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Abstract

A subset Y of the general linear group GL(n, q) is called t-intersecting if rk(x − y) ≤ n − t
for all x, y ∈ Y , or equivalently x and y agree pointwise on a t-dimensional subspace of Fn

q
for all x, y ∈ Y . We show that, if n is sufficiently large compared to t, the size of every
such t-intersecting set is at most that of the stabiliser of a basis of a t-dimensional sub-
space of F

n
q. In case of equality, the characteristic vector of Y is a linear combination of

the characteristic vectors of the cosets of these stabilisers. We also give similar results for
subsets of GL(n, q) that intersect not necessarily pointwise in t-dimensional subspaces of
F

n
q and for cross-intersecting subsets of GL(n, q). These results may be viewed as variants

of the classical Erdős–Ko–Rado Theorem in extremal set theory and are q-analogs of cor-
responding results known for the symmetric group. Our methods are based on eigenvalue
techniques to estimate the size of the largest independent sets in graphs and crucially involve
the representation theory of GL(n, q).

2020 Mathematics Subject Classification: 05D99 (Primary); 05E30, 20C33 (Secondary)

1. Introduction and results

One of the most famous results in extremal set theory is the Erdős–Ko–Rado Theorem [9].
In its strengthened version [27] it states that, for all fixed k and t and all sufficiently large n,
every t-intersecting family of k-subsets of {1, 2, . . . , n} has size at most

(n−t
k−t

)
and equality

holds if and only if there are t distinct points of {1, 2, . . . , n} contained in all members of the
family.

There are several analogs of the Erdős–Ko–Rado Theorem (see [13], for example). Most
notably, following important earlier work [5, 10, 12, 18], a corresponding result for the sym-
metric group Sn was obtained by Ellis, Friedgut and Pilpel in a landmark paper [7]. A subset
Y of Sn is t-intersecting if, for all x, y ∈ Y , there exist distinct i1, i2, . . . , it in {1, 2, . . . , n}
such that x(ik) = y(ik) for all k. It was shown in [7] that, for each fixed t and all sufficiently
large n, every t-intersecting set in Sn has size at most (n − t)! and equality holds if and only
if Y is a coset of the stabiliser of a t-tuple of distinct points in {1, 2, . . . , n}.

In this paper we consider a q-analog of this problem, namely we study a corresponding
problem for the finite general linear groups. Throughout this paper q is a fixed prime power
and Gn denotes the general linear group of degree n over the finite field Fq, namely the group
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130 ALENA ERNST AND KAI–UWE SCHMIDT

of invertible n × n matrices over Fq. We say that two elements x, y ∈ Gn are t-intersecting
if there exist linearly independent elements u1, u2, . . . , ut in F

n
q such that xuk = yuk for all

k. Equivalently x, y ∈ Gn are t-intersecting if rk(x − y) ≤ n − t. A subset Y of Gn is called
t-intersecting if all pairs in Y × Y are t-intersecting.

A coset of the stabiliser of a t-tuple of linearly independent elements of Fn
q has the form

{g ∈ Gn : gu1 = v1, . . . , gut = vt}
for some t-tuples (u1, u2, . . . , ut) and (v1, v2, . . . , vt) of linearly independent elements of Fn

q.
We call such a coset a t-coset. It is plain that every t-coset is t-intersecting. Note that the size
of a t-coset is

n−1∏
i=t

(
qn − qi) . (1·1)

The t-cosets are however not the only t-intersecting sets of this size in Gn, as the transpose
of every t-intersecting set is t-intersecting.

We shall often identify a subset Y of Gn with its characteristic vector 1Y ∈C(Gn) (where
C(Gn) is the vector space of functions from Gn to C). It is well known (see [2] or [3], for
example) that, since Gn contains a Singer cycle as a regular subgroup, the size of every
1-intersecting set in Gn is at most the expression given in (1·1) for t = 1. Meagher and
Razafimahatratra [21] have shown that, if Y is a 1-intersecting set of size q2 − q in G2, then
1Y is in the span of the characteristic vectors of the 1-cosets. We prove a corresponding
result for all t and n for which n is sufficiently large compared to t.

THEOREM 1·1. Let t be a positive integer and let Y be a t-intersecting set in Gn. If n is
sufficiently large compared to t, then

|Y| ≤
n−1∏
i=t

(
qn − qi)

and, in case of equality, 1Y is spanned by the characteristic vectors of t-cosets.

We also prove a result on cross-intersecting subsets of Gn. Two subsets Y and Z are
t-cross-intersecting if all pairs in Y × Z are t-intersecting.

THEOREM 1·2. Let t be a positive integer and let Y and Z be t-cross-intersecting sets in
Gn. If n is sufficiently large compared to t, then

√|Y| · |Z| ≤
n−1∏
i=t

(
qn − qi)

and, in case of equality, 1Y and 1Z are spanned by the characteristic vectors of t-cosets.

Theorems 1·1 and 1·2 may be seen as q-analogs of [7, theorems 5 and 6]. It seems
plausible that corresponding q-analogs of [7, theorems 3 and 4] also hold. In the case of
t-intersecting sets, this means that the extremal t-intersecting sets in Gn are the t-cosets and
their transposes whenever n is sufficiently large compared to t. In fact, Ahanjideh [1] has

https://doi.org/10.1017/S0305004123000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000075
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shown that every 1-intersecting set in G2 of size q2 − q must be either a 1-coset or the
transpose of a 1-coset. We therefore pose the following conjectures.

CONJECTURE 1·3. Let Y be a t-intersecting set in Gn whose size meets the bound in
Theorem 1·1. If n is sufficiently large compared to t, then Y or YT is a t-coset.

CONJECTURE 1·4. Let Y and Z be t-cross-intersecting sets in Gn whose sizes meet the
bound in Theorem 1·2. If n is sufficiently large compared to t, then Y = Z and Y or YT is a
t-coset.

A subset Y of the symmetric group Sn is t-set-intersecting if, for all x, y ∈ Y , there is a
subset I of {1, 2, . . . , n} containing t elements such that x(I) = y(I). It was shown in [6]
that, for each fixed t and all sufficiently large n, every t-set-intersecting set in Sn has size at
most t!(n − t)! and equality holds if and only if Y is a coset of the stabiliser of a subset of
{1, 2, . . . , n} containing t elements.

We also obtain a q-analog of this result. We say that two elements x, y ∈ Gn are t-space-
intersecting if there exists a t-dimensional subspace U of F

n
q (or t-space for short) such

that xU = yU. A subset Y of Gn is called t-space-intersecting if all pairs in Y × Y are t-
space-intersecting. Of course in this context it would be more natural to replace Gn by the
projective linear group PGL(n, q). However results for Gn and for PGL(n, q) can be easily
translated into each other and for consistency we prefer to work with Gn. A coset of the
stabiliser in Gn of a t-space is clearly t-space-intersecting and has order

[
t−1∏
i=0

(
qt − qi) ][ n−1∏

i=t

(
qn − qi) ]. (1·2)

Note that again the transpose of a t-space-intersecting set is t-space-intersecting. The trans-
pose of the stabiliser of a t-space is in fact the stabiliser of an (n − t)-space, so the stabiliser
of an (n − t)-space is an example of a t-space-intersecting set that has the same size as that
of the stabiliser of a t-space.

Using an argument involving a Singer cycle, similarly as that above, Meagher and Spiga
[22] have shown that the size of every 1-space-intersecting set in Gn is at most the expression
given in (1·2) for t = 1. We show that this is true for all t and all sufficiently large n.

THEOREM 1·5. Let t be a positive integer and let Y be a t-space-intersecting set in Gn. If
n is sufficiently large compared to t, then

|Y| ≤
[

t−1∏
i=0

(
qt − qi) ][ n−1∏

i=t

(
qn − qi) ]

and, in case of equality, 1Y is spanned by the characteristic vectors of cosets of stabilisers
of t-spaces.

Again, we have a corresponding result on cross-intersecting subsets of Gn, in which we
call two subsets Y and Z of Gn t-space-cross-intersecting if all pairs in Y × Z are t-space-
intersecting.
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THEOREM 1·6. Let t be a positive integer and let Y and Z be t-space-cross-intersecting
sets in Gn. If n is sufficiently large compared to t, then

√|Y| · |Z| ≤
[

t−1∏
i=0

(
qt − qi) ][ n−1∏

i=t

(
qn − qi) ]

and, in case of equality, 1Y and 1Z are spanned by the characteristic vectors of cosets of
stabilisers of t-spaces.

Meagher and Spiga [22] conjectured that the extremal 1-space-intersecting sets in Gn

must be cosets of the stabiliser of a 1-space or cosets of the stabiliser of an (n − 1)-space.
This was proved by the same authors for n = 2 [22] and n = 3 [23] and by Spiga for all n ≥ 4
[25]. We therefore pose the following conjectures.

CONJECTURE 1·7. Let Y be a t-space-intersecting set in Gn whose size meets the bound
in Theorem 1·5. If n is sufficiently large compared to t, then Y is a coset of the stabiliser of a
t-space or a coset of the stabiliser of an (n − t)-space.

CONJECTURE 1·8. Let Y and Z be t-space-cross-intersecting sets in Gn whose sizes meet
the bound in Theorem 1·6. If n is sufficiently large compared to t, then Y = Z and Y is the
stabiliser of a t-space or the stabiliser of an (n − t)-space.

Not surprisingly, as in [6, 7], our proofs are based on eigenvalue techniques, in particu-
lar weighted versions of the Hoffman bound on independent sets in graphs, and crucially
involve the representation theory of Gn. We organise this paper as follows. In Section 2 we
summarise relevant background on the representation theory of Gn. In Section 3 we recall
versions of the Hoffman bound from [7] and explain how they can be applied in our setting.
In Section 4 we prepare some key steps of the proofs of our main results and in particular
study properties of a matrix related to the character table of Gn. Sections 5 and 6 contain
the main arguments of our proofs of Theorems 1·1 and 1·2 and Theorems 1·5 and 1·6,
respectively. In Section 7 we prove some auxiliary ingredients used in our proofs.

We close this introduction by noting that, after a first version of this paper was made
publically available, Ellis, Kindler and Lifshitz [8] independently proved a result that is
slightly more general than Theorem 1·1 and also proved Conjecture 1·3. Their methods are
completely different compared to ours and in particular make no use of the representation
theory of Gn.

2. The finite general linear groups

In this section we mostly recall some relevant facts about the conjugacy classes and the
character theory of Gn.

2·1. Partitions

An (integer) partition is a sequence λ= (λ1, λ2, . . . ) of nonnegative integers satisfying
λ1 ≥ λ2 ≥ · · · . The set of partitions is denoted by Par. We often omit trailing zeros and
write λ= (λ1, λ2, . . . , λk) if λk > 0 and λk+1 = 0. The size of (λ1, λ2, . . . ) is defined to be
|λ| = λ1 + λ2 + · · · . If |λ| = n, then we also say that λ is a partition of n. We denote the
unique partition of 0 by ∅.
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The Young diagram of a partition (λ1, λ2, . . . , λk) of n is an array of n boxes with left-
justified rows and top-justified columns, where row i contains λi boxes. To each partition λ
belongs a conjugate partition λ′ whose parts are the number of boxes in the columns of the
Young diagram of λ. For two partitions λ= (λ1, λ2, . . . ) and μ= (μ1,μ2, . . . ) of the same
size, we say that λ dominates μ and write λ�μ if

k∑
i=1

λi ≥
k∑

i=1

μi for each k ≥ 1.

This indeed defines a partial order on the set of partitions of a fixed size, which is called the
dominance order.

2·2. Conjugacy classes

We shall now describe the conjugacy classes of Gn (see [20, chapter IV, section 3], for
example). Let � be the set of monic irreducible polynomials in Fq[X] distinct from X. For
a ∈ F

∗
q (where F

∗
q is the multiplicative group of Fq), we shall often write a instead of X − a

when the meaning is clear from the context. We also write |f | for the degree of f ∈�. Let �
be the set of mappings λ : �→ Par of finite support (with ∅ being the zero element in Par).
We define the size of such a mapping to be

‖λ‖ =
∑
f ∈�

|λ(f )| · |f |

and put �n = {λ ∈� : ‖λ‖ = n}. The companion matrix of f ∈� with f = Xd + fd−1Xd−1 +
· · · + f1X + f0 is

C(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f0

1 −f1

1 −f2
. . .

...

1 −fd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ F
d×d
q ,

(where blanks are filled with zeros). For f ∈� of degree d and a positive integer k, we write

C(f , k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(f ) I

C(f ) I

. . .
. . .

. . . I

C(f )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ F
kd×kd
q ,

where I is an identity matrix of the appropriate size. For f ∈� and σ ∈ Par, we define C(f , σ )
to be the block diagonal matrix of order |σ | · |f | with blocks C(f , σ1), C(f , σ2), . . . . Finally,
with every σ ∈�n we associate the block diagonal matrix Rσ of order n whose blocks are
C(f , σ (f )), where f ranges through the support of σ . Then every element g of Gn is conjugate
to exactly one matrix Rσ for σ ∈�n, which is called the Jordan canonical form of g. Hence
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�n indexes the conjugacy classes of Gn; we denote by Cσ the conjugacy class containing
Rσ . The following result gives an explicit expression for the number of elements in Cσ .

LEMMA 2·1 ([26, theorem 1·10·7]). For each σ ∈�n, we have

|Gn|
|Cσ | =

∏
f ∈�

|σ (f )|∏
i=1

mi(σ (f ))∏
j=1

q|f | si(σ (f )′)
(

1 − q−|f | j
)

,

where mi(σ ) = |{j ≥ 1: σj = i}| and si(σ ) =∑i
j=1 σj for a partition σ .

2·3. Parabolic induction

Recall that, given a finite group G, a subgroup H of G, and a class function φ on H, the
induced class function IndG

H(φ) on G is given by

IndG
H(φ)(g) = 1

|H|
∑
x∈G

xgx−1∈H

φ(xgx−1). (2·1)

The character theory of Gn crucially relies on the induction of characters from parabolic
subgroups of Gn.

A composition is much like a partition, except that the parts do not need to be nonincreas-
ing. Let λ= (λ1, λ2, . . . , λk) be a composition of n. Let Pλ be the parabolic subgroup of Gn

consisting of block upper-triangular matrices with block sizes λ1, λ2, . . . , λk, namely

Pλ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

g1 ∗ · · · ∗
g2 · · · ∗

. . .
...

gk

⎤
⎥⎥⎥⎥⎥⎦ :gi ∈ Gλi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (2·2)

Let πi : Pλ → Gλi be the mapping that projects to the ith diagonal block, so that

πi :

⎡
⎢⎢⎢⎢⎢⎣

g1 ∗ · · · ∗
g2 · · · ∗

. . .
...

gk

⎤
⎥⎥⎥⎥⎥⎦ 
−→ gi. (2·3)

Let φi be a class function on Gλi . Then

k∏
i=1

(φi ◦ πi)

is a class function on Pλ. We define the product φ1 � φ2 � · · · � φk to be the induction of
this class function to Gn, that is

k⊙
i=1

φi = IndGn
Pλ

(
k∏

i=1

(φi ◦ πi)

)
. (2·4)
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2·4. Character theory of Gn

The complete set of complex irreducible characters has been obtained by Green [14].
A good treatment of this topic is also contained in [20, chapter IV]. The complex irreducible
representations were obtained by Gelfand [11] and the irreducible representations over fields
of nondefining characteristic were obtained by James [17]. The approach of [17] is in fact
very similar to the standard combinatorial approach to obtain the complex irreducible rep-
resentations of the symmetric group (see [24], for example) and we mostly follow [17] to
recall some relevant background on the complex characters of Gn.

The irreducible characters of Gn are naturally indexed by �n and, for λ ∈�n, we denote
by χλ the corresponding irreducible character. We shall use the short-hand notation χ f 
→λ

for χλ if λ is supported only on f ∈� and λ(f ) = λ. These are typically called the primary
irreducible characters of Gn. It is well known (see [17, section 8], for example) that the
irreducible characters of Gn satisfy

χλ =
⊙
f ∈�

χ f 
→λ(f ). (2·5)

In order to construct the primary irreducible characters, James [17] constructs characters
of Gdm, denoted by ξ f 
→μ, where f ∈� has degree d and μ is a partition of m. Writing
μ= (μ1,μ2, . . . ,μk), these characters satisfy [17, (6·2)]

ξ f 
→μ =
k⊙

i=1

ξ f 
→(μi) (2·6)

and [17, (7·19)]

ξ f 
→μ =
∑
λ

Kλμ χ
f 
→λ, (2·7)

where λ ranges over the partitions of |μ| and Kλμ is a Kostka number, which equals the
number of semistandard Young tableaux of shape λ and content μ. It is well known (see [24,
section 2·11], for example) that the Kostka numbers satisfy

Kμμ = 1 and Kλμ 
= 0 ⇒ λ�μ. (2·8)

Conversely it is readily verified that there are integers Hμλ satisfying

χ f 
→λ =
∑
μ

Hμλ ξ
f 
→μ (2·9)

and

Hλλ = 1 and Hμλ 
= 0 ⇒μ� λ (2·10)

(see [20, p. 105], for example).
Now, for μ ∈�n, we define the characters

ξμ =
⊙
f ∈�

ξ f 
→μ(f ). (2·11)

We denote by χλσ and ξ
μ
σ the characters χλ and ξμ, respectively, evaluated on the conjugacy

class Cσ .
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We now express ξμ and χλ in terms of each other. To do so, we define the shape of
λ ∈�n to be the mapping s :�→Z given by s(f ) = |λ(f )| for each f ∈�. We write λ∼μ

if λ,μ ∈�n have the same shape. Then ∼ is an equivalence relation on �n. For λ,μ ∈�n

with λ∼μ, write

Kλμ =
∏
f ∈�

Kλ(f )μ(f ),

Hμλ =
∏
f ∈�

Hμ(f )λ(f ).

We then find that

ξμ =
∑
λ∼μ

Kλμ χ
λ for each μ ∈�n, (2·12)

χλ =
∑
μ∼λ

Hμλ ξ
μ for each λ ∈�n. (2·13)

An explicit expression for the degree χλ(1) (where 1 is the identity of Gn) of χλ is given by
the so-called q-analog of the hook-length formula.

LEMMA 2·2 ([14, theorem 14]). We have

1

χλ(1)

n∏
i=1

(qi − 1) =
∏
f ∈�

1

q|f |b(λ(f ))

∏
(i,j)∈λ(f )

(
q|f |hi,j(λ(f )) − 1

)
, (2·14)

where, for each partition λ= (λ1, λ2, . . . ),

b(λ) =
∑
i≥1

(i − 1)λi

and hi,j(λ) is the hook length of λ at (i, j), namely

hi,j(λ) = λi + λ′
j − i − j + 1

and the corresponding product over (i, j) is over all boxes of the Young diagram of λ(f ).

It can be readily verified from Lemma 2·2 that the linear (degree-one) irreducible char-
acters of Gn are precisely the primary characters χ f 
→(n), where |f | = 1. These are the only
characters of Gn that we shall need explicitly. Let α be a generator of the multiplicative group
F

∗
q of Fq, let ω= exp(2π

√−1/(q − 1)) be a complex root of unity, and let θ : F∗
q →C be

the linear character of F∗
q given by θ

(
αi
)=ωi. The following result is essentially given in

[14, pp. 415 and 444].

LEMMA 2·3 ([14]). For all g ∈ Gn, we have

χX−αi 
→(n)(g) = θ
(
det (g)i) .

In particular χX−1 
→(n) is the trivial character.
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In what follows we consider certain characters of Gn related to the permutation character
of Gn on the set of t-tuples of linearly independent elements of Fn

q. For t ≤ n, let Hn,t be the

stabiliser of a fixed t-tuple of linearly independent elements of Fn
q. We define ζ (t,i) to be the

character obtained by inducing the linear character

Hn,t −→C

g 
−→ θ
(
det (g)i) (2·15)

to Gn. Then ζ (t,0) is the permutation character of Gn on the set of t-tuples of linearly
independent elements of F

n
q. These characters are related to each other in the following

way.

LEMMA 2·4. For each g ∈ Gn, we have

ζ (t,i)(g) = θ
(
det (g)i) ζ (t,0)(g).

Proof. Since similar matrices have the same determinant, we find from (2·1) that

ζ (t,i)(g) = 1

|Hn,t|
∑
x∈Gn

xgx−1∈Hn,t

θ
(

det (xgx−1)i
)

= 1

|Hn,t|
∑
x∈Gn

xgx−1∈Hn,t

θ
(
det (g)i)

= θ
(
det (g)i) ζ (t,0)(g).

We shall also need the following information about the decomposition of ζ (t,i) into
irreducible characters of Gn.

LEMMA 2·5. We have

ζ (t,i) =
∑
λ∈�n

mi,λ χ
λ,

where mi,λ 
= 0 if and only if λ
(
αi
)

1 ≥ n − t.

Proof. We may choose Hn,t to be

Hn,t =
{[

I ∗
g

]
: g ∈ Gn−t

}
,

so that Hn,t is a subgroup of the parabolic subgroup P(t,n−t) given in (2·2). Let π1 and π2 be
the projections onto the diagonal blocks of orders t and n − t, respectively, as given in (2·3).
Using Lemma 2·3, the character (2·15) can be written as

(1 ◦ π1)
(
χX−αi 
→(n−t) ◦ π2

)
. (2·16)

where 1 is the trivial character of the trivial subgroup of Gt. By Frobenius reciprocity, 1
induces on Gt to the character ∑

κ∈�t

χκ (1) χκ .
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Since P(t,n−t)/Hn,t ∼= Gt, it is then readily verified that (2·16) induces on P(t,n−t) to the
character ∑

κ∈�t

χκ (1) (χκ ◦ π1)
(
χX−αi 
→(n−t) ◦ π2

)
.

Hence, by transitivity of induction, we have

ζ (t,i) =
∑
κ∈�t

χκ (1)
(
χκ � χX−αi 
→(n−t)

)
.

It is well known [20, chapter IV, section 4] that, for each fixed f ∈�, characters χ f 
→λ form
an algebra with multiplication � that is isomorphic to the algebra of symmetric functions
and the images of the characters χ f 
→λ are the Schur functions. We then find from Pieri’s
rule (see [20, chapter I, (5·16)], for example) that

χX−αi 
→κ � χX−αi 
→(n−t) =
∑
λ

χX−αi 
→λ,

where λ runs through all partitions whose Young diagram is obtained from that of κ by
adding n − t boxes, no two of which in the same column. Using (2·5) the statement of the
lemma is then readily verified.

3. The Hoffman bound

Henceforth we use the following notation. For a field K and finite sets X and Y , we denote
by K(X, Y) the set of |X| × |Y| matrices A with entries in K, where rows and columns are
indexed by X and Y , respectively. For x ∈ X and y ∈ Y , the (x, y)-entry of A is written as A(x,
y). If |Y| = 1, then we omit Y , so K(X) is the set of column vectors a indexed by X and, for
x ∈ X, the x-entry of a is written as a(x).

The adjacency matrix of a graph � = (X, E) is the matrix A ∈R(X, X) given by

A(x, y) =
{

1 for {x, y} ∈ E

0 otherwise.

Then A is a real symmetric matrix, which of course has an orthonormal system of |X|
eigenvectors forming a basis of R(X). All eigenvalues of A are real and referred to as the
eigenvalues of �. Note that, if � is d-regular, then d is an eigenvalue of � and the all-ones
vector is a corresponding eigenvector.

Our starting point arises from the following generalised versions of the Hoffman bound
[15], stated and proved by Ellis, Friedgut, and Pilpel [7, section 2·4] in the following form.

PROPOSITION 3·1. Let� = (X, E) be a graph on n vertices. Suppose that�0, �1, . . . , �r are
regular spanning subgraphs of �, all having {v0, v1, . . . , vn−1} as an orthonormal system of
eigenvectors with v0 being the all-ones vector. Let Pi(k) be the eigenvalue of vk in �i. Let
w0, w1, . . . , wr ∈R and write P(k) =∑r

i=0 wiPi(k).

(i) If Y ⊆ X is an independent set in �, then

|Y|
|X| ≤ |Pmin|

P(0) + |Pmin| ,
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where Pmin = mink 
=0 P(k). In case of equality we have

1Y ∈ 〈{v0} ∪ {vk : P(k) = Pmin}〉.

(ii) If Y , Z ⊆ X are such that there are no edges between Y and Z in �, then√
|Y|
|X|

|Z|
|X| ≤ Pmax

P(0) + Pmax
,

where Pmax = maxk 
=0|P(k)|. In case of equality we have

1Y , 1Z ∈ 〈{v0} ∪ {vk : |P(k)| = Pmax}〉.
In order to study graphs induced by Gn and their eigenvalues, we shall bring the theory

of association schemes into play. We refer to [4] and [13] for background on association
schemes. Every finite group gives rise to an association scheme (see [4, section 2·7] or [13,
section 3·3] for details). We shall recall relevant background about this association scheme
and its symmetrisation for Gn.

For each σ ∈�n, we define Bσ =C(Gn, Gn) by

Bσ (x, y) =
{

1 for x−1y ∈ Cσ
0 otherwise.

The vector space generated by {Bσ : σ ∈�n} over the complex numbers turns out to be
a commutative matrix algebra A, which contains the identity and the all-ones matrix and
is closed under conjugate transposition. The collection of zero-one matrices Bσ there-
fore defines an association scheme. Since A is commutative, it can be simultaneously
diagonalised and therefore there exists a basis {Fλ : λ ∈�n} of A consisting of primitive
idempotent matrices. These matrices are given by [4, theorem II·7·2]

Fλ = χλ(1)

|Gn|
∑
σ∈�n

χ
λ
σ Bσ . (3·1)

Using the orthogonality of characters of the second kind, it is readily verified that

Bσ =
∑
λ∈�n

|Cσ |
χλ(1)

χ
λ
σ Fλ, (3·2)

where χλ is the character of Gn whose values at g ∈ Gn are the complex conjugates of χλ(g).
For each f ∈�, let f ∗ ∈� be its reciprocal polynomial, namely the monic polynomial

whose roots (in an algebraic closure of Fq) are precisely the inverses of the roots of f . For
each λ ∈�n, define λ∗ to be the element of �n given by λ∗(f ) = λ(f ∗) for all f ∈�. We
record the following lemma, in which we write C−1

σ = {g−1 : g ∈ Cσ } for σ ∈�n.

LEMMA 3·2. Let σ , λ ∈�n. Then we have:

(i) Cσ ∗ = C−1
σ ;

(ii) χλ
∗ = χλ;

(iii) χλ
∗
σ = χ

λ

σ ∗ .
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Proof. Statement (i) is a basic fact in linear algebra, (ii) is essentially [17, (7·32)], and (iii)
can be deduced from (i) and (ii).

Let �n be the subset of�n that contains all λ ∈�n satisfying λ= λ∗ and precisely one of
λ or λ∗ for all λ ∈�n satisfying λ 
= λ∗. For λ ∈�n, we define the character

ψλ =
{
χλ for λ= λ∗

χλ + χλ
∗

otherwise,

and, for σ ∈�n, we define Dσ = Cσ ∪ Cσ ∗ . Lemma 3·2 implies that ψλ is constant on Dσ .
We write

ψ
λ
σ =ψλ(g), where g is an arbitrary element of Dσ . (3·3)

For σ , λ ∈�n, write

Aσ =
{

Bσ for σ = σ ∗

Bσ + Bσ ∗ otherwise
and Eλ =

{
Fλ for λ= λ∗

Fλ + Fλ∗ otherwise.
(3·4)

Note that Aσ is symmetric, so all of its eigenvalues are real, and that Eλ has only real entries.
Let Vλ be the column span over the reals of Eλ and, for σ , λ ∈�n, write

P
(
λ, σ
)= |Dσ |

ψλ(1)
ψ
λ
σ . (3·5)

The following lemma, containing essentially standard results, will be crucial in the
following.

LEMMA 3·3. We have the following orthogonal direct sum decomposition

R(Gn) =
⊕
λ∈�n

Vλ.

Moreover, for all σ , λ ∈�n, every element of Vλ is an eigenvector of Aσ and the correspond-
ing eigenvalue is P

(
λ, σ
)
.

Proof. Since Fλ is a primitive idempotent in C(Gn, Gn) for each λ ∈�n, it is readily ver-
ified that Eλ is a primitive idempotent in R(Gn, Gn) for each λ ∈�n. Therefore the Eλ are
pairwise orthogonal, namely we have EλEμ = δλμEλ for all λ,μ ∈�n. Since Eλ is idempo-

tent, rk(Eλ) is just the trace of Eλ. It follows from (3·1) that the trace of Fλ equals χλ(1)2.
Hence we have ∑

λ∈�n

dim Vλ =
∑
λ∈�n

rk(Eλ) =
∑
λ∈�n

χλ(1)2 = |Gn|

by standard properties of the degrees of irreducible characters. This proves the first
statement. We have χλ(1) = χλ

∗
(1) by Lemma 2·2, from which together with (3·2) and

Lemma 3·2 it is readily verified that

Aσ =
∑
λ∈�n

P
(
λ, σ
)

Eλ.

Since the Eλ are pairwise orthogonal, we obtain the second statement.
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In fact the proof of Lemma 3·3 shows that {Aσ : σ ∈�n} is a symmetric association
scheme with primitive idempotents given by {Eλ : λ ∈�n}. However we will not exploit
this further.

Note that Aσ is the adjacency matrix of a |Dσ |-regular graph for each σ ∈�n, except for
σ given by σ (1) = (1n), and that P

(
λ, σ
)= |Dσ | if λ ∈�n is given by X − 1 
→ (n).

The strategy to prove Theorems 1·1 and 1·2 is as follows (Theorems 1·5 and 1·6 will
be proved using slight modifications). We call an element x ∈ G a t-derangement if there
is no t-tuple of linearly independent elements of Fn

q that is fixed by x. Equivalently x ∈ Gn

is a t-derangement if rk(x − I)> n − t. It is readily verified that either all elements of Dσ
are t-derangements or none of them. We wish to identify an appropriate subset � of �n

such that Dσ consists of t-derangements for all σ ∈� and then apply Proposition 3·1 to the
graph � with adjacency matrix

∑
σ∈� Aσ and |Dσ |-regular spanning subgraphs �σ having

adjacency matrix Aσ for σ ∈�. In view of Lemma 3·3, we wish to construct some w ∈R(�)
such that both the minimum value and the negative of the second-largest absolute value over
all λ ∈�n of ∑

σ∈�
w(σ )P

(
λ, σ
)

(3·6)

equals

η= − 1

(qn − 1)(qn − q) · · · (qn − qt−1
)− 1

(3·7)

and such that w is normalised in the sense that (3·6) equals 1 if ψλ is the trivial character
(or equivalently λ ∈�n is given by X − 1 
→ (n)). This will ensure that Proposition 3·1 will
give the bounds of Theorems 1·1 and 1·2.

4. An invertible matrix

This section contains some key preparations for our main proofs. We first identify relevant
conjugacy classes of Gn whose elements are either t-derangements or do not fix a t-space.
We then use these conjugacy classes to identify a matrix related to the character table of Gn.
A key step is to show that this matrix is invertible.

We call an element of Gn regular elliptic if its characteristic polynomial is irreducible.
The following lemma shows that regular elliptic elements in Gn play the role of an n-cycle
in the symmetric group Sn.

LEMMA 4·1 ([19, proposition 4·4]). Each regular elliptic element of Gn fixes no proper
nontrivial subspace of Fn

q.

Note that, for each f ∈� of degree d, its companion matrix satisfies det
(
Cf
)= (−1)df (0).

It is well known [16] that, for each a ∈ F
∗
q, there exists an irreducible polynomial f ∈ Fq[x]

of degree d such that f (0) = a. Hence we can always find a polynomial in� with prescribed
degree and prescribed nonzero determinant of its companion matrix. Also note that, for each
f ∈�, we have f (0)f ∗(0) = 1 and therefore

det
(
Cf
)

det
(
Cf ∗
)= 1.
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We now continue to use α to denote a fixed generator of F∗
q. For all integers �, j satisfying

0 ≤ � < n and 0 ≤ j ≤ q − 2, we fix an irreducible polynomial h�,j ∈� of degree n − � such
that its companion matrix has determinant αj and such that h∗

�,j = h�,−j. We define

��,j = {σ ∈�n : σ (h�,j) = (1)}.
and

�� =
q−2⋃
j=0

��,j and �≤t =
t⋃

�=0

��.

Note that, for each σ ∈�≤t−1, the conjugacy class Cσ consists of elements that do not fix a t-
space of Fn

q. In addition, for each σ ∈�t with the q − 1 exceptions σ ∈�t satisfying σ (X −
1) = (1t), the conjugacy class Cσ consists of elements that do not fix a t-space pointwise.
Next we define

�k,i = {λ ∈�n : λ
(
αi)

1 = n − k}.
and

�k =
q−2⋃
i=0

�k,i and �≤t =
t⋃

k=0

�k.

Note that, for k< n/2, we have |�k,i| = |�k,i| and |�n ∩�k,i| = |�n ∩�k,i|.
We define Q ∈R(�n,�n) by

Q
(
λ, σ
)=ψ

λ
σ for each λ, σ ∈�n

and let Qt be the restriction of Q to R(�n ∩�≤t,�n ∩�≤t). We emphasise that Qt is a
square matrix. A key step in our proof is the following proposition.

PROPOSITION 4·2. For n> 2t, the matrix Qt has full rank and is independent of n.

In the remainder of this section we essentially only prove Proposition 4·2. The reader who
is interested in maintaining the flow of the proof of our main results may wish to skip to the
next section at first reading.

We define R ∈C(�n,�n) by

R
(
λ, σ
)= χ

λ
σ for each λ, σ ∈�n

and let Rt be the restriction of R to C(�≤t,�≤t). We shall prove a counterpart of
Proposition 4·2 for the matrix Rt.

PROPOSITION 4·3. For n> 2t, the matrix Rt has full rank and is independent of n.

Note that Qt is obtained from Rt by first applying elementary row operations, then deleting
some rows, and then (in view of (3·3)) deleting duplicate columns. Hence Proposition 4·2
follows from Proposition 4·3.

We now prove Proposition 4·3. We let S ∈C(�n,�n) be the matrix defined by

S(μ, σ ) = ξ
μ
σ for each μ, σ ∈�n (4·1)
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and let St be the restriction of S to C(�≤t,�≤t). Now recall the equivalence relation ∼ on
�n and the numbers Kλμ from Section 2·4. Define T ∈C(�n,�n) by

T(μ, λ) =
⎧⎨
⎩

Kλμ for λ∼μ

0 otherwise

and let Tt be the restriction of T to C(�≤t,�≤t). We first prove the following.

LEMMA 4·4.

(i) We have S = TR and T has full rank.

(ii) For n> 2t, we have St = TtRt and Tt has full rank and is independent of n.

Proof. From (2·12) we have S = TR and T is block diagonal, where the blocks are induced
by the equivalence classes under ∼. Each diagonal block corresponds to one equivalence
class. If s :�→Z is the shape of such an equivalence class, then the corresponding block
can be written as a Kronecker product

⊗
f ∈�

K(s(f )),

where K(m) ∈C(Parm, Parm) is a Kostka matrix given by K(m)(μ, λ) = Kλμ with the con-
vention K(0) = (1) and Parm is the set of partitions of m. By (2·8) the Kostka matrices are
invertible. Hence T is a block-diagonal matrix whose blocks are Kronecker products of
matrices of full rank and so T itself has full rank. This proves (i).

From (2·8) we find that St = TtRt. Note that Tt is still block diagonal with one diagonal
block for each equivalence class of �n under ∼ whose shape s :�→Z satisfies s

(
αi
)≥

n − t for some i. The corresponding block can be written as

K̃(s(αi)) ⊗
⊗

f ∈�\{αi}
K(s(f )), (4·2)

where K̃(s(αi)) is the matrix K(s(αi)) restricted to partitions λ of s
(
αi
)

satisfying

λ�
(

n − t, 1s(αi)−(n−t)
)

.

From (2·8) we find that, after a suitable ordering of rows and columns, all matrices occuring
in the Kronecker product (4·2) are upper-triangular with ones on the diagonal. Again Tt is a
block-diagonal matrix whose blocks are Kronecker products of matrices of full rank and so
Tt itself has full rank.

From the proof of [7, theorem 20] we know that K̃(s(αi)) is independent of n. Moreover all
other matrices occuring in the Kronecker product (4·2) are also independent of n. Hence Tt

itself is also independent of n. This proves (ii).

Next we shall show that the matrix St has full rank. Recall that, for a composition λ,
we denote by Pλ the parabolic subgroup of G|λ| given in (2·2). We start with the following
lemma.
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LEMMA 4·5. Let m and n be positive integers satisfying m< n and let φ and ψ be class
functions of Gm and Gn, respectively. Let π1 : P(m,n) → Gm and π2 : P(m,n) → Gn be the nat-
ural projections onto the corresponding diagonal blocks. Let g ∈ P(m,n) be such that π2(g) is
regular elliptic. Then we have

(φ �ψ)(g) = φ(π1(g))ψ(π2(g)).

Proof. From (2·4) we have

(φ �ψ)(g) = 1

|P(m,n)|
∑

x∈Gm+n

xgx−1∈P(m,n)

φ
(
π1

(
xgx−1
))
ψ
(
π2

(
xgx−1
))

. (4·3)

Since π2(g) is regular elliptic and m< n, we find from Lemma 4·1 that g stabilises a unique
m-dimensional subspace U of Fm+n

q . Hence the number of x ∈ Gm+n such that xgx−1 ∈ P(m,n)

is the number of ordered bases {u1, . . . , um, w1, . . . , wn} of F
m+n
q such that {u1, . . . , um}

spans U. This number equals |P(m,n)|. Since xgx−1 ∈ P(m,n) for each x ∈ P(m,n), we conclude
that {

x ∈ Gm+n : xgx−1 ∈ P(m,n)

}
= P(m,n).

Since πi(xgx−1) is conjugate to πi(g) for each i ∈ {1, 2} and each x ∈ P(m,n), the statement of
the lemma follows from (4·3).

We use Lemma 4·5 to prove the following lemma on the structure of the matrix S.

LEMMA 4·6. Let k, � be integers satisfying 0 ≤ k, � < n/2 and let μ ∈�k,i and σ ∈��,j.
If k> �, then we have ξ

μ
σ = 0. For k ≤ �, let ν be the partition obtained from μ(X − αi) by

replacing the part n − k by �− k and define ν, τ ∈�� by

ν(f ) =
{
ν for f = X − αi

μ(f ) otherwise
and τ (f ) =

{
∅ for f = h�,j
σ (f ) otherwise.

If k ≤ �, then we have ξ
μ
σ = ξ

ν
τ ω

ij.

Proof. Let g ∈ Cσ . Define κ ∈�k by

κ(f ) =
⎧⎨
⎩
(
μ
(
αi
)

2 ,μ
(
αi
)

3 , . . .
)

for f = X − αi

μ(f ) otherwise,

so that by (2·6) and (2·11)

ξμ = ξκ � ξX−αi 
→(n−k). (4·4)

For ξμ(g) to be nonzero, g must be conjugate to an element of P(k,n−k). Each such element
fixes a k-dimensional subspace of Fn

q. If k> �, then by Lemma 4·1, g fixes no k-dimensional
subspace of Fn

q and hence ξμ(g) = 0.
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Henceforth assume that k ≤ �. We shall frequently use ξ f 
→(m) = χ f 
→(m), which follows
from (2·7) and (2·8). Since k ≤ � we have

ξν = ξκ � ξX−αi 
→(�−k). (4·5)

Write

E =
⋃

ρ∈�n−k
ρ(h�,j)=(1)

Cρ .

We claim that

ξX−αi 
→(n−k)(e) =
(
ξX−αi 
→(�−k) � ξX−αi 
→(n−�)) (e) for each e ∈ E. (4·6)

Indeed, each e ∈ E is conjugate to an element of P(�−k,n−�) with blocks e1 ∈ G�−k and e2 ∈
Gn−� on the main diagonal, where e2 is regular elliptic. Hence we find from Lemma 2·3 that,
for each e ∈ E, the left-hand side of (4·6) equals

θ
(
det (e)i)= θ

(
det (e1)i) · θ(det (e2)i)

= ξX−αi 
→(�−k)(e1) · ξX−αi 
→(n−�)(e2),

which by Lemma 4·5 equals the right hand side of (4·6). From (4·4) we have

ξμ(g) = 1

|P(k,n−k)|
∑
x∈Gn

xgx−1∈P(k,n−k)

ξκ
(
π1

(
xgx−1
))
ξX−αi 
→(n−k)

(
π2

(
xgx−1
))

,

where π1 : P(k,n−k) → Gk and π2 : P(k,n−k) → Gn−k are the natural projections onto the diag-
onal blocks. Since k, � < n/2, Lemma 4·1 implies that each π2(xgx−1) occuring in the
summation is forced to lie inside E. Hence by subsequent applications of (4·4), (4·6), and
(4·5) we then find that

ξμ(g) =
(
ξκ � ξX−αi 
→(n−k)

)
(g)

=
(
ξκ � ξX−αi 
→(�−k) � ξX−αi 
→(n−�)) (g)

=
(
ξν � ξX−αi 
→(n−�)) (g).

Without loss of generality, we may assume that g ∈ P(�,n−�) and that the diagonal blocks of
g are g1 and g2, where g1 ∈ Cτ and g2 is the companion matrix of h�,j. Since g2 is regular
elliptic, we may apply Lemma 4·5 once more to obtain

ξμ(g) = ξν(g1) ξX−αi 
→(n−�)(g2).

Since g1 ∈ Cτ , we have ξν(g1) = ξ
ν
τ , and since g2 is the companion matrix of h�,j, we find

from Lemma 2·3 that

ξX−αi 
→(n−�)(g2) = θ
(
det (g2)i)=ωij.

Hence we obtain ξμ(g) = ξ
ν
τ ω

ij, as required.
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We can now prove the required property of the matrix St.

LEMMA 4·7. For n> 2t, the matrix St has full rank and is independent of n.

Proof. To indicate dependence on n, write S(n) for the matrix S given in (4·1) and S(n)
t for

the corresponding restricted matrix St. Let n> 2t. From Lemma 4·6 we find that all entries
in S(n)

t are independent of n, which proves the second statement of the lemma.
To show that S(n)

t is invertible, we view S(n)
t as a block matrix, where the blocks are

indexed by �k and �� for k, � ∈ {0, 1, . . . , t}. Let Bk,� be the block corresponding to �k

and ��. Lemma 4·6 implies that Bk,� is zero for k> � and, for 0 ≤ k ≤ t, the block Bkk is the
Kronecker product of S(k) and the Vandermonde matrix (ωij)0≤i,j≤q−2. Since the character
table of irreducible characters of every finite group is invertible, Lemma 4·4 implies that S(k)

is invertible and so Bkk is invertible. Hence S(n)
t is block upper-triangular and all diagonal

blocks are invertible. Therefore S(n)
t itself is invertible.

Finally, by combining Lemmas 4·4 and 4·7, we obtain a proof of Proposition 4·3.

5. Proof of Theorems 1·1 and 1·2
Now recall the definition (3·5) of the eigenvalues P

(
λ, σ
)

and the definition (3·7) of the
prescribed extremal eigenvalue η. As a first step in constructing the required weight function
w occuring in (3·6), we prove the following result.

PROPOSITION 5·1. Let n and t be positive integers satisfying n> 2t. Then there exists w ∈
R(�n ∩�≤t) such that w(σ ) = 0 for σ (1) = (1t) and

∑
σ∈�n∩�≤t

w(σ )P
(
λ, σ
)=
⎧⎪⎨
⎪⎩

1 for λ ∈�n ∩�0,0

η for λ ∈�n ∩�k,0 and 1 ≤ k ≤ t

0 for λ ∈�n ∩�k,i and 0 ≤ k ≤ t and 1 ≤ i ≤ q − 2

(5·1)

and

|w(σ )| ≤ γt

|Dσ | for all σ ∈�n ∩�≤t (5·2)

for some constant γt depending only on t.

Proof. From Proposition 4·2 we know that Qt has full rank. In view of (3·5) there exists a
unique w ∈R(�n ∩�≤t) satisfying (5·1).

We now show that w(σ ) = 0 for the �q/2� + 1 elements σ ∈�n ∩�≤t satisfying σ (1) =
(1t). Without loss of generality we may assume that �n contains X − αi and ht,j for all i, j =
0, 1, . . . , �q/2�. Accordingly we define σ j ∈�t,j by σ j(1) = (1t) for j = 0, 1, . . . , �q/2�.

Recall the definition of the character ζ (t,i) from Section 2·4 and write ζ (t,i)
σ for this character

evaluated on the conjugacy class Cσ . We evaluate the sum

Si =
∑

σ∈�n∩�≤t

w(σ )|Dσ |
(
ζ (t,i)
σ + ζ (t,−i)

σ

)
(5·3)

in two ways. Since ζ (t,0) is the permutation character on the set of t-tuples of linearly inde-
pendent elements of Fn

q, we find by Lemma 2·4 that the summand in (5·3) is nonzero only
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when the elements of Cσ fix a t-tuple of linearly independent elements of Fn
q, hence only

when σ = σ j for some j. By the definition of σ j, each element in Cσ j
has determinant αj.

Hence by applying Lemma 2·4 twice we obtain

ζ (t,i)
σ j

=ωijζ (t,0)
σ j

=ωijζ (t,0)
σ 0

and therefore

Si = 2ζ (t,0)
σ 0

�q/2�∑
j=0

w
(
σ j

)
|Dσ j

| cos

(
2π ij

q − 1

)
. (5·4)

On the other hand, since ζ (t,i) + ζ (t,−i) is a real-valued class function, we find from
Lemma 3·2 that it is a linear combination of ψλ for λ ∈�n. Hence by Lemma 2·5 there
exists numbers ni,λ such that

ζ (t,i)
σ + ζ (t,−i)

σ =
∑
λ∈�n

λ(αi)1≥n−t

ni,λ ψ
λ
σ

and hence

Si =
∑
λ∈�n

λ(αi)1≥n−t

ni,λ

∑
σ∈�n∩�≤t

w(σ )|Dσ |ψλσ . (5·5)

Since (5·1) holds, we conclude that Si = 0 for each i satisfying 1 ≤ i ≤ �q/2�. Since ζ (t,0)

is a permutation character, it contains the trivial character with multiplicity 1 (this can be
seen by Frobenius reciprocity, for example). Hence we have n0,λ = 2 for λ ∈�n satisfying
λ(1) = (n). We therefore find from (5·5) and (5·1) that

S0 = 2 + η
∑
λ∈�n

n−t≤λ(1)1<n

n0,λ ψ
λ(1) = 2 + 2η

(
ζ (t,0)(1) − 1

)
.

Since ζ (t,0)(1) equals the number of t-tuples of linearly independent elements of Fn
q, we have

ζ (t,0)(1) = (qn − 1)(qn − q) · · ·
(

qn − qt−1
)

. (5·6)

Therefore S0 = 0 and so Si = 0 for each i satisfying 0 ≤ i ≤ �q/2�. Since each element of
Cσ 0

fixes a t-tuple of linearly independent elements of Fn
q, we have ζ (t,0)

σ 0

= 0. Thus (5·4)

implies

�q/2�∑
j=0

w
(
σ j

)
|Dσ j

| cos

(
2π ij

q − 1

)
= 0 for each i satisfying 0 ≤ i ≤ �q/2�

and it is readily verified, using that (ωij)0≤i,j<q−1 is a Vandermonde matrix, that this in turn

implies that w
(
σ j

)
= 0 for all j satisfying 0 ≤ j ≤ �q/2�, as required.
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Now, for each λ ∈�n satisfying n − t ≤ λ(1)1 < n, we find from Lemma 2·5 that

|η|ψλ(1) ≤ |η|
(
ζ (t,0)(1) − 1

)
= 1,

using (5·6). Since ψλ(1) = χλ(1) = 1 for λ ∈�0,0, we conclude from (5·1) that

∣∣∣∣∣
∑

σ∈�n∩�≤t

w(σ )|Dσ |ψλσ
∣∣∣∣∣≤ 1 for each λ ∈�n ∩�≤t.

By Lemma 4·2 all entries of Qt (which are precisely the values of ψλσ occuring in the sum)
are independent of n and so are uniformly bounded by some value only depending on t. The
same also holds for the inverse of Qt, which establishes (5·2).

In what follows we treat the remaining eigenvalues.

LEMMA 5·2. Let n and t be positive integers satisfying n> 2t and let w ∈R(�n ∩�≤t)
be such that

|w(σ )| ≤ γt

|Dσ | for all σ ∈�n ∩�≤t

for some constant γt depending only on t. Then∣∣∣∣∣
∑

σ∈�n∩�≤t

w(σ )P
(
λ, σ
) ∣∣∣∣∣< |η| for all λ ∈�n \�≤t,

provided that n is sufficiently large compared to t.

In the proof of the lemma we use the usual scalar product on class functions of Gn, which
is given by

〈χ ,ψ〉 = 1

|Gn|
∑
g∈Gn

χ(g)ψ(g), (5·7)

where χ ,ψ are class functions of Gn.

Proof of Lemma 5·2. By the definition (3·5) of P
(
λ, σ
)

and (3·3) we have

P
(
λ, σ
)= |Gn|

ψλ(1)

〈
ψλ, 1Dσ

〉
. (5·8)

Since χλ is irreducible, we have 〈ψλ,ψλ〉 = 1 or 2 and therefore we obtain, by an application
of the Cauchy–Schwarz inequality,

∣∣〈ψλ, 1Dσ

〉∣∣≤√2
〈
1Dσ , 1Dσ

〉=
√

2|Dσ |
|Gn| .
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From (5·8) and our hypothesis on w we then find that∣∣∣∣∣
∑

σ∈�n∩�≤t

w(σ )P
(
λ, σ
) ∣∣∣∣∣≤

∑
σ∈�n∩�≤t

|w(σ )| |P(λ, σ
)|

≤
∑

σ∈�n∩�≤t

γt

|Dσ |
|Gn|
ψλ(1)

√
2|Dσ |
|Gn|

≤ γt |�≤t|
ψλ(1)

max
σ∈�n∩�≤t

√
2|Gn|
|Dσ |

≤ γt |�≤t|
χλ(1)

max
σ∈�≤t

√
2|Gn|
|Cσ | .

Note that |�≤t| is independent of n. Using Lemmas 7·1 and 7·2, to be stated and proved in
Section 7, we find that there is a constant γ ′

t , depending only on t, such that∣∣∣∣∣
∑

σ∈�n∩�≤t

w(σ )P
(
λ, σ
) ∣∣∣∣∣≤ γ ′

t

qn/2

1

qnt

for all λ ∈�n \�≤t and all sufficiently large n. The right-hand side is certainly strictly
smaller than 1/qnt for all sufficiently large n and the proof is completed by noting that
|η|> 1/qnt.

Recall that Vλ is the column span of Eλ. Define

Ut =
∑
λ∈�n

λ(1)1≥n−t

Vλ.

Now we obtain the following.

THEOREM 5·3. Let t be a positive integer. Then, for all sufficiently large n, the following
holds:

(i) every t-intersecting set Y in Gn satisfies

|Y| ≤
n−1∏
i=t

(
qn − qi)

and, in case of equality, we have 1Y ∈ Ut;

(ii) every pair of t-cross-intersecting sets Y, Z in Gn satisfies

√|Y| · |Z| ≤
n−1∏
i=t

(
qn − qi)

and, in case of equality, we have 1Y , 1Z ∈ Ut.
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Proof. As explained at the end of Section 3, we apply Proposition 3·1 to the graph with
adjacency matrix ∑

σ∈�n∩�≤t
σ (1)
=(1t)

Aσ

and the |Dσ |-regular spanning subgraphs with adjacency matrix Aσ for those σ occuring in
the above set union. Since none of the elements in Dσ for such σ fix a t-space pointwise,
every t-intersecting set in Gn is an independent set in this graph. Recall from Lemma 3·3 that
every element of Vλ is an eigenvector of Aσ with eigenvalue P

(
λ, σ
)
. Let w ∈R(�n ∩�≤t)

be the vector given by Proposition 5·1 and write

P(λ) =
∑

σ∈�n∩�≤t
σ (1)
=(1t)

w(σ )P
(
λ, σ
)

.

Proposition 5·1 and Lemma 5·2 imply that, for all sufficiently large n, we have

P(λ) =
{

1 for λ(1)1 = n

η for n − t ≤ λ(1)1 < n

and |P(λ)|< |η| for λ(1)1 < n − t. Hence, writing λ0 for X − 1 
→ (n), we have P(λ0) = 1
and

η= min
λ
=λ0

P(λ) and |η| = max
λ
=λ0

|P(λ)|.

Then the required result follows from Proposition 3·1 and the decomposition of R(Gn) given
in Lemma 3·3.

Our proof of Theorems 1·1 and 1·2 is completed by the following result.

THEOREM 5·4. Ut is spanned by the characteristic vectors of t-cosets.

Proof. Let At be the set of t-tuples of linearly independent elements of Fn
q. Define the

incidence matrix Mt ∈C(Gn, At ×At) of elements of Gn versus t-cosets by

Mt(x, (u, v)) =
{

1 for xu = v

0 otherwise,

so that the columns of Mt are precisely the characteristic vectors of the t-cosets. Let ζ t =
ζ (t,0) be the permutation character of the set of t-tuples of linearly independent elements of
F

n
q and define Ct ∈C(Gn, Gn) by

Ct(x, y) = ζ t
(

x−1y
)

.

Denoting by 1xu=v the indicator of the event that x ∈ Gn maps u to v, we have(
MtM

T
t

)
(x, y) =

∑
u,v

Mt(x, (u, v))Mt(y, (u, v))

=
∑
u,v

1xu=v1yu=v
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=
∑

u

1xu=yu

=
∑

u

1x−1yu=u

= ζ t
(

x−1y
)

= Ct(x, y).

Hence we have Ct = MtMT
t and so the column span of Ct equals the column span of Mt or

equivalently the span of the characteristic vectors of the t-cosets.
From Lemma 2·5 we have

ζ t =
∑
λ∈�n

λ(1)1≥n−t

mλ χ
λ

for some integers mλ satisfying mλ 
= 0 for each λ occuring in the summation. Since ζ t is
real-valued, we find by Lemma 3·2 that mλ∗ = mλ and therefore have

ζ t =
∑
λ∈�n

λ(1)1≥n−t

mλ ψ
λ. (5·9)

Lemma 2·2 implies that χλ(1) = χλ
∗
(1). We therefore obtain from (3·4) and (3·1) that

Eλ(x, y) = χλ(1)

|Gn| ψ
λ
(

x−1y
)

and thus find from (5·9) that

Ct = |Gn|
∑
λ∈�n

λ(1)1≥n−t

mλ
χλ(1)

Eλ. (5·10)

Hence the column span of Ct is contained in Ut. Conversely, let v be a column of Eκ for
some κ ∈�n satisfying κ(1)1 ≥ n − t. Since Eλ is idempotent, we have Eλv = v for κ = λ

and Lemma 3·3 implies Eλv = 0 for κ 
= λ. Hence from (5·10) we find that

Ctv = |Gn| mκ
χκ (1)

v,

and, since mκ 
= 0, we conclude that v is in the column span of Ct. This completes the proof.

6. Proof of Theorems 1·5 and 1·6
Our proofs of Theorems 1·5 and 1·6 follow along similar lines as those in the previous

section and therefore our proofs will be less detailed.
Since the parabolic subgroup P(t,n−t) is the stabiliser of a t-space of F

n
q, the character

ξX−1 
→(n−t,t) is the permutation character of the set of t-spaces of Fn
q. From (2·7) we obtain

its decomposition

ξX−1 
→(n−t,t) =
t∑

s=0

χX−1 
→(n−s,s). (6·1)
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Let
[n

k

]
q denote the q-binomial coefficient, which counts the number of k-spaces of Fn

q. Then
we have

ξX−1 
→(n−t,t)(1) =
[

n

t

]
q
, (6·2)

and so (6·1) implies that

χX−1 
→(n−s,s)(1) =
[

n

s

]
q
−
[

n

s − 1

]
q
. (6·3)

Also note that ψX−1 
→λ = χX−1 
→λ for all partitions λ. Throughout this section, we define

ε= − 1[n
t

]
q − 1

,

which will be our prescribed extremal eigenvalue.
We begin with the following counterpart of Proposition 5·1.

PROPOSITION 6·1. Let n and t be positive integers satisfying n> 2t. Then there exists w ∈
R(�n ∩�≤t−1) such that

∑
σ∈�n∩�≤t−1

w(σ )P
(
λ, σ
)=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for λ(1) = (n),

ε for λ(1) = (n − s, s) with 1 ≤ s ≤ t,

0 for λ ∈�n ∩�≤t−1, where

λ(1) 
= (n − s, s) with 0 ≤ s ≤ t − 1

(6·4)

and

|w(σ )| ≤ γt

|Dσ | for all σ ∈�n ∩�≤t−1 (6·5)

for some constant γt depending only on t.

Proof. From Lemma 4·2 we know that Qt−1 has full rank. In view of (3·5) there exists a
unique w ∈R(�n ∩�≤t−1) satisfying (6·4) except for λ of the form λ(1) = (n − t, t).

Next we show that (6·4) also holds when λ(1) = (n − t, t). By Lemma 4·6 we have
ξ

X−1 
→(n−t,t)
σ = 0 for each σ ∈�≤t−1. Hence we have

0 =
∑

σ∈�n∩�≤t−1

w(σ )|Dσ |ξX−1 
→(n−t,t)
σ

=
t∑

s=0

∑
σ∈�n∩�≤t−1

w(σ )|Dσ |χX−1 
→(n−s,s)
σ , (6·6)

using (6·1). Since (6·4) holds with the only exception λ(1) = (n − t, t), the inner sum equals
1 for s = 0 and ε χX−1 
→(n−s,s)(1) for each s satisfying 1 ≤ s ≤ t − 1. Assuming that this is
true also for s = t and using (6·3), the right-hand side of (6·6) is indeed

1 + ε

t∑
s=1

([
n

s

]
q
−
[

n

s − 1

]
q

)
= 1 + ε

([
n

t

]
q
− 1

)
= 0.

Hence (6·4) also holds when λ(1) = (n − t, t).
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It remains to prove (6·5). For each s satisfying 1 ≤ s ≤ t, we find from (6·1) that

|ε| χX−1 
→(n−s,s)(1) ≤ |ε|
(
ξX−1 
→(n−t,t)(1) − 1

)
= 1,

using (6·2). Since χX−1 
→(n)(1) = 1, we conclude from (6·4) that∣∣∣∣∣
∑

σ∈�n∩�≤t−1

w(σ )|Dσ |ψλσ
∣∣∣∣∣≤ 1 for each λ ∈�n ∩�≤t−1.

By Lemma 4·2 all entries of Qt−1 are independent of n and so are uniformly bounded by
some value only depending on t. The same also holds for the inverse of Qt, which establishes
(6·5).

The bound (6·5) and Lemma 5·2 ensure that the right-hand side of (6·4) is small in mod-
ulus for each λ ∈�n \�t. It therefore remains to deal with the case that λ ∈�n ∩�t except
for λ ∈�n given by λ(1) = (n − t, t), which is the subject of the following lemma.

LEMMA 6·2. Let w ∈R(�n ∩�≤t−1) be given in Proposition 6·1 (so that n> 2t). Then,
for all λ ∈�n ∩�t with λ(1) 
= (n − t, t), we have∣∣∣∣ ∑

σ∈�n∩�≤t−1

w(σ )P
(
λ, σ
) ∣∣∣∣< |ε|,

provided that n is sufficiently large compared to t.

Proof. By slight abuse of notation, we view w as an element of R(Gn) by setting w(x) = 0 if
x 
∈�n ∩�≤t−1 and w(x) = w(σ ) if x ∈�n ∩�≤t−1 and x ∈ Dσ . Recalling the scalar product
on class functions of Gn from (5·7), the statement of the lemma is equivalent to

|Gn|
ψλ(1)

∣∣〈w,ψλ
〉∣∣< |ε| (6·7)

for all λ ∈�n ∩�t with λ(1) 
= (n − t, t), provided that n is sufficiently large compared to t.
Pick λ ∈�n ∩�t such that λ(1) 
= (n − t, t). Then λ

(
αi
)

1 = n − t for some i. First assume
that |λ(1)| 
= n. Denoting by Re x the real part of a complex number x, we find from
Lemma 3·2 and (2·13) that

1

2

∣∣〈w,ψλ
〉∣∣≤ |Re 〈w, χλ〉| =

∣∣∣∣∑
μ∼λ

Hμλ Re
〈
w, ξμ
〉∣∣∣∣.

Lemma 4·6 implies that ξ
μ
σ = 0 for each μ 
∈�≤t−1 and each σ ∈�≤t−1. For μ ∈�n, we

have

Re
〈
w, ξμ
〉=∑

κ∼μ
Kκμ Re

〈
w, χκ
〉
.

By (2·8), the summation can be taken over all κ such that κ
(
αi
)
�μ
(
αi
)
. Hence if μ ∈

�≤t−1, then κ ∈�≤t−1. By the assumed properties of w given in Proposition 6·1, we have
〈w,ψκ〉 = 0 for each κ ∈�n ∩�≤t−1 satisfying |κ(1)| 
= n. Since |λ(1)| 
= n we conclude
that 〈w,ψλ〉 = 0.
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Now assume that |λ(1)| = n and write λ(1) = λ. From (2·9) and (2·10) we have

〈
w,ψX−1 
→λ

〉= ∑
μ�λ
μ1>n−t

Hμλ
〈
w, ξX−1 
→μ

〉
,

since by Lemma 4·6 in the case μ1 = n − t we have ξX−1 
→μ
σ = 0 for each σ ∈�≤t−1. From

(2·7) and (2·8) we then find that〈
w,ψX−1 
→λ

〉= ∑
μ�λ
μ1>n−t

Hμλ
∑
κ�μ

Kκμ
〈
w,ψX−1 
→κ

〉

= 1

|Gn|
∑
μ�λ
μ1>n−t

Hμλ +
∑
μ�λ
μ1>n−t

Hμλ
∑

(n)�κ�μ
Kκμ
〈
w,ψX−1 
→κ

〉
, (6·8)

using that |Gn| 〈w,ψX−1 
→(n)〉 = 1 by the assumed properties of w given in Proposition 6·1
and K(n)μ = 1 for each partition μ of n. We first show that the first sum is zero. We have

∑
μ�λ
μ1>n−t

Hμλ =
∑
μ�λ

K(n)μHμλ −
∑
μ�λ

K(n−t,t)μHμλ, (6·9)

using that λ1 = n − t and that, for each partition μ of n, we have

K(n−t,t)μ =
{

1 for μ1 = n − t

0 for μ1 > n − t.

It is readily verified that ∑
μ�λ

KκμHμλ = δκλ. (6·10)

Since λ is neither (n) nor (n − t, t), we conclude that (6·9) equals zero. Hence (6·8) becomes

〈
w,ψX−1 
→λ

〉= ∑
μ�λ
μ1>n−t

Hμλ
∑

(n)�κ�μ
Kκμ
〈
w,ψX−1 
→κ

〉
. (6·11)

By the assumed properties of w given in Proposition 6·1, the inner summand is nonzero
only when κ = (n − s, s) for some s satisfying 1 ≤ s ≤ t − 1. In particular, for κ of this form,
Proposition 6·1 and (6·3) give

|Gn|
∣∣〈w,ψX−1 
→κ

〉∣∣=
[n

s

]
q − [ n

s−1

]
q[n

t

]
q − 1

≤
[ n

t−1

]
q[n

t

]
q

= qt − 1

qn−t+1 − 1
≤ q2t−1

qn
.

By Lemma 4·4 the Kostka numbers Kκμ occuring in (6·11) are independent of n and it is
readily verified from (6·10) that the numbers Hμλ occuring in (6·11) are also independent of
n. Moreover the number of summands in (6·11) is also independent of n. From Lemma 7·2,
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to be stated and proved in Section 7, we have ψX−1 
→λ(1) ≥ δt−1 qnt for some constant δt−1

only depending on t. Hence there is a constant ct, depending only on t, such that

|Gn|
ψX−1 
→λ(1)

∣∣〈w,ψX−1 
→λ
〉∣∣≤ ct

qn(t+1)
.

Since |ε|> 1/qnt, this shows that (6·7) holds provided that n is sufficiently large compared
to t.

Recall that Vλ is the column span of Eλ. Define

Wt =
∑
λ∈�n

λ(1)�(n−t,t)

Vλ.

Now we obtain the following.

THEOREM 6·3. Let t be a positive integer. Then, for all sufficiently large n, the following
holds:

(i) every t-space-intersecting set Y in Gn satisfies

|Y| ≤
[

t−1∏
i=0

(
qt − qi) ][ n−1∏

i=t

(
qn − qi) ]

and, in case of equality, we have 1Y ∈ Wt;
(ii) every pair of t-space-cross-intersecting sets Y, Z in Gn satisfies

√|Y| · |Z| ≤
[

t−1∏
i=0

(
qt − qi) ][ n−1∏

i=t

(
qn − qi) ]

and, in case of equality, we have 1Y , 1Z ∈ Wt.

Proof. We apply Proposition 3·1 to the graph with adjacency matrix∑
σ∈�n∩�≤t−1

Aσ

and the |Dσ |-regular spanning subgraphs with adjacency matrix Aσ for those σ occuring in
the above set union. Every t-space-intersecting set in Gn is an independent set in this graph.
Let w ∈R(�n ∩�≤t−1) be given by Proposition 6·1 and write

P(λ) =
∑

σ∈�n∩�≤t−1

w(σ )P
(
λ, σ
)

.

Proposition 6·1 and Lemmas 5·2 and 6·2 imply that, for all sufficiently large n, we have

P(λ) =
{

1 for λ(1) = (n)

ε for λ(1) = (n − s, s) with 1 ≤ s ≤ t
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and |P(λ)|< |ε| for λ(1) 
= (n − s, s) with some s satisfying 0 ≤ s ≤ t. Hence, writing λ0 for
X − 1 
→ (n), we have P(λ0) = 1 and

ε= min
λ
=λ0

P(λ) and |ε| = max
λ 
=λ0

|P(λ)|.

Then the required result follows from Proposition 3·1 and the decomposition of R(Gn) given
in Lemma 3·3.

Our proof of Theorems 1·5 and 1·6 is completed by the following result.

THEOREM 6·4. Wt is spanned by the characteristic vectors of cosets of stabilisers of
t-spaces.

Proof. The proof is almost identical to that of Theorem 5·4 with At replaced by the set
of t-spaces and ζ t replaced by the permutation character ξX−1 
→(n−t,t) of t-spaces and the
decomposition of ζ t replaced by the decomposition given in (6·1).

7. Estimates on conjugacy class sizes and character degrees

In this section we provide bounds on the size of certain conjugacy classes and degrees of
certain irreducible characters of Gn, which are used in the proof of Lemma 5·2.

LEMMA 7·1. Let n and t be positive integers satisfying n> 2t and let σ ∈�≤t. Then we
have

|Gn|
|Cσ | ≤ qt5qn.

Proof. From Lemma 2·1 we find that (with the same notation as in Lemma 2·1)

|Gn|
|Cσ | ≤

∏
f ∈�

|σ (f )|∏
i=1

q|f | si(σ (f )′)mi(σ (f )). (7·1)

Since σ ∈�≤t and t< n/2, there is exactly one polynomial h ∈� of degree at least n − t
in the support of σ . This polynomial must satisfy σ (h) = (1) and the corresponding factor
in (7·1) is at most qn. There are at most t other polynomials in the support of σ . Each such
polynomial f has degree at most t and satisfies |σ (f )| ≤ t and hence the corresponding factor
in (7·1) has a crude upper bound of qt4 . As there are at most t such factors, the proof is
completed.

LEMMA 7·2. Let t be a positive integer. Then there is a constant δt such that, for all
sufficiently large n and for all λ ∈�n \�≤t, we have

χλ(1) ≥ δt qn(t+1).

Proof. Let λ ∈�n \�≤t. Using elementary calculus we find that

1 − x ≥ 4−x for 0 ≤ x ≤ 1/2
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and therefore∏n
i=1 (qi − 1)

q
1
2 n(n+1)

=
n∏

i=1

(
1 − 1

qi

)
≥

n∏
i=1

(
1 − 1

2i

)
≥

n∏
i=1

4−1/2i ≥
∞∏

i=1

4−1/2i = 1

4
.

Substitute into (2·14) of Lemma 2·2 to give

1

χλ(1)
≤ 4qN(λ)−M(λ)− 1

2 n(n+1), (7·2)

where

N(λ) =
∑
f ∈�

|f |
∑

(i,j)∈λ(f )

hi,j(λ(f )),

M(λ) =
∑
f ∈�

|f | b(λ(f ))

and b and hi,j are as in Lemma 2·2. Note that for each partition λ, we have

∑
(i,j)∈λ

hi,j(λ) ≤
|λ|∑

k=1

k = 1

2
|λ|(|λ| + 1). (7·3)

First assume that there exists a polynomial h ∈� such that |h| = 1 and λ(h)′1 ≥ n − t. In this
case we have

M(λ) ≥ b(λ(h)) ≥
n−t−1∑

k=1

k = 1

2
(n − t)(n − t − 1)

and by (7·3)

N(λ) ≤ 1

2

∑
f ∈�

|f ||λ(f )|(|λ(f )| + 1)

≤ n + 1

2

∑
f ∈�

|f ||λ(f )|

= n(n + 1)

2
.

Therefore (7·2) implies that

1

χλ(1)
≤ 4q− 1

2 (n−t)(n−t−1),

so that we have χλ(1) ≥ qn(t+1) for all sufficiently large n by very crude estimates.
Hence we can assume that λ(f )′1 ≤ n − t − 1 and λ(f )1 ≤ n − t − 1 for all f ∈� satisfying

|f | = 1. Note that the second assumption is implied by the hypothesis λ 
∈�≤t. In what
follows we use the trivial bound M(λ) ≥ 0. We distinguish two cases.

In the first case we assume that |λ(f )| ≤ n − t − 1 for all f ∈� satisfying |f | = 1. Let �
be the maximum of |λ(f )| over all f ∈� satisfying |f | = 1, hence �≤ n − t − 1. By (7·3) we
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have

N(λ) ≤ 1

2

∑
f ∈�

|f ||λ(f )|(|λ(f )| + 1)

= n

2
+ 1

2

∑
f ∈�

|f ||λ(f )|2.

If �≤ n/2, then we have |λ(f )| ≤ n/2 for all f ∈� and so N(λ) ≤ n2/4 + n/2. From (7·2)
we then find that χλ(1) ≥ qn(t+1) for all sufficiently large n, again by very crude estimates.
If � > n/2, then

N(λ) ≤ 1

2

(
n + �2 + (n − �)2

)
≤ 1

2

(
n + (n − t − 1)2 + (t + 1)2

)
= n2 + n

2
− n(t + 1) + (t + 1)2,

where we have used that x2 + (n − x)2 is increasing for x ≥ n/2. Hence in this case we obtain
1/χλ(1) ≤ 4q−n(t+1)+(t+1)2

by (7·2).
In the remaining case we assume that there exists h ∈� such that |h| = 1 and |λ(h)| ≥

n − t. Recall that we also assume that λ(h)1 ≤ n − t − 1 and λ(h)′1 ≤ n − t − 1. Since N(λ)
depends only on the hook lengths of λ(f ) for f ∈�, we may replace λ(h) by its conjugate
λ(h)′. Assuming that n is sufficiently large, namely n ≥ (t + 2)2, we have λ(h)1 ≥ t + 2 or
λ(h)′1 ≥ t + 2 and we assume without loss of generality that λ(h)1 ≥ t + 2. Write λ(h)1 =
n − r, so that our assumptions imply t + 1 ≤ r ≤ n − t − 2. Then, writing s = |λ(h)|, there
exist nonnegative integers cj satisfying

n−r∑
j=1

h1j(λ(h)) =
n−r∑
j=1

(j + cj), where
n−r∑
j=1

cj = s − (n − r).

Hence

n−r∑
j=1

h1j(λ(h)) =
(

n − r + 1

2

)
+ (s − n + r).

Application of (7·3) with λ= (λ(h)2, λ(h)3, . . . ) gives

∑
(i,j)∈λ(h)

hi,j(λ(h)) ≤
(

s − n + r + 1

2

)
+
(

n − r + 1

2

)
+ (s − n + r)

= s2

2
+ 3s

2
+ n2 − sn − n + r(r − (2n − s − 1))

≤ s2

2
+ 3s

2
+ n2 − sn − n + (t + 1)((t + 1) − (2n − s − 1)),
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since the term depending on r is maximised for r = t + 1 over the interval [t + 1, n − t − 2].
This last expression equals

s

2
+ 1

2
s(s − 2(n − t − 2)) + n2 − n + (t + 1)((t + 1) − (2n − 1)).

The second summand is increasing for s ≥ n − t and so is at most 1
2 n(n − 2(n − t − 2)).

Hence we obtain ∑
(i,j)∈λ(h)

hi,j(λ(h)) ≤ s

2
+ n2

2
− n(t + 1) + (t + 1)(t + 2).

Invoking (7·3) once more, we obtain

N(λ) ≤
∑

(i,j)∈λ(h)

hij + 1

2

∑
f ∈�
f 
=h

|f ||λ(f )|(|λ(f )| + 1).

We have

s

2
+ 1

2

∑
f ∈�
f 
=h

|f ||λ(f )| = 1

2

∑
f ∈�

|f ||λ(f )| = n

2

and

1

2

∑
f ∈�
f 
=h

|f ||λ(f )|2 ≤ 1

2

⎛
⎜⎜⎝∑

f ∈�
f 
=h

|f ||λ(f )|

⎞
⎟⎟⎠

2

≤ t2

2
.

Collecting all terms, we find that

N(λ) ≤ n(n + 1)

2
− n(t + 1) + (t + 1)(t + 2) + t2

2
.

From (7·2) we then obtain

1

χλ(1)
≤ 4q−n(t+1)+(t+1)(t+2)+ 1

2 t2 ,

which completes the proof.
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