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1. Introduction

We consider a subclass of the Dirichlet series studied by Chandrasekharan
and Narasimhan in (1). Our objective is to generalize some identities due to
Landau (3) concerning r2(n), the number of representations of the positive
integer n as the sum of 2 squares. We shall also give a slight extension of
Theorem III in (1).

The subclass of Dirichlet series is given in the following definition.

Definition. Let {!„} and {/!„} be two sequences of positive numbers tending
to oo, and {a(n)} and {b(ri)} two sequences of complex numbers not identically
zero. Consider the functions <j> and i/t representable as Dirichlet series

#0 = Z £
n = 1 it = 1

with finite abscissae of absolute convergence aa and a*, respectively. If r>0,
we say (j) and ^ satisfy the functional equation

if 4> has an analytic continuation in the s-plane such that

(i) <f> is holomorphic everywhere except for a possible simple pole at s = r
with residue p;

(ii) <j)(s) = O(exp K \ s |), as | s \ tends to oo, where

(iii) m = nr-s)Hr-s)

(iv) sup

for o>a*, as k tends to oo.

From the functional equation we note that (fity) has a simple pole at s = r
if and only if ij/((t>) is holomorphic at s = 0 and iA(0)(</>(0)) # 0.

The following theorem of Chandrasekharan and Narasimhan ((1), pp. 6,
14) is the basis for our study.
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Theorem 1. Let Jv denote the Bessel function of order v. For x > 0 and

L

(1.1)

where the dash ' on the summation sign on the left indicates that ifq = O and
x = Xn, a(n) is to be multiplied by •£. The series on the right hand side converges
uniformly on any compact interval inx>0 where the left hand side is continuous.
Ifq = 0, the series converges boundedly on any compact interval in x>0.

2. Some properties of Jv

For v>0,

lira (-Y Jv(x)r(v +1) = 1. (2.1)
x->0 \xj

For arbitrary v,
- f {x-7v(x)} = -x"Vv + 1(x). (2.2)
dx

For v>0 and a>0,

r
Jo

Jv(ax)Jv+, (x)dx = U, (a = 1) (2.3)
0 l0, (a>l).

For arbitrary v, as x tends to oo,

Jv(x) = clx-ieix+c2x-ie-ix + 0(x-*\ (2.4)
where cx and c2 are constants.

All of these results can be found in (5). (2.1) follows from equation (8),
p. 40, (2.2) is given on p. 45, (2.3) on p. 406, and (2.4) on p. 199.

3. Summary of results
Throughout the sequel we shall assume that 2<ra—r<\ and 2a* — r<\, so

that (1.1) is valid for q = 0.
Define a(0) = -<£(0) for Xo = 0 and b(0) = T(r)p for fi0 = 0. Since by

(2.1),

lim (x/n)irb(0)Jr(2yJfix) = ^-, (3.1)

identity (1.1) in the case q — 0 may be written as
00

(3.2)
0 S A n S x n = 0

where the term for n = 0 in the series on the right is given by (3.1).
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The following theorem is a generalization of a theorem of Landau ((3),
Satz 523).

Theorem 2. Let p* denote the residue of^iats = r and put X = p*/r. For
y>0 let

A(y) = £ b(n), R(y) = A{y) - X/, Q(y) = f' R{t)dt.
0 S iin S y J o

Then, for x^O, y>0,

Jo

E V (3.3)
11=1 J

Corollary 3. If q - 0 and i?00 = O(j'ir). the infinite series of (1.1) w
boundedly convergent on any compact interval in x ^ 0.

Thus Corollary 3 gives a slight extension to Theorem 1 in some cases. In
particular, if a(n) = T(«), Ramanujan's arithmetical function, a result of
Hardy (2) is extended. The hypotheses of Corollary 3 are satisfied by those
Dirichlet series attached to entire modular forms of dimension —r, r>0, and
level N which vanish at all of the rational cusps of the fundamental region,
for in such a case Rankin (4) has shown that R(y) = OCv*'"*).

The following generalizes another result of Landau ((3), Satz 559).
Theorem 4. Let 0<a<)3. Let f(x) be real and of bounded variation on

a^x-^p. Then

Y a(H) g b(
f&xnsp 2 » = o

If the infinite series of (3.2) is boundedly convergent on [0, e], e>0, the
above is valid for 0 ^ a ^ p. If

(1) Xn = a = 0, the factor of a(0) should read/(a+0);

(2) Xn = a>0, the factor of a{n) should read i/(An+0);

(3) Xn = P, the factor of a(n) should read if(Xn-O).

4. Proof of results
Proof of Theorem 2. By (2.2) and integration by parts,

t = o

Jo
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Denote the second term on the right hand side of (4.1) by S(x, y). Using (1.1),
(2.4) and the fact that Jv(x) = O(xv) as x tends to 0, we have for fixed x and y
by the Weierstrass M-test,

n = 1

+±> £ \a(n)\K*-*
»= i

as 2aa—r<\. Hence, we may invert the order of summation and integration
to find

CO C2JyX

Six, y) = E OMn)*
(r+1)a(») Jr+1(t^An/x)JF

-= i Jo
+2(t)dt

(4.2)

upon an application of (2.3).
On the other hand,

-x* f "R(t)d{r*'JX2j~ix)}
Jt = o

» S f e ^ Jf = (Jn J( = 0

= -(x/y)*rA(y)JA2y/jx)+

f'
Jo

(4.3)
o

upon an integration by parts. Combining (4.1), (4.2) and (4.3), we obtain
(3.3).

Proof of Corollary 3. In view of Theorem 1 it is sufficient to assume
0 ^ x ^ e, £>0. We show that each of the terms on the right hand side of
(3.3) is 0(1) for 0 ^ x ^ e, where e>0 is fixed. The first term is clearly 0(1).
Using (1.1) and (2.4), one easily shows that

GOO =
Since /v(x), v>0, is bounded on [0, oo), it follows that

(xIy)«'+1)Q(y)Jr+1(2jy~x) = (Hy~*) = 0(1).

By the boundedness of Jr and our assumption on R{y) it follows easily that

= 0(1).
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The fourth term is present only if ij/ is not entire. In such a case r<\, since
\>2G* — T ^ 2r—r = r. By the use of (2.4) it is easily seen that

/•OO

Jo

converges if r<\. If fpllows that the fourth term is 0(1). Without loss of
generality assume that e>0 is small enough so that Xl/e>l. By an application
of (2.4) we have

7 =

We examine one of the jfour integrals, since the others are treated in exactly
the same manner. Upon an integration by parts,

/•OO

J 2Jyx

Therefore,
i =

Hence, i

£ (xMn)^+iv«) r _jr
= 1 J 2^yjc

= 0(1).

By (3.3) the proof is complete.

Proof of Theorem 4. The proof follows along the same lines as Landau's
for the case a(n) = r2(n) with only obvious changes being necessary. We
remark that when a = 0, the bounded convergence of the series of Bessel
functions in (3.3) on [0, e], £>0, is necessary for the proof. A sufficient
condition (satisfied by r2{n)) for such convergence is given in Corollary 3.
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