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Higher-Dimensional Modular
Calabi–Yau Manifolds

S. Cynk and K. Hulek

Abstract. We construct several examples of higher-dimensional Calabi–Yau manifolds and prove their

modularity.

1 Introduction

As a consequence of Wiles’ proof of the Taniyama–Shimura–Weil conjecture [20]
there has been considerable interest in the modularity of Calabi–Yau manifolds in

recent years.

The case of dimension 2 was first considered by Shioda and Inose [17] who studied
K3 surfaces with maximal Picard number, the so-called singular K3 surfaces. They

showed that these surfaces can be defined over number fields and computed their
Hasse–Weil zeta functions. In the case of a singular K3 surface the transcendental
lattice is 2-dimensional. If the surface is defined over Q , then Livné [11] showed
that the corresponding 2-dimensional Galois representation is related to a weight 3

modular form.

In dimension 3 rigid Calabi–Yau manifolds are simplest in the sense that they
have 2-dimensional middle cohomology. By a variant of the Fontaine–Mazur con-

jecture [7], also asked by Yui (see [21] for a recent account), one expects that the
middle cohomology of a rigid Calabi–Yau threefold defined over Q gives rise to an L-
series which is that of a weight 4 modular form. After numerous examples by various
authors were exhibited, Dieulefait and Manoharmayum [6] proved the modularity

conjecture for rigid Calabi–Yau threefolds under mild conditions on the primes of
bad reduction. Examples and results about non-rigid modular Calabi–Yau threefolds
can be found, e.g., in [8, 9]. For a very recent survey, including lists of practically all
known examples, we refer the reader to the book by Meyer [13].

However, practically no examples seem to be known in higher dimension, and
it is the aim of this paper to fill this gap. The first type of examples we give, arises
inductively from the Kummer construction described in Proposition 2.1. The mani-

folds obtained in this way are resolutions of quotients of products of Calabi–Yau
manifolds by a group of the form Zn

2 . With this method one can construct several
examples of modular Calabi–Yau manifolds (in any dimension). The middle coho-
mology (if the dimension is odd), resp. the transcendental lattice (if the dimension is
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even), is a tensor product of the middle cohomologies of modular Calabi–Yau mani-
folds of lower dimension. In some cases this tensor product (or, more precisely, its

semi-simplification) splits into 2-dimensional modular pieces.

In order to obtain higher dimensional Calabi–Yau manifolds with small, e.g.,

2-dimensional, middle cohomology, one has to refine the Kummer construction by
taking quotients with respect to bigger groups. We consider suitable actions of the

groups G = Zn
3 or Zn

4 and discuss this in particular in the case of quotients of the
form (E × · · · × E)/G, where E is an elliptic curve with extra automorphisms (see
§3,4). We show that these quotients have a smooth Calabi–Yau model, whose middle
cohomology (if the dimension is odd), resp. the transcendental lattice (if the dimen-

sion is even), is 2-dimensional. Moreover, we show modularity and determine the
corresponding cusp forms.

The final example which we discuss goes back to Ahlgren [1]. He considers a

5-dimensional affine variety X which is a double cover of 5-space branched along
12 hyperplanes and relates the number of points of X(Fp) to the cusp form g6(q) =

η(q2)12 of weight 6 and level 4. We prove in Theorem 5.1 that X has a smooth pro-
jective model which is a 5-dimensional Calabi–Yau manifold with b1 = b3 = 0 and

b5 = 2, whose L-series of the middle cohomology is that of the weight form g6.

2 The Kummer Construction

We start by generalizing the Kummer construction, which has been used to construct
Calabi–Yau threefolds as quotients of the product of a K3 surface with an involution
and an elliptic curve modulo the diagonal involution. To begin with, let Y be a pro-

jective manifold of dimension n with Hq(OY ) = 0 for q > 0 and let D ∈ | − 2KY |
be a smooth divisor. The line bundle −KY defines a double covering π : X → Y

branched along the divisor D, and KX = π∗(KY + (−KY )) = 0. Moreover, since
π∗(OX) = OY ⊕ KY it follows that for 0 < q < n,

Hq(OX) ∼= Hq(OY ) ⊕ Hq(KY ) ∼= Hq(OY ) ⊕ Hn−q(OY ) = 0,

and therefore the variety X is a Calabi–Yau manifold.

Now assume that we have a pair Yi, i = 1, 2 of algebraic manifolds of dimension

ni , together with smooth divisors Di ∈ |−2KYi
|. Moreover, assume that Hq(OYi

) = 0
for i = 1, 2 and q > 0 and let Xi be the double covers described above. By construc-
tion, the product X1 × X2 admits an action of Z2 ⊕ Z2.

Proposition 2.1 Under the above assumptions the quotient of the product X1 ×X2 by

the diagonal involution admits a crepant resolution X, which is a (smooth) Calabi–Yau

manifold. Moreover, there is a double cover X → Y , branched along a smooth divisor D

with Hq(OY ) = 0 for q > 0.

Proof The resolution may be described as follows: we start with the blow-up

σ : Y → Y1 × Y2
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of Y1 × Y2 along D1 × D2. Denote the exceptional divisor by E and let

D = σ∗(D1 × Y2 + Y1 × D2) − 2E

be the strict transform of D1 × Y2 ∪ Y1 × D2. Since D1 × Y2 and Y1 × D2 intersect

transversally along D1 × D2, the divisor D is smooth and isomorphic to the disjoint
union of D1 × Y2 and Y1 × D2.

Moreover

D = σ∗(D1 × Y2 + Y1 × D2) − 2E ∼ σ∗(π∗
1 (−2KY1

) + π∗
2 (−2KY2

)) − 2E

= σ∗(−2KY1×Y2
) − 2E ∼ −2KY .

Since Y and Y1 × Y2 are smooth birational projective manifolds, Hq(OY ) ∼=
Hq(OY1×Y2

) = 0 for q > 0 (by the Künneth decomposition), and hence the dou-
ble cover X of Y branched along D is a Calabi–Yau manifold.

Clearly, X is birational to the quotient of X1 × X2 by the action of the diagonal
in Z2 ⊕ Z2. More precisely, the fixed point set of the diagonal involution is the in-
verse image B of D1 × D2. The quotient by the diagonal involution has transversal
A1-singularities along the image of B. Let Z be the blow-up of X1 × X2 along B. The

involution lifts to Z with fixed point set equal to the exceptional divisor B̃, which is
ruled over B. The quotient of Z by this involution is isomorphic to X, i.e., we have a
commutative diagram of the form

X1 × X2/Z2

��

Z/Z2 = Xoo

π

��

Y1 × Y2 Yoo

where the horizontal lines are inverse maps to blow-ups and the vertical lines are

branched double covers.

The above proposition allows us to use the covering X → Y inductively, and thus
to construct higher-dimensional Calabi–Yau manifolds.

The Euler characteristic of X depends not only on the Euler characteristics of X1

and X2, but also on the involution. By standard topological arguments we obtain

e(X) =
1

2
e(X1)e(X2) +

3

2
e(D1)e(D2),

e(D) =
1

2
e(X1)e(D2) +

1

2
e(D1)e(X2) + e(D1)e(D2).

In the special case when Y2 is an elliptic curve branched over 4 points in P1, we
have e(X) = 6e(D1) and e(D) = 2e(X1) + 4e(D1).
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Example 2.1 The case where X1 is a K3-surface with an involution whose quotient
is rational and X2 is an elliptic curve was studied independently by Borcea [4] and

Voisin [19] in the context of mirror symmetry. Already in this case we have several
possibilities leading to different Euler numbers. Namely, e(D1) is an even integer
ranging from −18 (for a smooth plane sextic) to 20 (10 lines coming from the res-
olution of six lines in P2 with four triple points). If X2 is an elliptic curve, we get

Calabi–Yau threefolds with Euler numbers equal to −108, −96, −84, −72, −60, −48,
−36, −24, −12, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120.

The Hodge numbers of X cannot be computed in a similarly straightforward way.

If we know the Hodge numbers of X1 and X2, we can compute the Hodge numbers of
X1 × X2. The involution will kill the skew-symmetric part of the Hodge groups and
preserve the symmetric part. But we also have to take into account the contribution
to the cohomology coming from the blow-up of B and describe the action of the

involution on it.

Proposition 2.2 Let X1, . . . ,Xn be Calabi–Yau manifolds with involutions as above.

The quotient of the product X1 × · · · × Xn by the action of

{(m1, . . . ,mn) ∈ Z
n
2 | m1 + · · · + mn = 0} ∼= Z

n−1
2

has a crepant resolution of singularities which is a Calabi–Yau manifold.

Proof We shall proceed by induction on n. The case n = 2 follows from Propo-
sition 2.1. Since the resulting Calabi–Yau manifold has again an involution, we can

iterate the procedure. For a sequence of Calabi–Yau manifolds Xi with involution we
have the following factorization

(X1 × · · · × Xn)/Z
n−1
2

∼=
(

(X1 × · · · × Xn)/Z
n−2
2

)

/(Z
n−1
2 /Z

n−2
2 ),

where Z
n−2
2 denotes the group {(m1, . . . ,mn) ∈ Zn

2|m1 + · · · + mn−1 = mn = 0}.
Consequently,

(X1 × · · · × Xn)/Z
n−1
2

∼=
((

(X1 × · · · × Xn−1)/Z
n−2
2

)

× Xn

)

/Z2,

which proves the proposition.

Corollary 2.3 Let Ei, i = 1, . . . , n be elliptic curves. The quotient E1 × · · · × En by

the action of Z
n−1
2 has a smooth model Xn which is a Calabi–Yau manifold with Euler

characteristic e(Xn) =
1
2
(6n + 3(−2)n).

We would like to remark that quotients of the form (E1 × E2 × E3)/Z2
2 were first

considered by Borcea [3], who also proved that the resulting Calabi–Yau threefolds
have CM if and only if the factors Ei have CM.
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Lemma 2.4 If n is odd, then

Hn(Xn) ∼= Hn(E1 × · · · × En)Z
n−1
2 ∼= H1(E1) ⊗ · · · ⊗ H1(En).

For n even the (invariant) submotive Hn(E1 × · · · × En)Z
n−1
2 of Hn(Xn) is isomorphic

to the direct sum of a submotive generated by cycles of products of n/2 fibres and a sub-

motive I(Xn) ∼= H1(E1)⊗ · · · ⊗H1(En). The motive I(Xn) contains the transcendental

submotive, i.e., the orthogonal complement to the algebraic cycles of Xn.

Proof We first consider the invariant part of the middle cohomology of E1×· · ·×En.
Any tensor product

⊗

j Hi j (E j) which contributes to this must have
∑

j i j = n. Now

assume that at least one i j = 1. Then we must have that all i j = 1, since otherwise
one can find some ε ∈ Z

n−1
2 which acts by −1 on

⊗

j Hi j (E j). If n is odd, then
∑

j i j = n can only occur if at least one, and hence, by the above argument, all

i j = 1. We finally remark that Xn is of the form Zn/Z
n−1
2 where Zn arises from the

product E1 × · · ·×En by blowing up rational submanifolds. This only contributes to

the even cohomology, and this contribution is spanned by algebraic cycles.

This discussion easily implies the following.

Proposition 2.5 Assume that the Ei are defined over Q with the involution given as

x 7→ −x, and let L(Xn, s), resp. L(I(Xn), s), be the L-series associated with the Galois

action on Hn(Xn) for n odd and the submotive I(Xn) for n even. Then L(Xn, s) =

L(gE1
⊗ · · · ⊗ gEn

, s), resp. L(I(Xn), s) = L(gE1
⊗ · · · ⊗ gEn

, s), where the gEi
are the cusp

forms associated with Ei .

Proof The only statement which requires a proof is that Xn is defined over Q . But
this is clear, since the factors Ei , the involutions, and the locus which is blown up are
all defined over Q .

Here we consider gE1
⊗ · · · ⊗ gEn

as the tensor product of Galois-modules. For the
analytic properties of (some) tensor products see [10].

Remark 2.6 For a generic choice of elliptic curves, I(Xn) equals the transcendental

submotive of Xn, whereas in special cases it may be strictly bigger. For instance,
if the factors E2i−1 and E2i (i = 1, . . . , n/2) are isogeneous, then I(Xn) contains the
product of the graphs of isogenies. If, moreover, the Ei ’s have complex multiplication,
then I(Xn) also contains the product of graphs of complex multiplications. Note that

this is in agreement with the appearance of the factors L(s − n
2

) and L(χ−d, s − n
2

) in
the L-series given below.

We now specialize the situation even further and assume that all Ei are isomorphic
to an elliptic curve E with complex multiplication in Q(

√
−d). If n is odd, then

L(X, s) = L(gn+1, s)(n
0)L(gn−1, s − 1)(n

1) · · · L
(

g2, s − n−1
2

) ( n
(n−1)/2),
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and if n is even, then

L(I(X), s) = L(gn+1, s)(n
0)L(gn−1, s − 1)(n

1) · · · L
(

g3, s − n−2
2

) ( n
(n−2)/2)

× L(χ−d, s − n
2

)
1
2 ( n

n/2)L(s − n
2

)
1
2 ( n

n/2).

Here ζ(χ−d, s) is the Dirichlet L-function defined by the character associated with

the number field K = Q(
√
−d), i.e., χ−d(p) = (−d

p
), and gk is the cusp form corre-

sponding to the (k−1)-st power of the Grössencharakterψ of the elliptic curve E [15].
The cusp form gk has weight k and complex multiplication in the same field as E. The

Fourier coefficient an(gk) is given by the sum of the values of the Grössencharakter
ψk−1 at the ideals in the ring OK of integers in K of norm n, relatively prime to the
conductor of E. For a prime p which is inert in OK , we get ap = 0, because there
is no ideal in OK with norm p. For a split prime p we have p = αpᾱp for some

αp ∈ OK , which is determined by E. Then ap(gk) = αk−1
p + ᾱk−1

p , more explicitly, we
have ap(g3) = a2

p − 2p, ap(g4) = a3
p − 3pap, ap(g5) = a4

p − 4pa2
p + 2p2, and so on.

In terms of the associated Galois representations, the connection between the
forms gk and g2 can be described as follows. Consider the representation associated
with g2 and let (αp, ᾱp) be the eigenvalues of Frobp for primes p with χ−d(p) = 1. If

χ−d(p) = −1, then the corresponding eigenvalues are (i p1/2,−i p1/2). The eigenval-
ues of gk are then (αp

k−1, ᾱk−1
p ) for χ−d(p) = 1 and (p(k−1)/2,−p(k−1)/2) for k odd

and χ−d(p) = −1, resp. (i p(k−1)/2,−i p(k−1)/2) for k even and χ−d(p) = −1.
We want to conclude this section by discussing one further example of our Kum-

mer construction. As the first factor we choose the rigid Calabi–Yau threefold X3,

constructed as a resolution of singularities of the double covering of P3 branched
along the following arrangement of eight planes

xt(x − z − t)(x − z + t)y(y + z − t)(y + z + t)(y + 2z) = 0.

For a discussion of the properties of this (and other) double octics see [5] and
[13, Octic Arr. No. 19]. As the second factor we take the K3 surface S which is

obtained as a desingularization of the double sextic branched along the following
arrangement of six lines xy(x + y + z)(x + y − z)(x − y + z)(x − y − z) = 0. Both X3

and S come with natural involutions which allow us to apply Proposition 2.1. In this
way we obtain a smooth Calabi–Yau fivefold X5, which is the quotient of a blow-up

X̃3 × S of X3 × S by an involution. So the Hodge groups of X5 are the invariant part

of the Hodge groups of X̃3 × S . Since we blow up products of lines and blown up

planes, the odd-dimensional cohomology groups of X̃3 × S and X3 × S are the same.
Now, the odd-dimensional cohomology groups of S vanish, whereas the only odd-

dimensional cohomology of X3 is H3(X3) = H3,0⊕H0,3, which is anti–invariant. The
anti–invariant part of the cohomology of S is H2,0 ⊕H0,2 ∼= T(S)⊗Z C, where T(S) is
the transcendental lattice. Consequently, b1(X5) = b3(X5) = 0 and b5(X4) = 4, and
moreover H5(X5) ∼= H3(X3) ⊗ T(S). Recall that (see [2] and [13, p. 57])

L(T(S), s) ⊜ L(g3, s), L(X3, s) ⊜ L(g4, s)
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where g3 and g4 are the unique weight 3, resp. weight 4, Hecke eigenforms of level 16
and 32 with complex multiplication by i. As usual, ⊜ denotes equality up to a finite

number of Euler factors. In concrete terms

g3(q) = η(q4)6
= q − 6q5 + 9q9 + 10q13 − 30q17 + · · · ,

g4(q) = q + 22q5 − 27q9 − 18q13 − 94q17 + 359q25 + · · · ,

where η(q) = q1/24
∏∞

n=1(1 − qn) is the Dedekind η-function. Both of these forms
can be derived from the unique weight 2 level 32 newform

g2(q) = η(q8)2η(q4)2
= q − 2q5 − 3q9 + 6q13 + 2q17 + · · ·

by taking the second, resp. third, power of the Grössencharakter of Q[i] given as
ψ((α)) = α for α ∈ Z[i], α ≡ 1 mod 2 + 2i.

Hence we obtain that the L-series of X5 is the product of the L-series associated

with X3 and S, and we also find that it factors as

L(X5, s) ⊜ L(g4 ⊗ g3, s) ⊜ L(g6, s)L(g2, s − 2),

where g2 is as above and g6 is a level 32 cusp form of weight 6, namely

g6(q) = q − 82q5 − 243q9 − 1194q13 + 2242q17 + 3599q25 + · · ·

which can be derived from g2 by taking the fifth power of the Grössencharakter. Ob-
viously, we can iterate this procedure to obtain modular Calabi–Yau manifolds of
higher dimension (with increasingly complex middle cohomology).

3 Calabi–Yau Manifolds with an Endomorphism of Order 3

We shall construct for any positive integer n a Calabi–Yau n-fold Xn with an endo-

morphism of order 3 such that dim Hn(Xn) = 2 for n odd and dim T(Xn) = 2 for
n even, where T(Xn) ⊂ Hn(Xn) is the transcendental part. Moreover, we shall show
that the (semi-simplifications of) the Galois representation on Hn(Xn) (resp. T(Xn))
and the Galois representation associated with a suitable cusp form with CM by

√
−3

are isomorphic.
Fix the primitive third root of unity ζ = e2πi/3. Let X1 and X2 be two Calabi–Yau

manifolds admitting Z3-actions which do not preserve the canonical form. Moreover,
assume that the fixed point set of the action on X1 is a smooth divisor, whereas on X2

it is a disjoint union of a smooth divisor and a smooth codimension two submanifold.
Fix an automorphism η1 of X1 such that η∗1ωX1

= ζωX1
and an automorphism η2 of

X2 such that η∗2ωX2
= ζ2ωX2

such that they act on X1 and X2 as described above. Then
η1 is given locally near the branch-divisor on X1 as (ζ, 1, 1 . . . ), whereas η2 is given

locally either as (ζ2, 1, 1 . . . ) near the branch divisor on X2 or as (ζ, ζ, 1 . . . ) near the
codimension 2 fixed locus.

On X1 × X2 we have an action of Z3 ⊕ Z3, and we consider the action of Z3 on
X1 × X2, given by the automorphism η = η1 × η2.
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Proposition 3.1 Under the above assumptions, the quotient variety X1 × X2/Z3 has

a resolution of singularities X which is a Calabi–Yau manifold. The manifold X admits

a Z3-action which satisfies the same assumptions as for X2.

Proof The singularities of X1 × X2/Z3 correspond to the fixed locus of η, which is
the cartesian product of the fixed point sets of η1 and η2. Consequently, we get two

kinds of singularities: a singular codimension two stratum W1, which is a transver-
sal A2-singularity, and a codimension three stratum W2, which is a transversal cone
over a triple Veronese surface. Both types of singularities admit a crepant resolution
(described explicitly below), and we denote the resulting manifold by X. Since the

canonical form on X1 × X2 is η-invariant, it descends to the quotient and thus to the
crepant resolution. Consequently, we get ωX

∼= OX .

Denote by W1 (resp. W2) the union of the codimension two (resp. three) strata of

the fixed point set of η and consider the blow-up Z1 of X1 ×X2 along W1 ∪W2. Then
η lifts to Z1, and the fixed point set is a codimension two subvariety lying over W1

and a divisor over W2. Let Z2 be the blow-up of Z1 along the codimension two fixed
submanifold. Again, the action of Z3 lifts to Z2, and the fixed point set is a divisor.

So the quotient Z of Z2 by the action of Z3 is a smooth manifold, and it is a blow-up
of X. (In terms of the A2-singularity, the difference between Z and X is that we blow
up the point of intersection of the two (−2)-curves which come from the resolution
of the A2-singularity.) Now observe that H0(Z2,Ω

q
Z2

) = H0(X1 × X2,Ω
q
X1×X2

) = 0

for q 6= 0, n1, n2, n1 + n2, and hence, by taking the invariant part with respect to the
action of η, we obtain that H0(Z,Ω

q
Z) = H0(X,Ω

q
X) = 0 for q 6= 0, n1 + n2. This

proves that X is a (smooth) Calabi–Yau manifold.

The action of Z3 ⊕ Z3 on X1 × X2 induces an action of Z3 on X generated by the
induced action of id×η2 to X. We shall study this action in local coordinates. For the
transversal A2-singularity we can find local coordinates on X1×X2 in which the action

is given as (ζ, ζ2). Note that for simplicity we shall omit the coordinates on which η
acts trivially. The quotient map is given by (x1, x2) 7→ (u1, u2, u3) = (x3

1, x
3
2, x1x2),

and the image has equation u3
3 = u1u2. The resolution of singularities is given by

blowing up the submanifold u1 = u2 = u3 = 0. In suitable charts on the blown up

surface, the quotient map is then given by

(y1, y2) 7→ (y1, y2
1 y3

2, y1 y2),

(y1, y2) 7→ (y3
1 y2

2, y2, y1 y2),

(y1, y2) 7→ (y2
1 y2, y1 y2

2, y1 y2).

The map from X1 × X2 to the resolution of the quotient in local analytic terms is
given by

(

x3
1,

x2

x2
1

)

,
( x1

x2
2

, x3
2

)

,
( x2

1

x2
,

x2
2

x1

)

,

depending on the charts we work in. The action of id×η2 is given on X1 × X2 as
(1, ζ2), so it lifts to X as (1, ζ2), (ζ2, 1) or (ζ, ζ) respectively, depending on the affine
chart we consider.
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For the cone over the Veronese triple embedding, the resolution is given by the
so-called canonical resolution [18, (16.10, p. 199)]. If the action on X1 × X2 is given

in local coordinates as (ζ, ζ, ζ), then the map inverse to the resolution of the quotient
is given as

(

x3
1,

x2

x1
,

x3

x1

)

,
( x1

x2
, x3

2,
x3

x2

)

, or
( x1

x3
,

x2

x3
, x3

3

)

.

The action of id×η2 is given on X1×X2 as (1, ζ, ζ), so it lifts to X as (1, ζ, ζ), (ζ2, 1, 1),
and (ζ2, 1, 1), respectively.

In all cases X satisfies the assumptions made for X2.

Remark 3.2 We can now use the Calabi–Yau manifold X with the Z3-action on it to
repeat this construction inductively.

We consider an elliptic curve defined over Q with an automorphism of order 3,
which we can, without loss of generality, assume to be in Weierstrass form y2

=

x3 − D. The automorphism η is given by x 7→ ζx.

Theorem 3.3 Let E be the elliptic curve with an automorphism η of order 3, and let

X̄n be the quotient of En by the action of the group

{(ηa1 × · · · × ηan ) ∈ End(En) : a1 + · · · + an ≡ 0 mod 3}.

Then X̄n has a smooth model Xn, which is a Calabi–Yau manifold, and dim(Hn(Xn)) =

2 if n is odd, resp. dim(T(Xn)) = 2 if n is even, where T(Xn) is the transcendental part

of the cohomology.

Moreover, Xn is defined over Q and L(Hn(Xn), s) ⊜ L(gn+1, s), resp. L(T(Xn)) ⊜

L(gn+1, s), where gn+1 is the weight n + 1 cusp form with complex multiplication in

Q(
√
−3), associated with the n-th power of the Grössencharakter of E.

Proof The claim about Xn being a Calabi–Yau manifold follows by repeated applica-
tion of Proposition 3.1. To compute the middle cohomology, resp. its transcendental
part, we first notice that it is enough to compute the invariant part of the cohomol-
ogy of En. This follows since the divisors which we introduce by blowing up are linear

spaces blown up in some subspaces, so their cohomology is generated by algebraic cy-
cles. The subspace

⊗

H10(E) ⊕
⊗

H01(E) is always invariant. If n is odd, then, by
an argument similar to the one we used in the proof of Proposition 2.4, this is the
only contribution to the invariant part of Hn(En). If n is even, we have, in addition,

summands of the form Hi1 (E)⊗· · ·⊗Hin (E), where ik = 0 or 2 and
∑

ik = n, which
are also generated by algebraic cycles.

Now we turn to the arithmetic statements. We first note that X̄n is defined over Q ,
since it is defined over Q(

√
−3) and invariant under the Galois group. Since we blow

up in submanifolds defined over Q , the resolution Xn is also defined over Q .

The endomorphism η induces endomorphisms ηp : E(F̄p) → E(F̄p) (for p 6= 3,
p ∤ D), also of order 3. The induced endomorphisms ηp have three fixed points,
and hence the Lefschetz fixed point formula implies tr η∗p = −1. Now, if l ≡ 1
mod 6, then Ql contains a primitive root of unity ρl, and the eigenvalues of η∗p are
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powers of ρl which sum up to −1 and are therefore equal to ρl and ρ2
l . Denote by

v1, v2 ∈ H1
ét(Ep) the corresponding eigenvectors. It is easy to see that the subspace

of H1
ét(Ep)⊗n invariant under the action of Zn

3 is generated by v⊗n
1 = v1 ⊗ · · · ⊗ v1

and v⊗n
2 = v2 ⊗ · · · ⊗ v2, so we need to compute the images of the tensor power

of Frobenius on v⊗n
1 and v⊗n

2 . To this end, we shall need to compute the action of
Frobenius Frob∗

p in the base v1, v2.

We shall consider the cases p ≡ 1, 5 mod 6 separately. For p ≡ 1 mod 6 the
Frobenius map Frob∗

p commutes with η∗p , so it acts as v1 7→ αpv1 and v2 7→ ᾱpv2,
where αp and ᾱp are the eigenvalues of Frob∗

p. Consequently, the eigenvalues of

Frobenius on the invariant part of H1
ét(Ep))⊗n equal αn

p and ᾱn
p.

For p ≡ 5 mod 6 we have Frob∗
p ◦η∗p = (η∗p )−1 ◦ Frob∗

p, which easily implies

that in the base v1, v2 Frobenius is given by the matrix
( 0 λ

− p
λ 0

)

. Consequently, the

action of Frobenius on the invariant subspace of H1
ét(Ep)⊗n equals

( 0 λn

(− p
λ )n 0

)

, with

eigenvalues equal to ±pn/2 for n even, and ±i pn/2 for n odd.
Taking all the cases together, we see that the Galois representation on Hn(Xn) for n

odd, resp. T(Xn) for n even, has the same eigenvalues as the representation associated
with the cusp form gn+1 associated with the n-th power of the Grössencharakter of

the elliptic curve E.

Remark 3.4 In the case where E is given by the equation y2
= x3 − 1/4, the form

g2 is the unique weight 2 newform of level 27, namely

g2(q) = η(q9)2η(q3)2
= q − 2q4 − q7 + 5q13 + 4q16 − 7q19 + · · · .

In this case

g3(q) = q + 4q4 − 13q7 − q13 + 16q16 + 11q19 + 25q25 + · · · ,

g4(q) = η(q3)8
= q − 8q4 + 20q7 − 70q13 + 64q16 + 56q19 + · · · ,

which are the unique level 27 and 9 forms of weight 3 and 4. The cusp forms gk corre-
spond to powers of the Grössencharakter of the field Q(

√
−3) given by ψ((α)) = α

for α ∈ Z[ 1+
√
−3

2
], α ≡ 1 mod 3. For other models of E one obtains appropriate

twists of these forms.

4 Calabi–Yau Manifolds with an Endomorphism of Order 4

In this section we shall construct a similar example as in the previous section, but

with an endomorphism of order 4. Let X1 and X2 be two Calabi–Yau manifolds ad-
mitting Z4-actions η1 and η2. Assume that the fixed point set of η1 is a divisor, near
which the action has a linearization of the form (1, i), whereas the fixed point set
of η2 is a disjoint union of submanifolds of codimension one, two, or three, near

which the action has a linearization as (−i, 1, . . . ), (−1, i, 1, . . . ), and (i, i, i, 1 . . . ),
respectively.

On X1 × X2 we have an action of Z4 ⊕ Z4, and we consider the action of Z4 on
X1 × X2 given by the automorphism η = η1 × η2.
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Proposition 4.1 Under the above assumptions, the quotient X1 × X2/Z4 has a res-

olution of singularities X, which is a Calabi–Yau manifold. The manifold X admits a

Z4-action which satisfies the same assumptions as for X2.

Proof We shall show that the quotient admits a crepant resolution of singularities.
We shall consider separately the three cases depending on the codimension of the

component of the fix-point set of η2.
Near the fixed divisor of η2 the action of η on X1 × X2 is locally given by (i,−i).

(As in previous similar proofs, we omit the variables on which η acts trivially). Con-
sequently, the quotient is a transversal A3 singularity along the singular subvariety,

which can be resolved by blowing up twice. In local coordinates, the map from
X1 × X2 inverse to the resolution is given in affine charts as

(

x4,
y

x3

)

,
(

y4,
x

y3

)

,
( x3

y
,

y2

x2

)

,
( y3

x
,

x2

y2

)

, or
( x2

y2
, xy

)

.

The action of id×η2 on X1 ×X2 has a linearization (1,−i), so it lifts to the resolution
as (1,−i), (1,−i), (i,−1), (i,−1), or (−1,−i). In all the cases except the last one,
the action is exactly as we assume for X2, but in the last case the fixed point of the
action is (0, 0), which does not belong to the domain of the map.

Now consider the singularity corresponding to a codimension two fixed stratum of
η2. Then the action on X1×X2 has a local linearization of the form (i, i,−1). We first
divide by the square of η, which is an involution with fixed point set of codimension
two resulting in transversal A1-singularities. These we resolve by blowing-up the

singular locus. The action of Z4 lifts to this resolution again as an involution with a
codimension two fixed point set, leading once more to transversal A1-singularities,
which we resolve with a single blow-up. Simple computations show that in terms
of local coordinates, the map from X1 × X2 inverse to the resolution looks in local

coordinates like

(

x4,
z

x2
,

y

x

)

,
(

z2,
x2

z
,

y

x

)

,
( x2

z
, x2z,

y

x

)

,
( x

y
, x2 y2,

z

xy

)

,
( x

y
, z2,

xy

z

)

,

( x

y
,

xy

z
, xyz

)

,
(

y4,
z

y2
,

x

y

)

,
(

z2,
y2

z
,

x

y

)

, or
( y2

z
, y2z,

x

y

)

.

The action of id×η2 on X1 × X2 is linearized by (1, i,−1), so it lifts to the resolution

as (1,−1, i), (1,−1, i), (−1,−1, i), (−i,−1, i), (−i, 1,−i), (−i,−i,−i), (1, 1,−i),
(1, 1,−i), or (1, 1,−i). The lifting satisfies the assumption made for X2 in all except
cases 3, 4, 5, and 6, when the fixed points do not lie in the domain of the map.

The last case is the fixed point stratum of η2 of codimension 3, so the action on

X1 × X2 has a local linearization of the form (i, i, i, i). Here again, it is easier to
resolve in one step. On the quotient we get a transversal cone over the Veronese
fourfold embeding of P3. The crepant resolution is given by the so-called canonical
resolution [18, (16.16, p. 199)] for which the inverse map is given as

(

x4,
y

x
,

z

x
,

t

x

)

,
( x

y
, y4,

z

y
,

t

y

)

,
( x

z
,

y

z
, z4,

t

z

)

,
( x

t
,

y

t
,

z

t
, t4

)

,
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and so the action of id×η2 lifts as (1, i, i, i), (−i, 1, 1, 1), (−i, 1, 1, 1), and (−i, 1, 1, 1)
respectively, which completes the proof.

To produce an explicit example, consider the elliptic curve E given by the Weier-

strass equation y2
= x3−Dx, where D is a square-free integer. This curve has complex

multiplication in the field Q[i], and the map ρ : (x, y) 7→ (−x, i y) is an endomor-
phism of E of order 4.

Theorem 4.2 Let X̄n be the quotient of En by the action of the group

{(ηa1 × · · · × ηan ) ∈ End(En) : a1 + · · · + an ≡ 0 mod 4}.

Then X̄n has a smooth model Xn, which is a Calabi–Yau manifold, and dim(Hn(Xn)) =

2 if n is odd, resp. dim(T(Xn)) = 2 if n is even, where T(Xn) is the transcendental part

of the cohomology.

Moreover, Xn is defined over Q , and L(Hn(Xn), s) ⊜ L(gn+1, s), resp. L(T(Xn)) ⊜

L(gn+1, s), where gn+1 is a weight n + 1 cusp form with complex multiplication in Q(i).

Proof The existence of a crepant resolution follows from repeated application of
Proposition 4.1, and the remaining statements can be proved exactly in the same way

as in the proof of Theorem 3.3.

5 The Example of Ahlgren

Let X̄ be the double cover of P5 branched along the union of the twelve hyperplanes

x(x − u)(x − v)y(y − u)(y − v)z(z − u)(z − v)t(t − u)(t − v) = 0.

This is a projective closure of the fivefold studied by Ahlgren [1]. He proved that the

number of points defined over Fp on the affine part (u = 1) of this variety equals

N(p) = p5 + 2p3 − 4p2 − 9p − 1 − ap,

where ap is the p-th Fourier coefficient of the unique normalized weight 6 and level
4 cusp form (which is equal to η12(q2)).

Our goal here is to prove the following.

Theorem 5.1 The variety X̄ has a smooth model X (defined over Q), which is a

Calabi–Yau fivefold with Betti numbers b1(X) = b3(X) = 0, b5(X) = 2. More precisely,

h50
= h05

= 1, h14
= h23

= h32
= h41

= 0. The (semi-simplifications of the) Galois

representation of the action of Frobenius on H5(X) and the Galois representation corre-

sponding to the unique normalized cusp form of level 4 and weight 6 (which is η12(q2))

are isomorphic.
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Type dim mult # N1 N2 N3 N4 N5 N6

T1 3 2 66 0 0 0 0 0 0

T2 2 3 148 3 0 0 0 0 0

T3 2 4 18 6 0 0 0 0 0

T4 1 4 117 6 4 0 0 0 0

T5 1 5 36 10 6 1 0 0 0

T6 1 6 18 15 8 3 0 0 0

T7 0 5 12 10 10 0 5 0 0

T8 0 6 18 15 16 1 6 2 0

T9 0 7 12 21 23 3 8 3 1

T10 0 8 3 28 32 6 16 0 4

T11 0 9 4 36 21 9 9 9 6

Table 1

Before we can give the proof we need some preparations.
The variety X̄ is a double cover of a degree twelve arrangement, in the sense of

Definition 5.4 (see §5.1 where we collect the necessary statements). In Proposition 5.6

we describe a procedure to resolve singularities of such a double cover, and our goal
here is to check that the arrangement satisfies the assumptions of that proposition.

We shall distinguish the singularities by their multiplicity and dimension and de-
note the resulting classes by Tk. Let Nk be the number of singularities of type Tk that

contain a given singularity. Then the situation can be summed up by Table 1. We
see that T2,T4,T5,T7,T8,T9 are near pencil, whereas T1,T3,T6,T10, and T11 satisfy
⌊

m(C)
2

⌋

= n − d(C) − 1. Hence X̄ has a crepant resolution of singularities X, which
is a smooth Calabi–Yau variety.

Studying the singularities in the above table, we see that the only prime of bad
reduction is 2 (due to taking the double cover). The exterior powers of the matrix
of coefficients of the arrangement of hyperplanes have coefficients equal to 0,±1, so
the reduction modulo an odd prime has the same number and type of singularities

as in characteristic 0. Consequently, the same blow-ups as in characteristic 0 give a
resolution of singularities.

To prove modularity of X, we study the number of points of Xp in Fp. In prin-
ciple, it should be possible to give an explicit formula, as was done in the analogous

situation in dimension 3. However, in this case there are many more different types
of singularities, and so the computations would be very long and tedious. For our
purpose it is enough to have the following information on the “shape” of that num-
ber.

Proposition 5.2 For any odd prime p we have

#X(Fp) = 1 +

4
∑

i=1

b2i
∑

j=1

( ai, j

p

)

pi + p5 − ap,

where the ai, j are square-free non-zero integers.

https://doi.org/10.4153/CMB-2007-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-049-9


Higher Dimensional Modular Calabi–Yau Manifolds 499

Sketch of the Proof of Proposition 5.2 Using Ahlgren’s result we only have to take
into account the effect of adding the hypersurface at infinity and of all blow-ups.

All these varieties are resolutions of certain double covers branched along divisors
of small degrees. Using the projection formula for finite maps, it is not difficult to
show that the Hodge spaces contributing to the odd cohomology groups are all zero.
The even cohomology groups are spanned by algebraic cycles, which project (under

the double covering) onto cycles defined over Q . Consequently, the even cohomol-
ogy groups can be generated by cycles which are either defined over Q or over some
quadratic extension. Fix a non-invariant irreducible algebraic subvariety Z, and de-
note by Z ′ its image under the involution defined by the double cover. Clearly Z + Z ′

is defined over Q . Assume that Z (and hence also Z ′) is defined over a quadratic ex-
tension Q(

√
a). Recall that p is an odd prime, and hence a prime of good reduction.

Over F̄p the sum (Z + Z ′)p splits into a sum of two cycles Zp and Z ′
p. Frobenius maps

the class Zp to the class of piZp or piZ ′
p (i = 5 − dim Z) depending on whether a is a

square in Fp or not. Consequently the class of the cycle Zp −Z ′
p is an eigenvector with

eigenvalue ( a
p

)pi , where ( a
p

) is the Legendre symbol. Using the Lefschetz fixed-point

formula we obtain the proposition.

Proof of Theorem 5.1 For every 1 ≤ i ≤ 4 and 1 ≤ j ≤ b2i we consider the one-

dimensional Galois representation ρi, j with eigenvalues (
ai, j

p
)pi and define ρ̃ to be the

direct sum of all ρi, j . So ρ̃ is the Galois representation associated with the algebraic
cycles. Let ρ̄i be the Galois action on the i-th cohomology, and denote by ρ̄ the direct
sum of ρ̄2i , i = 1, . . . , 4. Finally, denote by ρ the Galois representation associated
with the unique cusp form of level 4 and weight 6. By Proposition 5.2, we can write

the number of points of X(Fp) as 1 + p5 + tr(ρ̃p) − tr ρp. By the Lefschetz fixed point
formula this is equal to

1 + p5 + tr(ρ̄p) − tr(ρ1,p) − tr(ρ3,p) − tr(ρ5,p) − tr(ρ7,p) − tr(ρ9,p).

Comparing the above two formulas and clearing the signs, we get

tr(ρ̄p) + tr(ρp) = tr(ρ̃p) + tr(ρ1,p) + tr(ρ3,p) + tr(ρ5,p) + tr(ρ7,p) + tr(ρ9,p).

So the representations ρ̄⊕ ρ and ρ̃⊕ ρ1 ⊕ ρ3 ⊕ ρ5 ⊕ ρ7 ⊕ ρ9 have equal traces for any
odd prime, and consequently they have isomorphic semi-simplifications (see [16,

Lemma, p. I-11]). Semi-simplification preserves the eigenvalues. By construction
and the Weil conjectures, the representation ρ̄ ⊕ ρ has no eigenvalue with absolute
value equal to p1/2 or p3/2, and only two eigenvalues with absolute value equal equal
to p5/2. So H1(X) = H3(X) = H7(X) = H9(X) = 0, and the Galois representations

ρ and ρ5 have equal eigenvalues and hence isomorphic semi-simplifications.

Remark 5.3 The Ahlgren variety is birational to the quotient of the fourfold fiber
product of the Legendre family, resp. the extremal rational elliptic surface with three

singular fibers of Kodaira types I2, I2, I
∗
2 (which in [14] is denoted by X222) by the

group Z3
2. In each fiber this is the construction described in Section 2 so it is fibered

by Calabi–Yau fourfolds.
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5.1 Resolution of Singularities of Double Arrangements

In this subsection we shall describe in detail the procedure which we use to resolve

the singularities of Ahlgren’s fivefold. Let Y be an n-dimensional smooth projective
manifold.

Definition 5.4 A sum D =
⋃N

i=1 Di of smooth hypersurfaces Di in Y is called an

arrangement if for each subset {ii , . . . , ir} ⊂ {1, . . . ,N} the (ideal-theoretic) inter-
section Ci1,...,ir

= Di1
∩ · · · ∩ Dir

is smooth.

The following lemma is obvious from the definitions.

Lemma 5.5 Let D = D1 ∪ · · · ∪ DN ⊂ Y be an arrangement. Then

(i) If dim(Di1
∩· · ·∩Dir

) = n−r for some {ii , . . . , ir} ⊂ {1, . . . ,N}, then Di1
. . .Dir

intersect transversally.

(ii) For any {ii , . . . , ir} ⊂ {1, . . . ,N} the tangent space to the intersection Di1
∩· · ·∩

Dir
(at any point) equals the intersection of the tangent spaces to the divisors Di .

We now consider the decomposition of the singular locus of D by multiplicities.
For this we take the set S of all components C of intersections Di1

∩ · · · ∩ Dir
where

r ≥ 2 and {ii, . . . , ir} ⊂ {1, . . . ,N}. To each element C ∈ S we assign its mul-
tiplicity m(C) = multC D = #{i : C ⊂ Di} and dimension d(C) = dim C . An

element C ∈ S will be called near-pencil if it is contained in an element C ′ ∈ S with
d(C) = d(C ′) − 1 and m(C) = m(C ′) + 1 (i.e., C is cut out from C ′ by a single
hypersurface).

If the arrangement D ⊂ Y is even (as an element of the Picard group Pic(Y )), then
there exists a double cover π : X → Y of Y branched along D. Such a double cover is
uniquely determined by fixing a line bundle L on Y with O(D)∼=L⊗2.

Proposition 5.6 Assume that for every variety C ∈ S either C is near-pencil or
⌊

m(C)
2

⌋

= n − d(C)− 1. Then X admits a projective crepant resolution of singularities.

Proof Let C ∈ S be of dimension d(C) = d and multiplicity m(C) = m. By
the definition of an arrangement, this is a smooth subvariety of Y , and we consider

the blow-up σ : Ỹ → Y of Y along C with exceptional divisor E. Recall that C ,
and hence E, are irreducible, by the definition of S. The pullback σ∗D of D to Ỹ is
even in the Picard group of Ỹ , but it is in general not reduced. We define D∗ as the
unique reduced and even divisor satisfying D̃ ≤ D∗ ≤ σ∗D, where D̃ is the strict

transform of D. In fact D∗ is equal to D̃ or D̃ + εE where ε = 0 if m is even and
ε = 1 if m is odd. This means that when the multiplicity is even, we take the strict
transform of the branch locus as the new branch locus, whereas when the multiplicity
is odd we add the exceptional divisor. Equivalently D∗

= σ∗D − 2⌊m
2
⌋E. We have
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KỸ + 1
2
D∗

= σ∗(KY + 1
2
D) + (n − d − 1 − ⌊m

2
⌋)E, and so KỸ + 1

2
D∗

= σ∗(KY + 1
2
D)

exactly when ⌊m
2
⌋ = n − d − 1. We shall call a blow-up for which this equality holds

admissible.
Assume now that C ∈ S is a minimal element (with respect to inclusion) among

those components which are not near pencil. Then, by assumption, the blow-up σ
along C is admissible. We want to show that D∗ is again an arrangement satisfying the

assumptions of the theorem. Let D1, . . . ,Dk be the components of D that contain C .
Let us pick some other components Dk+1, . . . ,Dk+p and denote by C1 the intersection
C1 = C ∩ Dk+1 ∩ · · · ∩ Dk+p. As the problem is local, we can assume that C1 is
irreducible. Our aim is to show that the intersection D̃1 ∩· · ·∩ D̃l ∩ D̃k+1 ∩· · ·∩ D̃k+p

is smooth.
The intersection consists of two parts, namely the strict transform of the intersec-

tion and the intersection of the exceptional loci. The dimension of the former is less
than or equal to dim C1 + codim C − 1 − l, and so its codimension is greater than

or equal to codim C1 − codim C + 1 + l. Since all the intersections of C with Dk+ j

are near pencil, we obtain that codim C1 − codim C = p and that the codimension
of the intersection of the exceptional loci is greater than p + l, and hence this is not
a component of the intersection D̃1 ∩ · · · ∩ D̃l ∩ D̃k+1 ∩ · · · ∩ D̃k+p. Consequently,

the intersection D̃1 ∩ · · · ∩ D̃l ∩ D̃k+1 ∩ · · · ∩ D̃k+p equals the strict transform of the
intersection D1 ∩ · · · ∩ Dl ∩ Dk+1 ∩ · · · ∩ Dk+p, and hence is smooth. To conclude
that D∗ is an arrangement in the case of m odd, we also have to take the exceptional
divisor of the blow-up into account. But this is transversal to any strict transform.

To show that the arrangement D∗ satisfies the assumption of the proposition, we
observe that in the case of m even the exceptional varieties for D∗ are blow-ups of the
exceptional varieties for D, with the same multiplicities and dimensions. In the case
of m odd, we have to add the intersections with the exceptional divisors, but these are

near-pencil singularities.
A resolution of singularities of X can now be obtained by blowing-up all the com-

ponents C ∈ S which are not near-pencil, starting from the smallest dimension.
Since every blow-up decreases the number of not near-pencil elements, the process

will terminate. As the intersection of two hyperplanes cannot be near-pencil, the
components of the final branch locus must be disjoint, and hence we get a resolution
of singularities. Finally, since all blow-ups are admissible, the resulting resolution is
crepant.

Denote by σ : Ỹ → Y the composition of all inverse maps to the blow-ups, and
by π : X → Y (resp. π̃ : X̃ → Ỹ ) the double cover of Y (resp. of Ỹ ) branched along
the divisor D (resp. along D̃). Then there exists a unique map σ̃ : X̃ → X making the
following diagram commutative.

X̃
σ̃

//

π̃

��

X

π

��

Ỹ
σ

// Y
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So the constructed crepant resolution of X is given by a proper birational morphism.

Clearly, the resolution is in general not unique, but depends on the order of the
blow-ups.

Acknowledgements The first author would like to thank the Leibniz Universität
Hannover for kind hospitality and excellent working conditions while staying there.

We would also like to thank M. Schütt for numerous discussions.
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[12] R. Livné and N. Yui, The modularity of certain non-rigid Calabi–Yau threefolds. J. Math. Kyoto Univ.
45(2005), no. 4, 645–665.

[13] C. Meyer, Modular Calabi–Yau Threefolds, Fields Institute Monograph 22, American Mathematical
Society, Providence, RI, 2005.

[14] R. Miranda and U. Persson, On extremal rational elliptic surfaces. Math. Z. 193(1986), no. 4,
537–558.

[15] K. Ribet, Galois representations attached to eigenforms with Nebentypus. In: Modular Functions of
One Variable, V, Lecture Notes in Math. 601, Springer, Berlin, 1977. pp. 17–51.

[16] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves. Research Notes in Mathematics 7,
A K Peters, Wellesley, MA, 1998.

[17] T. Shioda and H. Inose, On singular K3 surface. In: Complex Analysis and Algebraic Geometry,
Iwanami Shoten, Tokyo, 1977, pp. 119–136.

[18] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in
Mathematics 439, Springer-Verlag, Berlin, 1975.

[19] C. Voisin, Miroirs et involutions sur les surfaces K3. In: Journées de Géométrie Algébrique d’Orsay.
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