b; a+ b+ 1− c; 1− z)

+ Γ(c)Γ(a+b−c)
Γ(a)Γ(b) (1− z)c−a−b

2F1(c− a, c− b; 1 + c− a− b; 1− z).

The above transformation is valid whenever c− a− b 6= 0,−1,−2, . . . as Γ(z) is singular
whenever z is a non-positive integer. For the hyper-geometric series in equation (5.14) for
any ν, c−a−b = n and since it is assumed that n ∈ (−1, 1)\{0}, the above transformation
is valid for all ν. The series representation for P−n

ν (cos θ) then takes the form

P−n
ν (cos θ) =

Γ(n)

Γ(n− ν)Γ(1 + n+ ν)

(
1 + cos θ

1− cos θ

)−n/2

2F1

(
ν + 1,−ν; 1 + n,

1 + cos θ

2

)
+

2−nΓ(−n) sinn θ
Γ(1 + ν)Γ(−ν) 2F1

(
n− ν, 1 + n+ ν; 1 + n,

1 + cos θ

2

)
. (5.16)

Rewriting the boundary term (5.12) with the above representation of P−n
ν (cos θ) leads

to

sin2n+1 θ
d

dθ

(
P−n
ν (cos θ)

sinn θ

)
= (1 + n+ ν)

{
Γ(n)(1− cos θ)nχ(θ) + 2−nΓ(−n) sin2n θΥ(θ)

}
,

where

χ(θ) =
2F1

(
ν + 2,−ν − 1; 1 + n, 1+cos θ

2

)
Γ(n− ν − 1)Γ(2 + n+ ν)

− cos θ
2F1

(
ν + 1,−ν; 1 + n, 1+cos θ

2

)
Γ(n− ν)Γ(1 + n+ ν)

,

and

Υ(θ) =
2F1

(
n− ν − 1, 2 + n+ ν; 1 + n, 1+cos θ

2

)
Γ(2 + ν)Γ(−ν − 1)

− cos θ
2F1

(
n− ν, 1 + n+ ν; 1 + n, 1+cos θ

2

)
Γ(1 + ν)Γ(−ν)

.

After first using the reflection formula [3, p138]:

Γ(z + 1) = zΓ(z), z ∈ C.

and then the series representation (5.15) for 2F1(a, b; c, z), one can write Υ(θ) as

Υ(θ) =
2F1

(
n− ν − 1, 2 + n+ ν; 1 + n, 1+cos θ

2

)
+ cos θ2F1

(
n− ν, 1 + n+ ν; 1 + n, 1+cos θ

2

)
Γ(2 + ν)Γ(−ν − 1)

=
1

Γ(ν + 2)Γ(−ν − 1)

[
1 + cos θ +

∞∑
l=1(

(n− ν − 1)l(2 + n+ ν)l + cos θ(n− ν)l(1 + n+ ν)l
l!(1 + n)l

)(
1 + cos θ

2

)l ]
.
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It follows that as θ → π the behaviour of χ(θ) and sin2n θΥ(θ) are

χ(θ) → 1

Γ(n− ν − 1)Γ(2 + n+ ν)
+

1

Γ(n− ν)Γ(1 + n+ ν)
,

sin2n θΥ(θ) → 0

leading to the asymptotic behaviour of the boundary term

sin2n+1 θ
d

dθ

(
P−n
ν (cos θ)

sinn θ

)
∼ 2n(1 + ν + n)Γ(n)

Γ(ν + n+ 2)Γ(n− ν − 1)
+

2n(1 + ν + n)Γ(n)

Γ(ν + n+ 1)Γ(n− ν)
.

To satisfy the boundary condition, we require the above terms to be 0 which is only the
case when ν = n+m for m ∈ N ∪ {0}, so that 1/Γ(n− ν − 1) = 1/Γ(n− ν) = 0.
The family {P−n

n+m(cos θ)}∞m=0 are thus the only family of eigenfunctions in DS.A. and
form an orthogonal basis of L2

sin θ(0, π), therefore if u ∈ L2
sin θ(0, π)

u = γ0,n sin
n θ +

∞∑
m=1

γm,nP
−n
n+m(cos θ),

for expansion coefficients {γm,n}∞m=0. �

For well-behaved surfaces, Proposition 5.7 gives an expansion of the surfaces astigma-
tism in terms of the Legendre functions.

Theorem 5.8 Let S be a C2-smooth rotationally symmetric, strictly convex sphere
with astigmatism satisfying s/ sinn+2 θ ∈ L2

sin θ(0, π). If n ∈ (−1, 1), the following
geometric quantities associated to S decompose as:

s = γ0,n sin
2n+2 θ + sinn+2 θ

∞∑
m=1

γn,mP−n
n+m(cos θ),

r1 = C1+
γ0,n

2(n+ 1)
sin2n+2 θ+sinn+2 θ

∞∑
m=1

γm,n

{
P
−(n+2)
n+m (cos θ) + cot θP

−(n+1)
n+m (cos θ)

}
,

r = C2 cos θ+C1+γ0,n

[
sin2n+2 θ

2(n+ 1)
− cos θ

∫ θ

0
sin2n+1 θdθ

]
+sinn+2 θ

∞∑
m=1

γm,nP
−(n+2)
n+m (cos θ),

where C1 = r1(0), C2 = r(0) − r1(0) and the first equality is to be understood as an
equality in L2

sin θ(0, π) where as the last two are point-wise.

Proof. The expansion for s follows from Proposition 5.7 by letting s = sinn+2 θ · u.
The expansion for r1 can be derived by inserting the expansion of s into the integrated
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derived Codazzi-Mainardi equation (2.3):

r1(θ) = r1(0) +

∫ θ

0

s cos θ

sin θ
dθ

= r1(0) +
γ0,n

2(n+ 1)
sin2n+2 θ +

∞∑
m=1

γm,n

∫ θ

0

cos θ sinn+1 θP−n
n+m(cos θ)dθ.

We then use the standard integral [3, p368)]∫
sinµ+1 θ · P−µ

ν (cos θ)dθ = sinµ+1 θ · P−(µ+1)
ν (cos θ)∀µ, ν ∈ R,

to evaluate the following by parts:

∫ θ

0

cos θ sinn+1 θP−n
n+m(cos θ)dθ = sinn+2 θP

−(n+2)
n+m (cos θ) + cos θ sinn+1 θP

−(n+1)
n+m (cos θ),

where the boundary term at θ=0 vanishes because of the asymptotic behaviour of

P
−(n+1)
n+m , see equation (5.10). This completes the derivation for r1, to derive the expan-

sion of r one may either insert the astigmatism decomposition into equation (2.2) and
proceed as above, or we can integrate the decomposition of r1 by virtue of equation (2.1).
The calculation is analogous. �

For a given rotationally symmetric surface S with astigmatism s, it is intriguing to ask
in what way does the expansion of s given in Theorem 5.8 convey geometric information
about S?

Corollary 5.9. Let γm,n be the expansion coefficients as given in Theorem 5.8 for
n ∈ (−1, 1). We have the following equalities

γ0,n =
Γ(n+ 3

2 )√
πΓ(n+ 1)

· (f0 − fπ), γ1,n =
Γ(2n+ 4)

2n+1Γ(n+ 1)
· (r1(π)− r1(0)).

hence γ0,n characterises the distance between the focal points of S while γ1,n characterises
the differences between the radii of curvature at each pole.

Proof. Starting with the expansion formula for s in Theorem 5.8, we divide by sin θ
and integrate to find the following expression satisfied by γ0,n:∫ π

0

s

sin θ
dθ = γ0,n

∫ π

0

sin2n+1 θdθ,

where the higher order terms in the expansion vanish via orthogonality. The integral on
the left hand side can be evaluated by using sequentially, equation (2.3), integration by
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parts, equation (2.1) and Remark 2.1:∫ π

0

s

sin θ
dθ = f0 − fπ,

which proves the claim for γ0,n once the remaining integral on the right hand side is
calculated. The claim concerning γ1,n follows by letting θ = π in the expansion of r1. All
higher order terms tend to zero as θ→ 0 apart from the m =1 which tends to a constant.
This follows by taking the limit of equation (5.16) as θ → π. Therefore

r1(π) = r1(0) + γ1,n

{
sinn+2 θP

−(n+2)
n+1 (cos θ) + sinn+1 θ cos θP

−(n+1)
n+1 (cos θ)

}∣∣∣
θ=π

.

The m =1 term satisfies

sinn+2 θP
−(n+2)
n+1 (cos θ) + sinn+1 θ cos θP

−(n+1)
n+1 (cos θ) → Γ(n+ 1)2n+2

Γ(2n+ 4)
,

as θ → π, again following from equation (5.16), which completes the proof. �

5.3. Time evolution of the eigenbasis expansion

In this section, we give a solution for each n ∈ (−1, 1) to the time evolution problem
(5.1) for all t ≥ 0 and for almost every θ ∈ [0, π]. Furthermore this solution is unique
in the sense that it is equal point-wise to a strong solution of (5.1) whenever a strong
solution exists, for all most all θ ∈ [0, π], for every t ≥ 0.

Proposition 5.10. Fix n ∈ (−1, 1) and let {em}∞m=1 be the Legendre functions
{P−n

n+m(cos θ)}∞m=0, normalised with respect to the L2
sin θ(0, π) inner product, i.e.

em =
P−n
n+m(cos θ)

||P−n
n+m(cos θ)||

.

Let u0 ∈ DS.A. have the eigenbasis decomposition

u0 =

∞∑
m=0

amem.

and u : [0,∞) → L2
sin θ(0, π) be the mapping defined by the series

u(t) =
∞∑

m=0

Am(t)em, Am(t) = am exp{λmbt}

where λm = −(2n+ 1 +m)m. Then
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(a) For each t ≥ 0, u( t) is an element of DS.A. and

[u(t)](θ) =
∞∑

m=0

Am(t)em(θ), (5.17)

point-wise for almost all θ ∈ (0, π) (with respect to the Lebesgue measure).
(b) Furthermore, u( t) is the unique solution to equation (5.1) with initial data u0.

Proof. First we prove (a). Let t ≥ 0. Since n ∈ (−1, 1) and b> 0, we have that λm ≤ 0
for all m ∈ N and so Am(t) is decreasing in t, in particular |Am(t)| ≤ |am|. It follows
that since u0 ∈ L2

sin θ(0, π), u(t) ∈ L2
sin θ(0, π) also by the comparison test for series in

L2
sin θ(0, π). To show membership of DS.A. note that by the Spectral Theorem 4.4, DS.A.

is characterised by those elements x ∈ L2
sin θ(0, π) such that (λn〈x, en〉)n ∈ `2, therefore

since u0 ∈ DS.A.,

∞∑
m=0

|λmAm(t)|2 ≤
∞∑

m=0

|λmam|2 <∞,

and u(t) ∈ DS.A. for all t ≥ 0. To show (5.17) holds we invoke the following theorem.

Theorem 5.11 [15] p267 Let {en}n be an orthonormal series with respect to
L2
sin θ(0, π). The series

∞∑
n=0

bnen(θ),

converges absolutely for almost all θ ∈ (0, π) if the sequence (bn)n satisfies

∞∑
n=2

|bn|2(log2(n))2(log2(log2 n))1+ε <∞

for some ɛ> 0.

To see that the sequence (am)m satisfies the above requirement it is enough to notice
that the sequence (λm)m grows quadratically with m, hence taking ɛ=1;

∞∑
m=M

|am|2(log2(m))2(log2(log2m))2 <
∞∑

m=M

|am|2λ2m <∞

for some M ∈ N. Therefore
∑∞

m=0 amem(θ) converges absolutely a.e., and so must∑∞
m=0Am(t)em(θ) for all t ≥ 0, by a comparison of series. Now we have proved a.e.

convergence of the RHS of (5.17), the stated equality follows by uniqueness of limits,
since the partial sums of u(t) converge a.e. along some sub-sequence to u(t).
To show (b) note that u(t) satisfies the boundary conditions in (5.1) since u(0) = u0

and u(t) ∈ DS.A.. All that is left to is to show u(t) solves the time evolution equation
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in (5.1). Fix θ ∈ [0, π] such that we have the absolute pointwise convergence of u0(θ) =∑∞
m=0 amem(θ) and therefore of [u(t)](θ) =

∑∞
m=0Am(t)em(θ) for all t ≥ 0. Let us

justify the term-by-term differentiation of this function w.r.t. t. Fix T > 0 and consider
the functions f : N0 × [T,∞) → R and g : N0 → R given by

f(m, t) = Am(t)em(θ), and g(m) = (eT )−1|amem(θ)|.

For any x > 0 and r < 0 the inequality |r|erx < (ex)−1 gives

∣∣∣∣∂f(m, t)∂t

∣∣∣∣ = |am · λmbeλmbt · em(θ)| ≤ (et)−1 · |amem(θ)| ≤ (eT )−1 · |amem(θ)| = g(m)

for all (m, t) ∈ N0 × [T,∞). Hence | ∂∂tf(m, t)| is dominated by a function whose sum is
convergent. Hence by a corrollary of the dominated convergence theorem [6, pg 56], f is
differentiable with respect to t for all t >T and

[∂tu(t)](θ) = ∂t

∞∑
m=0

f(m, t) = b
∞∑

m=0

λmAm(t)em(θ) = b · [L n
n u(t)](θ),

with the last equality following from the fact that λm is the eigen value of the operator
L n

n associated to em and part (3) of the Spectral Theorem 4.4. Finally since T > 0 was
arbitrary we have

[∂tu(t)](θ) = b · [L n
n u(t)] (θ) ∀t ∈ (0,∞), a.e. θ ∈ (0, π).

Now projecting the time evolution equation into each eigen space derives an ODE for the
basis components of u(t). Uniqueness now follows from ODE theorem. �

Making the substitution u = s/ sinn+2 θ turns the time evolution problem (5.1) into



∂

∂t

(
s

sinn+2 θ

)
= b · L n

n

(
s

sinn+2 θ

)
, [0,∞)× [0, π]

s(t, ·)
sinn+2(·)

∈ DS.A. t ∈ [0,∞)

s = s0 {t = 0} × [0, π],

(5.18)

which describes the evolution of a surfaces astigmatism under the linear Hopf flow (3.5).

Corollary 5.12. Let S0 ∈ W be an initial surface with an astigmatism s0 satisfying
s0/ sin

n+2 θ ∈ DS.A.. If St is a strong solution of the linear Hopf flow (1.1) and (1.2)
with n ∈ (−1, 1) then the astigmatism s, radius of curvature r1 and the support function
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r of St evolve as

s(t, θ) = γ0,n sin
2n+2 θ +

∞∑
m=1

Γn,m(t) sinn+2 θP−n
n+m(cos θ),

(
a.e. θ ∈ [0, π]

)
,

for almost all θ ∈ [0, π] and all t ≥ 0, and

r1(t, θ) = C1(t) +
γ0,n sin2n+2 θ

2n+ 2
+ sinn+2 θ

∞∑
m=1

Γn,m(t)
[
P

−(n+2)
n+m (cos θ) + cot θP

−(n+1)
n+m (cos θ)

]
,

r(t, θ) = C2(t) cos θ + C1(t) + γ0,n

[
sin2n+2 θ

2n+ 2
− cos θ

∫ θ

0

sin2n+1 θdθ

]

+ sinn+2 θ
∞∑

m=1

Γn,m(t)P
−(n+2)
n+m (cos θ),

for all θ ∈ [0, π], t ≥ 0, where Γm,n(t) = γm,n exp
{
− (2n+ 1 +m)mb · t

}
and γm,n are

the decomposition coefficients of the initial surface S0 in the basis {P−n
n+m(cos θ)}∞m=0.

Furthermore the constants C1(t) and C2(t) evolve as

C1(t) = C1(0)e
−2(n+1)bt +

c
(
1− e−2(n+1)bt

)
2(n+ 1)b

, C2 = constant .

Proof. Fix n ∈ (−1, 1). Since u(t, ·) := s(t, ·)/ sinn+2(·) solves Equation (5.1), we may
expand it as in Proposition 5.10, giving a series which convergence point-wise almost
everywhere. After noting the coefficients Γm,n(t) are related to Am(t) as in Proposition
5.10 by Am(t) = Γn,m(t)||P−n

n+m(cos θ)|| this derives the series expansion for s(t, θ). Since
St is a strong solution, it follows that the support function r(t, θ) must be C 2-smooth
in the θ variable for all t. This implies via Equations (2.1) that r1(t, θ) and r2(t, θ) must
be finite for θ ∈ (0, π). The expressions for r1(t, θ) and r(t, θ) are then derived as in
Theorem 5.8 by integration. To derive the behaviour of C1(t) and C2(t), we ensure they
satisfy equation (3.4) for the linear Hopf flow, i.e.

∂r(t, θ)

∂t
= ar1(t, θ) + br2(t, θ) + c

= c+ b [s(t, θ)− 2(n+ 1)r1(t, θ)] .

where we have first written the right hand side of (3.4) in terms of r1 & r2, and then
used the identity −a/b = 2n+3. Substituting the expansions of r(t, θ), r1(t, θ) and s(t, θ)
into this equation and collecting together terms gives us the relationship

∂tC2(t) cos θ + ∂tC1(t) = c− 2(n+ 1)bC1(t) + b sinn+2 θ
∞∑

m=1

Γn,m(t)∆m,n,
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where

∆m,n = P−n
n+m(cos θ)− 2(n+ 1) cot θP

−(n+1)
n+m (cos θ)− (2n+ 2 +m)(m− 1)P

−(n+2)
n+m (cos θ).

However, by letting µ = −(n + 2) and v = n +m in the following recurrence relation
between the Legendre functions [3, p362]

Pµ+2
ν (x) + 2(µ+ 1)x

(
1− x2

)−1/2
Pµ+1
ν (x) + (ν − µ)(ν + µ+ 1)Pµ

ν (x) = 0,

we can see that ∆m,n is identically 0, hence we have the following evolution equation

∂tC2(t) cos θ + ∂tC1(t) = c− 2(n+ 1)bC1(t).

It is easy to see that ∂tC2(t) = 0. Solving the remaining ODE gives the stated time
evolution of C1(t). �

Remark 5.13. We have the following asymptotic behaviour as t→ ∞,

r(t, θ) ∼ C2 cos θ +
c

2(n+ 1)b
+ γ0,n

[
sin2n+2 θ

2n+ 2
− cos θ

∫ θ

0

sin2n+1 θdθ

]
.

This is the support function of a linear Hopf sphere (cf. Equation (3.3)). If γ0,n = 0,
i.e. if the focal points of the initial surface coincide, then the support function is that of
a sphere with radius

c

2(n+ 1)b
= − c

a+ b
,

as claimed.
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