REGULAR-NILPOTENT GROUPS OF AUTOMORPHISMS

REZA ZOMORRODIAN

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A. e-mail: rezo@msn.com

(Received 30 May, 2000; accepted 7 May, 2002)

Abstract. Using the definition of *regular p-group* given by M. Hall [1], a new class of finite groups called *regular-nilpotent* has been defined. The action of these groups as automorphisms of compact Riemann surfaces has been investigated. It is proved that a necessary and sufficient condition for a Fuchsian group to cover a regular-nilpotent group is that its orbit genus be zero and its periods satisfy the *least common multiple condition*, first defined by Harvey [2] and Maclachlan [4].

2000 Mathematics Subject Classification. 20H10, 20F28.

- 1. Introduction. This paper is another seguel to [6] in which I used the notion of p-localization defined in [3] to obtain the best possible bound 16 (g-1) for the order of a finite nilpotent group acting as the group of automorphisms of a Riemann surface of genus g > 2. Marshall Hall [1] has defined a particular class of p-groups called regular p-groups. These p-groups have the property that, for any two elements a, b and any integer of the form $n = p^{\alpha}$, the identity $(ab)^n = a^n b^n S_1^n S_2^n \cdots S_t^n$ is satisfied. Here S_1, S_2, \ldots, S_t are appropriate elements from the commutator subgroup of the group generated by a and b. In this paper, we define yet another class of finite groups called regular-nilpotent: namely, the nilpotent groups all of whose p-Sylow subgroups are regular p-groups. After establishing the existence of such finite groups, we then look for necessary and sufficient conditions under which this particular type of nilpotent group is covered by a co-compact Fuchsian group. We also generalize a property, described in [8], of 3-groups of automorphisms of Riemann surfaces to any other odd prime. More precisely, we shall show that for any odd prime $p \ge 3$, the smallest p-group covered by the Fuchsian group $(0; p, p, p^2)$ is an irregular group C_p wr C_p of order p^{p+1} . Here wr denotes wreath product.
- **2. Notation and terminology.** Let *P* be a finite *p*-group whose order is p^n , where *p* is a prime. If *P* is of class less than *p* and $n = p^{\alpha}$, $P = \langle a_1, a_2, \dots, a_r \rangle$, then we have

$$(a_1a_2\cdots a_r)^n=a_1^na_2^n\cdots a_r^nS_1^nS_2^n\cdots S_t^n,$$

where S_1, S_2, \dots, S_t are elements of the commutator subgroup of the group P

Part (A). Known facts about regular *p*-groups.

- 1. Every p-group of class less than p is regular.
- 2. Every p-group of order at most p^p is regular.

Present address: 331 Devonshire Street, A-1, Pittsburgh, Pennsylvannia, 15213-1747, U.S.A.

- 3. The group P is regular if every subgroup generated by two elements in P is regular.
 - 4. Every subgroup and every factor group of a regular *p*-group are also regular.
- 5. If P is a finite p-group, P is regular if and only if for any a, b in P we have $(ab)^p = a^p b^p S^p$, where $S \in [P_1, P_1]$ and $P_1 = \langle a, b \rangle$.
 - 6. If P is regular with $n = p^{\alpha}$, then the following conditions are satisfied.
 - (i) $[a^n, b] = 1$ if and only if $[a, b]^n = 1$, where $a \in P, b \in P$.
 - (ii) If $[a^n, b] = 1$, then $[a, b^n] = 1$.
- (iii) A commutator S involving an element u has order at most that of u modulo the centre of P.
 - (iv) The order of the elements $a_1 a_2 \cdots a_r$ is at most max $\{|a_i| : 1 \le i \le r\}$.
 - 7. If in a regular p-group we have $a^n = b^n = 1$, then ab has order at most n.

Part (B). Well-known facts about Fuchsian groups and p-localization.

1. A Fuchsian group is a discrete subgroup Γ of orientation preserving isometries of the upper half-plane D with hyperbolic structure. Moreover, if D/Γ is a compact surface, then Γ has the following presentation:

$$\Gamma(S) = \left\langle x_1, x_2, \dots, x_s, a_1, b_1, \dots, a_g b_g \middle| x_i^{m_i} (i = 1, \dots, s), \prod_{i=1}^s x_i \prod_{j=1}^g [a_j, b_j] \right\rangle$$

where $S = (g: m_1, m_2, ..., m_s)$ is the signature of the group Γ . The integers $m_1, m_2, ..., m_s$ are the periods of Γ and g is its orbit genus. The groups of automorphisms of compact Riemann surfaces are the quotient groups of Fuchsian groups. Every Fuchsian group has an associated fundamental region whose hyperbolic area $\mu(\Gamma)$ depends only on the group itself. Suppose that Γ has the signature S defined above. Then

$$\mu(\Gamma) = 2\pi \left[(2g - 2) + \sum_{k=1}^{s} (1 - m_k^{-1}) \right].$$

2. If Γ_1 is a subgroup of finite index in the group $\Gamma(S)$, where S is a non-degenerate signature, then there is a signature S_1 such that $\Gamma_1 \cong \Gamma(S_1)$ and we have the following Riemann–Hurwitz index formula

$$[\Gamma : \Gamma_1] = \mu(\Gamma(S_1))/\mu(\Gamma(S)).$$

- 3. It is well known that a compact Riemann surface of genus $g \ge 2$ can be represented as the quotient group D/Γ , where Γ is a Fuchsian group with signature (g; -) called the *surface group* of genus g. Here denotes the empty set of periods.
- 4. A finite group G acts as the group of automorphisms of a given surface group if and only if there is a Fuchsian group Π and a homomorphism Φ from Π onto G having Γ as its kernel. Such a homomorphism will be smooth; (that is, has torsion-free kernel). Also Π admits G as a smooth factor group. Moreover, the homomorphism $\Phi: \Pi \to G$ is smooth if and only if it preserves the periods of the Fuchsian group Π .
- 5. Suppose that $S = (g; m_1, m_2, ..., m_s)$ is the signature of the Fuchsian group Γ . Let α_i be the largest number such that $p^{\alpha_i} | m_i (i = 1, ..., s)$. The signature

 $S_p = (g; p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_s})$ is called the *p-localization signature* of S. We have

$$\Gamma(S_p) = \left(x'_i, \dots, x'_s, a'_1, b'_1, \dots, a'_g, b'_g \middle| x'_1^{p^{\alpha_1}}, \dots, x'_s^{p^{\alpha_s}}, \prod_{i=1}^s x'_i \prod_{j=1}^{g_{j=1}} \left(a'_j b'_j a'_j^{-1} b'_j^{-1}\right)\right).$$

6. A signature S is called *p-local* if every period of S is already a power of the same prime p so that $S = S_p$. We also call the homomorphism $l_p : \Gamma(S) \to \Gamma(S_p)$, obtained by extending the function defined on the generating sets by

$$x_i \to x'_i, \quad a_i \to a'_i, \quad b_k \to b'_k \quad (i = 1, 2, \dots, s; j, k = 1, \dots, g),$$

the *p-localization homomorphism*.

- 7. Each smooth homomorphism $\Phi: \Gamma(S) \to G = G_{p_1} \times G_{p_2} \times \cdots G_{p_s}$ from $\Gamma(S)$ onto the finite nilpotent group G that can be written as the direct product of its Sylow subgroups $G_{pi}(i=1,2,\ldots,s)$ determines a set of homomorphisms of the form $\Phi_{p_i}: \Gamma(S_{p_i}) \to G_{p_i}$ such that if $y \in \Gamma(S)$ and $g_i = \Phi_{p_i}(l_{p_i}(y))$, then we have $\Phi(y) = g_1g_2\cdots g_s$. Therefore, we can obtain all possible smooth homomorphisms from the Sylow p-subgroups of G.
- 3. Regular-nilpotent groups of automorphisms. We shall now introduce and study the action of a class of finite nilpotent groups that we call *regular-nilpotent* as automorphisms of a compact Riemann surface of genus $g \ge 2$.

DEFINITION 3.1. *P* is said to be a *regular p-group* if for any pair of elements *a*, *b* in *P* and $n = p^{\alpha}$ we have

$$(ab)^n = a^n b^n S_1^n S_2^n \cdots S_t^n,$$

where the S_i are elements of the commutator subgroup $[P_1, P_1]$ of the group $P_1 = \langle a, b \rangle$.

DEFINITION 3.2. A finite group *G* is called *regular-nilpotent* if it is nilpotent and all of its Sylow subgroups are regular *p*-groups.

THEOREM 3.1. Let $S_p = (g; p^{\alpha_1} p^{\alpha_2}, \dots, p^{\alpha_s})$ be a p-local signature. The Fuchsian group $\Gamma(S_p)$ covers a regular p-group G_p if S_p has orbit genus g = 0 and its periods are all equal; that is, $\alpha_1 = \alpha_2 = \dots = \alpha_s = \alpha$.

Proof. By Corollary 6.7 of [3], $\Gamma(S_p)$ is residually a finite *p*-group, since S_p is a *p*-local signature. Since g = 0, every nilpotent automorphism group covered by $\Gamma(S_p)$ is a finite *p*-group by Theorem 2.1.1 of [6]. Hence we have

$$\Gamma(S_p) = \langle x_1, x_2, \dots, x_s | x_1^{p^{\alpha_1}} = x_1^{p^{\alpha_2}} = \dots = x_s^{p_s} = x_1 x_2 \dots x_s = 1 \rangle.$$

Now suppose that $\alpha = \max\{x_1, x_2, \dots, \alpha_s\}$. On the one hand we have the inequalities $p^{\alpha_j} \le p^{\alpha} (j = 1, \dots, s)$. On the other hand, if we let x_N be an element of order p^{α} , then from the long relation of $\Gamma(S_p)$ given above we obtain

$$(x_N^{-1})^{p^{\alpha}} = (x_{N+1}x_{N+2}\cdots x_sx_1x_2\cdots x_{N-1})^{p^{\alpha}} = 1.$$

However, if G_p is a regular p-group, then by Property 6(iv) of § 2 Part A we have

$$|x_{N+1}x_{N+2}\cdots x_1x_1x_2\cdots x_{N-1}| = p^{\alpha} \le |x_j| = p^{\alpha_j} \quad (j \ne N),$$

where |y| denotes the order of the element y in G. Hence $p^{\alpha_j} = p^{\alpha} (j \neq N)$. The result now follows.

We note that the result is not true in general for signatures S_p with non-zero orbit genus. Moreover, since $\Gamma(S_p)$ covers the regular p-group G_p smoothly, the signature S_p cannot be degenerate. See [3]. This implies that $s \ge 2$. For s = 2, S_p is still a non-degenerate signature, since here we have $m_1 = m_2$.

The next theorem generalizes the observation in [7, p. 240] on 3-groups of automorphisms. This explains why the smallest 3-group of automorphisms must have order 81 and must be \mathbb{Z}_3 wr \mathbb{Z}_3 . Note that here, however, we are merely dealing with the Fuchsian groups (p, p, p^2) , which do not necessarily give an upper bound for the rest of the p-groups of automorphisms.

THEOREM 3.2. Let p be an odd prime. Consider the Fuchsian group $\Gamma = \Gamma(0; p, p, p^2)$. The smallest nilpotent group G covered by Γ has the following properties.

- (i) $G \cong Sylow \ p$ -subgroup of $\mathbf{S}_{p^2} \cong C_p \ \text{wr} \ C_p$.
- (ii) $G = \langle x, y | x^p = y^p = (xy)^{p^2} = [x, [x, y^n]] = 1 \quad (n = 1, 2, ..., p 1).$
- (iii) The order of G is given by $|G| = p^{p+1}$.
- (iv) G is not a regular p-group.

Proof. First, we shall investigate the *p*-subgroup of the symmetric group S_{p^2} on p^2 letters. We shall show that this group is generated by two elements of order p whose product has order p^2 . The Sylow subgroups of S_{p^2} are easily constructed by means of the wreath product. Observe that the factors of $(p^2)!$ divisible by p are $p, 2p, 3p, \ldots, (p-1)p, p^2$. Hence $(p^2)!$ is divisible by $p^{p-1} \times p^2 = p^{p+1}$ and this is the highest power of p dividing $(p^2)!$

Now S_{p^2} has a subgroup which is the direct product of the cyclic groups generated by the *p*-cycles $a_1 = (1, 2, ..., p), a_2 = (p+1, p+2, ..., 2p), a_3 = (2p+1, ..., 3p), ..., a_p = (p^2-p+1, ..., p^2)$. Consider another element of order p; for example

$$b = (1, p + 1, 2p + 1, \dots, P^2 - p + 1)(2, p + 2, 2p + 2, \dots, p^2 - p + 2) \dots \times (p, 2p, 3p, \dots, p^2).$$

It can be checked that

$$a_{k+1} = ba_k b^{-1} = b^2 a_{k-1} b^{-2} = \dots = b^k a_1 b^{-k}.$$

Therefore, we have

$$a_k = b^{k-1}a_1b^{1-k} \quad (k = 2, \dots, p),$$

$$G = \langle a_1, a_2, \dots, a_p, b \rangle = \langle a_1, b \rangle \cong C_p \text{ wr } C_p$$

and the last group is a *p*-Sylow subgroup of S_{p^2} . Moreover $|G| = p^{p+1}$.

To find a presentation for this group we consider the relations $a_1^p = b^p = 1$ and note that

$$a_1b = (1, p+2, 2p+2, \dots, p(p-1)+2, 2, p+3, \dots, p^2)$$

is a p^2 -cycle. To get the extra relation we note that

$$a_{i+1}a_{j+1} = a_{j+1}a_{i+1} \Rightarrow (b^i a_1 b^{-i})(b^j a_1 b^{-j}) = (b^j a_1 b^{-j})(a^i a_1 b^{-i}).$$

Setting i - i = k, the relation above becomes

$$a_1b^{-k}a_1b^k = b^{-k}a_1b^ka_1 \Rightarrow [a_1, [a_1, b^k]] = 1.$$

By §2, Item 7 of Part (A), the order of a_1b is at most p and so this group is irregular.

THEOREM 3.3. A Fuchsian group $\Gamma(0; m_1, m_2, ..., m_s)$ with orbit genus zero can cover a regular nilpotent group $G = G_{p_1} \times G_{p_2} \times \cdots \times G_{p_k}$ if and only if its periods satisfy

1.c.m
$$\{m_1, m_2, \dots, \hat{m}_i, m_{i+1}, \dots, m_k\} = 1.c.m \{m_1, m_2, \dots, m_k\}.$$

Here \hat{m}_i means that m_i should be omitted from the list.

Proof. We use an idea from Section 5 of [3] to localize the given signatures $S_{p_i} = (0; p_i^{\alpha_{i1}}, p_i^{\alpha_{i2}}, \dots, p_i^{\alpha_{is}})$. Then we use our Theorem 3.1 to show that for each of the localized signatures S_{p_i} we must have $\alpha_{i1} = \alpha_{i2} = \dots = \alpha_{is} = \alpha_i \ (i = 1, 2, \dots, k)$. From this we deduce that S can be localized into the p-localization signatures $S_{p_1} = (0; p_1^{\alpha_1}, \dots, p_1^{\alpha_1}), S_{p_2} = (0; p_2^{\alpha_2}, \dots, p_2^{\alpha_2}), \dots, S_{p_k} = (0; p_k^{\alpha_k}, \dots, p_k^{\alpha_k})$.

Obviously, the signatures above each might have a different number of periods, but each must contain at least two periods in order to be a non-degenerate signature. Hence, if $p_i | \prod_j m_j$, then the same power $p_i^{\alpha_i}$ of the prime p_i must divide at least two of the periods m_i . We can now conclude that

l.c.m
$$\{m_1, m_2, \dots, \hat{m}_j, m_{j+1}, \dots, m_k\} = \text{l.c.m} \{m_1, m_2, \dots, m_k\}.$$

= $p_1^{\alpha_1} \times p_2^{\alpha_2} \times \dots \times p_L^{\alpha_k}.$

The proof is complete, since the argument can easily be reversed.

REMARK. The least common multiple condition has earlier been used in [2] and [4].

REFERENCES

- 1. Marshall Hall Jr., The theory of groups (Macmillan, 1976).
- **2.** W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, *Quart. J. Math. Ser.* **2 17** (1966), 86–97.
- 3. A. M. Macbeath, Residual nilpotency of Fuchsian groups, *Illinois. J. Math.* 28 (1984), 299–311.
- **4.** C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, *Proc. London Math. Soc.* (3) **15** (1965), 699–712.
- 5. D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, *Bull. London Math. Soc.* 2 (1970), 319–323.
- **6.** Reza Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, *Trans. Amer. Math. Soc.* **288** (1985), 241–255.
- 7. Reza Zomorrodian, Classification of *p*-groups of automorphisms of Riemann surfaces and their lower central series, *Glasgow Math. J.* **29** (1987), 237–244.