
Can. J. Math. Vol. 46 (2), 1994 pp. 415-437 

TWO CONTRASTING PROPERTIES OF SOLUTIONS 
FOR ONE-DIMENSIONAL STOCHASTIC 
PARTIAL DIFFERENTIAL EQUATIONS 

TOKUZO SHIGA 

ABSTRACT. The paper is concerned with the comparison of two solutions for a one-
dimensional stochastic partial differential equation. Noting that support compactness of 
solutions propagates with passage of time, we define the SCP property and show that 
the SCP property and the strong positivity are two contrasting properties of solutions 
for one-dimensional SPDEs, which are due to degeneracy of the noise-term coefficient. 

1. Introduction and main results. Let us consider the following one-dimensional 

stochastic partial differential equation (SPDE): 

(1.1) ^ = Au(t9x) + b(u(t,x))+a(u(t,x))W(t9x) (t > 0 andx G /?), 

u(0,x)=f(x) 

where A = J^, W(t,x) is a space-time white noise, and a(u) and b(u)\ R—+ Rare continu­

ous functions. Such SPDEs arise in various fields such as population biology, population 

genetics, statistical physics and so on (cf. [1], [8], [7], [3], [4]). 

We notice that the SPDE (1.1) should be understood in the sense of Schwartz distribu­

tions. Then under a mild assumption on a(u) and b(u), (1.1) is equivalent to the following 

stochastic integral equation (SIE) (see §2 and also [7]): 

(1-2) 
u(t,x) = G(t)f(x) + f j G(t- s,JC,y) b(u(s,y)) dsdy 

G(t — s, x9 y) a(u(s, y)^j W(s9 y) ds dy, 

where G(t,x,y) = ^ e x p - ^ and G(t)f(x) = jRG(t9x9y)f(y)dy. 

In the present paper we are concerned with the comparison of two solutions for the 

SPDE (1.1). Let C(R) be the totality of continuous functions on R9 and let C^(R) and 

GQ(R) (0 < n < oo) be the totality of C1 functions with compact support and vanishing 

at infinity respectively. 

F o r / G C(R) let 

lf|(p) = sup|^W/(jc)| (peR). 
xeR 

Received by the editors August 5, 1992. 
AMS subject classification: 60H15. 
Key words and phrases: SPDE, compact support property, strong comparison theorem. 
© Canadian Mathematical Society 1994. 

415 

https://doi.org/10.4153/CJM-1994-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-022-8


416 TOKUZO SHIGA 

We introduce subspaces Ctem and Crap of C(R) by 

Ctem = {fe C{R) | |f |(_A) < oo for every A > 0}, 

Crap = \fe C(R) | [f|(A) < oo for every A > 0}. 

The topologies of these spaces are induced by norms {[/"|(_A) : A > 0} and {\f\(\) : A > 
0}, respectively. 

We denote by CJ the totality of nonnegative elements of C# for # = tern, rap, c or 0. 
It is known that if a(u) and b(u) are Lipschitz continuous, then for every/ G Ciem the 

SPDE (1.1) has a pathwise unique Ctem-valued solution u(t, •) = u(t, -,u;), (see [7] and 
Theorem 2.2 below). Also, if a(u) and b(u) are continuous functions with a linear growth 
condition, for every / G Ctem one can construct a space-time white noise W(t, x) and a 
Ctem-valued solution w(r, x) of the SPDE (1.1) associated with W(t,x) defined on a suitable 
probability space (see §2 for the detail and also [10]). 

Now let us consider the following special case: 

(1.3) a(u) = y/\u\ and b(u) = 0. 

Then for every/ G C êm there exists a C£m-valued solution u(t, x) of (1.1 ) that is uniquely 
determined in the law sense, and moreover, Xt(dx) = uit,x)dx defines a measure-valued 
branching diffusion process (MBD) on R (see [8]). For the MBD process over Rd Daw­
son and Iscoe [6] discovered the remarkable phenomenon that if the initial state Xo(dx) 
has compact support, then so does Xtidx) for every t > 0 with probability one. Hence 
for the SPDE (1.1) with (1.3), if w(0) = / > 0 is a continuous function on R with com­
pact support, the nonnegative solution u(t, •) also has compact support. Thus the support 
compactness propagates with the passage of time. Then we say the SCP property holds. 

On the other hand C. Mueller [9] recently discussed the following case: 

(1.4) aiu) = \u\a (or > 1) and b(u) = 0. 

He proved that if w(0) = / > 0 is a continuous function with compact support and/(x) > 0 
for some* G /?, then the solution u(t,x) of (1.1) satisfies 

(1.5) P(u(t, x)>0 for every x e R\ t < cr^) = 1 for every / > 0, 

where a^ = lim^oo on, an = inf{r > 0 | supx€7? uit,x) > n}. 
We note that if a = 1, Pia^ = oo) = 1, but if a > 1, the solution u(t, •) is defined up 

to the explosion time aoo, since the explosion might occur. 
In this paper we would like to assert that the SCP property and the strong positivity 

are two contrasting properties of solutions for one-dimensional SPDEs, which are due to 
degeneracy of the noise-term coefficient a(u) at u = 0. Indeed we shall obtain sufficient 
conditions for the SCP property and a strong comparison of solutions generalizing the 
strong positivity as follows. 
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THEOREM 1.1. Assume that a(u): R —> R and b(u): R —> R are continuous functions 
such that for some constant C > 0 

(1.6) \a(u)\ + \b(u)\<C(\ + \u\) forueR. 

(i) Suppose that 

(1.7) a(0) = 0 and b(0)>0. 

Then for every f G C^m there exists a C[tm-valued solution u(t, •) of the SPDE (1.1) asso­
ciated with a space-time white noise W(t,x) defined on a probability space with filtration 
(Q,f,fhP). 

(ii) Suppose further that for each K > 0 there exists a constant ax > 0 such that 

(1.8) \a(u)\>aKu1/2 forO<u<K, 

and that for some C > 0, 

(1.9) \b(u)\<C\u\ forueR. 

Then the SCP property holds, that is, iff G C^(R), P(u(t, •) G (^(R) for every t > 0) = 1 
holds for every C[^m-valued solution u(t, •) of the SPDE (1.1). 

REMARK 1. Under the assumptions of Theorem 1.1 we do not know the uniqueness 
of solutions for the SPDE (1.1), but the theorem asserts the SCP property holds for any 
nonnegative solution. 

REMARK 2. a(u) = \u\a (0 < a < 1/2) satisfies the assumptions of Theorem 1.1. 

REMARK 3. Theorem 1.1 still holds even if À is replaced by a one-dimensional non-
degenerate diffusion operator. 

We next consider an SPDE associated with a generalized Fleming-Viot diffusion pro­
cess over/?, that is, an infinite-dimensional version of Gillespie and Sato's diffusion model 
in population genetics, (see [11] for the genetical motivation). 

du(t,x) / \ r / \ » . 
— - — = Au(t,x) + cr[x, u(t,x)) — u(t,x) / a[y, u(t,y)) dy + y/oc(x) u(t,x)W(t,x) 

(1.10) -u(t,x) f Ja(y)u(t,y)W(t9y)dy (t>0,xeR) 
JR 

w(0,x) = / ( * ) 

where a(x): R —• R is a uniformly positive bounded continuous function and <J(JC, U):RX 

R —> R is a continuous function satisfying, for some constant C > 0, 

(1.11) \a(x,u)\ < C\u\ forjc G R and u G R. 
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Then the SPDE (1.10) is rewritten in the following way: for every (f G C™(R), 

(1-12) 

(K(0 , <f) 

— (f,(f)+ / l(u(x),A(f) + / a(xiu(s,x))(f(x)dx— / a(x,u(s,x))dx(u(s),(p}\ds 

+ Af,(y>), 

where (u,(f) = JR u(x)(f(x) dx, and Mt((f) is a martingale with quadratic variation process 

(1. 13) {M(ip))t = f((u(s), a^2) - 2{u(s\ a<p)(u(s), <p) + (u(s), a)(u(s), if)2) ds. 

If a(x) = a is constant and a(x, u) = o(x)u, (1.10) reduces to a standard form of Fleming-

Viot diffusion model incorporating selection. Then uniqueness in law of Ctem-valued prob­

ability density soltuions for the SPDE (1.10) is known (cf. [8]), for which a key point is 

that the integrand of (1.13) reduces to a quadratic polynomial of u{s). If a non-constant 

a(x) is involved, it is a cubic polynomial of u(s), which makes the uniqueness problem 

extremely difficult and it still remains open. However even in this case one can show that 

for every probability density/ in Ctem, there exists a Ctem-valued probability density so­

lution u(t,x) of the SPDE (1.10) associated with a space-time white-noise W(t,x) defined 

on a suitable probability space (Q, f, ^Fh P). 

THEOREM 1.2. The SPDE (1.10) has the SCP property, that is, iff G Q(fi) is a 

probability density, then any C^em-valued probability density solution u(t, •) of the SPDE 

(1.10) satisfies 

P(u(t, •) G C^XR) for every t > O) = 1. 

In the case a(x) = a and b(u) = 0, Theorem 1.2 was proved by Dawson and 

Hochberg [2] in the setting of measure-valued diffusion processes; however their proof is 

very sophisticated and it is not applicable to the present case. So we shall, in §3, present 

an alternative proof, which is simple and transparent. 

We next obtain a strong comparison theorem for solutions of the SPDE (1.1) under a 

Lipschitz condition on the coefficients, which extends Mueller's result [9]. 

THEOREM 1.3. Assuming thata(u)\ R—> Randb(u): R—> Rare Lipschitz continuous, 

let u\(t,x) and U2(t,x) be two Ctem-valued solutions of the SPDE (1.1) with the initial 

conditions u\(0) = f\ G Ctem and U2(0) = f2 E Ctem. Suppose that f > fa andf\(x) > 

fa(x) for some x G R. Then P(u\(t,x) > U2(t,x) for every t > 0 and every x G R) = 1. 

Combining this with Theorem 2.2 we obtain 

COROLLARY 1.4. Assume further that a(0) = 0 and b(0) > 0 in addition to the 

assumptions of Theorem 1.3. Let u(t, •) be the unique CiQm-valued solution of the SPDE 

(1.1) with the initial condition w(0) = / G Ciem. Suppose that f > 0 andf(x) > 0 for 

some x G R. Then P(u(t,x) > Ofor every t > 0 and every x G R) — 1. 

The proofs for Theorem 1.1 and 1.2 are essentially based on Iscoe's lemma in [6] on 

a non-linear differential equation with a singular boundary condition (see Lemma 3.1). 
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On the other hand the proof of Theorem 1.3 is a refinement of Mueller's arguments in 
[9]. Although it seems that a dichotomy holds between the SCP property and the strong 
positivity for general one-dimensional SPDEs (1.1) with a(0) — b(0) = 0, our results 
give only a partial solution for this. 

In §2 we summarize several basic facts on one-dimensional SPDEs. Most of them 
seem to be known implicitly, but to make the paper self-contained we shall briefly give 
their proofs in the appendix. The proofs of Theorem 1.1 and 1.2 will be given in §3, and 
Theorem 1.3 will be proved in §4. In §5 we will discuss some examples. 

2. Preliminaries and basic facts. Let (Q, jF, %, P) be a complete probability space 
with filtration, and let W(t,x) be an {^7}-space-time white noise, i.e. W(t9x)t>o^R is an 
{^-adapted centered Gaussian fields with 

E(W(t, x)W(t\ x )) = S(t - t') è(x - x) for t, t' > 0 and x, x G R. 

For an {^>}-predictable functional </>(£, x, UJ): [0,00) x R x Q —• R satisfying 

(s, x, UJ)2 ds dx < 00 for every t > 0, M**> 
one can define a stochastic integral JQ JR 4>(s, x, UJ) W(S, X) ds dx as an {^}-local martingale 
with quadratic variation process JQ SR/(S, X, UJ)2 ds dx, (see [14] for the stochastic integral). 

Suppose that we are given two {^}-predictable functionals a(t,x,u,uj) and 
b(t,x, u, UJ): [0,00) xRxRxQ-^R, and an {^>}-space-time white noise W(t,x). 

Let us consider the following SPDE: 

(2.1) —^— = Au(t,x) + b(t,x,u(t,x)) +a(t,x,u(t,x))W(t,x) 

u(0,x) = f(x). 

More precisely, the SPDE (2.1) should be understood in the sense of the Schwartz distri­
butions, so that for every <p G C^°(R) 

(u(t),if) = (f,tp)+ I ((u(s),A<p) + (b(s,-9u(s,-)),(p))ds 

+ a(s,x,u(s,x)jip(x)W(s,x)dsdx. 

We assume that for every T > 0, there exists a constant Cj > 0 such that 

(2.2) \a(t,x,u,v)\+b(t,x,u,u))\ < Cr(l + |w|)for 0 < t < Tand (x, u) G RxR, P-a.s. UJ. 

If an {fc}-predictable functional u(t, •) = u(t, -,UJ) is a Ctem-valued (Crap-valued) con­
tinuous process and satisfies the equation (2.1), we say u(ty •) is a Ctem-valued (Crap-
valued) solution of (2.1). Iwata discussed in [7] the equivalence of Ctem-valued solutions 
of the SPDE (2.1) and the SIE (2.3) under the assumption: a(s,x, u,<J) is bounded and 
a(s, x, u, UJ) — a(u). We here generalize it slightly. 
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THEOREM 2.1. Letj G Ctem- Under the condition (2.2), u(t, •) is a CtQm-valued solu­

tion of the SPDE (2.1 ) if and only iju(t, •) is an {lTt}-predictable and Ctem-valued contin­

uous process that satisfies the following SIE (2.3): 

u(t,x) = G(t)f(x) + G(t — s, x, y) b(s, y, u(s, y)) ds dy 

fir 
+ G(t—s,x,y)a(s,y,u(s,y))W(s,y)dsdy 

for t > 0 andx G R. 

The following Theorem 2.2 is a modification of Iwata [7], Theorem 4.1. 

THEOREM 2.2 (EXISTENCE AND UNIQUENESS THEOREM). Suppose that junctionals 

a(t,x, u, UJ) and b(t,x, w, UJ) satisjy (2.2) and the jollowing (2.4): 

(2.4) jor every T > 0 there exists an Lj > 0 such that P-a.s. 

\a(t,x,u\,uj) — a(t,x,U2,u)\ + \b(t,x,u\,uo) — b(t,x,u2,uj)\ < LT\U\ — u2\ 

jorO <t <T and (x,uuu2) G R X R x R. 

Then jor every j G C tem the SPDE (2.1) has a (pathwise) unique Ciem-valued solution 

u(t,x). 

THEOREM 2.3 (NONNEGATIVITY OF SOLUTIONS). In addition to the assumption oj 

Theorem 2.2 assume that P-a.s. 

(2.5) a(t, x, w, UJ) and b(t, x, u, UJ) are continuous in (x, u), 

(2.6) a(t, x, 0, UJ) = 0 and b(t, x, 0, UJ) > 0. 

Let u(t,x) be the Ciem-valued solution oj the SPDE (2.1) with u(0) = j G C^m. Then 

P(u(t, •) > Ojor every f > O) = 1. 

COROLLARY 2.4 (COMPARISON THEOREM). Suppose that { J~t}-predictable junction­

als a(t, x, u, OJ) andbi(t, x,u, UJ) (i = 1,2) satisjy the assumptions ojTheorem 2.2. Let ui(t, •) 

be the Ctem-valued solution ojthe SPDE (2.1) associated with the coefficients a(t,x, w, UJ) 

and b[(t,x, u, UJ) having the initial condition Ui(0) =fi£ Ctem. Suppose jurther that 

(2.7) a(t, x, u, UJ) and bt(t, x, u, UJ) (i = 1,2) are continuous in (x, u), P-a.s. 

(2.8) bx(t,x,u,uj) > b2(t,x,u,oj) jort>0,xeR, u G R, P-a.s. 

(2.9) jx >j2. 

Then P(ux(t, •) > u2(t, -)jor every t > O) = 1. 

THEOREM 2.5 (EXISTENCE OF C^-VALUED SOLUTIONS). Suppose that jor every T > 
0 there exist Cj > 0 and 0 < 6 < 1 such that jor 0 < t < T, x £ R and u G R, 

(2.10) \a(t,x,u9u;)\ < CT(\u\ + \u\0), 

(2.11) \b(t9x,u,uj)\ < CT\u\, P-a.s. 

https://doi.org/10.4153/CJM-1994-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-022-8


STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 421 

Let u(t, •) be a C^Qm-valued solution of the SPDE (2.1) with w(0) = / G C^ap. Then u(ty •) 

is a Cfap-valued solution. 

THEOREM 2.6 (EXISTENCE OF Qem-VALUED SOLUTIONS). Let a(u): R —> R and 

b(u): R —• R be continuous functions satisfying a linear growth condition; for some K > 0 

(2. 12) |Û(M)| + \b(u)\ < K(l + |M|) for u e R. 

Suppose that 

(2.13) a(0) = 0, Z?(0) > 0. 

Then for every f G C^m, there exist an {ft}-space-time white noise W(t,x) and a C^m-

valued solution u(t,x) of the SPDE (1.1) with u(0) — f on a suitable probability space 

with filtration (£2, ^T, % P). 

The proofs of these theorems will be briefly given in the appendix. 

3. Proofs of Theorem 1.1 and 1.2. In the case: a(u) — \u\ xl2 and b(u) = 0, Iscoe [6] 

used a solution of a simple non-linear equation with a singular boundary condition to 

prove the SCP property. So our strategy in proving Theorem 1.1 and 1.2 is to consider 

how to reduce them to the case; a(u) — \u\ ll2 and b(u) = 0. Indeed we will carry out it by 

using some comparisons for Theorem 1.1 and by introducing an MBD-like process from 

the solution of ( 1.10) for Theorem 1.2. 

The following lemma is found in [6]. 

LEMMA 3.1. Let c > 0 be a fixed constant. 

(i) For r > 0 there exists a unique positive solution v(x) = v(x\ r) G (?(—r, r) of the 

equation 

(3.1) v"(x) = cv(xffor\x\ <r 

lim v(x) = oo. 
\x\-+r+ 

Moreover it holds that v(x\ r) —> 0 as r —> oo uniformly on each compact interval, 

(ii) For any fixed h G C£(R), let us consider the following equation: 

(3.2) v"(x) = cv(xf - h(x) forxeR. 

Then there exists a unique positive solution v(x) = v^(x) G CQ(R) of (3.2). Moreover, if h 

vanishes in (—r, r), it holds that 

(3.3) vh(x)<v(x;r) for\x\ < r. 

PROOF OF THEOREM 1.1. (i) follows from Theorem 2.6. To see (ii), let u(t, •) be a 

C£m-valued solution with u(0) =fe CC(R) of the SPDE (1.1). Let r > 0, T > 0 and 

https://doi.org/10.4153/CJM-1994-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-022-8


422 TOKUZO SHIGA 

K > 0 be fixed and set a = aK = inf{t > 0 | |M(0|OO > K}, where | • ̂  stands 

for the supremum norm. Since by Theorem 2.5 w(f, •) is C^ap-valued continuous, it holds 

aK —• oo as K —̂  oo, P-a.s. Recalling a^ of (1.8), for c = a2
K exp(—CT)/2 and h = 6$ 

with a 0 > 0 and <j> G Q(/?) we denote by ve{x) the solution of the equation (3.2). Set 

w(t, x) = exp(—Ct) u(t, x), and use Ito's formula with the C2-function ve(x). Then we have 

rt/\o 
exp(-(w(f A a), v#) - 0 J^ (w(s), 4) ds - e x p ( - ( / , ve)) 

= r A " exp( - (w(s ) , v*) - 0 f (VV(T), <t>) dr) 
(3.4) 

x ( ( w ( ^ ) , C v , - A v ^ - ^ ) - ^ a ( / 7 ( ^ ) ) , v , ) 

1 2 \ 

+ - e _ 2 C s (a («(•*)) , v#) j ds + a martingale. 

Note by (1.8) and (1.9) that for 0 < s < a, 

—e~Csb(u{s,xj} > —Cw(syx) and -e~2C5<z(w(s,jc)) > cw(s,x). 

Since v^(x) is a solution of the equation (3.2), it follows from (3.4) that 

E( exp(-(w(f A a), v0> - 0 f ^ (w(s), </>) ds)) > exp(-(/", vfl» for every 0 < t < T. 

For the initial function/, take an r > 0 such that (—r,r) D the support of/. Note that by 

(3.3) if </> G C£(R) vanishes in (—r, r), V (̂JC) < v(x : r) for |JC| < r, hence 

(3.5) E(exp(-6jtAa(w(s),(f))ds)\ > exp ( - ( / > ( • : r)>) for every 0 < t < 7, 

which implies 

(3.6) ELxp(-0J^(w(s),rr)ds)) > exp(-(/>(. : r))), 

where Ic
r(x) = 1 if |JC| > r and /£(JC) = 0 otherwise. Furthermore, letting 0 —> oo and 

r —> oo, by Lemma 3.1(i) we obtain 

(3.7) p(f a(w(s)Jc
r) ds^O for some r > o) = 1 for every T > 0 and /f > 0, 

which concludes the latter part of Theorem 1.1. 

PROOF OF THEOREM 1.2. First fix a constant 7 so that 

(3. 8) or(x, U) + (oc(x) — 7)w < 0 for x G /? and w > 0. 

Let w(£,x) be a Ctem-valued continuous probability density solution of the SPDE (1.10) 

with u(0) — f being a continuous probability density function with compact support. Then 

as in Theorem 2.4(i) one can show u(t, •) is Crap-valued continuous. Setting 

(3.9) b(t) = f a(x,u(t,x))dx+(u(t),a) - 7 , 

(3.10) Nt(if) = f ( y/a{x) u(s,x)<p(x)W(s,x) ds dx, 
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let us consider the following SDE: 

(3.11) dzt = Ztb{t)dt + ztdNt{\\ 

zo = 1. 

Then the solution of (3.11) is given explicitly; 

(3. 12) Zt = exp(fy(l) + f b(s)ds - - f(u(s), a) ds\ 

hence 

(3.13) P(zt > 0 for every t > 0 and zt —• 0 as t —> oo) = 1. 

By (1.10), f o r / G Cg(/?), 
(3.14) 

(u(t),<p) 

— (f,(f)+ \(u(s),A(p}+ / o(x, u(s,x)^j(f(x)dx— / a(x, u(s,x)^j dx(u(s), ip) \ds 

+ Nt(<p)-£(u(s),<p)dNs(l). 

Let us define a Cj^ -valued continuous process w(t, •) by 

(3.15) w(t,x) = ztu(t,x). 

Using Ito's formula together with (3.14) we have 

(3.16) {Mt\v) = (f,^) + £((w(slA^)+zs(c(s\(p))ds + J\sdNs(^ 

where c(t,x) = a(x, u(t,xj) + (a(x) - l)u{t,x) < 0 by (3.8). 

For e > 0 define r = T£ = inf{^ > 0 : zt > e}. Denote by vg(x) the solution of the 

equation (3.2) with h = 6(j> for 6 > 0 and </> € C£ and c = \eam\n (amin = infxG/? or(jt)). 

By Ito's formula 

(3.17) 

exp(-(w(f A r),v^) - fl ^ T(w(.s), <j>) ds^j - exp ( - ( / , vfl)) 

= / exp(—(w(s), VQ) — 6 / (w(r), 0) drjC(s)ds + a martingale 

C(s) = (w(t), -Ave - 6(f)) - zs(c(s), ve) + -zs(u(s), av2
9) 

> (w(s),-Ave -0(f>+ -EOC^VQ 

where 

= 0 for 0 < s < r. 

Hence 

(3.18) exp(-6 JtAT(w(s),(j))ds) > exp(-(f,v0)) for every t > 0. 

By the same argument as (3.5)-(3.7) we obtain 

(3.19) p( fAT(w(s), fr) ds = 0 for some r > o) = 1 for every e > 0 and t > 0. 

Since T£ —• oo as e —> 0 holds by (3.13), it follows from (3.19) that u(t,x) has compact 

support for every t > 0 with probability one, completing the proof of Theorem 1.2. 
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4. Proof of Theorem 1.3. We will prove the theorem by refining the method of 

Mueller [91, which is based on a large deviation estimate for stochastic integrals with 

respect to a space-time white noise. 

To avoid technical complication we first assume that b(u) = 0. As stated in §2, (1.1) 

with b(u) = 0 is equivalent to the following stochastic integral equation (SIE): 

(4.1) u(t,x) = G(t)f(x)+ f J G(t-s,x,y)a(u(s,y))W(s,y)dsdy. 

The following estimate due to Mueller [9] which plays a key role in proving the theo­

rem. 

LEMMA 4.1. Let K > 0 be fixed and let b{t,y, uu) be an {^-predictable functional 

such that \b(t,x, uu)\ < A^~(7W)W for every 0 < t < T/2 and every x G R almost surely. 

Then there exist c\ > 0 and c2 > 0 depending on K such that for every 0 < e < 1 and 

every 0 < T < 1 

f [ G(t - s, x,y) b(s, y) W(s, y) ds dy\ 
JO JR I 

>ee -(T-t)\x\ 

for some 0 < t < 7 / 2 andx G R) < c{Te~2A exp(-c 2 £ 2 r 1 / / 4 ) . 

REMARK. If b(t, x, uo) is non-random, the stochastic integral defines a two parameter 

Gaussian fields, so the proof of Lemma 4.1 is quite standard. But for a random b{t,x, uu), 

a similar calculation is possible (see [91 for the details). 

Suppose that for / = 1,2, Ui(t,x) be the unique Ctem-valued solution of the equa­

tion (4.1) with fi G Ctem» and that / i > fz and/i(jc) > fi(x) for some x G R. By 

Corollary 2.4 it suffices to prove the theorem assuming f —f2 has compact support. Set 

u{t,x) — u\(t,x) — U2(t,x) > 0 a n d / =f\ —fz. Then it satisfies 

(4.2) u(t,x) = G{t)f(x) + j * j G(t- s,x,y)a(s,y,u(s,y))W(s,y)dsdy w i th / G C 

where a(s, y, u, u)\ [0, oo) x R x Rx Q. —>/?isan {^}-predictable functional defined by 

(4.3) a(s,y, U,UJ) = a(u + U2(s,y,cu)^ — a(u2{s,y, LU)). 

By the Lipschitz continuity of a(u), we have a constant L > 0 such that 

(4.4) \a(s,y,u,uu)\ < L\u\ for every (s,y,u,u>) G [0, oo) x R x R x Ç1. 

Let 

(4.5) N(t,x) = f J G(t-s,x,y)a(s,y,u(s,y))W(s,y)dsdy. 

LEMMA 4.2. Let M > 0 be fixed. Then there exist c\ > 0 and c2 > 0, depending on 

M and L, such that if fix) < /3I[-MM](X) for every x G R with a (5 > 0, then for every 

0<£< land0<T < 1 

p(\N(t,x)\ > £/3e~(r~oW for some 0 < t < - and some x G R) 

< d £ ~ 2 4 e x p ( - C 2 £ 2 r - î ) . 
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PROOF. AS is easily checked, 

(4.6) 

G(t)I{-MM\(x) < CMe~{T~tM for every 0 < t < T < 1 and x G R, with CM = eM+]. 

Let 
a = M{t > 0 | u(t9x) > (3(CM + 1)<?~(7W)W for some i G R} 

= oo if {•} = 0, 

and set 

(4.7) M(t,x) = f [ G(t-s,x,y)I(s < a) a(s,y, u(s,y))W(s,y) dsdy. 

We claim that if 0 < e < 1, 

(4.8) 
P(\N(t,x)\ > e(5e~{T~tM for some 0<t<T/2 and some x e R) 

< P(\M(t,x)\ > epe'V-^ for some 0<t<T/2 and some x G R). 

Suppose that 

(4.9) \M(t,x)\ < ef5e-{T~m for every 0 < t < T/2 and x G R. 

Since M(t,x) = N(t,x) for every x G R and 0 < t < a, by (4.6) and (4.9) it holds 

u(t, x) < (5{CM + e)e'{T~tM for every x G R and 0 < t < a A T/2. 

Since w(r, •) is CJ"ap-valued continuous by Theorem 2.4, this implies a A T/2 < o. Hence 

it follows T/2 < a, which yields 

(4.10) \N(t,x)\ < e(5e-{T~m for every 0 < t < T/2 and x G /?. 

Thus we obtain (4.8). 

Finally, noting by (4.4) that b(s,y, u) — f3~xI(s < a) a(s,y, u(s,y)) satisfies 

\b(s,y,w)\ < L ( C M + l ) ^ ( r ^ ) M , 

Lemma 4.1 is applicable for f3~~~xM(t,x), completing the proof of Lemma 4.2. 

We are now in position to prove Theorem 1.3. Choose a < b and /3 > 0 such that 

f(x) > (3I(a,b)(x) f o r e v e r Y x eR. Fix an arbitrary M > 0 such as [ - M / 2 , M/2] 2 (a, b) 

and t > 0. 

STEP 1. As easily checked, there is an mo = mo(t, a, b, M) such that if m > mo and 

(c,d)D(a,b) 

1 t t 
(4.11) G(s)I{c4){x) > -I(c-M/m,d+M/mM) for every — < s < - and* G R. 
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STEP 2. We claim that if [-M,M] D (c,d) D (a,b) and/(jc) > al{c4)(x) with an 
a > 0, then for every ra > rao 

p(u(s,x) > ^I(c-M/m,d+M/m)(x) for every — < s < - and x G R 
(4.12) V 8 ' ' 2m m 

> 1 - C l 1 6 2 4 e x p ( - ^ 1 6 " V / V / 4 ) , 

where c\ and Q are the constants in Lemma 4.2, which depend on M and L. 
To prove (4.12), by Theorem 2.2, it suffices to show it assuming that 

2aI[-MM(x) >f(x) > aI(cM)(x). 

By Lemma 4.2, for every 0 < e < 1 and ra > rao 

p(\N(s,x)\ > 2eae"{T~s)^ for some 0 < s < - and some x G R) 
(4.13) v m J 

<cls-24txp(-c2e2r
{'4m1/4). 

Since u(t, x) = G(t)f(x) + N(t, x), it follows from (4.11) and (4.13) that 

/ a t t \ 
P[u(s,x) < -I(c^M/m,d+M/m)(x) f o r S O m e ^ < s < ~ a n ^ X G RJ 

( a t t M M 
< P[N(s,x) < —— for some — < s < — and some c <x<d+ — 

V 8 2m m m m 
< P[ \N(s,x)\ > — for some -— < s < — and some x G R 

V 8 2m m 

<cx\6
24txV{-C2\6-2rxl4mxl4). 

Thus we get (4.12). 

STEP 3. Let us define the events Ak and Bk: 

u(s,x)>fà-kI(a 

-Mk/m,b+Mk/m)(x) f° r every s G | ^ m t, ^ fj and x G R 

u(s,x) > P%~kI{a-Mk/mMMk/m)(x) for every s G [•-*, ~ ^ ~ ' j and* G fl 

and 

We set 

(4.14) c(m) = cil62 4exp(-c216-2r1/4m1/4). 

Note that on the event Ak_\ 

U\~ 'XJ — ^ ha-M(k-\)/m,b+M(k-\)/m)(x) f° r X ^ ^-

By the Markov property, (4.12), (4.14) and Corollary 2.4 

PiAk I %tim) > 1 - c(m) P-a.s. on Ait-, (1 < * < m/2), 
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which yields 

(4.15) P(Ak | A*_i n - - - n A 0 ) > l - c ( m ) for 1 < k < m/2. 

In the same way we have 

(4. 16) P(Bk | £*_! H • • • H Bo) > 1 - c(m) for 1 < A: < m/2. 

Noting that 

p( n ^ n n Bk)>i-(i-p( n V ) ) - ( I - P ( n **)) 
v0</:<m/2 0<yKm/2 y V v0<£<m/2 7 ^ V v0<&<m/2 J J 

> (l - c(m))m/V(A0) + (l - c(m))m/2P(B0) - 1. 

and 
lim />(Ao) = lim P(B0) = 1 and lim (l - c(m))m/2 = 1, 

we obtain for every r > 0 and M > 0 

P( w(,s, x) > 0 for every - < s < - and every a— — <x<b+—) 

> limPf H Akn H ft) 
m—oo V 0 <£< m / 2 0<*<m/2 7 

= 1 

which concludes Theorem 1.3 in the case b(u) = 0. 
Even if b(u) is not identically zero but a general Lipschitz continuous function, the 

proof is essentially unchanged. For two Ctem-valued solutions u\(t,x) and U2(t,x) of (1.1), 
u(t,x) = u\(t,x) — U2(t,x) > 0 satisfies 

p}ji(t x) 

(4.17) — ^ - = Au(t,x) + b(t,x,u(t,x)) +a(t,x,u(t,x))W(t,x) 

where a(s,y, u, J) and b(s9 y, u, UJ): [0, oo) xRxRxÇl—+Ravc {^>}-predictable func-
tionals defined by 

(4.18) a(s, y, U,UJ) = a(u + uiis, y, u; )J — a(u2(s, y, u)) 

(4.19) b(s,y,u,uj) = b(u + U2(s,yJu)J — b\U2(s,y,uSy). 

By the Lipschitz continuity of a(u) and b(u), we have a constant L > 0 such that 

(4.20) \a(s,y,u,uj)\ < L\u\ for every {s,y,u,uj) e [0, oo) x R x R x Q, 

(4.21) \b(s,y,u,u) < L\u\ for every (s9y,u,u) G [0,oo) x R x /? x Q. 

Setting w(r,x) = euu(t,x), we have the following equation. 

w(r,x) = G(t)f(x) + f f G(t- s,x,y)(Lw(s,y) + eLsb(s,y,e-Lsw(s,y))) dsdy 
(4.22) f

 J o J / ? V J 

+ [ f G(t-s,x,y)eLsa(s,y,e~Lsw(s,y))W(s,y)dsdy. 

https://doi.org/10.4153/CJM-1994-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-022-8


428 TOKUZO SHIGA 

Note that by (4.18) Lw(s,y) + eLsb(s,y, e-Lsw(s,y)) > 0 holds and by (4.17) and (4.19) 

f J G(t - s,x,y)eLsa{s,y, e~Lsw(s,y)) W(s,x) ds dy 

has the same estimate as N(t,x). Accordingly the arguments in the case b(u) = 0 are still 
valid for general b(u), completing the proof of Theorem 1.3. 

5. Examples. We here present two examples of one-dimensional SPDEs occurring 
in population genetics. 

EXAMPLE 1 (GENETICAL DIFFUSION MODEL WITH RANDOM SELECTION). Let us con­
sider the following SPDE: 

(5.1) "I* = &u{t,x) + u(t,x)(\ - u{Ux))W{t,x) (t>0,x€R) 

0<u(0,x)< 1 

The SPDE (5.1) describes a continuum limit in space of a genetical diffusion model incor­
porating random selection, where A means one-dimensional nearest neighbour migration. 
Since the coefficient a(u) = w(l— u) is Lipschitz continuous in 0 <u< 1, by Theorem 2.2 
and 2.3, for every w(0) G C(R —• [0, 1 ]) the SPDE (5.1) has a unique C(R —• [0, l])-valued 
solution u(t,x). 

Furthermore, by Corollary 1.4, if/ is neither identically 0 nor identically 1,0 < 
u(t, x) < 1 holds for every t > 0 and x G R with probability one. 

EXAMPLE 2. We next consider the following SPDE: 

u(t,; 
(5.2) U^X' = Au(t,x) + Ju(^xJ(l - u(t,x))W{t,x) (t>0,x£R) 

K(0, * ) = / ( * ) . 

The SPDE (5.2) describes a continuum limit of one-dimensional stepping stone model 
in population genetics. By Theorem 2.5, for every w(0, •) = / E C(R —> [0,1]) there 
exists a space-time white noise W(t,x) and a C(R —> [0,1])-valued solution u(t,x) of (5.2) 
on a suitable probability space. Furthermore one can prove the uniqueness of solutions 
in the law sense by using a duality technique, (cf. [12]). In this case the coefficient is 
not Lipschitz continuous, so that Theorem 1.3 is not applicable. Also the assumption of 
Theorem 1.1 is not satisfied. It seems a somewhat subtle problem to see whether the SCP 
property does hold or not for the SPDE (5.2). 

6. Appendix. The theorems stated in §2 do not seem to be novel, since one can prove 
them by repeating quite standard arguments in the stochastic calculus. However it would 
be convenient to present their proofs briefly for selfcontainedness. 

We first prepare several lemmas which will be frequently used in the proofs of Theo­
rems 2.1-2.6. 
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LEMMA 6.1. Let <j>(t,x, uo)\ [0, oo) x R x Q. —» R be a {yt}-predictable functional 

Then for each p > 0 there exists an absolute constant Cp > 0 such that 

(6.1) 

E[(f f Ms>x>vW(s,x)dsdx\ J ^CpEiU* J (t>(s,x,uj)2dsdy)P] fort>0, 

whenever the stochastic integral is well-defined. 

LEMMA 6.2. (7) There exists a constant C > 0 swc/z r t o 

(6 2) i) JR(G^-s^x^ ~ G^ - ^yï) dsdy 
<C{\t-t'\xl2 + \x-x\) fort,/ >0andx9xf G tf, 

w/zere G(/L,x,_y) = 0/or t < 0. 

(7/) For ev^ry AG/? and 7 > 0, 

(6. 3) sup sup^~AW f G(t,x,y)ex^ dy < oo. 
0<t<T xeR 

LEMMA 6.3. (i) Let X(t,x)o<t<i,xeR he a two parameter process. Suppose that for 

every À > 0 there exist p > 0, 7 > 2 arcd C\ > 0 swc/i f/z<2£ 

(6.4) £(|X(f,jt) - X O V ) ^ ) < CA(|f- t']1 + \x - ; t ' | V w 

/ o r 0 < f, f' < 1 am/* e R, x' eR with \x - ;c'| < 1. 

77ze/i Z(r, •) has a CiQm-valued continuous version. 

(ii) Let Xn(U *)O<KI,«>I he a sequence of CiQm-valued continuous processes. Suppose 

that for every À > 0 there exist p > 0, 7 > 2 and C\ > 0 swc/z £/zaf 

(6.5) £ ( |X„a j t ) -X n ( / , Jc ' ) | 2 / 7 ) < C A ( | f - * / | 7 + | jc- j t ' | 7 ) 

for 0 < t, f < I, x e R, xf e R with \x - x'\ < 1, A/W/H > 1. 

Then the sequence of probability distributions on C([0,1] —> Ctem) induced by Xn(t, •) 

is tight. 

(Hi) LetX(t, •) be a C[Qm-valued continuous process. Suppose that for every À > 0 there 

exist p > 0, 7 > 2 and C\ > 0 swc/z that 

(6.6) £ ( |X( f , * ) - X(t\x')\2p) < Cx(\t - / | 7 + |JC - y | 7 ) ^ A W 

/ o r 0 < t, t' < 1, x G /?, JC' G # with \x — x'\ < 1. T/zera X(t, •) /s Cmp-valued continuous 

P-a.s. 

LEMMA 6.4. Let À > 0, and U(t,x): [0,T] x R —> R+ be a measurable function 

satisfying 

(6.7) sup f e~x\xlU(t,x)dx <oo. 
0<t<T JR 
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(i) Suppose for some C > 0 

(6.8) U(t,x) <C f /(t - s)~l/2G(t- s,x,y)U(s,y)dsdy for0<t< T and x G R. 

Then U(t,x) = Ofor every 0 < t <T andx G R. 
(ii) Suppose for a measurable V(t,x): [0, T] x R-* R+ and some C > 0 

(6.9) 
U(t,x) <C f f(t-s)-l/2G(t-s,x,y)U(s,y)dsdy+V(t,x) for0<t< TandxeR. 

JO JR 

IfV(t,x) satisfies 

(6.10) sup [ ex^V(t,x)dx< oo, 

then 

(6.11) sup / eXMU(t,x) <oo. 

Lemma 6.1 follows from the martingale inequality, and Lemma 6.2 can be proved by 
straightforward calculations. Lemma 6.3 is a variant of Kolmogorov-Totoki's theorem 
(cf. [13]), and Lemma 6.4 is a sort of Gronwall's inequality, so their proofs are omitted. 

PROOF OF THEOREM 2.1. Let 

C rap = W ^ C2(R) I ^» ¥>' a n d ¥ > " a r e i n C r a p } 

equipped with the topology induced by a family of norms {| • |(A,2) • A > 0}: 

M(A,2) = M(A) + k'l(A) + |</'|(A), 

and for T > 0 let D2,dp(T) = {/ G C u ( [0 ,7) x /?) | /(*, •) is C?ap-valued continuous and 

^(t, •) is Crap-valued continuous in 0 < t < T\. 
1°. Notice that C™(R) is dense in C?ap. 
2°. It is not difficult to show that the equation (2.1/ holds for every <p G C2

âp. (Use 1 °, 
Ctem-valued continuity of u(t), and a truncation method by stopping times.) 

3°. Next we show that for every <f> G Drdp(T) and 0 < t < T. Using 2°, we have 

(U(t), </>(t)) = {f,<K0)) + fQ((u(s)> ( ^ +A)0(5))+(fe(j ,Ml(5,-)) ,^)) j& 
(O. 1 Z) 

+ « (5, x, w(s, x)) </>(.s, x) W(s, x) ds dx. 

Let A = {to = 0 < t\ < - - - < t^ = t} with |A| = maxi</<^ \ti — ti-\ |, and define 
functions TTA(S) and itA(s) by 7rA(s) = t{-\ and 7TA(S) = */Ior f/-i < s < f/. 
(6.13) 

(w(0,</>(0)-(/",</>(0)) 
N 

I 
/=1 

jT((ii(7fA(s)), ^ ( J ) ) + <H(S), A^(TTA(S))) + (fc(s, -,M(.v, •)),^>(7rAW))) <fc 
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It is easy to see that the first term of the r.h.s. of (6.13) converges as |A| —> 0 to the second 
term of the r.h.s. of (6.12), so it suffices to show that the second term of the r.h.s. of (6.13) 
converges in probability as |A| —» 0 to the third term of the r.h.s. of (6.12). For this let any 
À > 0 be fixed, and for M > 0 let rM = M{s > 0 I \u(s)\{_X) > M}. Note that TM —> oo 
as M —> oo by the continuity of u(s), and that 
(6.14) 

E\ I / a(s,x,u(s,x))(l)(7r^(s),x)W(s,x)dsdx 

— / a[s,x,u{s,x))(j>{s,x)W{s,x)dsdx\ 

— E\ I a(s,x,u(s,x)) ((j)(7r&(s),x) — (t)(s,x)) dsdx 

< C\{\ +M)2 sup \^-(s)\ //A|A|2, 
• 0<s<t\ OS l(2A) 

which vanishes as |A| —>• 0. Hence the second term of the r.h.s. of (6.13) converges in 
probability to the third term of the r.h.s. of (6.12) as |A| —> 0; thus we have shown that 
(6.12) holds for every <j> G D^p(T). 

^rapV 4°. Let (t>a
T(t,x) = G(T-t,a,x). Then <\>a

T e D\} (T), so by 3° and 

-^-(t,x) + A0(f, JC) = 0 for 0 < t < T and x G /?, 
ot 

we get 

G(T-t)u(t)(a) = G(T)f(a)+ f j G(T - s,a,x)b(s9x,u(s,xj) ds 

+ G(T — s,a,x)a(s,x,u(s,x))W(s,x)dsdx for a G R. 

Hence letting t —• T, we see that u(t,x) satisfies the SIE (2.3). 
5°. Conversely, let u(t) be an {%}-predictable and Ctem-valued continuous process 

which satisfies the SIE (2.3). To see that u(t) satisfies (2.1 )' insert (2.3) into JQ(U(S), Atp) ds. 
Then a key part is to show 

/ / ( / / G(s — r,x,y)a(r,y,u(r,y))W(r,y)drdy)A(f(x)dsdx 

= J^R(£ G(s - r)(A^)(y)dsy(s,y,u(s,y))W(r,y)drdy 

= £jR{G(t-r)<p(y) ~ v(y))a(r9yMr,yj)W(r,y)drdy, 

which is justified using a stochastic Fubini theorem (cf. Lemma 2.4 in [7]). Thus we can 
prove Theorem 2.1. 

PROOF OF THEOREM 2.2. 1°. Consider Picard's iterative approximation {un(t, x)} for 
the equation (1.2); UQ(UX) — G(t)f(x) and 

un+\ (t, x) = G(t)f(x) + f [ G(t-s, x, y) b(s, y, un(s, y)) ds dy 
(6. 15) J0JR 

+ G(t — s,x,y)a(s,y,un(s,y))W(s,y)dsdy. 
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Using Lemma 6.1 and 6.2 together with Holder's inequality, one can easily show that 
sup0 < K r JR e~x^E\un(t, x)\2p dx < oo for every A > 0, p>0, T >0 and n > 0, and 

(6.16) j e-x^E\un+\(t,x)\2p dx < CPtTtX ( l + f J(t - s)xl2
e-

x^E\un{s,y)\2pdsdx^. 

It follows from (6.16) that for every A > 0, p > 0 and T > 0 

(6.17) sup sup f e~x]x]E\un(Ux)\2p dx < oo. 
n>\ 0<t<TjR 

Also, by (2.4) and Holder's inequality, 
(6.18) 

f e~x^E\un+\(t9x) - un(t,x)\2p dx 
JR 

< CpJ,x f f(t-s)-l/2e-x^E\un(s,x) - un^(s,x)\2pdsdx forO < t < T, 
JO JR 

so that there exists an {%}-predictable functional u(t,x9 uJ) such that 

(6.19) sup [ e'x^E(\u(Ux)\2p)dx<oo for every A > 0, p > 0 and T > 0, 
0<t<T jR 

lim sup [ e~xlxlE\un(t,x)-u(t,x)\2pdx=0 for A > 0, p > 0 and T > 0, 

and u(t, x) satisfies 

(6.20) 
G(t — s, x, y) b(s, y, u(s, y)) ds dy 

G(t — s, x, y) a (s, y, u{s, y)) W(s, y) ds dy 

P-a.s. for almost every t > 0 and x G R. 
2°. Let 

G(t — s, x, y) ays, y, u(s, y)J W(s, y) ds dy. 

Using Holder's inequality, Lemma 6.1 and (2.2), we see that for/? > 1 and g = p/(p—l), 

E(\X(Ux)~X(t\x)\2p) 

0 
rNt' 

< CPAJ jR(G{t-s,x,y) - G(t' - s,x',y)fdsdy) 

X C L(G(t ~ S'X'y) ~ G^' ~ s'x'yrf(l + E(\u(s,y)\2p))dsdy, 

so, by Lemma 6.2 and (6.19) one can check the moment condition (6.4) for X(t,x). 
On the other hand it is easy to see that Y(t, x) = JJ jR G(t—s, JC, y) b(s, y, u(s, y)) ds dy is 

Ctem-valued continuous. Hence u(t, •) indeed has a Ctem-valued continuous version which 
is a Ctem-valued solution of the SPDE (2.1). 

3°. We next show the uniqueness of Ctem-valued solutions of (2.1). Let u(t, •) and v(t, •) 
be two Ctem-valued solutions of (2.1), and for an arbitrarily fixed A > 0 and n > 1 set 

On = ml{t > 0 | |M(0|(_A/3) > n ° r lv(0|(-A/3) > n}• 
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Note that wn(t9 •) = (u(t9 •) - v(t9 •))/(* < an) satisfies \wn(t9x)\ < 2nex^/3 and 
(6.21) 

wn(t9x) = I(t < an) JQ fRG(t-s,x,y)I(s < an)(b(s9y9u(s9y)) - b(s9y9v(s9y))j dsdy 

+ I(t <°)f0JR Git ~ s, x, y)I(s < <rn) 

( a (s, y, u(s, y)) — a (s, y, v(s9 y)) ) W(s9 y) ds dy. 

Using the condition (2.4) and a similar argument to get (6.18), we have C\j > 0 such 
that 
(6.22) 

/ e~xME\wn(t,x)\2 dx < CX,T f ds(t-sTll2 [ e~x^E\wn(s9x)\2 dx forO < t < T9 
JR ' JO JR 

hence by Lemma 6.4, P(u(t9 •) = v(t9 •) for 0 < t < an) — 1 holds. Finally, since u(t, •) 
and v(t9 •) are Ctem-valued continuous, an —> oo as n —> oo P-a.e., and u(t, •) — v(t9 •) 
holds for every t > 0 with probability one. Thus the proof of Theorem 2.2 is complete. 

PROOF OF THEOREM 2.3. 1°. For e > 0, choose a nonnegative and symmetric C°°-
function p£(x) defined on R satisfying 

p£(x) = 0 for |JC| > e and / p2
£(x) = 1. 

JR 

Define a spatially correlated noise Wx(t) (x G R) by 

(6.23) Wx(t) = fRp£(x-y)W(t,y)dy. 

Note that for each x G R9 Wx(t) = JQ WX(S) ds is a one-dimensional Brownian motion. 
2°. Setting A£ — (G(e) — /) /e for e > 0, consider the following equation: 

(6.24) 
u£(t,x) =f(x)+ I lA£u£(s9x) + b(s9x9u£(s9x)j)ds + a(s9x9 u£(s9x)j dWx(s) (x G /?), 

where the last term is a standard one-dimensional stochastic integral. 
Assume that for every T > 0 there exists a Cj > 0 such that 

(6.25) \a(t9x9 u9 u) — a(t9x 9u9 u) + \b(t9x9 u, UJ) — b{t9x 9U9 u)\ < Cj(\u — u\ + \x — xf\) 

for 0 < t < T9 x9x
f
9 u9 u' e R9 P-a.s. 

Then one can show that for every/ G Ctem, (6.24) has a unique Ctem-valued solution 
u£{t9x). 

3°. We may assume u(0)—f is bounded; otherwise it can be reduced to this case by a 
standard approximation procedure. 

4°. We claim 

(6.26) P(u£(t9 •) > 0 for every t > O) = 1. 
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Noting that for each x G R, u£(t,x) is a semi-martingale, apply Ito's formula with a 
function (f(u) — — min{w,0}, being approximated by smooth functions as in a one-
dimensional case (cf. [5], p. 437). Since b(s,x,u,u) > — LT\u\ by (2.4) and (2.6), for 
0 < t < T and x G R we see 

Ey if(uE(t,x)) ) —— E ll(u£(s,x) < 0)(A£U£(S,X) + b(s,x, u£(s,x)^j ) Ids 

(6-27) <(LT+\/e) j * ELp(u£(s,x))\ds 

+ ( l /e) jf JRG(e,x,y)E(<p(u£(s,y)))dsdy. 

Henoe, by Gronwall's lemma for supxeR E((p(u£(t, x)), E((p(u£(t,x)) = 0 for every t > 0 
and x G /?, which yields (6.26). 

5°. Let 

(6.28) Gfc~(0 - exptA£ = e'1!6 £ ^---G(rc£) = e~ll£I + R£(t), 
n=0 n' 

(t/ef 
R£(t,x,y) = e-''6 £ ^ - G ( ^ , x , y ) . 

w=i " ! 

We use the following estimates, which are checked by elementary calculations. 

LEMMA 6.6. (i) 

jRRÀUX,yUy<\ï^l\ 

(ii) For some a > 0 and /3 > 0 

[ \R£(t,x,y) - G(t,x,y)\ dy < e'^6 + a(£ / r )1 / 3 */0 < e/t < (5. 

(Hi) 

lim / ( (R£(s,x,y)-G(s,x,y)) dsdy = 0 fort>OandxeR. 

6°. Let u(t, x) be the unique Ctem-valued solution of the SPDE (2.1). w(̂ , x) and u£(t,x) 
satisfy 

W(*,JC) = G(r)/W+ /" / G(t — s,x,y)b(s,y,u(s,y)) dsdy 
(6.29) ^ 

+ / / G(r — 5,,x,};)a(ts
,,y, M(,s,;y))W(.s,;y)ds<i)\ 

and 

we(r,jc) = G£(t)f(x) + f J G£(t- s,x,dy)b(s,y,u£(s,y))ds 

(6. 30) + f e-'{t~s)lEa(s,x, u£(s,x)) dWx(s) 

+ RE(t — s,x,y)a(s9y,u£(s9y)) dWy(s)dy. 
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Since/ is bounded, it follows from (6.29), (6.30) and Lemma 6.6 that for every T > 0, 

(6.31) 

(6.32) 

sup sup supE(\u£(t9x)\2) < oo, 
0<£<1 0<t<T xtR 

sup sup E(\u(t9x)\2) < oo. 
0<t<T xeR 

7°. By (6.29), (6.30) and Lemma 6.1, for some C > 0 
(6.33) 
E[\u£{t9x)-u(t9x)\2) 

< c{ \G£(t)f(x) - G(t)f(x)\2 + tf(| jf e-(t-s)/£b(s,x, u£(s9x)) ds^ 

+ En£jRR£(t-s,x,y)(b(s,y,u£(s,y)) - b(s,y,u(s,y)fjdsdy\ 

+ E(\[ [(RE(t-s,x,y)-G(t-s,x9y))b(s,y,u(s,y))dsdy\ ) 

+ jf e-2{t-s)l£E(a(s,x, u£(s9x)f^j ds 

+ EU R£(t — s,x,z)(^a(s,z,u£(s,z)) — a(s,z,u(s,z)))pE(y — z)dz\ \dsdy 

+ / / EI / R£(t — s,x,z)(a(s,z,u(s,z)) - a(s9y9u{s9y))\p£{y - z)dz\ \dsdy 

+ J I II R£(t - s,x,z)p£(y — z)dz — G(t— s,x,y)) E\a(s9y,u(s9y)) jdsdy 

= J2jk(£>t,x). 
k=\ 

Using (2.2), (6.25), (6.30), (6.31) and Lemma 6.6, for every T > 0 we have a CT > 0 
such that 

(6.34) 

and 

(6.35) 

J3(£,t,x)+J6(£9t,x) <CT f(t-s)~l/2 supE(\u£(s9y)-u(s9y)\2)ds 
y€R 

forO <t< TmdxeR9 

lim sup sup7^(£, t9x) = 0 for 1 < k < 8 with k ^ 3,6. 

Thus, setting U(E, t) = supxG/? E(\u£(t9x) — u{t9x)\2^j9 we have an H{e91) such that 

(6.36) U(e,t) < CT j\t-sTxl2U{e9s)ds + H(e9t) (0<t<T)9 

(6.37) lim sup H(e, t) = 0. 
£~*° 0<t<T 

Hence, by Gronwall's lemma we get 

(6.38) lim sup sup E(\u£(t.x) - u(t9x)\2) = 0 for every T > 0. 
e->0 0<t<T xeR 
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8°. By (6.26) and (6.38) the nonnegativity of u(t,x) is inherited from that of u£(t,x). 
Finally, it is a routine task to relax the assumption (6.25) to the continuity condition (2.5), 
so it is omitted. Thus the proof of Theorem 2.3 is complete. 

PROOF OF THEOREM 2.5. 1°. By (2.11), 

(6.39) 
Elu(tyX)\ 

= G(t)f(x) + J^RG(t-s,x,y)E(b(s,y,u(s,y))ysdy 

< G(t)f(x) + CT f f G(t - s, JC, y)E(u(s, y)) dsdy for 0 < t < T and x G R. 

Since/ G CJ"ap, it follows from Lemma 6.2 and 6.4 that for every À > 0 and T > 0, 

(6.40) sup [ ex^E(u(t,x))dx<oo. 
0<t<T " 

2°. Using Lemma 6.1 and Holder's inequality, for every T > 0 and p > 0 we have a 
CT,P > 0 satisfying 
(6.41) 

E(u(Ux)2p)<CT,p{(G(t)f(x)fP 

+ Jo L(t ~ 5 ) ~ 1 / 2 G ( ' ~ s9x9y)(E(u(s9yfp) + E(u(s,y)2?e)^ dsdy] 

forO<t<T<mdx£R. 
3°. Suppose that for p > 0, A > 0 and T > 0, 

(6.42) sup [ ex^E(u(t,x)2p6)dx<oo. 

Then Lemma 6.4 is applicable for (6.40); hence it follows 

(6.43) sup / exlxlE(u(t,x)2p) dx < oo. 

Accordingly, by an induction argument starting at (6.43) and Holder's inequality together 
with (6.41) and (6.42), (6.43) holds for every A > 0, p > 0 and T > 0. 

4°. Using (6.43) and Holder's inequality, one can check the moment condition (6.6) 
for 

X(t9x) = J J G(t — s, x, y) a{s, y, u(s, _y)) W(s, y) ds dy\ 
hence X(t, •) is Crap-valued continuous. 

Moreover, by (6.42) and (2.11) Y(t, •) = SoSRG(t — s,-,y)b(s,y,u(s9yj)dsdyis Crap-
valued continuous; hence u(t, •) is Crap-valued continuous in t > 0 P-a.s., completing the 
proof of Theorem 2.5. 

PROOF OF THEOREM 2.6. 1°. Choose two sequences of Lipschitz continuous func­
tions {an(u)} and {bn(u)} such that 

(6.44) \an(u)\ + \bn(u)\ < K(l + |M|) for u G R and n > 1, 

(6.45) an(0) = 0, bn(0) > 0 for n > 1 
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and that {an(u)} and {bn(u)} converge to a(u) and b(u) uniformly in u G R as n —> oo. 
Then by Theorem 2.3 there exists a unique C^-valued solution un(t, •) of the SPDE (1.1) 
with an(u) and bn(u) for each n>\. Using (6.44) and (6.45) and the same arguments as 
Theorem 2.2 together with Lemma 6.3, one can check the moment condition (6.5), so that 
the family of probability distributions on C([0, T—> C êm) induced by {un(t, •)} is tight. 

2°. It is a routine task to see that any limit point of the family is realized as a Ctem -valued 
solution of the SPDE (1.1) with a(u) and b(u), thus we complete the proof of Theorem 2.6. 
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