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TWO CONTRASTING PROPERTIES OF SOLUTIONS
FOR ONE-DIMENSIONAL STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS

TOKUZO SHIGA

ABSTRACT.  The paper is concerned with the comparison of two solutions for a one-
dimensional stochastic partial differential equation. Noting that support compactness of
solutions propagates with passage of time, we define the SCP property and show that
the SCP property and the strong positivity are two contrasting properties of solutions
for one-dimensional SPDEs, which are due to degeneracy of the noise-term coefficient.

1. Introduction and main results. Let us consider the following one-dimensional
stochastic partial differential equation (SPDE):

(1.1)

= Au(t,x) + b(u(t,x)) + a(u(t,x))W(t,x) (1 >0and x € R),
u(0,x) = f(x)

du(t, x)
ot

where A = a ~, W(t,x) is a space-time white noise, and a(«) and b(«): R — R are continu-
ous functions. Such SPDEs arise in various fields such as population biology, population
genetics, statistical physics and so on (cf. [1], [8], [7], [3], [4]).

We notice that the SPDE (1.1) should be understood in the sense of Schwartz distribu-
tions. Then under a mild assumption on a(u) and b(u), (1.1) is equivalent to the following
stochastic integral equation (SIE) (see §2 and also [7]):

u(t,x) = G()f (x) + fOI/RG(tf S, X, y)b(u(s, y)) dsdy

(1.2) . .
+ /0 ‘/R G(t —s,x,y) a(u(s,y)) W(s,y)dsdy,
where G(t,x,) = —A=exp—25 and GO f(0) = fr G(t,x,3) f(¥) dy.

In the present paper we are concerned with the comparison of two solutions for the
SPDE (1.1). Let C(R) be the totality of continuous functions on R, and let C}(R) and
Cj(R) (0 < n < 00) be the totality of C" functions with compact support and vanishing
at infinity respectively.

For f € C(R) let

[l = sup e f0|  (p €R).
XE
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We introduce subspaces Cier, and Cryp of C(R) by

Ciem = {f € CR) | f] (-5 < 00 forevery A > 0},
Cup = {f € CR) \ [flony < oo forevery A > 0}.

The topologies of these spaces are induced by norms {|f|_y) : A > 0} and {|f], : A >
0}, respectively.

We denote by C; the totality of nonnegative elements of Cy for # = tem, rap, ¢ or 0.

It is known that if a(u) and b(u) are Lipschitz continuous, then for every f € Ciey, the
SPDE (1.1) has a pathwise unique Cim-valued solution u(t,-) = u(t,-,w), (see [7] and
Theorem 2.2 below). Also, if a(u) and b(u) are continuous functions with a linear growth
condition, for every f € Ciy One can construct a space-time white noise W(z,x) and a
Ciem-valued solution u(z, x) of the SPDE (1.1) associated with W(z, x) defined on a suitable
probability space (see §2 for the detail and also [10]).

Now let us consider the following special case:

(1.3) a@) = /ju| and b) = 0.

Then for every f € Ct., there exists a C},,,-valued solution u(z, x) of (1.1) that is uniquely
determined in the law sense, and moreover, X;(dx) = u(t, x) dx defines a measure-valued
branching diffusion process (MBD) on R (see [8]). For the MBD process over R? Daw-
son and Iscoe [6] discovered the remarkable phenomenon that if the initial state Xo(dx)
has compact support, then so does X,(dx) for every + > 0 with probability one. Hence
for the SPDE (1.1) with (1.3), if u(0) = f > 0 is a continuous function on R with com-
pact support, the nonnegative solution u(¢, -) also has compact support. Thus the support
compactness propagates with the passage of time. Then we say the SCP property holds.
On the other hand C. Mueller [9] recently discussed the following case:

(1.4) a@) = ul* («>1) and bu)=0.

He proved that if u(0) = f > 0 is a continuous function with compact supportand f(x) > 0
for some x € R, then the solution u(z, x) of (1.1) satisfies

(1.5) P(u(t,x) >0foreveryx ER |t < aoo) =1 foreveryt >0,

where 0o = liMy 0o Op; 0n = inf{t > 0 | sup,cp u(t,x) > n}.

We note that if o = 1, P(0,, = 00) = 1, butif o > 1, the solution u(t, -) is defined up
to the explosion time 0, since the explosion might occur.

In this paper we would like to assert that the SCP property and the strong positivity
are two contrasting properties of solutions for one-dimensional SPDEs, which are due to
degeneracy of the noise-term coefficient a(u) at u = 0. Indeed we shall obtain sufficient
conditions for the SCP property and a strong comparison of solutions generalizing the
strong positivity as follows.
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THEOREM 1.1. Assume that a(u): R — R and b(u): R — R are continuous functions
such that for some constant C > 0

(1.6) la(u)| +|b(w)| < C(1 +|u|) foru €R.
(i) Suppose that
1.7 a(0)=0 and b(0)>0.

Then for every f € C.,, there exists a C,,-valued solution u(t, -) of the SPDE (1.1) asso-
ciated with a space-time white noise W(t, x) defined on a probability space with filtration
Q,F, F,P).

(ii) Suppose further that for each K > 0 there exists a constant ax > 0 such that
(1.8) ‘ la(u)| > axu'?  for0<u <K,
and that for some C > 0,
(1.9) |b(u)| < Clu| foru €R.

Then the SCP property holds, that is, if f € C(R), P(u(t, -) € CX(R) for every t > 0) =1
holds for every C, -valued solution u(t,-) of the SPDE (1.1).

tem

REMARK 1. Under the assumptions of Theorem 1.1 we do not know the uniqueness
of solutions for the SPDE (1.1), but the theorem asserts the SCP property holds for any
nonnegative solution.

REMARK 2. a(u) = |u|* (0 < a < 1/2) satisfies the assumptions of Theorem 1.1.

REMARK 3. Theorem 1.1 still holds even if A is replaced by a one-dimensional non-
degenerate diffusion operator.

We next consider an SPDE associated with a generalized Fleming- Viot diffusion pro-
cess over R, that is, an infinite-dimensional version of Gillespie and Sato’s diffusion model
in population genetics, (see [11] for the genetical motivation).

augt, %) = Au(t,x) + O'(X, u(t, x)) — u(t, x) /1; o(y, u(t, y)) dy + v/ a(x) u(t, x)W(t,x)
(1.10) — u(t,x) /R VaO) ut,y)W(t,y)dy (> 0,x ER)

u(0,x) = f(x)

where a(x): R — R is a uniformly positive bounded continuous function and o(x, u): R X
R — R is a continuous function satisfying, for some constant C > 0,

(1.11) |lo(x,u)| < Clu| forx € Randu € R.
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Then the SPDE (1.10) is rewritten in the following way: for every ¢ € C2°(R),
(1.12)
(u(n, ¢)

={f,p)+ /Ot { (u(x), Ag) + /R o(x, us, x))<p(x) dx — /R U(x, u(s, x)) dx {u(s), <p>} ds
+Mi(),

where (u, p) = [p u(x)¢(x)dx, and M,() is a martingale with quadratic variation process

(1.13)  (M(p)), = /0’(<u(s), ag?) — 2(uls), ap)(u(s), 2) + (u(s), @) (u(s), )2 ds.

If a(x) = «is constant and o(x, u) = o(x)u, (1.10) reduces to a standard form of Fleming-
Viot diffusion model incorporating selection. Then uniqueness in law of Ciep,-valued prob-
ability density soltuions for the SPDE (1.10) is known (cf. [8]), for which a key point is
that the integrand of (1.13) reduces to a quadratic polynomial of u(s). If a non-constant
af(x) is involved, it is a cubic polynomial of u(s), which makes the uniqueness problem
extremely difficult and it still remains open. However even in this case one can show that
for every probability density f in Cpm, there exists a Ciepy-valued probability density so-
lution u(z, x) of the SPDE (1.10) associated with a space-time white-noise W(, x) defined
on a suitable probability space (2, F, F, P).

THEOREM 1.2. The SPDE (1.10) has the SCP property, that is, if f € CHR) is a
probability density, then any C.-valued probability density solution u(t, -) of the SPDE
(1.10) satisfies

P(u(1,-) € CI(R) for every 1> 0) = 1.

In the case a(x) = o and b(u) = 0, Theorem 1.2 was proved by Dawson and
Hochberg [2] in the setting of measure-valued diffusion processes; however their proof is
very sophisticated and it is not applicable to the present case. So we shall, in §3, present
an alternative proof, which is simple and transparent.

We next obtain a strong comparison theorem for solutions of the SPDE (1.1) under a
Lipschitz condition on the coefficients, which extends Mueller’s result [9].

THEOREM 1.3.  Assuming thata(u): R — R and b(u): R — R are Lipschitz continuous,
let ui(t,x) and us(t,x) be two Cem-valued solutions of the SPDE (1.1) with the initial
conditions u1(0) = fi € Cem and u2(0) = fo € Ciem. Suppose that fi > fr and fi(x) >
fr(x) for some x € R. Then P(ul(t, Xx) > ux(t,x) for every t > 0 and every x € R) =1

Combining this with Theorem 2.2 we obtain

COROLLARY 1.4. Assume further that a(0) = 0 and b(0) > 0 in addition to the
assumptions of Theorem 1.3. Let u(t,-) be the unique Cym-valued solution of the SPDE
(1.1) with the initial condition u(0) = f € Ciem. Suppose that f > 0 and f(x) > 0 for
some x € R. Then P(u(t, x) > 0 for every t > 0 and every x € R) =1.

The proofs for Theorem 1.1 and 1.2 are essentially based on Iscoe’s lemma in [6] on
a non-linear differential equation with a singular boundary condition (see Lemma 3.1).
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On the other hand the proof of Theorem 1.3 is a refinement of Mueller’s arguments in
[9]. Although it seems that a dichotomy holds between the SCP property and the strong
positivity for general one-dimensional SPDEs (1.1) with a(0) = b(0) = 0, our results
give only a partial solution for this.

In §2 we summarize several basic facts on one-dimensional SPDEs. Most of them
seem to be known implicitly, but to make the paper self-contained we shall briefly give
their proofs in the appendix. The proofs of Theorem 1.1 and 1.2 will be given in §3, and
Theorem 1.3 will be proved in §4. In §5 we will discuss some examples.

2. Preliminaries and basic facts. Let (Q, F, F, P) be a complete probability space
with filtration, and let W(z, x) be an {7, }-space-time white noise, i.e. W(Z, x)>0.cg is an
{}:}-adapted centered Gaussian fields with

E(W(t, )W(/,x")) = 6(t— () 6(x—x") fors,/’ >0and x,x' € R.
For an { 7, }-predictable functional ¢(z, x, w): [0,00) X R X Q — R satisfying
/01 /R é(s,x,w)* dsdx < oo foreveryt >0,

one can define a stochastic integral [} [z ¢(s, x, w)W(s, x) ds dx as an {#:}-local martingale
with quadratic variation process [ [z f(s, X, w)? ds dx, (see [ 14] for the stochastic integral).
Suppose that we are given two {_‘}’,}-predictable functionals a(t, x,u,w) and
b(t, x,u, w): [0,00) X R X R x Q — R, and an { F, }-space-time white noise W(, x).
Let us consider the following SPDE:

du(t, x)
ot

@1 = Au(t,x) + b(t.x,u(t,x)) +a(t,x, u(t, x)) W(t, x)

u(0,x) = f(x).

More precisely, the SPDE (2.1) should be understood in the sense of the Schwartz distri-
butions, so that for every ¢ € C2°(R)
(u(0), 0) = {f, ) + /"<(u(s) Ap) + <b(s S u(s -)) @\) ds

9 k] . 0 k] L 9 9 /

2.1y .
* /o A/R a(s, x, u(s, x)) p(x)W(s, x) ds dx.

We assume that for every 7' > 0, there exists a constant Cr > 0 such that

(2.2) |a(t, x, u, w)|+b(t, x,u,w)| < Cr(1+|u|) for 0 <t < Tand (x,u) € RXR, P-as. w.

If an {7 }-predictable functional u(t,-) = u(t,-,w) is a Ciem-valued (Crap-valued) con-
tinuous process and satisfies the equation (2.1), we say u(t,-) is a Ciem-valued (Crap-
valued) solution of (2.1). Iwata discussed in [7] the equivalence of Cip,-valued solutions
of the SPDE (2.1) and the SIE (2.3) under the assumption: a(s, x, u, w) is bounded and
a(s,x,u,w) = a(u). We here generalize it slightly.
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THEOREM 2.1. Let f € Ciem. Under the condition (2.2), u(t,-) is a Ciem-valued solu-
tion of the SPDE (2.1) if and only if u(t, -) is an { F,}-predictable and C\em-valued contin-
uous process that satisfies the following SIE (2.3):

u(t ) = GO+ [ [ Gt 5,5, b(s.y.u(s, ) ds dy

2.3) . |
* /0 ./R Gt —s,x,y) a(s,y, u(s, )’))W(S, y)dsdy

fort>0andx € R.
The following Theorem 2.2 is a modification of Iwata [7], Theorem 4.1.

THEOREM 2.2 (EXISTENCE AND UNIQUENESS THEOREM). Suppose that functionals
a(t,x,u,w) and b(t, x, u, w) satisfy (2.2) and the following (2.4):

(2.4)  forevery T > O there exists an Lt > 0 such that P-a.s.
1a(z,x’ ul,(U) - a(t7x7 MZ,UJ)| + |b(t9-x’ Ui ’w) - b(thw uz, (JJ)( S LTlul - M2|
Jor0 <t <Tand(x,u;,u;) € RXRXR.

Then for every f € Ciem the SPDE (2.1) has a (pathwise) unique Cien-valued solution
u(t, x).

THEOREM 2.3 (NONNEGATIVITY OF SOLUTIONS). [In addition to the assumption of
Theorem 2.2 assume that P-a.s.

2.5) a(t, x, u,w) and b(t, x, u, w) are continuous in (x, u),

(2.6) a(t,x,0,w) = 0and b(t,x,0,w) > 0.

Let u(t,x) be the Cem-valued solution of the SPDE (2.1) with u(0) = f € C.,,. Then
P(u(t, ) > 0 for every t > 0) =1.

COROLLARY 2.4 (COMPARISON THEOREM).  Suppose that { F, }-predictable function-
als a(t,x,u, w) and bi(t, x, u, w) (i = 1, 2) satisfy the assumptions of Theorem 2.2. Let u(t, -)
be the Ciem-valued solution of the SPDE (2.1) associated with the coefficients a(t, x, u, w)
and b(t, x, u,w) having the initial condition u;(0) = f; € Ciem. Suppose further that

2.7) a(t,x,u,w) and b(t,x,u,w) (i = 1,2)are continuous in (x,u), P-a.s.
(2.8) bi(t,x,u,w) > by(t,x,u,w) fort>0, x ER, u €R, P-as.
(2.9) h z k.

Then P(u;(t, ) > uy(t,-) forevery t > O) =1

THEOREM 2.5 (EXISTENCE OF C},,-VALUED SOLUTIONS). ~ Suppose that for every T >

0 there exist Cr > 0and 0 < 0 < 1 such that for0 <t <T,x € Randu € R,

(2.10) la(t, x,u, )| < Cr(lu| + |u]),
2.11) |b(t, x, u,w)| < Crlul|, P-a.s.
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Let u(t, -) be a Ci,,,-valued solution of the SPDE (2.1) with u(0) = f € C},

- Then u(t, -)

isa Cr*ap-valued solution.

THEOREM 2.6 (EXISTENCE OF C},-VALUED SOLUTIONS). Let a(u):R — R and
b(u): R — R be continuous functions satisfying a linear growth condition; for some K > 0

(2.12) la@)| +|b(w)| < K(1 + |u]) foru € R.
Suppose that
(2.13) a(0)=0, b0)=>0.

Then for every f € Cr.,, there exist an {F;}-space-time white noise W(t,x) and a Cf,,,-
valued solution u(t, x) of the SPDE (1.1) with u(0) = f on a suitable probability space
with filtration (Q, F, %, P).

The proofs of these theorems will be briefly given in the appendix.

3. Proofs of Theorem 1.1and 1.2. Inthe case: a(u) = |u|'/? and b(u) = 0, Iscoe [6]
used a solution of a simple non-linear equation with a singular boundary condition to
prove the SCP property. So our strategy in proving Theorem 1.1 and 1.2 is to consider
how to reduce them to the case; a(u) = |u 1/2 and b(u) = 0. Indeed we will carry out it by
using some comparisons for Theorem 1.1 and by introducing an MBD-like process from
the solution of (1.10) for Theorem 1.2.

The following lemma is found in [6].

LEMMA 3.1.  Let ¢ > 0 be a fixed constant.
(i) Forr > 0 there exists a unique positive solution v(x) = v(x;r) € C*(—r, r) of the

equation
(3.1) V'(x) = ev(x)* for x| < r
ll{im+ v(x) = o0.

Moreover it holds that v(x;r) — 0 as r — oo uniformly on each compact interval.
(ii) Forany fixed h € C!(R), let us consider the following equation:

(3.2) V() = ev(x)? — h(x) forx €R.

Then there exists a unique positive solution v(x) = v,(x) € C(Z;(R) of (3.2). Moreover, if h
vanishes in (—r, r), it holds that

(3.3) va(x) < v r) for x| <r.

PROOF OF THEOREM 1.1. (i) follows from Theorem 2.6. To see (ii), let u(z,-) be a

C;,,-valued solution with u(0) = f € C/(R) of the SPDE (1.1). Let r > 0, T > 0 and

em

https://doi.org/10.4153/CJM-1994-022-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-022-8

422 TOKUZO SHIGA

K > 0 be fixed and set 0 = ogx = inf{t > 0 | |u()|o > K}, where | - |, stands
for the supremum norm. Since by Theorem 2.5 u(z, -) is C,*ap-valued continuous, it holds
ox — 00 as K — 00, P-a.s. Recalling ak of (1.8), for ¢ = ai( exp(~CT)/2 and h = 0¢
with a @ > 0 and ¢ € C!(R) we denote by vy(x) the solution of the equation (3.2). Set
w(t, x) = exp(—Ct) u(t, x), and use Ito’s formula with the C2-function vy(x). Then we have

exp(—(wit A o), vg) =0 [ ((s), 6) ds — exp(—{f. v0))

A

=/, exp(—(w(s), vp) — 9/(:(W(T),¢> dT)
3.4 :
X ((w(s), Cvg—Avy —0p) — e~ C“<b(u(s)), ve>
+ %efzcx <a(u(s))2, v§>> ds + a martingale.
Note by (1.8) and (1.9) that for0 < s < 0,

~ l -
—e’c“b(u(s,x)) > —Cw(s,x) and Eeizaa(tl(&X))7 > cw(s, x).

Since vy(x) is a solution of the equation (3.2), it follows from (3.4) that

Ao
E(exp(—(w(t A a),vg) — 0/0' (w(s), ¢) a’s)) > exp(—(f,vg)) forevery0 <t <T.
For the initial function f, take an » > 0 such that (—r, r) D the support of f. Note that by
(3.3)if ¢ € CH(R) vanishes in (—r, r), vg(x) < v(x : r) for |x| < r, hence
Ao
(3.5) E(exp(—@ /0 (w(s), d) ds)) > exp(—(f, v(-: r))) forevery 0 <t < T,

which implies

3.6) E(exp(—e /(;TM<W(S),I‘,'>ds)) > exp(—(f, (- : 1)),

where I¢(x) = 1if |x] > r and I(x) = O otherwise. Furthermore, letting § — 00 and
r — 00, by Lemma 3.1(i) we obtain

3.7) P(./Om<w(s), I£) ds = 0 for some r > 0) =1 foreveryT >0and K > 0,
which concludes the latter part of Theorem 1.1.

PROOF OF THEOREM 1.2.  First fix a constant ¥ so that
(3.8) o(x,u) + (a(x) — 7’)u <0 forxeRandu > 0.

Let u(t,x) be a Ciem-valued continuous probability density solution of the SPDE (1.10)
with u(0) = f being a continuous probability density function with compact support. Then
as in Theorem 2.4(i) one can show u(t, ) is Cryp-valued continuous. Setting

(3.9) bty = [ o(xutt,x) dx+ (), @) =7,
(3.10) Nip) = /0' 4 /R Va) u(s, 0 (x)W(s, x) ds dx,
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let us consider the following SDE:

(3.11) dz; = zb(t) dt + 7, dN,(1),
20 =1
Then the solution of (3.11) is given explicitly;
1 1
(3.12) u= exp(N,(l)+/O bls)ds — 5 [ tuts), o) ds),
hence
(3.13) P(z; > Oforeveryt >0andz;, — Oast— o0) = 1.
By (1.10), for f € C3(R),
(3.14)
(u(r), )

={f,o)+ ./Ot{<u(s),Aga> + ‘/R a(x, u(s,x))go(x) dx — /Ra(x, u(s,x)) dx(u(s), @)} ds

+Ni(p) — ~/(;’<u(S), @) dNy(1).

Let us define a C},,-valued continuous process w(z, -) by

(3.15) w(t, x) = zu(t, x).
Using Ito’s formula together with (3.14) we have
t t
(3.16) (w0 = (Fro)+ [ ((w05),80) +2(c(s), ) ds + [ 2 dN(eo),

where c(t,x) = a(x, u(t, x)) + (a(x) — V)u(t, x) <0 by (3.8).

For ¢ > 0 define 7 = 7. = inf{r > 0 : z, > ¢}. Denote by vy(x) the solution of the
equation (3.2) with &1 = ¢ for§ > 0and ¢ € C} and ¢ = %Eamm (Qmin = infeg a(x)).
By Ito’s formula

(3.17) .
exp(—(w(t AT),Vp) — 9./0 (w(s), &) ds) —exp(—{f, vg))
= (:M exp(—(w(s), vg) — 0 /{;\.<W(I‘), @) dr) C(s) ds + a martingale
where 1
C(s) = (WD), —Avy — 0¢) — z,(c(s), vg) + sz<u(s), avd)
1

> <w(s), —Avy— 06 + Eeammv5>

=0 for0<s<T.
Hence
(3.18) exp(—H /Om<w(s), é) ds) > exp(—(f,vy)) foreveryt>O0.

By the same argument as (3.5)—(3.7) we obtain

INT
(3.19) P( /0, (w(s), 1) ds = 0 for some r > 0) =1 foreverye >0andt> 0.

Since 7. — 00 as € — 0 holds by (3.13), it follows from (3.19) that u(z, x) has compact
support for every ¢ > 0 with probability one, completing the proof of Theorem 1.2.
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4. Proof of Theorem 1.3. We will prove the theorem by refining the method of
Mueller [9], which is based on a large deviation estimate for stochastic integrals with
respect to a space-time white noise.

To avoid technical complication we first assume that b(«) = 0. As stated in §2, (1.1)
with b(1) = 0 is equivalent to the following stochastic integral equation (SIE):

T .
“4.1) u(t,x) = G(1) f(x) + /0 ./R G(1 — s.x,y) a(u(s,y))W(s. y) ds dy.
The following estimate due to Mueller [9] which plays a key role in proving the theo-
rem.

LEMMA 4.1.  Let K > 0 be fixed and let b(t,y, w) be an { F,}-predictable functional
such that |b(t,x,w)| < Ke" T for every 0 < t < T/2 and every x € R almost surely.
Then there exist ¢; > 0 and ¢; > 0 depending on K such that for every 0 < ¢ < | and
every 0 < T <1

" G — ¢ xv Vi (Tl
P(u) ‘/RG(I s, x,9) b(s,y) W(A,y)a'sdy‘>ae

for some 0 <t <T/2andx € R) <o\ Te Hexp(—creTV4).

REMARK. If b(t, x, w) is non-random, the stochastic integral defines a two parameter
Gaussian fields, so the proof of Lemma 4.1 is quite standard. But for a random b(t, x, w),
a similar calculation is possible (see [9] for the details).

Suppose that for i = 1,2, u;(t,x) be the unique Cp-valued solution of the equa-
tion (4.1) with f; € Cem, and that fi > f> and fi(x) > fo(x) for some x € R. By
Corollary 2.4 it suffices to prove the theorem assuming f; — f> has compact support. Set
u(t,x) = uy(t,x) —ux(t,x) > 0and f = fi — f>. Then it satisfies

(4.2) u(t,x) = G() f(x) + /0’ /R Gt — s,x,y) a(s,y,u(s, 1)) Wis,y) dsdy  withf € C?.
where a(s, y, u,w): [0,00) X R X R x Q — R is an { 7, }-predictable functional defined by

“4.3) a(s,y, u,w) = a(u + us(s,y, w)) - a(uz(s,y, w)).

By the Lipschitz continuity of a(u), we have a constant L > O such that

4.4) la(s, y, u,w)| < Llu| for every (s, y,u,w) € [0,00) X R X R X Q.
Let
4.5) N(t,x) = /l / G(t—s,x v)a(v y, u(s y))W(s v)dsdy

’ ’ Jo Jr A S RO

LEMMA 4.2. Let M > 0 be fixed. Then there exist ¢y > 0 and ¢; > 0, depending on
M and L, such that if f(x) < Bli_pp(x) for every x € R with a § > O, then for every
0<e<land0<T <1

P<|N(t, x)| > eBe” T for some 0 < 1 < g and some x € R)

_. 1
<ce ™ exp(—czszT ).
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PROOE.  As is easily checked,
(4.6)
GO _yan(x) < Cye M forevery 0 <t < T < 1andx € R, with Cyy = ™'

Let
o = inf{t >0 u(t,x) > B(Cy + e~ """ for some x € R}
=00 if{}=0,
and set
r .
4.7 M(t,x) = /0 /R Gt — 5,x,9) I(s < o) s, y.u(s,y)) W(s. y) ds dy.

We claim that if 0 < e <1,
4.8)
P(|N(t,x)| > 8e T for some 0 < ¢ < T/2 and some x € R)

< P(|M(t,x)| > eBe” 71 for some 0 < 1 < T/2 and some x € R).
Suppose that
(4.9) IM(t,x)| < efe T "M forevery0 <1< T/2andx € R.
Since M(t,x) = N(t,x) forevery x € R and 0 < t < ¢, by (4.6) and (4.9) it holds
u(t,x) < B(Cy+e)e T foreveryx € Rand 0 <1< g A T/2.

Since u(t, ) is Ct,,-valued continuous by Theorem 2.4, this implies o A T/2 < 0. Hence
it follows T//2 < o, which yields

(4.10) [N(t,x)| < Eﬁe*(T*’M forevery0 <t <T/2and x € R.

Thus we obtain (4.8).
Finally, noting by (4.4) that b(s,y, w) = B~ (s < o) a(s, v, u(s, y)) satisfies

|b(s,y, w)| < L(Cy+ 1)e” 7D,

Lemma 4.1 is applicable for 37! M(t, x), completing the proof of Lemma 4.2.

We are now in position to prove Theorem 1.3. Choose @ < b and 3 > 0 such that
f(x) > Blap)(x) for every x € R. Fix an arbitrary M > 0 such as [-M/2,M /2] D (a,b)
and 7 > 0.

STEP 1. As easily checked, there is an mg = my(t,a, b, M) such that if m > mg and
(c,d) 2 (a,b)

1 t t
“4.11) G($)c.a(x) = ZI(C_M/m,dJrM/m)(x) for every m <s< P andx € R.
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STEP 2. We claim that if [-M,M] 2 (c,d) 2 (a,b) and f(x) > ol 4)(x) with an
a > 0, then for every m > my
a
=1
8 (
> 1 = c116™ exp(—e21671'/*m' /%),

t t
P(u(s,x) > = Liep/masm/m)(X) for every m <s<—andx¢€ R)

m

(4.12)

where ¢; and ¢, are the constants in Lemma 4.2, which depend on M and L.
To prove (4.12), by Theorem 2.2, it suffices to show it assuming that

2ol _ppn(x) 2> f(x) = ol q)().

By Lemma 4.2, forevery 0 <e < 1andm > mj

: t
P<|N(s,x)| > 2eae” "9 for some 0 < s < — and some x € R)
4.13) m
< c15_24 exp(—czazt"'l/4m'/4).

Since u(t, x) = G(1) f(x) + N(t, x), it follows from (4.11) and (4.13) that
o t t
P(u(s, %) < gl /maspa/m () for some = <5 < — and x € R)

t t M M
gP(N(s,x)<wg for some — < s < — and some ¢ — — §x§d+*>
8 2m m m m

t t
< P(|N(s,x)| > % for some — < s < — and some x € R)
8 2m m
< 116 exp(—c 16727 /4 m! /%),
Thus we get (4.12).

STEP 3. Let us define the events A; and By:

2k+1 k+1
A = |u(s,x) > /38_k1(a_Mk/m bemk/my(X) forevery s € [ b t, —t] and x € R]
’ 2m m

and

B, = [u(s x) > BS”‘I (x) forevery s € [ﬁt ! t} and x € R]

k= ,X) 2 (a—Mk/m,b+Mk [ m) Y m” om :

We set
(4.14) c(m) = 1 16% exp(—ca 16721 /4 m'/4).

Note that on the event A;_;

kt .
“(;’x) > B8 sty pmestii 1y jmy (¥) - fOr x € R,

By the Markov property, (4.12), (4.14) and Corollary 2.4

P(Ag | Frjm) =1 —c(m) P-as.onA; (1 <k<m)2),
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which yields
(4.15) PA; [ A M ---NAY) > 1—c(m) forl <k <m/2.

In the same way we have

4.16) P(By | By 1N---NBy) >1—c(m) forl <k<m/2.
Noting that
P( N 4n N Bk)zl—(l—P( N Ak))—(l—P( N Bk))
0<k<m /2 0<k<m/2 0<k<m/2 0<k<m /2

> (1= com)"*Pag) + (1 — ctm))" > PBo) — 1.
and

lim P(49) = lim P(By) = 1and lim (1 —com)" = 1,
m—o0 m—o00

M-—300

we obtain forevery t > 0Oand M > 0
M M
s < andeverya—z §x§b+z)

t
-~ 2
MO0 No<k<m /2 0<k<m/2

P(u(s,x) > 0 for every

Vi B~

=1

which concludes Theorem 1.3 in the case b(u) = 0.

Even if b(u) is not identically zero but a general Lipschitz continuous function, the
proofis essentially unchanged. For two Ciep-valued solutions u(#, x) and u,(¢,x) of (1.1),
u(t,x) = u(t,x) — up(t,x) > 0 satisfies
du(t, x)

ot

where a(s, y, u, w) and b(s, y, u,w): [0,00) X R X R x Q — R are { F,}-predictable func-
tionals defined by

(4.17) = Au(t, x) +b(t, %, u(t,x)) +a(t,x, u(t, x)) W(z, x)

(4.18) a(s,y,u,w) = a(u + us(s,y, w)) - a(uz(s, v, w))
(4.19) bis,y,u,w) = b(u+ux(s,y,w)) — b(us(s,y,w)).

By the Lipschitz continuity of a(u) and b(u), we have a constant L > 0 such that

(4.20) la(s, y,u,w)| < Llu| forevery (s,y,u,w) € [0,00) X R X R X Q
4.21) |b(s,y,u, w) < Llu| forevery (s,y,u,w) € [0,00) X R X R X Q.

Setting w(t, x) = eu(t, x), we have the following equation.
_ ! Ls “Ls
w(t,x) = GO f(x)+ /0 /R G(t—s,x,y) (Lw(s,y) +e b(s, v, e w(s, y))) dsdy

(4.22) ,
_ Ls —Ls L i
+./0 /R G(t— s,x,y)e"a(s,y, e " w(s,y))W(s, y) ds dy.
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Note that by (4.18) Lw(s, y) + ~'b(s,y,e “w(s,y)) > 0 holds and by (4.17) and (4.19)

‘/Or /R G(t— s, x, y)eLSa<S, v, e Ls w(s, V)) W(s,)c) ds dy

has the same estimate as N(t, x). Accordingly the arguments in the case b(u) = 0 are still
valid for general b(u), completing the proof of Theorem 1.3.

5. Examples. We here present two examples of one-dimensional SPDEs occurring
in population genetics.

EXAMPLE 1 (GENETICAL DIFFUSION MODEL WITH RANDOM SELECTION). Let us con-
sider the following SPDE:

ou(t, x)

5.1 5

= Au(t,x) + u(t,x)(1 — u(t,))W(t,.x) (1>0,x€R)
0<u0,x) <1

The SPDE (5.1) describes a continuum limit in space of a genetical diffusion model incor-
porating random selection, where A means one-dimensional nearest neighbour migration.
Since the coefficient a(u) = u(1—u)is Lipschitz continuousin 0 < u < 1, by Theorem 2.2
and 2.3, forevery u(0) € C(R — [0, 1]) the SPDE (5.1) has aunique C(R — [0, 1])-valued
solution u(t, x).

Furthermore, by Corollary 1.4, if f is neither identically O nor identically 1,0 <
u(t,x) < 1 holds for every t > 0 and x € R with probability one.

EXAMPLE 2. We next consider the following SPDE:

augt,x) = Au(t,x) + \/“(lix)<17— u(tx)) W(t.x) (t>0.x€R)

u(0,x) = f(x).

(5.2)

The SPDE (5.2) describes a continuum limit of one-dimensional stepping stone model
in population genetics. By Theorem 2.5, for every u(0,-) = f € C(R — [0, 1]) there
exists a space-time white noise W(t,x) and a C(R — [0, 1])-valued solution u(z, x) of (5.2)
on a suitable probability space. Furthermore one can prove the uniqueness of solutions
in the law sense by using a duality technique, (c¢f. [12]). In this case the coefficient is
not Lipschitz continuous, so that Theorem 1.3 is not applicable. Also the assumption of
Theorem 1.1 is not satisfied. It seems a somewhat subtle problem to see whether the SCP
property does hold or not for the SPDE (5.2).

6. Appendix. The theorems stated in §2 do not seem to be novel, since one can prove
them by repeating quite standard arguments in the stochastic calculus. However it would
be convenient to present their proofs briefly for selfcontainedness.

We first prepare several lemmas which will be frequently used in the proofs of Theo-
rems 2.1-2.6.
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LEMMA 6.1.  Let ¢(t,x,w):[0,00) X R X Q — R be a {F,}-predictable functional.
Then for each p > 0 there exists an absolute constant C, > 0 such that
(6.1)

E((./o’ /R (s, x, w)W(s, x) ds dx)zp) < C,,E((./(;l /R ¢(s,x,w)* ds dy)ll) fort>0,

whenever the stochastic integral is well-defined.

LEMMA 6.2. (i) There exists a constant C > 0 such that

./(;M, ./1;(0([ —5,%y) — G’ — s,x'y))2 dsdy

<Ct—7"?+|x —x|) fort,f >0andx,x €R,

(6.2)

where G(t,x,y) = 0 fort < 0.
(ii) For every \ € Rand T > 0,

(6.3) sup supe M /R G(1,x,y)eM dy < 0.

0<t<T x€R

LEMMA 6.3. (i) Let X(t, X)o<i<ixck be a two parameter process. Suppose that for
every \ > 0 there exist p > 0,7 > 2 and C) > 0 such that

(6.4) E(IX(t,x) = X( . X)*) < Cu(lt — ¢ + x — x| )e

for0<t ¢ <landx €R X € Rwith|x —x'| < 1.

Then X(t,-) has a Cem-valued continuous version.

(ii) Let X,(t, Yo<i<in>1 be a sequence of Ciem-valued continuous processes. Suppose
that for every \ > Q there exist p > 0, ¥ > 2 and Cy > 0 such that

(6.5) E(1X(t,x) = Xu(! . x)P) < Co(lt = 7" + [x = X'|")

for0<t? <1, x€R X €Rwith|x—x'| <1,andn > 1.

Then the sequence of probability distributions on C([0, 1] — Ciem) induced by X,(t, )
is tight.

(iii) Let X(t, ) be a Cier-valued continuous process. Suppose that for every A > 0 there
exist p > 0,7 > 2 and C, > 0 such that

(6.6) E(1X(t.x) — X(! . X)) < Co(|jt — £ + |x — x'[)e
for0 <t ¢ <1,x €R x' €Rwith|x —x'| < 1. Then X(1,-) is Crap-valued continuous
P-a.s.

LEMMA 6.4. Let A > 0, and U(t,x):[0,T] X R — R, be a measurable function
satisfying
6.7) sup /R e MU, x) dx < o0.

0<e<T*
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(i) Suppose for some C >0
6.8) Ut,x)<C /O' /;(z — )" Y26t — 5,x,y)U(s,y)dsdy for0<t<Tandx€R.

Then U(t,x) = 0 for every 0 <t < T andx € R.
(ii) Suppose for a measurable V(t,x):[0,T] X R — R, and some C >0
(6.9)
Ult,x) < Ci/('; ./1;(" s V2G(— 5, x,y)U(s, y) dsdy+ V(1,x) for0<t<Tandx € R.

If V(1,x) satisfies

(6.10) sup / MV, x) dx < o0,
0<r<T
then
6.11) sup / AU x) < 0.
0<i<T "

Lemma 6.1 follows from the martingale inequality, and Lemma 6.2 can be proved by
straightforward calculations. Lemma 6.3 is a variant of Kolmogorov-Totoki’s theorem
(cf. [13]), and Lemma 6.4 is a sort of Gronwall’s inequality, so their proofs are omitted.

PROOF OF THEOREM 2.1. Let
mp ={p € C(R)| ¢, and ¢" are in Crap}
equipped with the topology induced by a family of norms {| - |(x2) : A > 0}:
leloa = leloy + 1"l +1e" |0
and for T > 0 let D7, (T) = {f c C'*Z(IO, T) x R) | (1, ) is C%,_-valued continuous and

rap
aI(t, -) is Cryp-valued continuousin 0 <t < T}.
1°. Notice that C2°(R) is dense in Ccz

rap*

2°. Itis not difficult to show that the equation (2.1)" holds for every ¢ € C;
Crem-valued continuity of u(#), and a truncation method by stopping times.)
3°. Next we show that for every ¢ € Dy,p(T) and 0 < ¢ < T. Using 2°, we have

(u(0). 6(0)) = (f. 0(0)) + /((u(s)( -+ 8)605)) + (b{snu(5.9).609) )

* /0 /R“ 5.2, u(5. X)) ¢(s, X)W(s, x) ds d.

LetA = {1y =0<1n <--- <ty =t} with [A] = max <<y |t; —
functions ma(s) and TA(s) by ma(s) = f;_) and TA(s) = 1; for 1, < s < ;.
(6.13)

(u(®), o)) — {f, #(0))

= Z(<u<z,> O(t) — d(ti1)) + (ut) — ulti 1), ¢ 1))
= / (< 7rA(s) f(s)> + <u(s),Ad)(7rA(s))> + <b(s, -, u(s, ~)), (/)(WA(S))>) ds

+‘/0 ‘/Ra S, X, u(s,x))qb(TrA(s),x)W(s,x)dsdx.

(Use 1°,

rdp

(6.12)
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Itis easy to see that the first term of the r.h.s. of (6.13) converges as |A| — 0 to the second
term of the r.h.s. of (6.12), so it suffices to show that the second term of the r.h.s. of (6.13)
converges in probability as |A| — 0 to the third term of the r.h.s. of (6.12). For this let any
A > 0 be fixed, and for M > 0 let 7y = inf{s > 0 { |u(s)](_xy > M}. Note that 7y — 00
as M — oo by the continuity of u(s), and that

(6.14)

E( (i/(:ATM .[3 a(s, x, u(s, )C))q5(7TA(s),x) W(s, x) ds dx
TA\Tp ) 2
_ /0 ./R a(s,x, u(s, x))d)(s, x)W(s,x)ds dx) )

= E(/OWM /Ra(s, X, u(s,x))2(¢(7m(s),x) — qb(s,x))2 ds dx)

< Ci(1+ M) sup 2,

0<s<t

dp 2
=—(s 1/ XA
os (S)‘(w /A
which vanishes as |A| — 0. Hence the second term of the r.h.s. of (6.13) converges in
probability to the third term of the r.h.s. of (6.12) as |A| — 0; thus we have shown that
(6.12) holds for every ¢ € D2, ().
4°. Let ¢5(t,x) = G(T — t,a,x). Then ¢$ € Drzap(T), so by 3° and
d¢

g(t,x) +Ad(t,x) =0 for0 <t <Tandx €R,

we get
G(T — D u(t)(a) = G(T) f(a) + /0 ' /R G(T — 5,a,%) b(s,x,u(s, x)) ds

* /0, _/R G(T = s,a,%) a(s,x, u(s, x)) W(s,x)dsdx fora ¢ R.

Hence letting t — T, we see that u(t, x) satisfies the SIE (2.3).

5°. Conversely, let u(f) be an {7,}-predictable and Cier-valued continuous process
which satisfies the SIE (2.3). To see that u(¥) satisfies (2.1)" insert (2.3) into fj(u(s), Ap) ds.
Then a key part is to show

/0’ /R</() /R G(s — r,x,y)a(r,y,u(r,y)) W(r,y) drdy>A<,0(x) ds dx
- /J /R (/I Gls = nN(ap)) d“)“(s’ ¥, u(s, y))W(r,y) drdy
- ./ol ./I;’(G(t_ nNe®) — np(y)) a(r,y, "(r,y))W(r,y) drdy,

which is justified using a stochastic Fubini theorem (¢f. Lemma 2.4 in [7]). Thus we can
prove Theorem 2.1.

PROOF OF THEOREM 2.2,  1°. Consider Picard’s iterative approximation {u,(z, x)} for
the equation (1.2); up(t,x) = G(1) f(x) and

1 (00) =GOS + [ [ Gt — 5,2, b(s, 3,205, ) ds dy

(6.15) . |
* /() ‘/R Gt = s.x.) a(s, ¥ Un(s, Y)) W(s,y) ds dy.
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Using Lemma 6.1 and 6.2 together with Holder’s inequality, one can easily show that
SUPg<<r Jr € M Elun(1,x)|% dx < oo forevery A >0,p >0,T >0and n > 0, and

—Alx 2 i 172 —\x NG
(6.16) [ e Eluy1(1,9) degcp,T,A(H/O [ =92 Eluy s, )] ”dsdx).
It follows from (6.16) that for every A > 0,p > 0and 7 > 0

(6.17) sup sup '/Re_AlxlEW,,(t,x)lz” dx < oo.

n>1 0<e<T

Also, by (2.4) and Holder’s inequality,
(6.18)
[R W Bt (1, %) — un(t, 1) dx

! a-1/2,-Al _ 2 <
< Cpra /0 /R (t — )"V 2e M Efuy(5,5) — up_1 (5, 0| dsdx  for0 <t <T,
so that there exists an { F, }-predictable functional u(t, x, w) such that

(6.19) sup / e*M‘|E(|u(t,x)|2p) dx <oo forevery A >0, p>0and T >0,
o<r<r /R

lim sup Re—*’xfElu,,(z,x) —u(t,x)|*dx=0 forA>0,p>0andT >0,

n—0o0 OSIST \

and u(t, x) satisfies
u(t,x) = G(0) f(x)+/0t [ Gt = 5.5 b(s, v u(s. ) ds dy

+ fo’ /R G(t—s,x,y) a(s, v, u(s, y))W(s, y)dsdy

P-a.s. for almost every r > 0 and x € R.
2°. Let

(6.20)

T .
X(t,x) = /0 /R G(t—s,xy) a(s, v, u(s, y)) W(s,y)dsdy.
Using Holder s inequality, Lemma 6.1 and (2.2), we see that forp > landg = p/(p—1),
E(|X(t,x) — X(¢',.x)|"")

<Cpr </0tw /R(G(I —s5,xy) — G — s, x’,y))2 ds dy)p/q

X /Otw /R(G(t —5,xy) — G — s,x,y))2<1 + E(|u(s,y)|2”)> ds dy,

so, by Lemma 6.2 and (6.19) one can check the moment condition (6.4) for X(¢, x).

On the other hand it is easy to see that Y(z,x) = fj [r G(t—s,x,y) b(s, y, u(s,y)) ds dyis
Ciem-valued continuous. Hence u(z, -) indeed has a Ceepy-valued continuous version which
is a Cemp-valued solution of the SPDE (2.1).

3°. We next show the uniqueness of Ce,-valued solutions of (2.1). Let u(t, ) and v(z, )
be two Ciem-valued solutions of (2.1), and for an arbitrarily fixed A > 0 and n > 1 set

o, = inf{t >0 | |u(®)] /3 > nor [v(D|_y/3 > n}.
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Note that w,(t, ) = (u(t, ) —w(t, -))I(t < 0,) satisfies |w, (1, x)] < 2ne*/3 and
6.21)

we(t,x) = I(t < 0,) .[; ‘/I; Gt — s, x, V(s < U,,)(b(s, v, u(s, y)) — b(s, v, v(s, y))> dsdy
+1(t < o) /0' [, G = 5,5, 9)1(s < 02)
(a(s, v, u(s, y)) - a(s, v, (s, y))) W(s, y) ds dy.

Using the condition (2.4) and a similar argument to get (6.18), we have C, r > 0 such
that
(6.22)

—Mx ! - —Alx
/Re Al |E|w,,(t,)c)|2 dx < C”/o ds (t — s)~/? ./Re Al |Elw,,(s,x)|2 dx for0<t<T,

hence by Lemma 6.4, P(u(1,-) = w(1,-) for0 <1 < ,) = 1 holds. Finally, since u(, -)
and v(z,-) are Cyp-valued continuous, o, — 00 as n — 0o P-a.e., and u(t,:) = v(t,")
holds for every ¢t > 0 with probability one. Thus the proof of Theorem 2.2 is complete.

PROOF OF THEOREM 2.3. 1°. For ¢ > 0, choose a nonnegative and symmetric C*-
function p.(x) defined on R satisfying

pe(x) =0 for|x| > e and /R P2 = 1.
Define a spatially correlated noise W:(z) (x € R) by
(6.23) We) = [, (e = )Wty dy.

Note that for each x € R, Wi(f) = [ Wi(s) ds is a one-dimensional Brownian motion.
2°. Setting A; = (G(e) — I)/e for € > 0, consider the following equation:
(6.24)
ot t A
w6 = [0+ [ (Bt (5,0 +b(s, %, u(5,) ) ds+ [ als,x,u.(5,) aWi(s) (€ R),

where the last term is a standard one-dimensional stochastic integral.
Assume that for every T > 0 there exists a Cr > 0 such that

(6.25) |a(t,x,u,w)—a(t,x',u', w)+|b(t, x,u, w) — b(t,x',u',w)| < Cr(Ju—u'|+|]x—x"|)

for0 <¢<T, x,x',u,u’ €R,P-as.

Then one can show that for every f € Cien, (6.24) has a unique Ciep-valued solution
u:(t,x).

3°. We may assume #(0) = f is bounded; otherwise it can be reduced to this case by a
standard approximation procedure.

4°. We claim

(6.26) P(u.(t,) > 0 forevery t > 0) = 1.
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Noting that for each x € R, u.(t,x) is a semi-martingale, apply Ito’s formula with a
function p(u) = —min{u,0}, being approximated by smooth functions as in a one-
dimensional case (cf. [5], p. 437). Since b(s,x,u,w) > —Lr|u| by (2.4) and (2.6), for
0 <t <Tandx € R we see

E(ap(ut(t,x) > = —/ ( u (5,x) < 0)(A\,—u5(s,x,)+b(s,x,u,(s,x)))) ds
(6.27) <(LT+1/5)/ ( u.(s, x)))
+(1/¢) /0 ./R G(e,x,y)E(cp(u_.(s,y))> ds dy.

Henoe, by Gronwall’s lemma for sup,p E(p(u.(t,x)), E(p(u.(t,x)) = O forevery t > 0
and x € R, which yields (6.26).
5°. Let

(6.28) G.(1) = expiA. = ¢/° 3 > (t/e) s)f,

n= O

L Gne)= e T+ R.(1),
R.(t,x,y) = ¢ '/* Z ([/ )’ ~——G(ne, x,y).
n=1

We use the following estimates, which are checked by elementary calculations.

/R(txy) dv<\J>"/°
8

(ii) For some a > 0 and 3 > 0

LEMMA 6.6. (i)

/I; R.(t,x,y) — G(t,x,y)|dy < e™/" + ac /D)'/? ifO< e/t <.
(iii)

BN 5 _
r]{l}(]) ./0 ./R (Rr (s,x,y) — G(s, x, y)) dsdy=0 fort>0andx € R.

6°. Let u(z, x) be the unique Ciey-valued solution of the SPDE (2.1). u(z, x) and u.(¢, x)

satisfy
(6.29) u(t0) = G A+ [ [ Gl = s5.x3)b(s.y.u(s.) dsdy
* ./0, /R G(t — s.x,y) a(s,y,u(s,y))W(s, y) ds dy.
and
u:(t,x) = G.() f(x) + /0’ /R G.(t—s,x, dy)b(s,y, Mf(Av,y)) ds
(630 + /(,f e als,x, uc(s,x)) dWi(s)

+ /0’ /R R.(t = s,x,y) a(s,y, u(s.y)) dW;(s) dy.
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Since f is bounded, it follows from (6.29), (6.30) and Lemma 6.6 that for every T > 0,

(6.31) sup sup supE(lug(t,x)|2) < 00,
0<e<1 0<t<T x€R
(6.32) sup sup E(|u(z,x)|*) < 0.
0<I<T x€R

7°. By (6.29), (6.30) and Lemma 6.1, for some C > 0
(6.33)
E(Ju-(t,x) — u(t,x)*)

< c{ G000 = G S + E(| [ e/ b(s,x u.(5.) ds)z)
* E(V(; ./R R.(r— s,x,y)(b(S, s us(s,y)) - b(s, v, u(s, y))) ds dy,z)
+ E<1f0r /R(Rf(t —5,x,) — G(t — 5,x,))b(s,y, u(s,y)) dsdy'z)
+ /Of efz(rfs)/sE<a(s’ X u(s, x))z) ds
+ /Or/RE(VR R.(t—s,x, z)(a(s,z, u.(s,2)) — a(s, z u(s, z)))pf(y —2) dz‘z) dsdy
+ /(: /RE('/R R.(t— s,x, Z)(a(s, z,u(s,2)) —a(s,y, u(s,y)))pg(y —2) dz)z) ds dy
+ /()tA(/R Rt —5,%,2)p-(y — 2)dz — G(1 — s,x,y))zE(é(s,y, u(s,y))z) dsdy}

8
=3 Jile, t,x).
=1

Using (2.2), (6.25), (6.30), (6.31) and Lemma 6.6, for every T > 0 we havea Cr > 0
such that

Jse,00) + Jole,1.x) < Cp [ (1= )72 sup B(Juc(s, ) — u(s, y)?) ds
(6.34) 0 veR

forO0 <¢t<Tandx €R,
and

(6.35) lim sup supJi(e,t,x) =0 for1 <k <8 withk # 3,6.

£=00<<T xeR

Thus, setting U(e, 1) = sup, g E(lug(t,x) - u(t,x)lz), we have an H(e, t) such that

(6.36) Ue, ) < Cr /0 '(z — ) V2U(e,s)ds+ H(e,t) (0<t<T),
(6.37) lim sup H(e, t) = 0.
e=00<<T

Hence, by Gronwall’s lemma we get

(6.38) lim sup sup E(lug(t. Xx) — u(t,x)|2) =0 foreveryT > 0.

£=00</<T xeR
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8°. By (6.26) and (6.38) the nonnegativity of u(z, x) is inherited from that of u.(z, x).
Finally, it is a routine task to relax the assumption (6.25) to the continuity condition (2.5),
so it is omitted. Thus the proof of Theorem 2.3 is complete.

PROOF OF THEOREM 2.5. 1°. By (2.11),
(6.39)
E(u(t,x))

!
— GO () + /0 /R G(t — 5,%,y) E(b(s, v, u(s, y))) ds dy
< G f(x)+ Cr / ' / G(t — 5,x,y)E(u(s,y)) dsdy for0<t<Tandx€R.
0 Jr
Since f € (7, it follows from Lemma 6.2 and 6.4 that for every A > 0 and T > 0,
6.40 su AME(u(t, x)) dx < oo.
(6.40) sup. J M E(ut,»)
2°. Using Lemma 6.1 and Holder’s inequality, for every T > 0 and p > 0 we have a
Crp > 0O satisfying
(6.41)
2
E(u(t, ) < Crp{ (G f )"

! ~-1/2 2 N2l )
+/0 /R(t—s) / G(t-s,x,y)(E(u(s,y) ”)+E(u(5,y)/ )) dsdy}
forO<t<Tandx €R.
3¢, Suppose that forp >0, A >0and T > 0,

6.42 su A E(u(r, x)%0) dx < o00.
( ) OSET/Re (u( x) ) x
Then Lemma 6.4 is applicable for (6.40); hence it follows
(6.43) sup /R MME(u(t, x)™) dx < 0.

0<t<T

Accordingly, by an induction argument starting at (6.43) and Holder’s inequality together
with (6.41) and (6.42), (6.43) holds forevery A > 0,p >0and T > 0.

4°, Using (6.43) and Holder’s inequality, one can check the moment condition (6.6)
for

1 .
X(1,%) = /0 /R G(t — s,x,y)as,y, u(s,y) ) W(s, y) ds dy;
hence X(t, -) is Crap-valued continuous.
Moreover, by (6.42) and (2.11) Y(t,-) = [{ [r G(t — 5,-,) b(s, Y, u(s,y)) dsdy is Crap-
valued continuous; hence u(t, -) is Cp-valued continuous in ¢ > 0 P-a.s., completing the
proof of Theorem 2.5.

PROOF OF THEOREM 2.6. 1°. Choose two sequences of Lipschitz continuous func-
tions {a,(u)} and {b,(u)} such that

(6.44) |an )| + |bp(w)] < K(1+|u|]) foru€ Randn >1,
(6.45) a(©0) =0, by(0)>0 forn> I
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and that {a,(u)} and {b,(u)} converge to a(u) and b(u) uniformly in u € R as n — oo.
Then by Theorem 2.3 there exists a unique C;,_-valued solution u,(t, -) of the SPDE (1.1)

tem

with a,(u) and b, () for each n > 1. Using (6.44) and (6.45) and the same arguments as
Theorem 2.2 together with Lemma 6.3, one can check the moment condition (6.5), so that
the family of probability distributions on C([0, T — Ct...) induced by {u.(z, )} is tight.
2°.Itis aroutine task to see that any limit point of the family is realized as a Cyep,-valued
solution of the SPDE (1.1) with a(u) and (1), thus we complete the proof of Theorem 2.6.
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