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Abstract
In numerous applications, extracting a single rotation component (termed “planar rotation”) from a 3D rotation is of
significant interest. In biomechanics, for example, the analysis of joint angles within anatomical planes offers better
clinical interpretability than spatial rotations. Moreover, in parallel kinematics robotic machines, unwished rotations
about an axis – termed “parasitic motions” – need to be excluded. However, due to the non-Abelian nature of
spatial rotations, these components cannot be extracted by simple projections as in a vector space. Despite extensive
discussion in the literature about the non-uniqueness and distortion of the results due to the nonlinearity of the
SO(3) group, they continue to be used due to the absence of alternatives. This paper reviews the existing methods
for planar-rotation extraction from 3D rotations, showing their similarities and differences as well as inconsistencies
by mathematical analysis as well as two application cases, one of them from biomechanics (flexural knee angle in
the sagittal plane). Moreover, a novel, simple, and efficient method based on a pseudo-projection of the Quaternion
rotation vector is introduced, which circumvents the ambiguity and distortion problems of existing approaches. In
this respect, a novel method for determining the orientation of a box from camera recordings based on a two-plane
projection is also proposed, which yields more precise results than the existing Perspective 3-Point Problem from
the literature. This paper focuses exclusively on the case of finite rotations, as infinitesimal rotations within a single
plane are non-holonomic and, through integration, produce rotation components orthogonal to the plane.

1. Introduction
The orientation of rigid bodies serves as a fundamental characteristic in describing the state of single
or multi-body systems. The extraction of a single rotation component (termed “planar rotation”) from a
3D rotation plays a crucial role in many applications. In biomechanics, for example, the analysis of joint
angles within anatomic body planes offers better clinical interpretability than spatial rotations. Also,
for example, in lower-mobility parallel kinematic robotic chains, often an unwished rotation – termed
“parasitic motion” – is targeted to be excluded, and its determination from the 3D rotation is needed.
However, due to the non-Abelian structure of spatial rotations, it is known that such “planar” components
cannot be determined by simple projections as in a vector space, and well-known inconsistencies arise.
Despite an extensive literature and discussion about the non-uniqueness and distortion of the results,
such extraction techniques continue to be used due to the absence of alternatives, lacking a consistent
standardization.

In this paper, the existing extraction techniques from the literature are reviewed, and a thorough analy-
sis of their differences and similarities is performed. Hereby, the existing approaches can be grouped into
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two basic procedures. In the first group, the spatial rotation is decomposed into a sequence of three ele-
mentary rotations about follow-up orthogonal coordinate axes (Euler, roll-pitch-yaw, or Bryant angles),
and one of them is identified as the sought-extracted rotation, where the differences lie in the chosen
sequence of rotations. In the second group, a particular coordinate axis of the rotated coordinate frame
is projected onto the target plane of the initial coordinate frame, assuming that the desired extracted
angle is the angle between the projected coordinate axis and a reference coordinate axis defining the
zero-degree angle. The paper shows on one side that the two approaches are fully isomorphic with
respect to each other depending on the rotation sequence and projected axis used. On the other side, the
paper shows that using these extraction methods leads to inconsistencies and ambiguities, which makes
standardization difficult.

In response to these problems, the paper presents an alternative novel efficient method for extracting
a rotational component in a plane. This method decomposes a spatial Quaternion into a Quaternion
about an axis normal to the extraction plane and a Quaternion about an axis within this plane. As will
be shown, unlike traditional methods, the Quaternion-based approach yields unique extractions of 1D
components from 3D rotations. The Quaternion decomposition method was preliminarily proposed in
a previous conference paper [23] and is here expanded to its full extent.

The differences between the methods are illustrated in a virtual example and an experimental
case for the extraction of knee flexural angle in the sagittal plane from gait analysis, comparing it
to a Vicon measurement. In this respect, also a novel method for determining the orientation of a
box based on a two-plane projection from camera recordings is proposed, which yields more precise
results than the existing solutions for the Perspective 3-Point Problem (P3p) from the literature used
by default in most applications (as e.g. implemented in Matlab), and which is reviewed here for better
reference.

2. Review of existing planar rotation extraction methods
Single rotation components (termed in the following “planar rotations”) are, in many instances, such as
navigation [48, 56, 57], human motion analysis [5], robotics [10, 14, 51, 58], and folding of packing
cartons [38], of higher interest than the spatial orientation itself. In the analysis of human motion, for
example, the extraction of planar rotations is essential for the analysis of anatomical segment angles.
Angles projected onto anatomical body planes are favored as more relevant for intuitive clinical inter-
pretation than their three-dimensional counterparts [54]. The sagittal plane, which divides the body
into a right and a left section, is particularly relevant as an extraction plane, as human locomotion
predominantly takes place in this plane [46].

The extraction of planar rotations from spatial orientations is also of crucial importance in the field
of robotics. In parallel kinematics machines with less than three rotational degrees of freedom, intended
autonomous movements can be accompanied by undesired, constrained rotations about axes that do
not correspond to any degree of freedom, so-called parasitic rotations. Although the reduced num-
ber of degrees of freedom offers advantages such as cost reduction due to fewer actuators, simpler
kinematics, and easier control [36], it can also lead to problems in various applications due to unpre-
dictability and lower accuracy [10, 34, 37, 44, 47, 50]. Thus, several approaches are considered in the
literature for eliminating parasitic rotations by initially identifying them from known spatial rotations
[10, 34, 35].

2.1. Problem statement
Consider a frame KB visualized by a box that undergoes a spatial rotation with respect to a space-fixed
“world” reference frameKW (Figure 1). The world frame can also be moving, in which case the rotation
is then a relative motion without restriction of generality. The task is to extract a “planar” rotation angle
αz that describes as close as possible the “component” of the general rotation in a plane, here chosen as
the x, y plane of the world frame, again without restrictions of generality.
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Figure 1. Example used to discuss the extraction methods.

Due to the non-commutativity of spatial rotations, 3D rotations are not isomorphic to vector spaces,
and hence the sought “planar” rotation (a) cannot be determined by classical vector-space projection and
(b) is not unique. For this reason, several approaches exist in the literature for estimating this rotation
angle, with diverging results.

For a unified comparison of existing methods, we adopt the well-known Quaternion description (also
known as Euler-Rodrigues parameters) for the rotation matrix RB transforming vector components of
the moving frame KB with respect to the world frame KW . By Euler’s theorem, the rotation from the
world frame to the moving frame can be described by a single rotation about an axis u by an angle α
(Figure 1), which is embodied by the 4-parametric Quaternion Q as [3], see also Appendix A:

Q =
[

q0

q

]
with q0 = cos

α

2
; q =

⎡⎢⎣ qx

qy

qz

⎤⎥⎦= sin
α

2
u . (1)

The elements of the rotation matrix are termed as:

RB =

⎡⎢⎢⎣
ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎤⎥⎥⎦ (2)

where each column of the matrix is the projection of the corresponding axis of KB onto KW . The rotation
matrix RB can then be expressed by the four components of the Quaternion Q as [41], Appendix A:

RB(q0, q) =
⎡⎢⎣ 1 − 2 (q2

y + q2
z ) 2 (−q0qz + qxqy) 2 (+q0qy + qxqz)

2 (+q0qz + qxqy) 1 − 2 (q2
x + q2

z ) 2 (−q0qx + qyqz)

2 (−q0qy + qxqz) 2 (+q0qx + qyqz) 1 − 2 (q2
x + q2

y)

⎤⎥⎦ (3)

[Note that the rotation matrix can be easily determined from a given Quaternion by Eq. (3), or, vice-
versa, the Quaternion can be easily determined by inverse relationships for a given rotation matrix
(Appendix A). Thus, both representations are fully equivalent, and the most suited one can be employed
for a given application. For example, when integrating angular velocities, the Quaternion method is
more immediate and natural (Appendix A), while, for given rotation matrices, the inverse relationship
is assumed to be pre-computed for the rest of this paper.]

It is clear that if the spatial rotation takes place only about an axis orthogonal to the plane (here the z
axis), then the rotation axis u is also orthogonal to the plane and the sought rotation angle αz is identical to
the full Quaternion rotation angle α. On the other hand, if the rotation vector u lies within the x, y plane,
then no rotation about the orthogonal axis z takes place. The question is, what are the planar rotation
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angles for rotation axes having components both in the x, y plane (qxy) and the orthogonal direction z
(qz)? This is the basis of the differences between current planar rotation extraction methods.

Hereby, two groups of approaches can be identified: (1) decomposing the spatial rotation in a
sequence of elementary rotations about coordinate axes and selecting one of them as the sought pla-
nar rotation angle αz (here termed Euler-angle decomposition methods), and (2) projecting an axis
of the rotated frame on the plane and determining the angle between the projected axis and a refer-
ence axis in the plane as the sought planar rotation angle αz (here termed coordinate-axis projection
methods). As will be shown, both methods are identical. In the sequel, both methods are reviewed and
discussed.

2.2. Euler-angle decomposition methods
The Euler-angles approach views a spatial rotation as a sequence of three elementary rotations about the
axes of a step-wise rotating orthogonal coordinate system under the condition that no two consecutive
rotations share the same absolute axis. The extraction of planar rotations from spatial orientations via
Euler angles is based on the assumption that a partial Euler rotation angle reflects the desired “planar”
rotation angle [10, 12, 29, 34, 35]. The choice against computationally more robust approaches such as
helical angles [53] or Quaternions [27] stems from the assumption that Euler angles are more intuitive
for the extraction process. However, this approach is not unproblematic, since the sequence of Euler
angle elementary rotations can significantly influence the value of the extracted “planar” angle [11,
15, 23], and the resulting angles can deviate considerably from the expectations [8, 21]. Despite these
well-known problems, Euler angles are still the most common approach in the literature [5]. Efforts to
circumvent these problems have led to attempts to establish predefined Euler sequences as a standard for
specific applications, such as those proposed by the International Society of Biomechanics for human
motion analysis [13, 55]. While this strategy improves the comparability of study results, it does not
address the inherent lack of uniqueness of the extracted angles.

To ensure the uniqueness of angle projections, sequences where the first and last rotation occurs
around the same local axis (“Proper Euler angles”) are not applied for this approach. This includes
sequences such as z-y-z. Instead, only rotation sequences that ensure that each rotation occurs around
a different axis (“Tait-Bryan angles”) are used. This includes sequences like z-y-x etc., leading to six
potential rotation sequences for planar angle extractions. Often, the sequence is chosen such that the first
rotation is about the axis that is normal to the desired projection plane, followed by rotations around the
remaining axes [10, 11, 15, 23, 34, 35].

Each sequence can be interpreted in two distinct ways: extrinsically, with rotations about inertially-
fixed axes (KW in the given example), and intrinsically, with rotations about step-wise moving body-fixed
axes (KB in the given example). Both intrinsic [11, 15, 23] and extrinsic rotations [10, 34, 35] are utilized
in the literature for planar angle extractions. As intrinsic Euler angles are mathematically equivalent to
the reversed sequence of extrinsic rotations, the discussion will focus on intrinsic rotations, implicitly
covering also extrinsically interpreted sequences.

The elementary rotations about follow-up x-, y-, and z-axes, respectively, and defined by the unknown
Euler angles ϕ, � and the sought angle αz, respectively, are:

Rot[x, ϕ] =
⎡⎢⎣ 1 0 0

0 cos ϕ − sin ϕ

0 sin ϕ + cos ϕ

⎤⎥⎦; Rot[y,�] =
⎡⎢⎣+ cos� 0 sin�

0 1 0

− sin� 0 cos�

⎤⎥⎦; Rot[z, αz] =
⎡⎢⎣ cos αz − sin αz 0

sin αz + cos αz 0

0 0 1

⎤⎥⎦
(4)

Due to the non-Abelian structure inherent in spatial rotations, each Euler sequence, represented by a
non-commutative multiplication of the elementary rotations, leads to distinct definitions of the rotation
matrix RB. For the six possible Tait-Bryan angles employed in the literature for extraction, the rotation
matrices shown in Eq. (5) to Eq. (10) are obtained. To maintain clarity and facilitate further discussion,
only the relevant elements of the resulting matrices for determining the sought angle αz are shown.
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Furthermore, the additional index on RB and αz serves to indicate the chosen Euler sequence and assists
in distinguishing the extracted angles based on the extraction method.

Rzyx
B = Rot[z, αz

zyx] · Rot[y,�] · Rot[x, ϕ] =
⎡⎢⎣ + cos αz

zyx cos� ∗ ∗
+ sin αz

zyx cos� ∗ ∗
∗ ∗ ∗

⎤⎥⎦ (5)

Rzxy
B = Rot[z, αz

zxy] · Rot[x, ϕ] · Rot[y,�] =
⎡⎢⎣ ∗ − sin αz

zxy cos ϕ ∗
∗ + cos αz

zxy cos ϕ ∗
∗ ∗ ∗

⎤⎥⎦ (6)

Rxyz
B = Rot[x, ϕ] · Rot[y,�] · Rot[z, αz

xyz] =
⎡⎢⎣ + cos αz

xyz cos� − sin αz
xyz cos� ∗

∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎦ (7)

Ryxz
B = Rot[y,�] · Rot[x, ϕ] · Rot[z, αz

yxz] =
⎡⎢⎣ ∗ ∗ ∗

+ sin αz
yxz cos ϕ + cos αz

yxz cos ϕ ∗
∗ ∗ ∗

⎤⎥⎦ (8)

Rxzy
B = Rot[x, ϕ] · Rot[z, αz

xzy] · Rot[y,�] =
⎡⎢⎣ ∗ − sin αz

xzy ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎦ (9)

Ryzx
B = Rot[y,�] · Rot[z, αz

yzx] · Rot[x, ϕ] =
⎡⎢⎣ ∗ ∗ ∗

+ sin αz
yzx ∗ ∗

∗ ∗ ∗

⎤⎥⎦ (10)

The sought “planar” rotation angle αz is then obtained by coefficient comparison between the rotation
matrix Eq. (2) and Eq. (5) to Eq. (10), respectively, as:

αz
zyx = atan2

( ± ρ21 , ±ρ11

)
[5, 9, 54, 55] (11)

αz
zxy = atan2

(− ± ρ12 , ±ρ22

)
[36, 10, 11, 13, 12, 15, 29, 46, 54] (12)

αz
xyz = atan2

(− ± ρ12 , ±ρ11

)
[5, 8, 16, 54] (13)

αz
yxz = atan2

( ± ρ21 , ±ρ22

)
[8] (14)

αz
xzy = asin

( −ρ12

)
[49] (15)

αz
yzx = asin

(
ρ21

)
[8], (16)

where the ± sign corresponds to the sign of the cosine of the second elementary rotation, and the refer-
ences next to the expressions show the applications from the literature for each extraction method. It is
essential to be aware of potential singularities that may arise when the second rotation is close to 90◦,
in which case the “planar” rotation angle αz cannot be determined.

2.3. Coordinate-axis projection methods
The second group of extraction methods assumes that the desired extracted “planar” angle can be viewed
as the angle between a projected coordinate axis of the movingKB onto the target plane and a reference
coordinate direction in the plane for the zero angle definition [17, 33] (Figure 2). As will be shown here
(to our knowledge for the first time), the procedure yields exactly the same results as the Euler-angle
decomposition for a corresponding sequence.

Out of the three axes of the moving frame KB, the axis normal to the projection plane in the non-
rotated state (here the z-axis) cannot be used, as it would be “invisible” when no rotation takes place
or when the rotation is already a “planar” rotation about the plane normal. Therefore, any choice of the
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Figure 2. Visualization of the axis projection method.

other two axes (here, the x- and y-axes) can be made. As the columns of RB are already the projection
of axes of KB onto KW , the projected (moving) x and y axes, denoted as x and y, are in terms of RB

x =
[

xx

xy

]
=
[
ρ11

ρ21

]
and y =

[
yx

yy

]
=
[
ρ12

ρ22

]
. (17)

The axes defining zero degrees are in the projection plane

ex =
[

1

0

]
and ey =

[
0

1

]
. (18)

The resulting angle extractions (termed as αz
Ax and αz

Ay, respectively) then result as:

αz
Ax = +sgn

(
xy

)
acos

(
eT

x x

‖ ex ‖ · ‖ x ‖
)

= +sgn ( ρ21 ) acos

(
ρ11√

ρ2
11 + ρ2

21

)
[17] (19)

αz
Ay = −sgn

(
yx

)
acos

(
eT

y y

‖ ey ‖ · ‖ y ‖
)

= −sgn ( ρ12 ) acos

(
ρ22√

ρ2
12 + ρ2

22

)
[33] (20)

where the references next to the expressions show the applications from the literature for each extraction
method.

Using the relationship

acos
(

A√
A2 + B2

)
= atan2

(
B , A ) (21)

one obtains

αz
Ax = atan2

(± ρ21, ±ρ11

)
(22)

αz
Ay = atan2

(∓ ρ12, ±ρ22

)
(23)

which are identical to the Euler z-y-x and z-x-y extraction angles, respectively, including singularities:

αz
Ax ≡ αz

zyx and αz
Ay ≡ αz

zxy (24)

3. Alternative novel Quaternion projection method
As an alternative to Euler-angle extraction, consider the decomposition of the total Quaternion
(Figure 1)

Q = Qz ◦ Qxy (25)
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where “◦” denotes Quaternion composition (Appendix A) and where the Quaternion “components”

Qz =
[

qz
0

qz

]
with qz =

⎡⎢⎣ 0

0

qz
z

⎤⎥⎦ (26)

Qxy =
[

qxy
0

qxy

]
with qxy =

⎡⎢⎣ qxy
x

qxy
y

0

⎤⎥⎦ (27)

are still unknown. The sought quantity is the extracted planar rotation αz
Q of the first component

qz
0 = cos

(
αz

Q

2

)
and qz

z = sin

(
αz

Q

2

)
(28)

while the second component is an unknown rotation about an axis within the plane. Using the
Quaternion inverse

{Qxy}−1 = Q
xy =

[
qxy

0

−qxy

]
(29)

and the Quaternion composition rule leads to

Qz = Q ◦ {Qxy}−1 =
[

q0qxy
0 + q · qxy

−q0qxy + qxy
0 q − q × qxy

]
(30)

from where the following four scalar equations are obtained:

qz
0 = q0qxy

0 + qxq
xy
x + qyq

xy
y (31)

0 = qxq
xy
0 − q0qxy

x + qzq
xy
y (32)

0 = qyq
xy
0 − qzq

xy
x − q0qxy

y (33)

qz
z = qzq

xy
0 + qyq

xy
x − qxq

xy
y (34)

Determining qxy
x and qxy

y from Eqs. (32) and (33) and inserting in Eq. (31) and Eq. (34) gives

qxy
x = q0qx + qyqz

q2
0 + q2

z

qxy
0

⎡⎣ = ± q0qx + qyqz√
q2

0 + q2
z

⎤⎦ (35)

qxy
y = q0qy − qxqz

q2
0 + q2

z

qxy
0

⎡⎣ = ± q0qy − qxqz√
q2

0 + q2
z

⎤⎦ (36)

qz
0 = q0

(
q2

0 + q2
x + q2

y + q2
z

)
q2

0 + q2
z

qxy
0 = q0

q2
0 + q2

z

qxy
0

⎡⎣ = ± q0√
q2

0 + q2
z

⎤⎦ (37)

qz
z = qz

(
q2

0 + q2
x + q2

y + q2
z

)
q2

0 + q2
z

qxy
0 = qz

q2
0 + q2

z

qxy
0

⎡⎣ = ± qz√
q2

0 + q2
z

⎤⎦ (38)
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Figure 3. Rotation of a rectangle ABCD by 180◦ about its diagonal in the projection plane.

The expression in brackets follows from the normalization achieved by squaring and adding Eq. (37)
and Eq. (38) and considering the normalizing condition (qz

0)2 + (qz
z)

2 = 1 yielding

qxy
0 = ±

√
q2

0 + q2
z (39)

Thus, one obtains by dividing the expressions in the brackets of Eq. (37) and Eq. (38)
qz

z

qz
0

= ±qz

±q0

(40)

in which all variables of the second Quaternion component are eliminated, and with Eq. (28) it holds

αz
Q = 2 · atan2

(± qz, ±q0

)
. (41)

It is remarkable that the planar rotation about the planar z axis is just the z component of the original
Quaternion vector, scaled by the reciprocal of the real part of the original Quaternion. Thus, the extrac-
tion results as a simple scaled pseudo-projection of the original Quaternion vector to the axis orthogonal
to the plane. A further remarkable property from Eq. (41) is that, although there are formally two solu-
tions, these are separated by 360◦, thus actually the plus sign is unique for a full rotation. Even more
remarkably, switching the order of components in Eq. (25), i.e., placing the z rotation as second compo-
nent of the decomposition, only leads to a change of sign in the cross product in Eq. (30), which again
leads only to a change of the sign in the numerator of Eq. (35) and Eq. (36), respectively. Thus, the
outcome for αz

Q remains the same, and one obtains the result that the decomposition Eq. (25) is com-
mutative with respect to the planar rotation component. This makes the Quaternion extraction method a
quasi-vector space with respect to the extracted angle αz. Finally, it can be observed that the solution of
Eq. (37) and Eq. (38) becomes singular when both components q0 and qz vanish at the same time. This
corresponds to a rotation of 180◦ about an axis in the projection plane. In this case, the space is rotated
face-down, and if the rotation axis is skewed with respect to the x and y directions, then a spurious rota-
tion about the z appears to happen (Figure 3), although there is no such one. Such a case can however be
excluded from the planar rotation extraction case, as it does not make sense to try to identify z rotations
when such a large rotation takes place only normal to the sought rotation axis.

4. Comparison and discussion
The practical implications of the different planar angle extraction techniques of the literature, as well as
the new Quaternion-based method, are illustrated in the following by two case examples: (1) a virtual
rotation of a box generated by an arbitrary time development of the spatial angular velocity vector in
body-fixed coordinates, and (2) an application from biomechanics, in which the sagittal knee angle is
determined from experimental inertial measurement unit (IMU) measurements and compared to the
gold-standard Vicon results from simultaneously infrared tracked retro-reflective markers.
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4.1. Example 1: Virtual 3D rotation of a box
Let the kinematic input of a box be provided by the body-fixed angular velocity BωB

BωB =
⎡⎢⎣ sin

(
π τ

π

)
3
4

sin
(
π

6
τ − π

4

)
3
2

sin
(

2π
3
τ − π

)
⎤⎥⎦ (42)

for the dimensionless time 0 ≤ τ ≤ 6. The resulting time development Q (τ ) of the resulting Quaternion
can be easily and precisely determined by Runge-Kutta integration of fourth order (Appendix A) with a
step size of 2 ms. The progression of the box orientation over dimensionless time is shown in Figure 4,
where the poses are “stretched” in translational direction for visual reasons to avoid overlaps. The upper
panel displays the Quaternion vector with direction equal to the rotation vector u and magnitude equal to
sine of half rotation angle, where Quaternion vectors close to the projection plane are colored gray. The
second panel displays the total spatial rotation of the box. The other three panels display the rotation of
the box when applying only the planar rotation resulting from the Quaternion extraction and the extrac-
tion by Euler sequences z-x-y and z-y-x, respectively. The resulting progression of the planar rotation
angles αz is shown in Figure 5 for all extraction methods.

One can see that at the beginning, all planar extraction methods behave similarly, but deviate sub-
stantially as rotation progresses. A closer analysis reveals the causes for similarity and divergence: At
the beginning, rotations are small and thus close to infinitesimal relationships, whereas rotations are
commutative and thus lie in a vector space. Thus, the extraction process corresponds approximately to
a proper vector projection, and all extraction methods yield close to equal results. For the other regions,
results of the Euler extraction methods diverge substantially, and even between two sequences with equal
locations of the extracted planar rotation in the Euler sequence (e.g. x-y-z vs. y-x-z). This shows that the
supposedly intuitive Euler-angle extraction leads to the unintuitive result that the extracted angle αz

changes significantly depending on the sequence of other two rotations, here x and y. Moreover, the
Euler extraction methods produce inconsistent results at poses A, B, and C, where the rotation takes
place about an axis within the projection plane and thus no z-rotation would be expected (Figure 6).
Thus, the Euler extraction methods are intuitive only for small rotation angles but become erratic and
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Figure 6. Rotated box with its rotation axis entirely within the projection plane.

inconsistent for large rotations depending on the rotation sequence, in particular also on the choice of
the sequence of the other (uninvolved) two. This is not the case for the Quaternion extraction method,
which yields consistent and unique results (zero planar rotation angle when rotation takes place about
an axis in the projection plane) and a smoother rotation trajectory.

4.2. Example 2: Extraction of sagittal knee angle from 3D IMU measurements
As a second example, the measurement of the knee sagittal angle for human walking along a track
using IMUs is regarded. The results are validated with respect to the current gold-standard technique
for capturing human motion within the lab based on retro-reflective markers attached to the subject’s
skin at specific anatomic reference points and subsequently recorded by a synchronized set of cameras
within the room [2, 7, 40]. As known, marker-based measurements excel with precision and robustness,
but have certain limitations such as the necessity for specialized laboratories, restricted mobility, high
costs, and the need for specially trained personnel [4, 52]. On the other hand, IMUs are at advantage
regarding low cost, suitability for outdoor measurements, and easiness and speed to attach. However,
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Figure 7. Illustration of the experimental process for knee sagittal angle measurement featuring the
same subject twice in the same scene: left scene: 20 sec standstill phase for initial target orientation;
right scene: dynamic assessment during walking motion.

they also feature a couple of shortcomings, such as integration drift due to sensor errors, undefined
orientation with respect to limbs, and unknown (varying) tilt offsets between IMU and anatomical axes.

The experimental setup is shown in Figure 7. Subjects were outfitted with reflective markers by a
standardized plug-in gait protocol [18]. A movement measurement system (Vicon MX, Vicon Motion
Systems Ltd UK, 100 Hz) comprising eight cameras, supplemented by a synchronized video camera
(Basler 602 fc, 50 Hz), was utilized. All raw kinematic data of the Vicon reference system underwent
filtering using a Woltring filter. A video camera positioned laterally to the walking track with its image
plane parallel to the sagittal plane served to determine the constant offset between the relative sensor
angle and the actual knee angle. In addition, two IMUs (Myon Aktos-T, myon AG, Schwarzenberg,
Switzerland, 2000Hz) were placed in a box and affixed using double-sided adhesive tape to the right leg
at the shank adjacent to the musculus tibialis anterior, and laterally to the thigh. Two further calibrated
DSLR cameras (EOS 2000D, Canon) with known absolute orientations were positioned to determine the
IMU box orientation at the start. In order to validate the proposed method against a gold-standard refer-
ence, the knee angles of ten test subjects were assessed during five trials of walking along a designated
track, leading to 60 trials in total, employing both retro-reflective markers and the method delineated
in this paper. An analog signal was employed to concurrently trigger both DSLR cameras, IMU sensor
recordings, the Vicon system, and the laterally placed video camera, ensuring synchronization across
all systems and marking the beginning of the individual trial.

Five steps were performed to optimize the precision of IMU-based tracking of the sagittal joint angle:

1) determination of precise initial IMU orientation using two CCD cameras (Appendix B)
2) identification of constant error offset in angular velocity (see below)
3) integration of IMU-measured angular velocity using fourth-order Runge-Kutta (Appendix A)
4) extraction of planar angles of shank and thigh rotation according to methods in Sections 2 and 3
5) offset shift of relative sagittal knee angle to anatomic angle (see below)

Step 1: Initial IMU box orientation. A new method was developed to determine the precise orientation
of the IMU box with respect to the track world frame (Appendix B). The method uses a Newton iteration
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Figure 8. Left: exploded view of the target with an inertial measurement unit including a gyroscope.
Middle: targets positioned on the observed leg, highlighting the relative sensor angle (α) and knee angle
(β). Right: lateral video camera frame used for a one-time knee angle estimation.

to determine the pose, which matches the projections of a checkerboard face on two camera planes with
known orientation (Figure 8). Recordings from the triggered CCD cameras during a standstill phase for
20 s were utilized to determine the initial orientation of the sensors. The recorded average accuracy was
0.37◦ ± 0.15◦ compared to classical methods such as in MATLAB with an accuracy of 2.03◦ ± 0.76◦.
Step 2: Compensation of constant sensor error offset. The main cause of sensor error was found to be
a constant offset for the measured angular velocity. This constant error offset δ was determined for each
sensor as the average value during the standstill phase of 20 s. Then, the value was subtracted for the
actual sensor measurement Tω∗(t) to obtain the corrected body-fixed angular velocity Tω(t) relative to
the sensor coordinate frame KT as:

Tω(t) = Tω∗(t) − δ (43)

Step 3: Integration of IMU-measured angular velocity. Using the initial IMU orientation obtained from
step 1, a fourth-order Runge-Kutta integration method for determining the resulting Quaternions for the
IMU sensors of shank QS(t) and thigh QT(t) including normalization of the resulting Quaternions after
each integration step was applied (Appendix A).

Step 4: Extraction of planar rotation angles. From the resulting Quaternions of shank QS(t) and thigh
QT(t), respectively, the corresponding sagittal angles αz

S(t) and αz
T(t) of shank and thigh, respectively,

were determined for all methods described in the previous sections, specifically Eq. (11) to Eq. (16) for
Euler-angle decompositions and Eq. (41) for Quaternion decomposition.

Step 5: Offset shift of relative sagittal knee angle to anatomic angle. The IMU relative planar angle
αz(t) at the knee was computed as the difference between the planar angles of thigh and shank

αz(t) = αz
S(t) − αz

T(t) (44)

Between the IMU planar relative angle αz(t) and the “true” anatomical sagittal knee angle βz(t), a
constant offset βz

0 (Figure 8) was determined such that:

βz(t) = αz(t) − βz
0 (45)

The constant offset βz
0 was estimated by an experienced orthopedic professional visually assessing the

sagittal knee angle at an arbitrarily chosen time point within the gait cycle at the laterally positioned
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Table I. Root mean square error of all planar rotation extraction methods.
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Figure 9. Progression of the sagittal knee angle for one trial of a single participant during a gait cycle.

camera and comparing this to the Vicon value at this point, which reached an average accuracy of 2.1◦

compared to the Vicon measurement.

Resulting sagittal knee values for all planar rotation extraction methods and comparison to Vicon. The
sagittal knee angle for the selected gait cycle was measured using Vicon and the methods presented in
this section. Vicon measurements and sensor data were time-normalized to 100% for the described gait
cycle. The IMU-sampling rate and the Runge-Kutta step size were 1 ms and 2 ms, respectively. The root-
mean-square error (RMSE) was calculated for each trial by comparing the calculated sagittal knee angle
with the result from Vicon. Figure 9 displays the resulting average sagittal knee angle over a trial for
one person, while the RMSEs for all sagittal angle extraction methods across all 60 trials are displayed
in Table I.

Clearly, the Quaternion extraction exhibits the lowest deviation of 2.8◦, closely approaching the gold
standard. Conversely, all Euler-angle decompositions present a significantly higher RMSE, with a par-
ticularly pronounced deviation in Euler sequences where the extracted angle about the global z-axis is
the middle angle of the sequence (x-z-y and y-z-x).

From Figure 9, one can observe that the Quaternion extraction follows best the Vicon measurement,
up to some wobbling effects, which are attributed to gross soft-tissue motions around heel strike (yellow
area), and a slight overshoot at maximal knee flexion (dark gray area), which is attributed to skin stretch-
ing and muscle bulging at these stages. On the other hand, one can see strong deviations in the Euler
extraction methods, which can reach an order of magnitude of 10◦ in the worst case. Also, the wobbling
effects are more pronounced in the Euler extraction methods, which is due to their sensibility to slight
tilt rotations of the IMU sensor on the skin, which are better compensated by the Quaternion extraction
method. Similar results were obtained when determining first the 3D relative orientation between the
two IMUs and then extracting the planar sagittal knee angle from this, as shown in Figure 10.

Altogether, the newly introduced Quaternion extraction is visibly more robust and precise for knee
flexural angle determination than the traditional Euler extraction methods, and, due to its simplicity and
uniqueness, a promising technology for also other sagittal anatomical angle extractions (e.g., hip, elbow,
and torso) from IMU measurements for applications in biomechanics.
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Figure 10. Progression of the sagittal knee angle determined from relative IMU orientation.

Future research might focus on enhancing sensor placement, developing software-based detection
and compensation mechanisms for soft-tissue artifact effects, and determining the sagittal plane during
free walking or running from measurement data.

5. Conclusion
A review of existing methods for extracting “planar” rotation components from 3D rotations, such as
those needed, for example, for the determination of sagittal anatomical joint rotations from IMU mea-
surements in biomechanics or of parasitic motions in parallel kinematics manipulators, is presented.
The existing methods can be grouped into two categories: one using a decomposition of the 3D rota-
tion into a sequence of elementary follow-up rotations about orthogonal coordinate axes for different
rotation sequences, identifying one of them as the sought planar rotation (termed Euler-angle decom-
position methods), and one using a projection of one of the coordinate axes of the rotated frame onto
the target plane and determining the planar rotation as the angle between the projected moving axis
and an axis of the base frame (termed coordinate decomposition methods). Both groups are shown to
be equivalent. Moreover, it is shown that the existing methods are highly sensitive with respect to the
choice of the sequence of partial rotations, and that they lead to ambiguities when the rotations are not
small and inconsistencies when a rotation about an axis in the plane takes place. A novel approach to
resolve these difficulties is presented based on the decomposition of the overall rotation Quaternion in a
component normal to the target plane and a component in the plane. Three remarkable properties of the
new Quaternion planar rotation extraction method are proven: (1) that it corresponds to a scaled projec-
tion of the full Quaternion vector onto the target planar rotation axis (divided by the original Quaternion
real part); (2) that it is unique; and (3) that it is commutative with respect to the location of the planar
rotation in the decomposition of the full rotation concerning the value of the extracted planar rotation
angle, that is, if it placed at the beginning (inertially-fixed) or at the end (body-fixed). This makes the
Quaternion extraction method a simple and effective quasi-vector space projection with respect to the
extracted planar rotation angle, a property that has not been shown or known before. Two case exam-
ples, one for a virtual rotation of a box driven by a time-dependent angular velocity input, the second
involving an experimental setup for measuring the sagittal knee angle by IMUs compared to the gold-
standard Vicon, illustrate the inconsistencies of the existing approaches and validate the superiority of
new Quaternion decomposition approach. Moreover, a new method for determining the orientation of a
box with checkerboard face by two CCD cameras is presented, which yields higher accuracy by a factor
of 5 with respect to existing P3Pp methods.
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Appendix A: Quaternion relations
This section summarizes for better reference well-known relationships for representing rotations and
their infinitesimal properties by Quaternions.

Rotation matrix. Consider a rotation RB from a base coordinate frameKW to a rotated coordinate frame
KB (Figure 11). The rotation can be expressed by the SO(3) parametrization (“Special Orthogonal group
in dimension 3”) as an orthogonal matrix

RB =
⎡⎢⎣ ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎤⎥⎦ (46)

By Euler’s theorem, any rotation can be expressed as a rotation about an axis u by an angle α as:

RB = I3 + sin α ũ + (1 − cos α) ũ2 (47)

where I3 is the three-dimensional identity matrix and ũ is the cross-product matrix for a vector u =
[ux, uy, uz]

T as:

ũ =

⎡⎢⎢⎣
−0 −uz −uy

−uz −0 −ux

−uy −ux −0

⎤⎥⎥⎦ (48)

By introducing half-angles, a set of parameters, also termed Euler-Rodrigues parameters, can be
introduced as [3]:

q0 = cos
α

2
and q = sin

α

2
u (49)

which can be collected in the so-called 4 × 1 Quaternion:

Q =
[

q0

q

]
with q =

⎡⎢⎣ qx

qy

qz

⎤⎥⎦ (50)

with q0 the real part and q the vector part, and the normalizing condition:

q2
0 + ‖ q ‖ = 1 . (51)

By inserting Eq. (49) into Eq. (47), the following relation holds [41]:

RB(q0, q) = I3 + 2 (q0 q̃ + q̃2) (52)
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Figure 11. Illustration example for Quaternion relationships.

where q̃ is the cross-product matrix for the vector q as:

q̃ =

⎡⎢⎢⎣
+0 −qz +qy

+qz +0 −qx

−qy +qx +0

⎤⎥⎥⎦ (53)

which gives rise to the explicit relationship for the rotation matrix:

RB(q0, q) =
⎡⎢⎣ 1 − 2 (q2

y + q2
z ) 2 (−q0qz + qxqy) 2 (+q0qy + qxqz)

2 (+q0qz + qxqy) 1 − 2 (q2
x + q2

z ) 2 (−q0qx + qyqz)

2 (−q0qy + qxqz) 2 (+q0qx + qyqz) 1 − 2 (q2
x + q2

y)

⎤⎥⎦ (54)

Thus, the rotation matrix for given Quaternion s computed by 12 multiplications and 12 additions.
Likewise, for the inverse problem, the sought Quaternion can be determined using the following

procedure:

2
0 = 0.25 · ( 1 + trace ( ) )

2
0

2
:

0 = 2
0

= 0.25 / 0

= ( 32 − 23 ) ∗

= ( 13 − 31 ) ∗

= ( 21 − 12 ) ∗

2
0 ≤ 2

:

: max( )

= 0.5 · (1 + ) − 2
0

= 0.25 /

1 = ( 1 + 1) ∗

2 = ( 2 + 2) ∗

1 2 ≠

Where ε2 is a small quantity, for example, ε2 = 0.01. Thus, the inverse problem can be computed by
only one square root, 1 division, 4 multiplications, and maximally 7 additions.
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Composition of rotations. By spherical trigonometry, it can be shown that the composition of two
Quaternions

QI =
[

qI
0

qI

]
QII =

[
qII

0

qII

]
(55)

where QI represents a first rotation, followed by a second rotation embodied by QII, is given by [3]:

Q = QI ◦ QII =
[

qI
0q

II
0 − qI · qI

qI
0qII + qII

0 qI + qI × qII

]
. (56)

Note that changing the order of the two rotations just changes the sign of the cross products, all other
terms remaining symmetric with respect to the parameters of the two rotations. Likewise, the inverse
Q−1 of a Quaternion is given by its conjugate

Q−1 = Q =
[

q0

−q

]
(57)

and the neutral element Qe (zero rotation) results as:

Qe =
[

1

0

]
. (58)

First-order differential relationships. By letting the angle α approach zero, the Quaternion for an
infinitesimal rotation is given by:

Q(δα) = Qe + δQ =
[

1

δq

]
(59)

where δQ is the infinitesimal rotation increment [31]

δQ =
[

0

δq

]
(60)

with

δq = u · δα
2

. (61)

Thus, the infinitesimal increment δq represents half of an infinitesimal rotation angle δα about an instan-
taneous axis direction u. Dividing δq by the corresponding infinitesimal time interval dt yields the
angular velocity

ω= δα̇u = 2 · δq̇ . (62)

By using the Quaternion omposition formula Eq. (56) with the infinitesimal Quaternion either at the
end or the beginning, one obtains for the differential dQ of the Quaternion

dQ =
[

dq0

dq

]
(63)

that is, the infinitesimal change of the numerical values of Q, the relationship

Q + dQ =
[

q0 −qT

q q0I3 ± q̃

] [
1

δq

] + : body-fixed

− : inertially-fixed
(64)
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As the finite Quaternion on both sides cancel each other, one obtains[
dq0

dq

]
=
[

q0 −qT

q q0I3 ± q̃

] [
0

δq

] + : body-fixed

− : inertially-fixed
(65)

where the matrix

B =
[

q0 −qT

q q0I3 ± q̃

]
(66)

is orthogonal [31]. Dividing both sides by the time increment dt gives in terms of the angular velocity[
q̇0

q̇

]
= 1

2

[ −qT

q0I3 ± q̃

]
ω

+ : body-fixed

− : inertially-fixed
(67)

with the 4 × 3 matrix

A( Q ) = 1

2

[ −qT

q0I3 ± q̃

]
(68)

mapping angular velocity either in body-fixed or inertially-fixed coordinates to first-order differentials
of the Quaternions.

Runge-Kutta integration of angular velocities. With the relationship between angular velocity and time-
differential of the Quaternion, it is easy to adapt the classical 4th order Runge-Kutta scheme to a given
function of the angular velocity ω ( t ) with respect to time for a time step-size h as [6]:

Q(t + h) ≈ Q(t) +�(t) · h (69)

with

�(t) = 1

6
{ K1(t) + 2 K2(t) + 2 K3(t) + K4(t) } (70)

and

K1 =
[

A (Q(t) )

]
ω ( t ) (71)

K2 =
[

A (Q(t) ) + h

2
A (K1(t) )

]
ω ( t + h

2
) (72)

K3 =
[

A (Q(t) ) + h

2
A (K2(t) )

]
ω ( t + h

2
) (73)

K4 =
[

A (Q(t) ) + A (K3(t) )

]
ω ( t + h ) (74)

where after each time step, the resulting approximation of the quaternion is normalized by dividing by its
magnitude in order to maintain consistency. Note that when sampling the angular velocity at a sampling
time 
t, the minimal time step size for Runge-Kutta integrator is twice the sampling time (h = 2
t).

Contrary to common assumption, the integration of angular velocity to final rotations itself does not
create a drift, but the reason for the drift lies solely in the sensor errors of the angular velocity. To see
this, we integrate by the Runge-Kutta scheme for a motion defined by the three rotation angles in the
sequence Rot[x, ϕ] · Rot[y,�] · Rot[z,ψ] as:

�(τ ) =
⎡⎢⎣ϕ�
ψ

⎤⎥⎦=
⎡⎢⎣ π sin ( π τ )

π

4
sin ( 3

2
π τ )

π

2
sin ( 2π τ )

⎤⎥⎦ ; �̇(τ ) =
⎡⎢⎣ ϕ̇�̇
ψ̇

⎤⎥⎦=
⎡⎢⎣ π 2 cos ( π τ )

3π2

8
cos ( 3

2
π τ )

π 2 cos ( 2π τ )

⎤⎥⎦ (75)
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Figure 12. Case analysis of Runge-Kutta integration.

over the dimensionless time 0 ≤ τ ≤ 6, with a step size of 2 ms. The angular velocity BωB(τ ) in body-fixed
coordinates is given by the transformation matrix [31]

T =
⎡⎣ cos ψ cos � sin ψ 0

− sin ψ cos � cos ψ 0
sin � 0 1

⎤⎦ (76)

as
BωB(τ ) = T(τ ) �̇(τ ) . (77)

Starting from the initial Quaternion Q ( τ = 0 ) = [1, 0T]T, the time-scheme Eq. (70) is applied, and time
function Q(τ ) of the Quaternion is computed. By computing the corresponding rotation matrix RB(τ )
according to Eq. (54), the corresponding angles �∗(τ ) are determined by inverse relationship from the
rotation matrix to the Euler angles. Figure 12a) and Figure 12b) show the corresponding time histories
of the computed versus the given angles and the error between the two, respectively. One can see that
the curves are virtually identical and the maximal error is less than 10−8, which is negligible.

Appendix B: Estimation of box orientation by two CCD cameras
The presented method employs image recognition algorithms to determine the initial orientation of a
box with a checkerboard print on the large visible face. Obtaining the relative orientation between a
calibrated camera and an object through projective observations of model points is regarded as a solved
problem in geometric computer vision systems, known as the Perspective n-Point problem (PnP) [1,
19, 28, 45]. The minimal PnP case, which allows for a limited number of possible solutions, involves
observing three (n = 3) model points in a nondegenerate configuration, commonly referred to as P3P.
Since Grunert’s pioneering documentation of a P3P solution in 1841 [24], many P3P-solutions based
on this approach have emerged [22, 25, 30, 32]. In this section, the P3P method is briefly reviewed,
and a more accurate approach using two cameras and the projective information of the edges of the
checkerboard face is introduced and compared to the existing P3P method.

The P3P method determines the absolute orientation RT of the frame KT with respect to an inertial
frameKI can be summarized as follows (Figure 13). Let the given model points O, S, and P be captured
by a calibrated camera and chosen such that the lengths of the segments OP, OS, and SP, denoted as s, p,
and o, respectively, are known, and that OP and OS run parallel to the x- and z-axes ofKT , respectively.

This parallelism ensures that once the vectors kj with j ∈ {O, P, S}, which run from the center of
projection C to the actual world points, are known, the sought-after absolute orientation RT can be
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Figure 13. Perspective-3-Point problem: graphical representation of key concepts.

formed. The desired vectors kj can be described as follows:

kj =�j · uj (78)

where �j represents the unknown length and uj denotes the unknown direction of vector kj.
For a calibrated camera, the principal points AI , which represents the perpendicular point of the image

sensor to the center of projection C, and dI , which denotes the distance between the image sensor and
the center of projection, are known. Furthermore, the positions of the projections OI , SI , and PI of the
model points can be read. As a result, the vectors hj with j ∈ {O, P, S}, which point from the projection
of the points on the image sensor to the center of projection, are known as:

hO =
⎡⎢⎣ AI

x − OI
x

AI
y − OI

y

dI

⎤⎥⎦ and hP =
⎡⎢⎣ AI

x − PI
x

AI
y − PI

y

dI

⎤⎥⎦ and hS =
⎡⎢⎣ AI

x − SI
x

AI
y − SI

y

dI

⎤⎥⎦ (79)

Given that the unknown vectors kj and known vectors hj of the respective points are parallel to each
other, the directions uj of the respective vectors kj can be derived. This leaves only the lengths�j as the
sought-after unknowns, which can be determined using the cosine theorem with

s2 =�2
O + �2

P + 2�O�P cos (ε) with cos (ε) = uO · uP (80)
p2 =�2

O + �2
S + 2�O�S cos (γ ) with cos (γ ) = uO · uS (81)

o2 =�2
P + �2

S + 2�P�S cos (σ ) with cos (σ ) = uP · uS (82)

These three inhomogeneous quadratic equations are then solved for the distances �j, from which the
orientation RT can be determined. Most methods in the literature differ primarily in their approach to
solving this system of three inhomogeneous quadratic equations. Despite the known limitations of this
solution approach in achieving the required accuracy for pose estimation [43], such algorithms continue
to be employed in several software solutions, including openCV [42] and MATLAB [39]. However, they
are not always very accurate, which is the reason an alternative approach is presented here.

For the alternative method, a flat checkerboard pattern is tracked by two cameras, as illustrated in
Figure 14. The reason for employing a checkerboard pattern is that in this way, one has redundant infor-
mation about the edge directions of the grids, which minimizes errors. The edges of this checkerboard
pattern are designed to be parallel to the axes of the gyroscope (see Figure 8 ). This device will hence-
forth be referred to as the “target,” and the sought orientation will be denoted again as RT . The target
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Figure 14. Target and its projection on two image sensors for estimation of gyroscopes initial
orientation.

is simultaneously photographed by two cameras, referred to as camera I and camera II, whose abso-
lute orientations Rc, principal point Ac, and image distance dc with c ∈ {I, II} are known through camera
calibration.

The checkerboard pattern aids in the precise determination of the projections of the points O, S, and
P, named OI , SI , and PI , respectively, for camera I and OII , SII , and PII , respectively, for camera II. For
this, the corner points of the checkerboard pattern are determined in the images of the cameras with
subpixel accuracy. First, the Harris Corner Detector is utilized for pixel-level precision, as it identifies
regions in the image exhibiting substantial intensity variation in all directions [26]. Following this, the
Förstner Corner Detector is used to refine the detected points’ positions to sub-millimeter accuracy,
using the principle that complementary tangent lines of the checkerboard squares edges intersect at a
single point for an ideal corner [20]. The calculation was executed using the findChessboardCorners
function from the OpenCV library [42].

Choosing again partial points O, P, and S among the corner points of checkerboard squares such that

−→
OP =
p = s uz and

−→
OS =
s = p ux (83)

run parallel to the x- and z-axes of KT , respectively, one obtains for the coordinates of these two unit
directions in the inertial (“world”) frame:

Wux = RT · ex and Wuz = RT · ez (84)

where

ex =
⎡⎢⎣1

0

0

⎤⎥⎦ and ey =
⎡⎢⎣0

1

0

⎤⎥⎦ and ez =
⎡⎢⎣0

0

1

⎤⎥⎦ (85)

The vectors 
p and 
s can also be described using the vectors kj with j ∈ {O, P, S} (see Figure 13)
as follows:


pc = kc
P − kc

O and 
sc = kc
S − kc

O (86)

where c denotes the respective camera (c ∈ {I, II}) to which the vectors refer and in whose coordinates
the vectors are described. The two-dimensional projection of
p and
s onto the corresponding image
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sensor of camera c, which runs parallel to the xy-plane of the corresponding camera, is referred to as

pc and 
sc and can be determined by the method of similar triangles as:


pc
i

dc
= kc

P,i

kc
P,z

− kc
O,i

kc
O,z

(87)


sc
i

dc
= kc

S,i

kc
S,z

− kc
O,i

kc
O,z

(88)

with i ∈ {x, y}. By introducing the vectors rc
O and rc

C, which point from KW to the point C of camera c
and point O respectively (see Figure 13), the vectors kj can be described as:

kc
O = rc

O − rc
C (89)

kc
P = rc

O + s uc
z − rc

C (90)

kc
S = rc

O + p uc
x − rc

C (91)

where uc
x, uc

z are the two unit directions of KT in the respective camera frame Kc. Substituting Eq. (89)
to Eq. (91) into Eq. (87) and Eq. (88), it follows that


pc
i

dc
=
[

cuz,i −cuz,z

rc
O,i − rc

C,i

rc
O,z − rc

C,z

]
· s

rc
O,z + suz,z − rc

C,z

(92)


sc
i

dc
=
[

cux,i −cux,z

rc
O,i − rc

C,i

rc
O,z − rc

C,z

]
· p

rc
O,z + pux,z − rc

C,z

(93)

The method of similar triangles reveals that
rc

O,i − rc
C,i

rc
O,z − rc

C,z

= 
ac
i

dc
(94)

where 
ac
i describes the distance of the projection of point O to the principal point Ac (see Figure 14).

Substituting equations Eq. (92) and Eq. (93) with i = x and i = y into themselves gives two binding
equations for each camera

g1 ≡ 
pI
y · [ uI

z,x · dI − uI
z,z ·
aI

x

]−
pI
x · [ uI

z,y · dI − uI
z,z ·
aI

y

] = 0 (95)
g2 ≡ 
sI

y · [ uI
x,x · dI − uI

x,z ·
aI
x

]−
sI
x · [ uI

x,y · dI − uI
x,z ·
aI

y

] = 0 (96)
g3 ≡ 
pII

y · [ uII
z,x · dII − uII

z,z ·
aII
x

]−
pII
x · [ uII

z,y · dII − uII
z,z ·
aII

y

] = 0 (97)
g4 ≡ 
sII

y · [ uII
x,x · dII − uII

x,z ·
aII
x

]−
sII
x · [ uII

x,y · dII − uII
x,z ·
aII

y

] = 0 (98)

which gives an overconstrained system of 4 equations for three independent rotation parameters

g
(

q0, q
)= 0 (99)

whose Jacobian with respect to infinitesimal rotation increments δϕ = u · δϕ can be shown to be

Jgϕ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


pI
y ·
[

uz × e I,x · dI − uz × e I,z ·
aI
x

]T

−
pI
x ·
[

uz × e I,y · dI − uz × e I,z ·
aI
y

]T


sI
y ·
[

ux × e I,x · dI − ux × e I,z ·
aI
x

]T

−
sI
x ·
[

ux × e I,y · dI − ux × e I,z ·
aI
y

]T


pII
y ·
[

uz × e II,x · dII − uz × e II,z ·
aII
x

]T

−
pII
x ·
[

uz × e II,y · dII − uz × e II,z ·
aII
y

]T


sII
y ·
[

ux × e II,x · dII − ux × e II,z ·
aII
x

]T

−
sII
x ·
[

ux × e II,y · dII − ux × e II,z ·
aII
y

]T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(100)
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while e c,x, e c,y, and e c,z represent the x, y, and z axes of the cameras c (c ∈ {I, II}) in KW and ux and uz

are given inKW . Using again the matrix A( Q ) mapping infinitesimal rotation increments to Quaternion
differentials (see Appendix A), one obtains the following iteration procedure from the Newton-Raphson
root-finding procedure of Eq. (99):

Qi+1 = Qi − A
(

Qi
)
J†

gϕ

(
Qi
)

g
(

Qi
)

(101)

where J†
gϕ is the pseudo inverse of the Jacobian of Eq. (99).

The new method was validated by an experiment and compared to the existing method using a box
with a checkerboard pattern on one side. The box was placed in space with ten defined orientations in
sequential order. Two calibrated cameras (EOS 2000D, Canon) with known absolute orientations were
positioned to capture the checkerboard pattern from each orientation of the box. To create comparable
conditions to those expected in a gait lab, the checkerboard pattern measured 30 × 45 mm, with indi-
vidual squares having a side length of 7.5 mm. The cameras were placed at a distance of 700 to 800 mm
from the boxes.

First, the box orientations were determined using the image of one camera and the camera calibration
routine integrated into MATLAB (MATLAB version 9.9.0 (R2023b)), which utilizes the first algorithm
[39]. Subsequently, the same box orientation was determined by the new algorithm with two cam-
eras. The corresponding error for each pose was calculated as the rotation angle between the estimated
orientations and the real orientations of the target.

The initial orientation determination via computer vision algorithms using MATLAB’s toolbox in
conjunction with a single camera yielded an accuracy of 2.03◦ ± 0.76◦. On the other hand, the new
algorithm yielded a precision of 0.37◦ ± 0.15◦ with an average of 3 Newton iterations for initial val-
ues roughly within 30◦ of the target orientation. In conclusion, the new algorithm is quite stable and
outperforms the precision of existing methods by a factor of 5.

Cite this article: M. Ghiassi and A. Kecskeméthy (2024). “A review of methods for mapping 3D rotations to one-dimensional
planar rotations: analysis, comparison, and a novel efficient Quaternion-based approach”, Robotica 42, 3994–4018. https://doi.org/
10.1017/S0263574724001498
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