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Abstract. We generalize known results about Hilbertian fields to Hilbertian
rings. For example, let R be a Hilbertian ring (e.g. R is the ring of integers of a number
field) with quotient field K and let A be an abelian variety over K . Then, for every
extension M of K in K(Ator(Ksep)), the integral closure RM of R in M is Hilbertian.
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Introduction. Some of the most important results in the theory of Hilbertian
fields are of the form: if K is a Hilbertian field and M/K is an extension satisfying
certain properties, then M is Hilbertian as well. This article proves integral analogues
of some of these theorems: if R is a Hilbertian domain with quotient field K and M/K
is an algebraic extension of fields satisfying some condition that is known to preserve
Hilbertianity (of fields), then the integral closure of R in M is also Hilbertian.

Given irreducible polynomials f1, . . . , fm ∈ �(T1, . . . , Tr)[X ] and a non-zero
polynomial g ∈ �[T1, . . . , Tr], Hilbert’s irreducibility theorem yields an r-tuple a ∈ �r

such that fi(a, X) is defined and irreducible in �[X ] for i = 1, . . . , m and g(a) �= 0. The
set H�(f1, . . . , fm; g) of all a with that property is said to be a Hilbert subset of �r. It
contains a ∈ �r such that Gal(fi(a, X), �) ∼= Gal(fi(T, X), �(T)) for i = 1, . . . , m [3,
p. 294, Proposition 16.1.5]. The importance of the latter property lies in the fact that it
is the main (albeit not the only) tool to realize finite groups over �.

The above definition applies to an arbitrary field K . A separable Hilbert set of
K is then a Hilbert subset HK (f1, . . . , fm; g) of Kr for some positive integer r with the
additional property that each fi(T, X) is in K(T)[X ] and is separable in X . If each
of these sets is non-empty, then K is Hilbertian. It turns out that every global field is
Hilbertian. Moreover, every finitely generated transcendental extension of an arbitrary
field is Hilbertian [3, p. 242, Theorem 13.4.2]. Furthermore, every finite extension of a
Hilbertian field is Hilbertian [3, p. 227, Proposition 12.3.5].

Generalizing prior results of Willem Kuyk [6] and Reiner Weissauer [8], Dan
Haran proved a ‘diamond theorem’ in [4]: Given Galois extensions N1 and N2 of a
Hilbertian field K , every extension M of K in N1N2 that is neither contained in N1 nor
in N2 is Hilbertian.

The first author conjectured in [5] that if K is a Hilbertian field and A is an abelian
variety over K , then, every extension M of K in K(Ator) is Hilbertian. He proved the
conjecture for number fields. The proof uses Haran’s diamond theorem and a theorem
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of Serre that in that time was known only for number fields. Arno Fehm and Sebastian
Petersen referred to the conjecture as the Kuykian Conjecture and proved it when K is
an infinite finitely generated extension of its prime field [2].

Haran’s proof of the Diamond Theorem relies on a technical result [4,
Theorem 3.2]. That result is exploited by Lior Bary-Soroker, Arno Fehm and Gabor
Wiese in [1] to prove far reaching generalization of the results mentioned so far:

PROPOSITION A. ([1, Theorem 1.1]): Let M be a separable algebraic extension of a
Hilbertian field K. Suppose that there exist a tower of field extensions K = K0 ⊆ K1 ⊆
· · · ⊆ Kn such that for each 1 ≤ i ≤ n the extension Ki/Ki−1 is Galois with Galois group
that is either abelian or a direct product of finite simple groups and M ⊆ Kn. (We call
K0 ⊆ K1 ⊆ · · · ⊆ Kn a finite abelian-simple tower.) Then, M is Hilbertian.

Using a deep result of Michael Larsen and Richard Pink [7], Bary-Soroker,
Fehm and Wiese also prove that for every field K and every abelian variety A over
K , the extension K(Ator)/K admits a finite abelian-simple tower. Thus, the Kuykian
Conjecture (renamed in [1] Jarden Conjecture) turns out to be a special case of
Proposition A.

The present work originates in an arithmetic proof of the Hilbert irreducibility
theorem which proves for a global field K that every Hilbert subset of Kr contains
points in Or

K , where OK is the ring of integers of K [3, p. 241, Theorem 13.3.5]. Thus,
OK may be called a Hilbertian ring.

The first thing we do is to slightly modify the proof of [4, Theorem 3.2] to
Hilbertian rings (Proposition 1.4). Then, we use the modified criterion to generalize
Haran’s diamond theorem:

THEOREM B. (Theorem 2.2): Let R be a Hilbertian ring with quotient field K, let N1

and N2 be Galois extensions of K and M an extension of K in N1N2 such that M �⊆ N1

and M �⊆ N2. Then, the integral closure RM of R in M is Hilbertian.

Our second main result generalizes Proposition A:

THEOREM C. (Theorem 3.5): Let R be a Hilbertian ring with quotient field K and let M
be a separable algebraic extension of K of finite abelian-simple length (Definition 3.1).
Then, the integral closure RM of R in M is Hilbertian.

Theorem 1.3 has two interesting corollaries. For the first one, we denote the
compositum of all Galois extensions with symmetric Galois groups of a field K by
Ksymm.

COROLLARY D. (Corollary 3.6): Let R be a Hilbertian ring with quotient field K. Let
M be an extension of K in Ksymm. Then, the ring RM is Hilbertian.

The second one refers to the torsion subgroup Ator of an abelian variety A.

COROLLARY E. (Theorem 4.5): Let R be a Hilbertian ring with quotient field K. Let A
be an abelian variety over K and let M be an extension of K in K(Ator(Ksep)). Then, the
ring RM is Hilbertian.

The authors thank the referee for useful comments.

1. Hilbertian rings. Let R be an integral domain with quotient field K . Let T =
(T1, . . . , Tr) be an r-tuple of indeterminates and let X be an additional indeterminate.
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Given irreducible polynomials f1, . . . , fm ∈ K(T)[X ] that are separable in X and
a non-zero polynomial g ∈ K [T], the set HK (f1, . . . , fm; g) of all a ∈ Kr such that
f1(a, X), . . . , fm(a, X) are defined and irreducible in K [X ] and g(a) �= 0 is a separable
Hilbert subset of Kr. In the special case, where g = 1, we write HK (f1, . . . , fm) rather
than HK (f1, . . . , fm; 1).

We say that R is a Hilbertian ring if H ∩ Rr �= ∅ for every positive integer r and
every separable Hilbert subset H of Kr. In this case, K is a Hilbertian field.

Recall that a profinite group G is small if for every positive integer n the group
G has only finitely many subgroups of index n. In particular, if G is finitely generated,
then G is small [3, page 328, Lemma 16.10.2].

Let M/K be a separable algebraic extension of fields and let N be the Galois hull
of M/K . In particular, Gal(N/K) is small if M/K is finite.

We need the following improvement of [3, p. 332, Proposition 16.1.1]:

LEMMA 1.1. Let N be a Galois extension of a field K with small Galois group
Gal(N/K). Let M be an extension of K in N. Then, every separable Hilbert subset H of
Mr contains a separable Hilbert subset of Kr.

In particular, if K is Hilbertian, then so is M. Moreover, if K is the quotient field
of a Hilbertian domain R, then the integral closure RM of R in M is also Hilbertian.

Proof. By definition, H = HM(f1, . . . , fk; g), where fi ∈ M(T1, . . . , Tr)[X ] is
irreducible and separable, i = 1, . . . , k, and g ∈ M[T1, . . . , Tr] with g �= 0. Let n =
max(degX (f1), . . . , degX (fk)). We choose a finite extension L of K in M that contains all
of the coefficients of f1, . . . , fk, g, and set d = [L : K ]. Then, we denote the compositum
of all extensions of K in M of degree at most dn by L′. Then, L ⊆ L′, and by our
assumption on N, we have [L′ : K ] < ∞. Hence, by [3, p. 224, Corollary 12.2.3],
HL′(f1, . . . , fk; g) contains a separable Hilbert subset HK of Kr.

Let a ∈ HK and consider an i between 1 and k. Then, g(a) �= 0 and fi(a, X) is
irreducible over L′. Let b be a zero of fi(a, X) in Ksep. Then, L(b) is linearly disjoint
from L′ over L. In addition, [M ∩ L(b) : K ] ≤ [L(b) : K ] ≤ dn. Hence, M ∩ L(b) ⊆
L′ ∩ L(b) = L. It follows that fi(a, X) is irreducible over M. Consequently, a ∈ H.

If K is the quotient field of a Hilbertian domain R, then HK contains a point a
that lies in Rn, so also in Rr

M . Therefore, RM is Hilbertian. �

The following result is a generalization of [3, p. 236, Proposition 13.2.2].

LEMMA 1.2. Let R be an integral domain with quotient field K. Suppose that each
separable Hilbert subset of K of the form HK (f ) with irreducible f ∈ K [T, X ], separable,
monic, and of degree at least 2 in X, has an element in R. Then, R is Hilbertian.

Proof. By [3, p. 222, Lemma 12.1.6], it suffices to consider a separable irreducible
polynomial f ∈ K [T1, . . . , Tr, X ] in X and to prove that HK (f ) ∩ Rr �= ∅. The case
r = 1 is covered by the assumption of the lemma. Suppose r ≥ 2 and the statement
holds for r − 1. The assumption of the lemma implies that R is infinite. Let K0 =
K(T1, . . . , Tr−2), t = Tr−1, and regard f as a polynomial in K0(t)[Tr, X ]. By [3, p.
236, Proposition 13.2.1], there exists a non-empty Zariski-open subset U of �2

K0
such

that {a + bt | (a, b) ∈ U(K0)} ⊆ HK0(t)(f ). Since R is infinite, we can choose a, b such
that (a, b) ∈ U(R). Hence, f (T1, . . . , Tr−1, a + bTr−1, X) is irreducible and separable
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in K(T1, . . . , Tr−1)[X ]. The induction hypothesis gives a1, . . . , ar−1 ∈ R such that
f (a1, . . . , ar−1, a + bar−1, X) is irreducible and separable in K [X ]. Let ar = a + bar−1.
Then, ar ∈ R and f (a1, . . . , ar, X) is irreducible in K [X ]. �

Proposition 1.4 below is the basic result used in the proof of our two main
Theorems 2.2 and 3.5. We start the proof of that proposition with a generalization of
[4, Theorem 3.2]. The proof of that generalization uses the notion of ‘twisted wreath
product’ that we now recall from [3, p. 253, Definition 13.7.2].

Let G be a group and G′ a subgroup. Suppose that G′ acts on a group A from the
right. We consider the group

IndG
G′ (A) = {f : G → A | f (σσ ′) = f (σ )σ

′
for all σ ∈ G and σ ′ ∈ G′}

and let G acts on IndG
G′(A) by the rule f σ (τ ) = f (στ ). The twisted wreath product of A

and G with respect to G′ is defined as the semi-direct product

AwrG′G = G � IndG
G′(A).

We say that a tower of fields K ⊆ E′ ⊆ E ⊆ F ⊆ F̂ realizes a twisted wreath product
AwrG′G if F̂/K is a Galois extension with Galois group isomorphic to AwrG′G and the
tower yields a commutative diagram of groups,

Gal(F̂/F) �� Gal(F̂/E) �� Gal(F̂/E′) �� Gal(F̂/K)

J �� IndG
G′(A) �� G′

� IndG
G′ (A) �� AwrG′G,

where
(1) J = {f ∈ IndG

G′(A) | f (1) = 1} is a normal subgroup of IndG
G′(A)

and each of the maps in the first and the second rows is the inclusion map. See [3,
p. 255, Remark 13.7.6], where a more elaborate diagram is referred to.

The following result is a special case of [3, p. 235, Lemma 13.1.4].

LEMMA 1.3. Let K be an infinite field and let f ∈ K [T, X ] be an irreducible
polynomial which is monic and separable in X. Then, there are a finite Galois extension
L of K and an absolutely irreducible polynomial g ∈ K [T, X ] which as a polynomial in X
is monic, separable and Galois over L(T) such that K ∩ HL(g) ⊆ HK (f ).

We denote the maximal separable algebraic extension of a field K by Ksep.

PROPOSITION 1.4. Let R be a Hilbertian ring with quotient field K and let M be
a separable algebraic extension of K. Suppose that for every α ∈ M and every β ∈ Ksep,
there exist

(a) a finite Galois extension L of K that contains α and β; let G = Gal(L/K);
(b) a field K ′ that contains α such that K ⊆ K ′ ⊆ M ∩ L; let G′ = Gal(L/K ′);

and
(c) a Galois extension N of K that contains both M and L,

such that for every finite non-trivial group A0 and every action of G′ on A0 there is no
realization K, K ′, L, F0, F̂0 of A0wrG′G with F̂0 ⊆ N.

Then, the integral closure RM of R in M is Hilbertian.
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Proof. We break the proof into four parts.

Part A: Preliminaries. We apply the criterion for Hilbertianity of Lemma 1.2
combined with Lemma 1.3. So let f ∈ M[T, X ] be an absolutely irreducible polynomial,
monic and separable in X , and let M′/M be a finite Galois extension such that f (T, X) is
Galois over M′(T). We have to prove that there exists a ∈ RM such that f (a, X) ∈ M[X ]
is irreducible over M′. Let A = Gal(f, M′(T)) = Gal(f, Ksep(T)). Without loss, we may
assume that degX (f ) ≥ 2.

There is α ∈ M such that f ∈ K(α)[T, X ] and there is β ∈ Ksep such that M′ ⊆
M(β) and f (T, X) is Galois over K(β)(T) with Gal(f (T, X), K(β)(T)) = A. For these
α, β, let K ′, L and N be as in (a)–(c). Then, f ∈ K ′[T, X ] and f (T, X) is Galois over
L(T) with Gal(f (T, X), L(T)) = A.

Let R′ be the integral closure of R in K ′. Then, R′ ⊆ RM and M′ ⊆ N, so it suffices
to find a ∈ R′ such that f (a, X) is irreducible over N.

Part B: Specialization of the wreath product. We choose c1, . . . , cn ∈ R′ that form a
basis of K ′ over K .

Let t = (t1, . . . , tn) be an n-tuple of algebraically independent elements over K ′.
By [3, p. 258, Lemma 13.8.1], G′ = Gal(L/K ′) acts on A and there are fields P and P̂
such that

(2a) K(t), K ′(t), L(t), P, P̂ realize AwrG′G and P̂ is regular over L;
(2b) P = L(t, x), where irr(x, L(t)) = f (

∑n
i=1 citi, X).

Since R is Hilbertian [3, p. 231, Lemma 13.1.1], gives an n-tuple b = (b1, . . . , bn) ∈
Rn such that the specialization t �→ b yields an L-place of P̂ onto a Galois extension
F̂ of K with Galois group isomorphic to Gal(P̂/K(t)). That is, there are fields F and F̂
such that

(3a) K, K ′, L, F, F̂ realize AwrG′G.
(3b) F = L(y), where irr(y, L) = f (

∑n
i=1 cibi, X).

We set a = ∑n
i=1 cibi and observe that a ∈ R′, so f (a, X) ∈ K ′[X ].

Part C: L = N ∩ F Indeed, by (1), F/L is a Galois extension, so F0 = N ∩ F is a
Galois extension of L. Let A0 = Gal(F0/L). By [3, p. 257, Remark 13.7.6(c)], there is
a Galois extension F̂0 of K such that G′ acts on A0 and
(4) K, K ′, L, F0, F̂0 realize A0wrG′G.
Moreover, F̂0 is the Galois closure of F0 over K . Since F0 ⊆ N and N/K is Galois, we
have F̂0 ⊆ N. By assumption, this is possible only if A0 = 1, that is, if L = N ∩ F .

Part D: Conclusion. By Part B, f (a, y) = 0 and F = L(y). By Part C,

[N(y) : N] = [NF : N] = [F : L] = [L(y) : L].

Thus, f (a, X) = irr(y, N). In particular, f (a, X) is irreducible over N. �

2. Haran’s diamond theorem. Our first application of Proposition 1.4 generalizes
Haran’s diamond theorem [4, Theorem 4.1] from fields to integral domains.

The following result is [4, Lemma 1.4(a)].

LEMMA 2.1. Let π : AwrG′G → G be a twisted wreath product with A �= 1. Let
H1 � AwrG′G and h2 ∈ AwrG′G and let G1 = π (H1). Suppose that π (h2) /∈ G′ and (G1G′ :
G′) > 2. Then, there exists h1 ∈ Ker(π ) ∩ H1 such that [h1, h2] �= 1.
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THEOREM 2.2 (Haran’s diamond theorem for rings). Let R be a Hilbertian ring
with quotient field K. Let M1 and M2 be Galois extensions of K and let M be an extension
of K in M1M2. Suppose that M �⊆ M1 and M �⊆ M2. Then, the integral closure RM of R
in M is Hilbertian.

Proof. By Lemma 1.1, we may assume that [M : K ] = ∞. Part A of the proof
strengthens this assumption.

Part A: We may assume that [M : (M1 ∩ M)] = ∞ Otherwise,

[M : (M1 ∩ M)] < ∞.

Then, K has a finite Galois extension M′
2 with M ⊆ (M1 ∩ M)M′

2. Hence, M ⊆ M1M′
2

and [M : M ∩ M′
2] = ∞. Replace M1 by M′

2 and M2 by M1 to restore our assumption.

Part B: Construction of N and L. Following Proposition 1.4, we consider α ∈ M
and β ∈ Ksep. Let L be a finite Galois extension of K that contains K(α, β) and let
N = LM1M2. Then, N/K is Galois and both Gal(N/M1) and Gal(N/M2) are normal
in Gal(N/K).

Let G = Gal(L/K) and let ϕ: Gal(N/K) → G be the restriction map. Let G1 =
ϕ(Gal(N/M1)) and G2 = ϕ(Gal(N/M2)). Then,

G1, G2 � G. (1)

Now, we set K ′ = M ∩ L and G′ = ϕ(Gal(N/M)). Then, α ∈ K ′ and G′ = Gal(L/K ′).
Since M �⊆ Mi, we may choose L sufficiently large such that K ′ �⊆ Mi for i = 1, 2,

hence

G1, G2 �≤ G′. (2)

Similarly, since [M : K ] = ∞, we may choose L sufficiently large such that

(G : G′) > 2. (3)

Finally, by Part A, we may choose L sufficiently large such that

(G1G′ : G′) > 2. (4)

Part C: Realization. We consider a non-trivial group A on which G′ acts and set
H = AwrG′G. By Proposition 1.4, it suffices to prove that a realization K, K ′, L, F, F̂
of H with F̂ ⊆ N does not exist.

Assume towards contradiction that such a realization exists. We identify H with
Gal(F̂/K) such that the restriction map resF̂/L: Gal(F̂/K) → Gal(L/K) coincides with
the projection π : H → G. Then, π ◦ resN/F̂ = resN/L.

For i = 1, 2, let Hi = resN/F̂ (Gal(N/Mi)). Then, Hi � H and π (Hi) =
resN/L(Gal(N/Mi)) = Gi.

Claim: There are h1 ∈ H1 ∩ Ker(π ) and h2 ∈ H2 such that [h1, h2] �= 1 Indeed, by (2),
there exists g2 ∈ G2 � G′. Choose h2 ∈ H2 such that π (h2) = g2, so π (h2) /∈ G′. Hence,
our claim follows from (4) and Lemma 2.1.

For i = 1, 2, we choose γi ∈ Gal(N/Mi) with resN/F̂ (γi) = hi. Then, by the claim,

resN/L(γ1) = π (h1) = 1 and [γ1, γ2] �= 1. (5)
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However, since Gal(M1M2/M1 ∩ M2) ∼= Gal(M1M2/M1) × Gal(M1M2/M2), the
subgroups Gal(M1M2/M1) and Gal(M1M2/M2) commute. Hence,

resN/M1M2 [γ1, γ2] = [resN/M1M2 (γ1), resN/M1M2 (γ2)] = 1. (6)

Furthermore, by (5),

resN/L[γ1, γ2] = [resN/L(γ1), resN/L(γ2)] = [1, resN/L(γ2)] = 1. (7)

Since N = (M1M2)L, it follows from (6) and (7) that [γ1, γ2] = 1, a contradiction to
(5). �

An immediate corollary of Theorem 2.2 generalizes a well-known result of Reiner
Weissauer (see [8, Satz 9.7] or [3, p. 262, Theorem 13.9.1]).

COROLLARY 2.3. Let R be a Hilbertian ring with quotient field K and let M′ be a
separable algebraic extension of K. Suppose that M′ is a finite extension of a field M and
there exists a Galois extension N of K that contains M but does not contain M′. Then,
the ring of integers RM′ of R in M′ is Hilbertian.

Proof. The case where M′ is a finite extension of K is covered by Lemma 1.1,
so assume that [M′ : K ] = ∞. Hence, K has a finite Galois extension L such that
M′ ⊆ NL. In particular, M′ �⊆ L. By assumption, M′ �⊆ N. Hence, by Theorem 2.2,
RM′ is Hilbertian, as claimed. �

3. Abelian-simple towers. We strengthen a theorem of Lior Bary-Sorker, Arno
Fehm and Gabor Wiese saying that a Galois extension N of a Hilbertian field
K obtained by finitely many subextensions, each of which is either abelian or a
compositum of simple non-abelian extensions is Hilbertian.

DEFINITION 3.1. Let G be a profinite group. Following [1], we define the
generalized derived subgroup D(G) of G as the intersection of all open normal subgroups
N of G with G/N either abelian or simple. The generalized derived series of G,

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ,

is defined inductively by G(0) = G and G(i+1) = D(G(i)) for i ≥ 0.
We define the abelian-simple length of a profinite group G, denoted by l(G), to be

the smallest integer l for which G(l) = 1. If G(i) �= 1 for all i, we set l(G) = ∞. We say
that G is of finite abelian-simple length if l(G) < ∞. �

The following result is a special case of [1, Proposition 2.8].

LEMMA 3.2. Let (Ki/K)i∈I be a family of Galois extensions, let N = ∏
i∈I Ki, and

let m be a positive integer. If for each i ∈ I the abelian-simple length of Gal(Ki/K) is less
than or equal to m, then so is the abelian-simple length of Gal(N/K).

We quote two results from [1].

LEMMA 3.3 ([1, Lemma 2.7(i)]). If α: G → H is an epimorphism of profinite
groups, then α(G(i)), i = 0, 1, 2, . . . , is the generalized derived series of H. In particular,
l(H) ≤ l(G).
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LEMMA 3.4 ([1, Proposition 2.11]). Let m be a positive integer, let A be a non-
trivial finite group, and let G′ ≤ G be finite groups together with an action of G′ on A.
Assume that (G(m)G′ : G′) > 2m . Then,

(AwrG′G)(m+1) ∩ IndG
G′(A) �= 1 .

We say that a separable algebraic extension M/K is of finite abelian-simple length
if l(Gal(M̂/K)) < ∞, where M̂ denotes the Galois closure of M/K . The following
result strengthens [1, Theorem 3.2].

THEOREM 3.5. Let R be a Hilbertian ring with quotient field K and let M be a
separable algebraic extension of K of finite abelian-simple length. Then, the integral
closure RM of R in M is Hilbertian.

Proof. Our proof closely follows the proof of [1, Theorem 3.2] which proves that
M is Hilbertian.

Let L be the Galois closure of M/K . Let 	 = Gal(L/K) and let 	(i), i = 0, 1, 2, . . . ,
be the generalized derived series of 	. By assumption, there exists a minimal m ≥ 0
such that

	(m+1) = 1. (1)

Let 	′ = Gal(L/M) and for each i denote by L(i) the fixed field of 	(i) in L.
Let P = M ∩ L(m). If (	′	(m) : 	′) < ∞, then by the Galois correspondence, M is

a finite extension of P. Note that if P̂ is the Galois closure of P/K , then P̂ ⊆ L(m) and
thus Gal(P̂/K) is a quotient of 	/	(m). Thus, Gal(P̂/K)(m) is a quotient of

(	/	(m))(m) = 	(m)/	(m) = 1

and therefore trivial (Lemma 3.3). Hence, induction on m implies that the integral
closure RP of R in P is Hilbertian. Since M is a finite extension of P, it follows from
Lemma 1.1 that RM is Hilbertian.

Therefore, we may assume that (	′	(m) : 	′) = ∞, that is, [M : P] = ∞. To prove
that RM is Hilbertian, we apply Proposition 1.4.

Let α ∈ M and β ∈ Ksep. Since M/P is infinite, there exists a finite Galois extension
E/K such that α, β ∈ E and

[E′ : E ∩ P] > 2m, (2)

where E′ = E ∩ M.
Let G = Gal(E/K), G′ = Gal(E/E′), and let G(i), i = 0, 1, 2, . . . , be the generalized

derived series of G (Definition 3.1). Note that α ∈ E′. In addition, we set N = EL and
consider a non-trivial group A on which G′ acts. By Proposition 1.4, it suffices to prove
that there are no fields F, F̂ such that
(3) F̂ ⊆ N and K ⊆ E′ ⊆ E ⊆ F ⊆ F̂ is a realization of AwrG′G.

Assume towards contradiction that there exist fields F and F̂ that satisfy (3) and
identify Gal(F̂/K) with AwrG′G and Gal(F̂/E) with IndG

G′(A).
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Let Ē = L ∩ E, Ḡ = Gal(Ē/K), and consider the following diagram:

L(m)
	(m)

L(m)M L N

L(m) ∩ M M

	′

F̂

IndG
G′ (A)

K

	

Ḡ

G

L(m) ∩ E′ 2m<
E′ Ē E

Let ϕ: 	 → Ḡ and ψ : G → Ḡ be the restriction maps. By Lemma 3.3,

Ḡ(m) = ϕ(	(m)) = Gal(Ē/L(m) ∩ Ē) ,

Ḡ(m) = ψ(G(m)) = Gal(Ē/E(m) ∩ Ē) ,

where E(m) is the fixed field of G(m) in E.

	(m)

ϕ

��
G(m)

ψ �� Ḡ(m)

Gal(L/L(m)) Gal(E/L(m) ∩ E)
res �� Gal(Ē/L(m) ∩ Ē)

Thus,

E(m) ∩ Ē = L(m) ∩ Ē. (4)

Since E ∩ M = E ∩ L ∩ M = Ē ∩ M, we have

E ∩ M ∩ E(m) = Ē ∩ M ∩ E(m) = M ∩ E(m) ∩ Ē
(4)= M ∩ L(m) ∩ Ē = Ē ∩ M ∩ L(m) = E ∩ M ∩ L(m) .

Hence,

(G(m)G′ : G′) = [E′ : E′ ∩ E(m)] = [E′ : E ∩ P]
(2)
> 2m .

Lemma 3.4 yields

(AwrG′G)(m+1) ∩ IndG
G′(A) �= 1 ,

so there exists a non-trivial element

τ ∈ (AwrG′G)(m+1) ∩ IndG
G′(A).
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Since Gal(F̂/K) = AwrG′G, the map resN/F̂ : Gal(N/K) → Gal(F̂/K) maps
Gal(N/K)(m+1) onto (AwrG′G)(m+1) (Lemma 3.3). Hence, we may lift τ to an element

τ̃ ∈ Gal(N/K)(m+1). Again, by Lemma 3.3, τ̃ |L ∈ Gal(L/K)(m+1) = 	(m+1) (1)= 1. Since
τ ∈ IndG

G′(A) = Gal(F̂/E), it follows that τ̃ |E = 1. Then, since LE = N, we have τ̃ = 1,
so τ = 1. We conclude from this contradiction that RM is Hilbertian. �

Let R be an integral domain with quotient field K and let N be an extension of
K . Recall that [2] calls N an H-extension of K if every field M between K and N is
Hilbertian. We say that N is an HR-extension of R if for every field M between K and
N the integral closure RM of R in M is Hilbertian.

COROLLARY 3.6. Let R be a Hilbertian ring with quotient field K. Then, Ksymm/R
is an HR-extension.

Proof. One observes that the abelian-simple length of each Sn is at most 3. Hence, by
Lemma 3.2, the abelian-simple length of Ksymm/K is at most 3. Therefore, by Theorem
3.5, Ksymm/R is an HR-extension. �

4. Abelian varieties. Let R be a Hilbertian ring with quotient field K and let A
be an abelian variety over K . Let Ator(Ksep) be the group of all points in A(Ksep) of
finite order. We use both main results of this work to prove that K(Ator(Ksep))/R is an
HR-extension.

We start by a ring version of [2, Lemma 2.2].

LEMMA 4.1. Let R be a Hilbertian ring with quotient field K and let K1, . . . , Kn be
HR-extensions of R that are Galois over K. Then,

∏n
i=1 Ki is an HR-extension of R.

Proof. Induction on n reduces the lemma to the case n = 2. Let M be an extension
of K in K1K2. If M is contained either in K1 or in K2, then RM is Hilbertian, by
assumption. Otherwise, RM is Hilbertian, by Theorem 2.2. �

The following result is a special case of [1, Corollary 4.6].

LEMMA 4.2. For every positive integer n, there exists m with the following property:
For every l, every closed subgroup � of GLn(�l) has a closed pro-l normal subgroup N
such that the abelian-simple length of �/N is at most m.

We also need Lemma 2.3 of [2].

LEMMA 4.3. Let (Li)i∈I be a linearly disjoint family of extensions of a field L. Then,⋂
J⊆I
finite

∏
i∈I�J Li = L.

LEMMA 4.4. Let R be a Hilbertian ring with quotient field K. Let (Ki)i∈I be a family
of Galois HR-extensions of R. Suppose that there exists an HR-extension L of R such
that (KiL)i∈I is a linearly disjoint family of field extensions of L. Then, the field

∏
i∈I Ki

is an HR-extension of R.

Proof. If M ⊆ ∏
i∈I�J Ki for every finite subset J of I , then M ⊆ L, by Lemma 4.3.

Hence, RM is a Hilbertian ring in this case.
Otherwise, I has a finite subset J such that M �⊆ ∏

i∈I�J Ki. If M ⊆ ∏
i∈J Ki, then

RM is Hilbertian, by Lemma 4.1. Otherwise, M �⊆ ∏
i∈J Ki. Hence, RM is Hilbertian,

by Theorem 2.2. �
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The following result is the ring version of a special case of [1, Corollary 4.3].

COROLLARY 4.5. Let R be a Hilbertian ring with quotient field K. Let A be an
abelian variety over K. Then, K(Ator(Ksep)) is an HR-extension of R.

Proof. We set g = dim(A) and let l range over the set of prime numbers. For each
l, let Al∞(Ksep) be the group of all points of A(Ksep) whose order is a power of l. It is
well known that Gal(K(Al∞(Ksep))/K) is a closed subgroup of GL2g(�l). Therefore, by
Lemma 4.2, Gal(K(Al∞(Ksep))/K) has a closed normal pro-l subgroup �l such that the
abelian-simple length of

Gal(K(Al∞(Ksep))/K)/�l

is bounded by a positive integer m that depends on g but not on l. Let El be the fixed field
of �l in K(Al∞(Ksep)). Then, El is a Galois extension of K and Gal(K(Al∞(Ksep))/El) ∼=
�l is a pro-l-group and the abelian-simple length of Gal(El/K) is bounded by a positive
integer m that depends on g but is independent of l.

Let E = ∏
l∈� El. By the preceding paragraph and Lemma 3.2, the abelian-simple

length of Gal(E/K) is less than or equal to m.
Moreover, for each l, the group Gal(E(Al∞(Ksep))) is isomorphic to a normal

closed subgroup of Gal(K(Al∞(Ksep))/El), hence is itself pro-l. Therefore, the fields
E(Al∞(Ksep)), with l ranging over all prime numbers, are linearly disjoint over E.

Since K(Ator(Ksep)) = ∏
l K(Al∞(Ksep)), it follows from the last two paragraphs and

from Lemma 4.4 that K(Ator(Ksep)) is an HR-extension of R. �
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