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Linear Maps on C∗-Algebras Preserving the
Set of Operators that are Invertible in A/I

Sang Og Kim and Choonkil Park

Abstract. For C∗-algebras A of real rank zero, we describe linear maps φ on A that are surjective up

to ideals I, and π(A) is invertible in A/I if and only if π(φ(A)) is invertible in A/I, where A ∈ A and

π : A → A/I is the quotient map. We also consider similar linear maps preserving zero products on

the Calkin algebra.

1 Introduction

Let A and B be unital C∗-algebras. A linear mapping φ : A → B is called unital if

φ(I) = I and is called a Jordan homomorphism if φ(A2) = φ(A)2 for every A ∈ A,

or equivalently φ(AB + BA) = φ(A)φ(B) + φ(B)φ(A) for every A, B ∈ A. A is said

to have real rank zero [3] if the set of Hermitian elements of A with finite spectra is

dense in the set of all Hermitian elements of A. For a unital Banach algebra A, the

radical of A is defined as

rad A = {A ∈ A | I + AB is invertible for every B ∈ A}.

A is called to be semi-simple if rad A = {0}. Let I be a closed 2-sided ideal of A

and π : A → A/I be the canonical homomorphism onto the quotient algebra. We

say that φ : A → A is surjective up to I if for every A ∈ A there exists A ′ ∈ A

such that A − φ(A ′) ∈ I, that is, A = φ(A) + I. It is clear that if φ is surjective,

then φ is surjective up to I. We say that a linear map φ : A → A preserves the

set {A ∈ A | π(A) is invertible} in both directions if the following holds: π(A) is

invertible in A/I if and only if π(φ(A)) is invertible in A/I.

This is a kind of so-called linear preserver problem. Linear preserver problems

concern characterizing linear maps on matrix spaces that leave invariant certain func-

tions, subsets, or relations, etc. These problems represent one of the most extensively

investigated research areas in matrix theory over the past several decades. Recently,

interest in similar questions on operator algebras over infinite dimensional spaces has

been growing.

One of the most famous is Kaplansky’s problem [9]. Let φ be a surjective linear

map between two semi-simple Banach algebras A and B. Suppose that σ(φ(A)) =

σ(A) for all A ∈ A, where σ(A) denotes the spectrum of A ∈ A. Is it true that φ
is a Jordan isomorphism? This problem was proved first in the finite dimensional
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case. Dieudonné [5] and Marcus and Purves [10] proved that every unital invert-

ibility preserving linear map on a complex matrix algebra is either multiplicative or

antimultiplicative, that is, φ(AB) = φ(B)φ(A) for every A and B. This result was

extended to the algebra of bounded linear operators on a Banach space by Sourour

[14] and to von Neumann algebras by Aupetit [2]. The case of nonunital invertibility

preserving mappings can be reduced to the unital case by considering the mapping

A 7→ φ(I)−1φ(A).

Recently, Mbekhta [11] characterized linear maps φ : B(H) → B(H) that are sur-

jective up to compact operators and preserving the set of Fredholm operators, that is,

operators in B(H) such that their images in the Calkin algebra C(H) = B(H)/K(H)

are invertible in both directions. Here, H is an infinite dimensional separable com-

plex Hilbert space.

Motivated by these results, we generalize the results of [11]. In this note we de-

scribe linear maps φ on C∗-algebras A that are surjective up to I and π(A) is invertible

in A/I if and only if π(φ(A)) is invertible in A/I, where π : A → A/I is the quotient

map. We also consider similar linear maps preserving zero products on the Calkin

algebra. We have to mention that key ideas in Section 2 come from [11].

2 Maps Preserving the Set of Operators that are Invertible in A/I

The following lemma is in the proof of [8, Proposition 2.1], but we list it for com-

pleteness.

Lemma 2.1 Let A be a unital C∗-algebra and A be an element of A. If A + B is

invertible for every invertible B in A, then A = 0.

Proof Let B be an arbitrary element of A. Choose a positive real number t such that

t‖B‖ < 1. Let

C = (tI + A)(tB − I)−1.

Then C is invertible, since tI + A and tB − I are invertible. Hence A + C is invertible.

Noting that

(A + C)(tB − I) = t(I + AB),

we have that I + AB is invertible. Therefore A ∈ rad A. Since every C∗-algebra is

semi-simple, it follows that A = 0.

Lemma 2.2 Let A be a C∗-algebra and I be a closed 2-sided ideal of A. Then for an

element K of A, we have

K ∈ I ⇐⇒ π(T + K) is invertible for every T ∈ A such that π(T) is invertible.

Proof (=⇒): Let K be an element of I. Then π(K) = 0. So for every T ∈ A such

that π(T) is invertible, π(T + K) = π(T) + π(K) is invertible.

(⇐=): Let T ∈ A be an element such that π(T) is invertible. Then π(T) +π(K) =

π(T + K) is invertible. Hence π(K) = 0 by Lemma 2.1. This yields K ∈ I.

Theorem 2.3 Let A be a unital C∗-algebra of real rank zero and I be a closed 2-sided

ideal of A. Assume that φ : A → A is a linear map that is surjective up to I. Then the

following conditions are equivalent:

https://doi.org/10.4153/CMB-2010-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-087-x


Maps Preserving the Set of Operators that are Invertible in A/I 143

(i) φ preserves the set {A ∈ A | π(A) is invertible} in both directions.

(ii) φ(I) ⊆ I and the induced map φ̃ : A/I → A/I is the composition of a Jordan

automorphism and left multiplication by an invertible element of A/I.

Proof (i) ⇒ (ii): We first show that φ(I) ⊆ I. Let K ∈ I and T ∈ A be an element

such that π(T) is invertible. Then there is T ′ ∈ A such that T = φ(T ′) + K ′ for

some K ′ ∈ I. As φ(T ′) = T − K ′, we have that π(φ(T ′)) is invertible. Then

π(T ′) = π(T ′ + K) is invertible. So, π(φ(T ′ + K)) is invertible, and hence π(T +

φ(K)) = π(φ(T ′ + K) + K ′) is invertible by Lemma 2.2. This yields φ(K) ∈ I

by Lemma 2.2 again, so that φ(I) ⊆ I. It is clear that φ̃ is surjective, since φ is

surjective up to I. Since π(φ(I)) is invertible in A/I, there exists S ∈ A such that

π(S)π(φ(I)) = π(φ(I))π(S) = π(I). Let ψ = Lπ(S) ◦ φ̃ : A/I → A/I, where Lπ(S) is

the left multiplication map of A/I by π(S). Noting that for T ∈ A,

ψ(π(T)) = Lπ(S)(π(φ(T))) = π(S)π(φ(T)) = π(Sφ(T)),

we have that ψ is unital. We also have that π(T) is invertible if and only if π(φ(T))

is invertible if and only if π(S)π(φ(T)) is invertible. This shows that ψ preserves the

invertible elements in both directions. Then σ(ψ(π(T)) ⊆ σ(π(T)), so that ψ is

spectrally bounded, that is, the spectral radius of ψ(π(T)) is less than or equal to that

of π(T). Then ψ is continuous by [1, Theorem 5.5.2]. Let ψ(π(T)) = 0. Then for all

invertible π(A) ∈ A/I, we have that

ψ(π(T + A)) = ψ(π(T) + π(A)) = ψ(π(A))

is invertible. Hence π(T) + π(A) = π(T + A) is invertible. Then by Lemma 2.1,

π(T) = 0. This shows that ψ is injective.

Summing up, we have that ψ is a unital continuous linear bijection preserving in-

vertible elements in both directions. Then, by [2, Theorem 1.2], ψ transforms the set

of mutually orthogonal idempotents into a set of mutually orthogonal idempotents.

In particular, ψ maps idempotents into idempotents. Since the real rank of A is zero,

the real rank of A/I is also zero by [3, Theorem 3.14]. Then, by [7, Theorem 4.1] ψ
is a Jordan automorphism. As ψ = Lπ(S) ◦ φ̃, we get

φ̃ = L−1
π(S) ◦ ψ = Lπ(S)−1 ◦ ψ = Lπ(φ(I)) ◦ ψ.

(ii) ⇒ (i): It is well known that Jordan automorphisms preserve invertibility. Thus

we have

π(A) is invertible in A/I ⇐⇒ φ̃(π(A)) = π(φ(A)) is invertible in A/I.

This completes the proof.

As a corollary we can recapture a special case of [2, Theorem 1.3], which states

that a surjective spectrum preserving linear map between von Neumann algebras A

and B is a Jordan isomorphism. In the following we consider the case A = B.

https://doi.org/10.4153/CMB-2010-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-087-x


144 S. O. Kim and C. Park

Corollary 2.4 Let A be a unital C∗-algebra of real rank zero. Assume that φ : A → A

is a surjective linear map. Then φ preserves the set of invertible elements in both direc-

tions if and only if φ is the composition of a Jordan automorphism and left multiplication

by an invertible element of A.

Proof It follows directly from Theorem 2.3 by taking I = {0}.

Now we consider the relation between the condition that “π(A) is invertible if and

only if π(φ(A)) is invertible” and their spectra. For A ∈ A let σI(A) = σ(π(A)).

Theorem 2.5 Let A be a unital C∗-algebra of real rank zero and I be a closed 2-sided

ideal of A. Assume that φ : A → A is a linear map that is surjective up to I. Then the

following conditions are equivalent:

(i) σI(A) = σI(φ(A)) (A ∈ A).

(ii) π(A) is invertible if and only if π(φ(A)) is invertible for A ∈ A and φ(I) = I + K

for some K ∈ I.

Proof (i)⇒ (ii): Since π(A) is invertible if and only if π(φ(A)) is invertible, it suffices

to show that φ(I) − I ∈ I. Let φ(I) − I = K and let T ∈ A be an arbitrary element.

Then there exist T ′ ∈ A and K ′ ∈ I such that T = φ(T ′) + K ′. We compute

σ(π(T) + π(K)) = σ(π(T) + π(φ(I) − I))

= σ(π(φ(T ′ + I))) − 1

= σ((π(T ′ + I)) − 1

= σ(π(T ′))

= σ(π(φ(T ′))

= σ(π(T)).

Then π(K) is in the radical of A/I by Zemanek’s characterization of the radical [1,

Theorem 5.3.1]. As the radical is {0}, it follows that K ∈ I.

(ii) ⇒ (i): As π(φ(I)) = π(I), it follows that ψ = φ̃ is the Jordan automorphism.

Then

σI(φ(T)) = σ(π(φ(T)) = σ(φ̃(π(T)) = σ(ψ(π(T))) = σ(π(T)) = σI(T).

This completes the proof.

3 Linear Maps Preserving Operators of Zero Products in A/I

Similarly to Theorem 2.3, we consider linear maps on A that preserve zero products

on the quotient algebra A/I. Note that in the following theorem, the map φ is not

necessarily continuous.

Theorem 3.1 Let A be a properly infinite von Neumann algebra and I be a proper

ideal of A. Assume that φ : A → A is a linear map that is surjective up to I. Then the

following condition (i) implies condition (ii).
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(i) π(φ(A))π(φ(B)) = 0 if π(A)π(B) = 0 for A, B ∈ A.

(ii) φ(I) ⊆ I and the induced map φ̃ : A/I → A/I has the form φ̃ = φ̃(π(I))Φ,

where Φ : A/I → A/I is a multiplicative surjection and φ̃(π(I)) is a nonzero

central operator.

Proof Condition (i) can be rephrased as follows: for A, B ∈ A, if AB ∈ I, then

φ(A)φ(B) ∈ I. Let A be an element of I. Then φ(A)φ(B) ∈ I for every B ∈ A. Since

φ is surjective up to I, we have I = φ(B ′) + K ′ for some B ′ ∈ A and K ′ ∈ I. As

φ(A) = φ(A)I = φ(A)(φ(B ′) + K ′) ∈ I,

we have φ(A) ∈ I. This yields that φ(I) ⊆ I and the induced map φ̃ is defined. It is

easy to show that φ̃ is surjective as φ is surjective up to I. It preserves the zero product,

that is, if π(A)π(B) = 0, then φ̃(π(A))φ̃(π(B)) = 0. By [12, Theorem 4], every

operator in a properly infinite von Neumann algebra is the finite sum of idempotents.

Then by [4, Theorem 2.6], φ̃(π(I)) is a nonzero central operator and φ̃ = φ̃(π(I))Φ,

where Φ : A/I → A/I is multiplicative. This completes the proof.

Corollary 3.2 Let H be an infinite dimensional separable complex Hilbert space and

let φ : B(H) → B(H) be a linear map that is surjective up to K(H). Then the following

conditions are equivalent:

(i) π(φ(A))π(φ(B)) = 0 if π(A)π(B) = 0 for A, B ∈ B(H).

(ii) φ(K(H)) ⊆ K(H), and the induced map φ̃ : C(H) → C(H) is a nonzero scalar

multiple of an automorphism of C(H).

Proof (i) ⇒ (ii): By Theorem 3.1, φ̃(π(I)) is a nonzero operator in the center of

C(H). Hence it is the scalar operator c and φ̃ = cΦ, where Φ : C(H) → C(H) is

multiplicative. As C(H) is simple, it follows that Φ is an automorphism.

(ii) ⇒ (i): It is clear.

If A is a general C∗-algebra and φ is a continuous linear map, we have the follow-

ing result.

Corollary 3.3 Let A be a unital C∗-algebra and I be a proper closed 2-sided ideal of

A. Assume that φ : A → A is a continuous linear map that is surjective up to I. Then

the following conditions are equivalent:

(i) π(φ(A))π(φ(B)) = 0 if π(A)π(B) = 0 for A, B ∈ A.

(ii) φ(I) ⊆ I, and the induced map φ̃ : A/I → A/I has the form φ̃ = φ̃(π(I))Φ,

where Φ : A/I → A/I is a multiplicative surjection and φ̃(π(I)) is an invertible

operator in the center of A/I.

Proof (i) ⇒ (ii): As in the proof of Theorem 3.1, φ̃ is a surjective linear map preserv-

ing zero products. It is easy to show that φ̃ is continuous. Then by [4, Theorem 4.11],

φ̃(π(I)) is a nonzero central operator and φ̃ = φ̃(π(I))Φ, where Φ : A/I → A/I is

multiplicative.

(ii) ⇒ (i): It is clear.
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Remark 3.4 There is a comment that is related to Corollary 3.2. Phillips and

Weaver [13] constructed an outer automorphism on C(H) using the Continuum Hy-

pothesis, which answered negatively a long-standing problem regarding whether or

not every automorphism of the Calkin algebra is inner. But in [6, Theorem 1] Farah

showed that all automorphisms of the Calkin algebra are inner with some consistent

set-theoretic axioms called OCA∞ and MA (see [6] for their statements). If we as-

sume the axioms OCA∞ and MA, then Corollary 3.2(ii) is equivalent to the following

condition.

(iii) φ(A) = cTAS + α(A) (A ∈ B(H)), where c is a nonzero scalar, T and S are

Fredholm operators such that π(T)−1
= π(S), and α : B(H) → K(H) is a linear

map.
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