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APPROXIMATION AND FIXED POINT THEOREMS FOR
COUNTABLE CONDENSING COMPOSITE MAPS

DONAL O'REGAN AND NASEER SHAHZAD

This paper presents a multivalued version of an approximation result of Ky Fan (Math.
Z. 112 (1969)) for WC

K maps.

1. INTRODUCTION

Ky Fan [3] proved the following result: Let 5 be a nonempty compact convex set
in a normed space X = [X, | | . | |). Then for any continuous map / from 5 into X there
exists a point x e S with

\\x-f(x)\\ = ini\\f(x)-y\\.

This result has been extended to other types of maps and other sets 5; see for example
[2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17]. In this paper we shall obtain a Ky
Fan approximation type result for countably condensing li£(S,X) maps where 5 is a
closed convex subset of a Banach space X and 0 G int 5. Also we deduce new fixed point
theorems from our approximation result.

2. PRELIMINARIES

Let X and Y be subsets of Hausdorff topological vector spaces E\ and E-i respectively.
We shall look at maps F : X -> K(Y); here K(Y) denotes the family of nonempty
compact subsets of Y. We say F : X -¥ K(Y) is Kakutani if F is upper semicontinuous
with convex values. A nonempty topological space is said to be acyclic if all its reduced
Cech homology groups over the rationals are trivial. Now F : X —> K(Y) is acyclic if F
is upper semicontinuous with acyclic values. F : X -> K(Y) is said to be an O'Neill map
if F is continuous and if the values of F consist of one or m acyclic components (here m
is fixed).

Given two open neighbourhoods U and V of the origins in E\ and E2 repectively,
a (£/, V)-approximate continuous selection of F : X -* K(Y) is a continuous function
s : X -> Y satisfying

s(x) G (F[(X + U)r\X]+V^nY for every x € X.
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We say F : X —¥ K(Y) is approximate if it is a closed map and if its restriction F\K to
any compact subset K of X admits a (U, V)-approximate continuous selection for every
open neighbourhood U and V of the origins in Ei and Ev repectively.

For our next definition let X and Y be metric spaces. A continuous single valued

map p : Y —• X is called a Vietoris map if the following two conditions are satisfied:

(i) For each x £ X, the set p~1{x) is acyclic.

(ii) p is a proper map, that is, for every compact A C X we have that p~l(A)

is compact.

DEFINITION 2.1: A multifunction <j> : X -»• K(Y) is (strongly) admissible in the
sense of Gorniewicz, if <j> : X —>• X ( y ) is upper semicontinuous, and if there exists a
metric space Z and two continuous maps p: Z —> X and q : Z —> Y such that

(i) p is a Vietoris map, and

(ii) 4>(x) — q{p~1(x)) for any x € X.

REMARK 2.1. It should be noted that <j> upper semicontinuous is redundant in Defini-
tion 2.1.

Suppose X and Y are Hausdorff topological spaces. Given a class X of maps,
X(X, Y) denotes the set of maps F : X —> 2Y (nonempty subsets of V) belonging to X,
and Xc the set of finite compositions of maps in X. A class U of maps is defined by the
following properties:

(i) U contains the class C of single valued continuous functions;

(ii) each F 6 Uc is upper semicontinuous and compact valued; and

(iii) for any polytope P, F € UC(P, P) has a fixed point, where the intermediate
spaces of composites are suitably chosen for each U. .

DEFINITION 2.2: F € U£{X,Y) if for any compact subset K of X, there is a
G G UC(K, Y) with G{x) C F{x) for each x £ K.

Examples of ZY* maps are the Kakutani maps, the acyclic maps, the O'Neill maps,
the approximable maps and the maps admissible in the sense of Gorniewicz.

Let Q be a subset of a Hausdorff topological space X and x € X. The inward set

IQ(X) is defined by
IQ(X) = {x + r{y-x):yeQ,r^O}.

We let IQ(X) denote the closure of IQ(X) (in general we let Q (respectively dQ, intQ)

denote the closure (respectively, the boundary, the interior) of Q).

Let X = (X, d) be a metric space. The Kuratowski measure of noncompactness is

defined by

n

a(A) = inf [e > 0 : A C ( J X{ for some n € N and diam(Xi) ^ e | ;
i l
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here A C X. Let 5 be a nonempty subset of X, and for each x G X define d(x, S)
= in.fd(x,y). Let H : S -» 2X (here 2X denotes the family of nonempty subsets of X).

y€5

H is called

(i) countably k-set contractive (k ^ 0) if H(S) is bounded and a(H(Y))

^ ka(Y) for all countably bounded sets Y of 5;

(ii) countably condensing if H is countably 1-set contractive and a(H(Y))
< a(Y) for all countably bounded sets Y of 5 with a(Y) =f 0.

Let 5 be a convex subset of a Banach space X with 0 6 intS. We define the
Minkowski functional on 5, p : X —> [0, oo), as

p(x) = inf{r > 0 : x € rS},x € X.

The following properties are well known (see [18]):

(i) p is continuous;

(ii) p{x + y)^ p(x) + p(y) for x,y € X;

(iii) p(Xx) = Xp(x), A ^ 0 , i € l ;

(iv) 0 ^ p(x) < 1 for x e int S;

(v) p(x) > 1 for x i 5;

(vi) p{x) = 1 for x € 35.

For # > 0 let BR = {x€X : \\x\\ ^ / ?} . Finally let dp(x, S) = inf{p(x- y) : y € 5 }
for x e X.

3. RESULTS

The following fixed point result (see [1, 13] will be needed in this section.

THEOREM 3 . 1 . Let S be a nonempty, closed, convex subset of a Banach space X
and assume F € Wc"(5,5) is a countably condensing map. Then F has a fixed point in
S.

We now prove our approximation result.

THEOREM 3 . 2 . Let S be a closed, convex subset of a Banach space X with 0
€ int(S). Suppose that F € U£(S,X) is a countably condensing map. Then there exist

x0 € 5 and y0 € F(x0) with

P(yo ~ x0) = dp(y0,S) = dp(yo,Is(xo));

here p is the Minkowski functional on S. More precisely, either (i). F has a fixed point

x0 6 S, or (ii). there exist x0 € dS and yo 6 F(x0) with

0 < P(yo ~ x0) = dp{y0,S) - dp(y
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P R O O F : Define r : X -¥ S by

{ x if x e S
- r - r if X f S.
p(x)

Now r is continuous and notice r(A) C co({0} U A) for any subset .4 of 5. As a result
r is a 1-set-contractive map. This together with F is countably condensing implies
G = r o F is countably condensing. Also since Wc" is closed under compositions we have
that G 6 U£{S,S). Now Theorem 3.1 guarantees that G has a fixed point x0 6 S, so
there exists y0 6 F(x0) with x0 = r(y0). The proof is now broken up into two cases.

(i) Suppose yo 6 5.

Then x0 — r(yo) — yo- As a result

p(yo - x0) =0 = dp(y0,S)

and i 0 is a fixed point of F.

(ii) Suppose J/0 $ 5.

Then x0 = r(yo) = yo/(p{yo))- Thus for any i € S w e have

o) - p{x) = p({y0 -x) + x)- p(x)

^ P(yo -x) ^ inf{p(«/o - z) : z € S) - dp(y0, S).

As a result p(y0 - ^o) = dp(y0, S) and also p(y0 - x0) > 0 since p(y0 - ^o) = p(yo) - 1. It
remains to show that

p(yo - x0) = dp(yo,Is(xo)).

Let z € Is(xo)\S- Then there exist y € S and r > 1 with 2 = x0 + r(y — x0) (note if
0 ^ r < 1 then z = (1 - r)x0 + ry € S). Assume that

p(j/o- •z) <p(Vo -x0)-

Clearly

so we have

-y)= p[-{yo - z) + ( i - -)(2/0

< -p(yo - z) + ( l - -)p(yo

< p{y0 - x0),
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which contradicts the fact that p(y0 — x0) = dp(y0, S). Thus

PiVo ~ z0) ^ P(Vo - *) for all z €

Furthermore (note p is continuous) we have

p(yo ~ x0) ^ p(yQ - z) for all z € /s(x0) .

Thus p{y0 - x0) ^ dp(y0, / s (x0)) so we have equality since x0 6 /s(x0) . As a result

0 < p(l/o - x0) = dp(y0, S) = dp(yo,

If x0 € int(S) it is well known that /s(x0) = X and so dp(yo, Is(x0)) = 0. Thus x0

€dS. D

COROLLARY 3 . 3 . Let BR be a closed ball with centre at the origin and radius R
in a Banach space X = (X, ||.||). Suppose that F G U£{BR, X) is a countably condensing
map. Then there exist xo € BR and j/o S .F(xo) with

\\yo - a;o|| = d(yo,BR) = d(yo,IBR{xo));

here d(y0, BR) = inizeBa \\yo - z\\- More precisely, either (i). F has a fixed point x0 € BR,
or (ii). there exist XQ € BBR and yo € F(XQ) with

0 < 11j/o - *o|| = d(yo,BR) = d(yo,IBR{xo))-

PROOF: It is clear that p(x) = ||a;||/i? is the Minkowski functional on BR. Now
apply Theorem 3.2. D

REMARK 3.4. Theorem 3.2 and Corollary 3.3. extend [10, Theorem 1].

Now we apply our theorem to obtain the following fixed point theorem which contains
Theorem 2 of [10] as a special case.

THEOREM 3 . 5 . Let S be a closed, convex subset of a Banach space X with 0
G int(S). Suppose that F £ U£(S,X) is a countably condensing map and assume any
one of the following conditions hold for all x € dS\F(x):

(i) For each y 6 F(x),p(y - z) < p(y - x) for some z € /s(z);
(ii) For eaci y € F(x), there exist A with |A| < 1 such that Ax+(1-A)t/ € /s(z);
(iii) F ( x ) C / s M ;

(iv) For each A € (0,1), x £ AF(x);

(v) For each y e F(x) , t iere exist o 6 (l ,oo) such that pa(y) - 1 < pa{y -x);

(vi) For each y e F(x) , there exist fi G (0,1) such that ^(y) - 1 ^ pP(y - x).

Then F has a fixed point in S.

P R O O F : Theorem 3.2 guarantees that either
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(1) F has a fixed point in 5 ; or

(2) there exist x0 e dS and y0 € F(x0) (note also that x0 = r(y0) = yo/{p(yo)))
with

0 < p(yo) - 1 = p(vo - *o) = dp(y0, S) = dp(y0, Is{x0))

holding.

Suppose F satisfies condition (i). Now suppose (2) holds (with x0 and y0 as described
above). We show x0 € F(x0). Suppose x0 £ F(xQ). Then condition (i) implies that

p(y0 - z) < p{y0 - x0) for some z € Is{xo)-

This contradicts p(y0 - x0) — dp(y0, IS(XQ))-

Suppose F satisfies condition (ii). Now suppose (2) holds (with XQ and yo as described
above). We show x0 £ F(x0). Suppose x0 i F(x0). Then condition (ii) implies that there
exists A with |A| < 1 such that

(1-A)yo e/s(z)-

By (2) we have

0 < p{yo - *o) ^ p(yo - [Azo + (1 - A)i/o]) = p(X(y0 - x0))

= \MP{VO - xQ) <p(y0 - x0),

which is a contradiction.

If F satisfies condition (iii), then F satisfies condition (ii) by letting A = 0.

Suppose F satisfies condition (iv). Now suppose (2) holds (with x0 and y0 as de-

scribed above). We show xo € F(xo). Suppose xo ^ -^(^o)- Notice that

x0 = r(y0) = - p - and p(y0) > 1,

and this implies that

zo = Ao?/o where Ao = —.—r € (0,1).
P(yo)

This contracticts condition (iv).

Suppose F satisfies condition (v). Now suppose (2) holds (with xo and yo as described

above). We show x0 e ^(xo). Suppose x0 i F(x0). Then condition (v) implies that there

exists a € (1, oo) with pa(y0) - 1 < Pa(yo - x0). Let Ao = l/p{yo)- Note Ao € (0,1) and

This implies

p(yo - x0) > p{y0) - 1,
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and this contradicts p(yo — x0) = p{yo) — 1.

Finally assume F satisfies condition (vi). Using an argument similar to that above
(for condition (v)) we obtain the desired conclusion. D

COROLLARY 3 . 6 . Let BR be a closed ball with centre at the origin and radius R

in a Banach space X = (X, \\.\\). Suppose that F e U*(BR, X) is a countably condensing

map and assume any one of the following conditions hold for all x S 8BR\F(X) :

(i) For each y e F(x), \\y - z\\ < \\y - x\\ for some z G IBK{X);

(ii) For each y € F(x), there exist X with \X\ < 1 such that Xx + (1 - \)y

€ IBR{X);

(iii) F(x) C IBR(X);

(iv) For each X € (0,1), x i XF{x);

(v) For each y e F(x), there exist a € (1, oo) such that ||y||Q - Ra < \\y - x\\a;

(vi) For each y € F(x), there exist 0 € (0,1) such that \\y\\p - R? > ||y - x\\p.

Then F has a fixed point in B R .

Using the ideas in Theorem 3.2 (here r in Theorem 3.2 is replaced by the nearest point
projection) it is immediate that the analogue of Theorem 3 in [10] holds for countably
condensing maps; we leave the obvious details to the reader. Thus we have the following
theorem.

THEOREM 3 . 7 . Let 5 be a closed, convex subset of a Hilbert space X. Suppose
that F 6 U^(S,X) is a countably condensing map. Then there exist x0 e S and y0

6 F(x0) with

\\yo-xo\\ = d(yo,S) = d(yo,Is(xo));

here \\.\\ is the norm induced by the inner product. More precisely, either

(i) F has a Gxed point xo € 5 , or

(ii) there exist xo € dS and yo € F(XQ) with

0 < l l j / o - o
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