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Abstract

By modifying the inner product in the direct sum of the Hilbert spaces associated with each of two
underlying intervals on which an even-order equation is defined, we generate self-adjoint realisations
for boundary conditions with any real coupling matrix which are much more general than the coupling
matrices from the ‘unmodified’ theory.
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1. Introduction

Partly motivated by applications, in particular [1] (see also [4]), Everitt and Zettl in [2]
developed a theory of self-adjoint realisations of Sturm–Liouville problems on two
intervals in the direct sum of Hilbert spaces associated with these intervals. See [10,
Ch. 13] for an exposition of this theory. This theory was extended in [3] to higher-order
regular and singular equations and any number of intervals, finite or infinite.

As in the one-interval case the characterisation of [3] depends on maximal domain
vectors. These vectors depend on the coefficients of each differential equation and
this dependence is implicit and complicated. In [9] Wang et al. give an explicit
characterisation of all self-adjoint domains for singular problems in terms of certain
solutions for real λ for the one-interval case when one endpoint is regular and the other
is singular. In analogy with the celebrated Weyl limit-point (LP), limit-circle (LC)
theory in the second-order case, they construct LC and LP solutions and characterise
the self-adjoint domains in terms of the LC solutions. Following [9], Hao et al. give a
new characterisation in [5] by dividing (a1, b1) into two intervals (a1, c1) and (c1, b1)
for some c1 ∈ (a1, b1) and using the LC solutions on each interval constructed in [9]
when a1 and b1 are singular. In [7], Suo and Wang extend the characterisation in [5]
to the two-interval case but the result reduces to the case when one, two, three or four
endpoints are regular.

The work of the first two authors is supported by the National Nature Science Foundation of China
(grant number 10961019) and the ‘211 project’ innovative talents training program of the Inner Mongolia
University.
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As noted in [2], a simple way of getting self-adjoint operators in a direct-sum
Hilbert space is to take the direct sum of self-adjoint operators from each of the
separate Hilbert spaces. However, there are many self-adjoint operators which are
not merely the sum of self-adjoint operators from each of the separate intervals. These
‘new’ self-adjoint operators involve interactions between the two intervals. Therefore
in [2] the authors develop a ‘two-interval’ theory. Mukhtarov and Yakubov [6]
observed that the set of two-interval self-adjoint realisations can be further enlarged
by using different multiples of the usual inner products associated with each of
the intervals. In [8] Sun et al. use the Mukhtarov–Yakubov modification of the
Everitt–Zettl theory to characterise all self-adjoint realisations of regular two-interval
problems. This characterisation is explicit and involves only the values of solutions
and their quasiderivatives at the endpoints of the intervals and the multiple inner
product parameters. In particular, for the second-order case with coupled boundary
conditions and a real coupling matrix K, the method of [2] requires that det(K) = 1
whereas with the Mukhtarov–Yakubov modification in [8] it is only required that
det(K) is positive.

In this paper we develop a complete analogue of [7] when one endpoint of each
interval (a1, b1), (a2, b2) is regular using Hilbert spaces but with the usual inner
products replaced by appropriate multiples. The interplay of these multiples with
the boundary conditions generates self-adjoint problems of even order with real
coupling matrices K which are much more general than the coupling matrices from
the ‘unmodified’ theory. We give a number of examples to illustrate this additional
generality, among other things.

From another perspective, instead of using multiples of the usual inner products,
our approach can be described as using multiples of weight functions.

2. Notation and basic facts for one interval

Although we only consider even-order equations with real coefficients in this paper,
we summarise some basic facts about general quasidifferential equations of even and
odd order and real or complex coefficients for the convenience of the reader.

Let J = (a, b) be an interval with −∞ ≤ a < b ≤∞ and let n be a positive integer
(even or odd). For a given set S , Mn(S ) denotes the set of n × n complex matrices with
entries from S .

Let Zn(J) := {Q = (qis)n
i,s=1}, where

qi,i+1 , 0 almost everywhere on J, q−1
i,i+1 ∈ Lloc(J), 1 ≤ i ≤ n − 1,

qis = 0 almost everywhere on J, 2 ≤ i + 1 < s ≤ n,

qis ∈ Lloc(J), s , i + 1, 1 ≤ i ≤ n − 1.

(2.1)

Let Q ∈ Zn(J). We define

V0 := {y : J→ C, y is measurable}
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and
y[0] := y (y ∈ V0).

Inductively, for i = 1, . . . , n, we define

Vi = {y ∈ Vi−1 : y[i−1] ∈ ACloc(J)},

y[i] = q−1
i,i+1

(
y[i−1]′ −

i∑
s=1

qisy
[s−1]

)
(y ∈ Vi),

where qn,n+1 := 1, and ACloc(J) denotes the set of complex-valued functions which are
absolutely continuous on all compact subintervals of J. Finally we set

My = MQy := iny[n] (y ∈ Vn).

The expression M = MQ is called the quasidifferential expression associated with Q.
For Vn we also write V(M) and D(Q). The function y[i] (0 ≤ i ≤ n) is called the ith
quasiderivative of y. Since the quasiderivative depends on Q, we sometimes write y[i]

Q

instead of y[i].

R 2.1. The operator M : D(Q)→ Lloc(J) is linear.

Let Zn(J, R) denote the set of matrices Q ∈ Zn(J) which have real-valued
components.

D 2.2. Let Q ∈ Zn(J, R) and let M = MQ be defined as above. Assume that

Q = −E−1Q∗E, where E = ((−1)iδi,n+1−s)n
i,s=1. (2.2)

Then M = MQ is called a symmetric differential expression.

Let w ∈ Lloc(J) be positive almost everywhere on J. We consider the Hilbert space

H = L2(J, w)

with its usual inner product

〈y, v〉w :=
∫

J
yvw.

The maximal and minimal operators associated with a symmetric expression Q and
a positive weight function w in the Hilbert space H are defined as follows.

D 2.3. Assume Q ∈ Zn(J, R) satisfies (2.2) and let M = MQ be the associated
symmetric expression. Let w ∈ Lloc(J) be positive almost everywhere on J. Define

Dmax = {y ∈ L2(J, w) : y ∈ D(Q), w−1My ∈ L2(J, w)},

S maxy = w−1My, y ∈ Dmax,

S min = S ∗max,

Dmin = D(S min).
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L 2.4. Let S min and S max be defined as above. Then Dmin and Dmax are dense
in H, S min and S max are closed operators in H, S ∗min = S max, S min = S ∗max and S min is a
symmetric operator in H.

From Definition 2.3 and Lemma 2.4 we see that every self-adjoint extension S of
the minimal operator is ‘between’ the minimal and maximal operators; that is,

S min ⊂ S = S ∗ ⊂ S max.

Thus these self-adjoint operators S are distinguished from one another only by their
domains.

L 2.5 (Lagrange identity). Assume Q ∈ Zn(J, R) satisfies (2.2) and let M = MQ

be the corresponding differential expression. Then, for any y, z ∈ D(Q),

zMy − yMz = [y, z]′,

where

[y, z] = (−1)k
n−1∑
i=0

(−1)n+1−iz[n−i−1]y[i] = (−1)k(Z∗EY), (2.3)

Y =


y

y[1]

...
y[n−1]

 , Z =


z

z[1]

...
z[n−1]

 .
D 2.6 (Regular endpoints). Let Q ∈ Zn(J, R), J = (a, b). The expression
M = MQ is said to be regular at a if for some c, a < c < b, we have

q−1
i,i+1 ∈ L(a, c), i = 1, . . . , n − 1;

qis ∈ L(a, c), 1 ≤ i, s ≤ n, s , i + 1.

Similarly the endpoint b is regular if for some c, a < c < b, we have

q−1
i,i+1 ∈ L(c, b), i = 1, . . . , n − 1;

qis ∈ L(c, b), 1 ≤ i, s ≤ n, s , i + 1.

Note that, from (2.1) it follows that if the above hold for some c ∈ J then they hold for
any c ∈ J. We say that M is regular on J, or just M is regular, if M is regular at both
endpoints.

3. Notation and Basic Assumptions for Two Intervals

Let
Jr = (ar, br), −∞ < ar < br ≤∞, r = 1, 2.

Define two differential expressions with real-valued coefficients by

Mry = MQr y := iny[n] on Jr, r = 1, 2, n = 2k, k > 1.
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Let
Hr = L2(Jr, wr), wr > 0, r = 1, 2.

The two-interval maximal and minimal domains and operators are simply the direct
sums of the corresponding one-interval domains and operators:

Dmax = D1max + D2max, Dmin = D1min + D2min,

S max = S 1max + S 2max, S min = S 1min + S 2min.

Elements of Hu = H1 + H2 will be denoted in bold face type: f = { f1, f2} with f1 ∈ H1,
f2 ∈ H2. As usual the inner product in Hu is defined by

(f, g) = ( f1, g1)1 + ( f2, g2)2, (3.1)

where (·, ·)r is the usual inner product in Hr:

( fr, gr)r =

∫
Jr

frḡrwr.

In this paper, following [8] we replace the direct-sum inner product (3.1) by

〈f, g〉 = l( f1, g1)1 + s( f2, g2)2, l > 0, s > 0, (3.2)

and apply operator theory in the direct-sum space

H = (L2(J1, w1)+̇L2(J2, w2), 〈·, ·〉). (3.3)

R 3.1. Note that (3.2) is an inner product in H for any positive numbers l and s.
The elements of the Hilbert space H defined by (3.3) are the same as those of the
usual direct-sum Hilbert spaces Hu; thus these spaces are differentiated from each
other only by their inner products. As we will see below, the parameters l, s influence
the boundary conditions which yield self-adjoint realisations of the equations in the
two-interval case. Observe also that the Hilbert space (3.3) can be viewed as a ‘usual’
direct-sum space Hu with summands Hr = L2(Jr, wr) but with each wr replaced by an
appropriate multiple.

As in the one-interval case the Lagrange sesquilinear form plays an important role.
It is defined, for appropriate functions f, g, by

[f, g] = l[ f1, g1]1(b1) − l[ f1, g1]1(a1) + s[ f2, g2]2(b2) − s[ f2, g2]2(a2), (3.4)

where

[ fr, gr]r = (−1)k(G∗r EFr), Fr =


fr

f [1]
r
...

f [n−1]
r

 , Gr =


gr

g[1]
r
...

g[n−1]
r

 .
Note that the two-interval Lagrange form [ f , g] connects all four endpoints with each
other and depends on the parameters l, s.
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4. Characterisation of all self-adjoint domains for two-interval problems

In this section we assume that MQr (r = 1, 2) are generated by Qr ∈ Zn(r)(Jr, R)
satisfying (2.2), n = 2k, k > 1. First, we give some preliminary lemmas.

L 4.1.

(1) The following equalities hold.

S ∗min = S ∗1min + S ∗2min = S 1max + S 2max = S max,

S ∗max = S ∗1max + S ∗2max = S 1min + S 2min = S min.

In particular,

Dmax = D(S max) = D(S 1max) + D(S 2max),

Dmin = D(S min) = D(S 1min) + D(S 2min).

(2) The minimal operator S min is a closed, symmetric, densely defined operator in
the Hilbert space H with deficiency index d given by d = d1 + d2.

P. The proof given in [2] for (3.1) extends readily to (3.2). �

D 4.2. Assume that the endpoint ar is regular and S rmin is defined as above.
Then for each r the deficiency index dr of S rmin is the number of linearly independent
solutions of

Mry = iwry on Jr, i =
√
−1, r = 1, 2,

which lie in Hr.

L 4.3. The number dr of linearly independent solutions of

Mry = λrwry on Jr, r = 1, 2, (4.1)

lying in Hr is independent of λr ∈ C, provided Im(λr) , 0. The inequalities

k ≤ dr ≤ 2k = n

hold. For λ = λr ∈ R, the number of linearly independent solutions of (4.1)r=1 is less
than or equal to d1, and the number of linearly independent solutions of (4.1)r=2 is less
than or equal to d2.

P. For the proof of the statement in the last sentence see [9, Lemma 5]. The other
statements are well known. �

L 4.4. Suppose Mr is regular at cr. Then for any y = {y1, y2} ∈ Dmax the limits

y[i]
1 (c1) = lim

t→c1
y[i](t), y[i]

2 (c2) = lim
t→c2

y[i](t)

exist and are finite. In particular, this holds at any regular endpoint and at each
interior point of Jr. At an endpoint the limit is the appropriate one-sided limit.

P. This follows from the one-interval theory, see [9, Lemma 3]. �
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L 4.5 (Naimark patching lemma). Let Qr ∈ Zn(r)(Jr, R) and assume that Mr is
regular on Jr. Suppose that wr ∈ L(Jr), wr > 0 on Jr, r = 1, 2. Let αs, βs, δs, ηs ∈ C,
s = 0, . . . , n − 1. Then there is a function y = {y1, y2} ∈ Dmax such that

y[s]
1 (a1) = αs, y[s]

1 (b1) = βs, y[s]
2 (a2) = δs, y[s]

2 (b2) = ηs (s = 0, . . . , n − 1).

P. This follows from the one-interval theory; see [9, Lemma 4]. �

C 4.6. Let cr < dr ∈ Jr, r = 1, 2, and αs, βs, δs, ηs ∈ C, s = 0, . . . , n − 1. Then
there is a y = {y1, y2} ∈ Dmax such that yr has compact support in Jr and satisfies

y[s]
1 (c1) = αs, y[s]

1 (d1) = βs, y[s]
2 (c2) = δs, y[s]

2 (d2) = ηs (s = 0, . . . , n − 1).

P. This follows from the one-interval theory; see [9, Corollary 4]. �

C 4.7. Let a1r < · · · < akr ∈ Jr, r = 1, 2, where a1r and akr can also be regular
endpoints. Let α js, β js ∈ C, j = 1, . . . , k, s = 0, . . . , n − 1. Then there is a y = {y1, y2} ∈

Dmax such that

y[s]
1 (a j1) = α js, y[s]

2 (a j2) = β js ( j = 1, . . . , k, s = 0, . . . , n − 1).

P. This follows from repeated applications of the previous corollary. �

L 4.8. Suppose ar, r = 1, 2 is regular. Then minimal domains Dmin consist of all
functions y = {y1, y2} ∈ Dmax which satisfy the following two conditions.

(1) y[ j]
1 (a1) = y[ j]

2 (a2) = 0, j = 0, 1, . . . , n − 1.
(2) For all z = {z1, z2} ∈ Dmax,

[y1, z1]1(b1) = [y2, z2]2(b2) = 0.

P. This follows from the one-interval theory; see [9, Lemma 7]. A similar result
holds when the endpoints br are regular. �

Next we give the decomposition of the maximal domain and the characterisation of
all self-adjoint domains for the case where a1 and a2 are regular.

Let
a1 < c < b1, a2 < d < b2,

and determine functions z j ∈ D1 max, g j ∈ D2 max, j = 1, . . . , n, such that z j(t) = 0 for
t ≥ c and g j(t) = 0 for t ≥ d, j = 1, . . . , n, and

[z1, z1]1(a1) [z2, z1]1(a1) · · · [zn−1, z1]1(a1) [zn, z1]1(a1)
[z1, z2]1(a1) [z2, z2]1(a1) · · · [zn−1, z2]1(a1) [zn, z2]1(a1)

...
...

...
...

...
[z1, zn]1(a1) [z2, zn]1(a1) · · · [zn−1, zn]1(a1) [zn, zn]1(a1)


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=



0 0 · · · 0 −1
0 · · · 0 1 0
... ·

...
0 −1 0 · · · 0
1 0 · · · 0 0


= E,


[g1, g1]2(a2) [g2, g1]2(a2) · · · [gn−1, g1]2(a2) [gn, g1]2(a2)
[g1, g2]2(a2) [g2, g2]2(a2) · · · [gn−1, g2]2(a2) [gn, g2]2(a2)

...
...

...
...

...
[g1, gn]2(a2) [g2, gn]2(a2) · · · [gn−1, gn]2(a2) [gn, gn]2(a2)



=



0 0 · · · 0 −1
0 · · · 0 1 0
... ·

...
0 −1 0 · · · 0
1 0 · · · 0 0


= E.

Such functions exist by the patching lemma and the fact that for each i = 1, . . . , n the
values z[ j]

i (a1) and g[ j]
i (a2) can be assigned arbitrarily.

T 4.9. Let the endpoints ar be regular while the endpoints br are singular, let dr

be the deficiency index of the minimal operator S r min, and let mr = 2dr − 2k, r = 1, 2.
Assume there exists λ1 and λ2 ∈ R such that (4.1)r=1 has d1 linearly independent
solutions lying in H1 and (4.1)r=2 has d2 linearly independent solutions lying in
H2. Then there exist solutions u j, j = 1, . . . , m1, of (4.1)r=1 lying in H1 and v j,
j = 1, . . . , m2, of (4.1)r=2 lying in H2 such that the m1 × m1 and m2 × m2 matrices

U = ([ui, u j]1(a1)), 1 ≤ i, j ≤ m1, V = ([vi, v j]2(a2)), 1 ≤ i, j ≤ m2,

are nonsingular and

D1 max = D1 min u span{z1, z2, . . . , zn} u span{u1, u2, . . . , um1},

D2 max = D2 min u span{g1, g2, . . . , gn} u span{v1, v2, . . . , vm2}.

P. This follows from the one-interval case; see [9, Theorem 3]. �

C 4.10. Assume that ar is regular, r = 1, 2. Let dr be the deficiency index of
the minimal operator S r min and let mr = 2dr − 2k, r = 1, 2. Assume that there exist
λ1 and λ2 ∈ R such that (4.1)r=1 has d1 linearly independent solutions lying in H1

and (4.1)r=2 has d2 linearly independent solutions lying in H2. Then there exist d1 and
d2 linearly independent real solutions u1, . . . , ud1 of (4.1)r=1 and v1, . . . , vd2 of (4.1)r=2

for λ1 and λ2 satisfying the following three conditions.

(1) The m1 × m1 and m2 × m2 matrices

U = ([ui, u j]1(a1)), 1 ≤ i, j ≤ m1, V = ([vi, v j]2(a2)), 1 ≤ i, j ≤ m2,
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are given by

U = (−1)k+1Em1×m1 ,

V = (−1)k+1Em2×m2 ,

and are therefore nonsingular.
(2) For every yr ∈ Dr max,

[u j, y1]1(b1) = 0 for j = m1 + 1, . . . , d1,

[v j, y2]2(b2) = 0 for j = m2 + 1, . . . , d2.

(3) Further,

[ui, u j]1(a1) = [ui, u j]1(b1) = 0 for i = 1, . . . , d1, j = m1 + 1, . . . , d1,

[vi, v j]2(a2) = [vi, v j]2(b2) = 0 for i = 1, . . . , d2, j = m2 + 1, . . . , d2.

P. This follows from the one-interval case; see [9, Corollary 6]. �

Next we give the Everitt and Zettl [3] extension of the Glazman, Krein, Naimark
theorem from the one-interval to the two-interval case.

L 4.11. Let S min be the two-interval minimal operator in H and let d be the
deficiency index of S min. A linear submanifold D(S ) of Dmax is the domain of a self-
adjoint extension S of S min if and only if there exist vectors w1, w2, . . . , wd in Dmax

satisfying the following conditions.

(i) w1, w2, . . . , wd are linearly independent modulo Dmin.
(ii) [wi, w j] = l[wi1, w j1]1(b1) − l[wi1, w j1]1(a1) + s[wi2, w j2]2(b2) − s[wi2, w j2]2(a2)

= 0, i, j = 1, . . . , d.
(iii) D(S ) = {y = {y1, y2} ∈ Dmax : [y, w j] = l[y1, w j1]1(b1) − l[y1, w j1]1(a1) + s[y2,

w j2]2(b2) − s[y2, w j2]2(a2) = 0, j = 1, . . . , d}.

P. See Theorem 3.1 and Corollary 3.3 in Everitt and Zettl [3] for the case with
inner product (3.1); the adaptation to inner product (3.2) is routine. �

R 4.12. As mentioned in the Introduction, the characterisation of Lemma 4.11
depends on the maximal domain vectors w j, j = 1, . . . , d. These vectors depend
on the coefficients of each differential equation and this dependence is implicit and
complicated. Based on Theorem 4.9, we next give more explicit equivalent conditions
for (i)–(iii) of Lemma 4.11.

The next theorem is our main result in this paper.

T 4.13. Assume that ar is regular, r = 1, 2. Let dr be the deficiency index of the
minimal operator S r min and let mr = 2dr − 2k, r = 1, 2. Let the Lagrange form [·, ·]
be given by (3.4). Assume there exist λ1 and λ2 ∈ R such that (4.1)r=1 has d1 linearly
independent solutions lying in H1 and (4.1)r=2 has d2 linearly independent solutions
lying in H2. Then there exist d1 linearly independent real-valued solutions in H1 and d2

linearly independent real-valued solutions in H2. A linear submanifold D(S ) of Dmax
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is the domain of a self-adjoint extension S of S min if and only if there exist two complex
d × n matrices A1 and A2 and two complex d × m1 and d × m2 matrices B1 and B2 such
that the following three conditions hold.

(1) rank(A1, B1, A2, B2) = d.
(2) sA1EnA∗1 − sB1Em1 B∗1 + lA2EnA∗2 − lB2Em2 B∗2 = 0.
(3) D(S ) = {y = {y1, y2} ∈ Dmax}, where

A1


y1(a1)
...

y[n−1]
1 (a1)

 + B1


[y1, u1]1(b1)

...
[y1, um1 ]1(b1)


+ A2


y2(a2)
...

y[n−1]
2 (a2)

 + B2


[y2, v1]2(b2)

...
[y2, vm2 ]2(b2)

 =


0
...
0

 .
P. Necessity. Let D(S ) be the domain of a self-adjoint extension S of S min.
By Lemma 4.11 there exist w1 = {w11, w12}, . . . , wd = {wd1, wd2} ∈ Dmax satisfying the
conditions (i)–(iii) of Lemma 4.11. By Theorem 4.9, each wi1 and wi2 can be uniquely
written as

wi1 = ŷi1 +

n∑
s=1

τiszs +

m1∑
j=1

ei ju j, (4.2)

wi2 = ŷi2 +

n∑
s=1

σisgs +

m2∑
j=1

hi jv j,

where ŷi1 ∈ D1 min, ŷi2 ∈ D2 min, τi j, ei j, σi j, hi j ∈ C. From (2.3),

([yr, w jr]r(ar))d×1 = (−1)kV∗r En


yr(ar)
...

y[n−1]
r (ar)

 ,
where

V∗r =

w1r(ar) · · · w[n−1]
1r (ar)

· · · · · · · · ·

wdr(ar) · · · w[n−1]
dr (ar)

 , r = 1, 2,

([y1, wi1]1(b1))d×1 =

([
y1, ŷi1 +

n∑
s=1

τiszs +

m1∑
j=1

ei ju j

]
1
(b1)

)
d×1

= (ēi j)d×m1 ([y1, u j]1(b1))m1×1,

([y2, wi2]2(b2))d×1 =

([
y2, ŷi2 +

n∑
s=1

σisgs +

m2∑
j=1

hi jv j

]
2
(b2)

)
d×1

= (h̄i j)d×m2 ([y2, v j]2(b2))m2×1.
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Let

A1 = (−1)k+1lV∗1 En, B1 = l(ēi j)d×m1 , A2 = (−1)k+1sV∗2 En, B2 = s(h̄i j)d×m2 .

Hence the boundary condition (iii) is equivalent to part (3) of Theorem 4.13.
Next we prove that A1, B1, A2, B2 satisfy the conditions (1) and (2) of Theorem 4.13.
Clearly rank(A1, B1, A2, B2) ≤ d. If rank(A1, B1, A2, B2) < d, then there exist

constants h1, . . . , hd, not all zero, such that

(h1 · · · hd)(A1, B1, A2, B2) = 0. (4.3)

Hence (h1 · · · hd)A1 = (−1)k+1(h1 · · · hd)lV∗1 En = 0 and

(h1 · · · hd)A2 = (−1)k+1(h1 · · · hd)sV∗2 En = 0.

Note that, since E is nonsingular and l > 0, s > 0,

V1


h̄1
...

h̄d

 = 0, V2


h̄1
...

h̄d

 = 0.

Let f = { f1, f2} =
∑d

i=1 h̄iwi, that is, f1 =
∑d

i=1 h̄iwi1, f2 =
∑d

i=1 h̄iwi2. Then
f1(a1)
...

f [n−1]
1 (a1)

 = V1


h̄1
...

h̄d

 = 0,


f2(a2)
...

f [n−1]
2 (a2)

 = V2


h̄1
...

h̄d

 = 0. (4.4)

From (4.2),

f1 =

d∑
i=1

h̄îyi1 +

d∑
i=1

n∑
s=1

h̄iτiszs +

d∑
i=1

m1∑
j=1

h̄iei ju j.

By (4.3), we have (h1 · · · hd)B1 = 0. Hence

f1 =

d∑
i=1

h̄îyi1 +

d∑
i=1

n∑
s=1

h̄iτiszs.

Similarly,

f2 =

d∑
i=1

h̄îyi2 +

d∑
i=1

n∑
s=1

h̄iσisgs.

For any y = {y1, y2} ∈ Dmax,

[ f1, y1]1(b1) = 0, [ f2, y2]2(b2) = 0. (4.5)

By (4.4) and (4.5), f1 ∈ D1 min, f2 ∈ D2 min. Thus f = { f1, f2} ∈ Dmin. This contradicts
the fact that the functions w1, w2, . . . , wd are linearly independent modulo Dmin.
Therefore rank(A1, B1, A2, B2) = d.
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Now we verify part (2). By (4.2),

l[wi1, w j1]1(b1) = l

 m1∑
k=1

eikuk,

m1∑
s=1

e jsus


1

(b1)

= l
m1∑
k=1

m1∑
s=1

eike js[uk, us]1(b1), i, j = 1, . . . , d.

Hence

(l[wi1, w j1]1(b1))T
d×d =

1
l

B1UT B∗1 = (−1)k 1
l

B1Em1 B∗1,

where the matrix U is defined in Corollary 4.10. Note that (En)∗ = −En, (En)−1 = −En,
and A1 = (−1)k+1lV∗1 En, and we have

(l[wi1, w j1]1(a1))T
d×d = (−1)klV∗1 EnV1 = (−1)klV∗1 EnE−1

n EnV1

= (−1)kl(V∗1 En)(−En)(−(En)∗V1) = (−1)k 1
l

A1EnA∗1.

Similarly,

(s[wi2, w j2]2(b2))T
d×d = (−1)k 1

s
B2Em2 B∗2,

(s[wi2, w j2]2(a2))T
d×d = (−1)k 1

s
A2EnA∗2.

Hence condition (ii) of Lemma 4.11 becomes

sA1EnA∗1 − sB1Em1 B∗1 + lA2EnA∗2 − lB2Em2 B∗2 = 0.

Sufficiency. Let the matrices A1, B1, A2 and B2 satisfy the conditions (1) and (2).
We prove that D(S ) defined by (3) is the domain of a self-adjoint extension S of S min.

Let

B1 = l(bi j)d×m1 , (−1)k+1EnA∗1 = l(ρi j)n×d, (4.6)

si1 =

m1∑
j=1

bi ju j, i = 1, . . . , d. (4.7)

By the Naimark patching lemma, we may choose functions w11, . . . , wd1 in D1 max

such that
w[ j−1]

i1 (a1) = ρi j, w[ j−1]
i1 (c) = s[ j−1]

i1 (c),

and
wi1(x) = si1(x), x ≥ c, (4.8)

where a1 < c < b1, i = 1, . . . , d, j = 1, . . . , n.
By (4.6) and (2.3),

−A1


y1(a1)
...

y[n−1]
1 (a1)

 = (−1)kl(ρi j)∗En


y1(a1)
...

y[n−1]
1 (a1)

 =


l[y1, w11]1(a1)

...
l[y1, wd1]1(a1)

 .
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By (4.7) and (4.8),

B1


[y1, u1]1(b1)

...
[y1, um1 ]1(b1)

 =


[y1, l

∑m1
j=1 b1 ju j]1(b1)
...

[y1, l
∑m1

j=1 bd ju j]1(b1)

 =


l[y1, w11]1(b1)

...
l[y1, wd1]1(b1)

 .
Similarly,

−A2


y2(a2)
...

y[n−1]
2 (a2)

 =


s[y2, w12]2(a2)

...
s[y2, wd2]2(a2)

 ,

B2


[y2, v1]2(b2)

...
[y2, vm2 ]2(b2)

 =


s[y2, w12]2(b2)

...
s[y2, wd2]2(b2)

 .
Therefore the boundary condition (3) becomes the boundary condition (iii), that is,

l[y1, wi1]1(b1) − l[y1, wi1]1(a1) + s[y2, wi2]2(b2) − s[y2, wi2]2(a2) = 0, i = 1, . . . , d.

It remains to show that wi, i = 1, . . . , d, satisfy the conditions (i) and (ii) of
Lemma 4.11.

The condition (i) holds. If not, then there exist constants c1, . . . , cd, not all zero,
such that

γ =

d∑
i=1

ciwi ∈ Dmin.

that is,

γ1 =

d∑
i=1

ciwi1 ∈ D1 min, γ2 =

d∑
i=1

ciwi2 ∈ D2 min.

Hence 
γ1(a1)
...

γ[n−1]
1 (a1)

 = (ρi j)n×d


c1
...

cd

 = (−1)k+1 1
l

EnA∗1


c1
...

cd

 =


0
...
0

 .
Since En is nonsingular and l > 0, we conclude that

(c1 · · · cd)A1 = 0.

Similarly,
(c1 · · · cd)A2 = 0.

By (4.7) and (4.8),

γ1(x) =

d∑
i=1

ciwi1(x) =

d∑
i=1

ci

m1∑
j=1

bi ju j(x), x ≥ c.
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Since γ1 ∈ D1 min, it follows that [γ1, y1]1(b1) = 0 for any y = {y1, y2} ∈ Dmax. Hence

(0 · · · 0) = ([γ1, u1]1(b1) · · · [γ1, um1 ]1(b1)) = (c1 · · · cd)(bi j)d×m1 U,

Since U is nonsingular, (c1 · · · cd)B1 = 0.
Similarly, (c1 · · · cd)B2 = 0.
Hence

(c1 · · · cd)(A1, B1, A2, B2) = 0.

This contradicts the fact that rank(A1, B1, A2, B2) = d.
Next we show that (ii) holds. By (4.7) and (4.8),

l[wi1, w j1]1(b1) = l
[ m1∑

s=1

bisus,

m1∑
k=1

b jkuk

]
1
(b1) = l

m1∑
s=1

m1∑
k=1

bisb jk[us, uk]1(b1).

Hence

(l[wi1, w j1]1(b1))T
d×d =

1
l

B1UT B∗1 = (−1)k 1
l

B1Em1 B∗1.

Similarly,

(s[wi2, w j2]2(b2))T
d×d =

1
s

B2VT B∗2 = (−1)k 1
s

B2Em2 B∗2.

Moreover,

l([wi1, w j1]1(a1))T
d×d = (−1)kl(ρi j)∗En(ρi j)n×d = (−1)k 1

l
A1EnA∗1.

Similarly,

(s[wi2, w j2]2(a2))T
d×d = (−1)k 1

s
A2EnA∗2.

Therefore

(l[wi1, w j1]1(b1) − l[wi1, w j1]1(a1) + s[wi2, w j2]2(b2) − s[wi2, w j2]2(a2))T

= (−1)k 1
l

B1Em1 B∗1 − (−1)k 1
l

A1EnA∗1

+ (−1)k 1
s

B2Em2 B∗2 − (−1)k 1
s

A2EnA∗2 = 0.

By Lemma 4.11, we conclude that D(S ) is a self-adjoint domain. �

R 4.14. We call u1, . . . , um1 and v1, . . . , vm2 LC solutions at b1 and b2,
respectively. They are used to characterise the self-adjoint boundary conditions
at the singular endpoints b1 and b2, while the remaining d1 − m1 and d2 − m2

LP solutions um1+1, . . . , ud1 and vm2+1, . . . , vd2 do not contribute to the singular
boundary conditions. In fact, for any y = {y1, y2} ∈ Dmax, we have [y1, u j]1(b1) = 0,
j = m1 + 1, . . . , d1, and [y2, v j]2(b2) = 0, j = m2 + 1, . . . , d2.

In Theorem 4.13 it is assumed that the endpoints a1 and a2 are regular and b1, b2

are singular. The proof of Theorem 4.13 can easily be modified to prove analogues
of Theorem 4.13 as long as at least one endpoint of each interval (a1, b1), (a2, b2) is
regular. Thus we have variants of Theorem 4.13 for a1 singular, b1 regular, a2 singular,
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b2 regular as well as for a1 singular, b1 regular, a2 regular, b2 singular and a1 regular,
b1 singular, a2 singular, b2 regular. In the next theorem we state one of these cases
explicitly as an illustration.

T 4.15. Assume that a1 is singular, b1 is regular, a2 is singular and b2 is regular.
Then a linear submanifold D(S ) of Dmax is the domain of a self-adjoint extension S of
S min if and only if there exist a complex d × m1 matrix A1, a d × n matrix B1, a d × m2

matrix A2 and a d × n matrix B2 such that the following three conditions hold.

(1) rank(A1, B1, A2, B2) = d.
(2) sA1Em1 A∗1 − sB1EnB∗1 + lA2Em2 A∗2 − lB2EnB∗2 = 0.
(3) D(S ) = {y = {y1, y2} ∈ Dmax}, where

A1


[y1, u1]1(a1)

...
[y1, um1 ]1(a1)

 + B1


y1(b1)
...

y[n−1]
1 (b1)


+ A2


[y2, v1]2(a2)

...
[y2, vm2 ]2(a2)

 + B2


y2(b2)
...

y[n−1]
2 (b2)

 =


0
...
0

 .
In (2), E j is the symplectic matrix (2.2) of order j.

P. The proof is similar to that of Theorem 4.13 and therefore omitted. �

5. Examples

To illustrate the self-adjoint boundary conditions given by Theorem 4.13 and its
variants we give a number of examples. Here we give some examples for

n = 4, 4 ≤ d ≤ 8.

Similar examples can easily be constructed for all higher-order cases n = 2k, k > 2.

E 5.1. Assume the endpoint a1 is singular, b1 is regular, a2 is regular and b2 is
singular. In the minimal deficiency case d = 4, we have d1 = 2, d2 = 2, m1 = 2d1 − 4 =

0, m2 = 2d2 − 4 = 0. Suppose that the boundary conditions at b1, a2 are coupled:
y1(b1)

y[1]
1 (b1)

y[2]
1 (b1)

y[3]
1 (b1)


= K


y2(a2)

y[1]
2 (a2)

y[2]
2 (a2)

y[3]
2 (a2)


, (5.1)

K = (ki j), ki j ∈ R, i, j = 1, 2, 3, 4, M14 − N14 < 0, M23 − N23 > 0,

Mi j =

∣∣∣∣∣∣ki2 ki3

k j2 k j3

∣∣∣∣∣∣ , Ni j =

∣∣∣∣∣∣ki1 ki4

k j1 k j4

∣∣∣∣∣∣ , i < j, i = 1, 2, 3, j = 2, 3, 4.
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Let

B1 =


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 , A2 = K =


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

 .
Then rank(B1, A2) = 4. From a straightforward computation, it follows that

sB1EB∗1 = lA2EA∗2, E =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


is equivalent to:

(1) M12 = N12;
(2) M13 = N13;
(3) M24 = N24;
(4) M34 = N34;
(5) l(M14 − N14) = −s;
(6) l(M23 − N23) = s.

Therefore, if l = 1 and s > 0 so M14 − N14 = −s, M23 − N23 = s, and (1), (2), (3), (4)
are satisfied, then the boundary conditions (5.1) are self-adjoint.

R 5.2. Note that s > 0 is needed to preserve the positivity of the inner
product (3.2). Using appropriate multiples of the usual inner product, or changing
the weight function w2 to sw2, we can generate self-adjoint operators for any real
coupling matrix K satisfying M14 − N14 = −s < 0, M23 − N23 = s > 0 and (1), (2), (3),
(4). This contrasts with the results in [7], where using the weight function w2 requires
M14 − N14 = −1, M23 − N23 = 1 and (1), (2), (3), (4) for self-adjointness. We see that
the parameter s plays a role in establishing the self-adjoint boundary conditions.

E 5.3. Let the endpoint a1 be regular, b1 singular, a2 regular and b2 singular.
Assume d1 = 3, d2 = 2. Then d = 5 and m1 = 2, m2 = 0. Consider a separated condition
at b1 and coupled conditions at a1, a2:

C1[y1, u1]1(b1) + C2[y1, u2]1(b1) = 0, C1,C2 ∈ R, (C1,C2) , (0, 0),

y2(a2)

y[1]
2 (a2)

y[2]
2 (a2)

y[3]
2 (a2)


= K



y1(a1)

y[1]
1 (a1)

y[2]
1 (a1)

y[3]
1 (a1)


, (5.2)

K = (ki j), ki j ∈ R, i, j = 1, 2, 3, 4, M14 − N14 > 0, M23 − N23 < 0,

Mi j =

∣∣∣∣∣∣ki2 ki3

k j2 k j3

∣∣∣∣∣∣ , Ni j =

∣∣∣∣∣∣ki1 ki4

k j1 k j4

∣∣∣∣∣∣ , i < j, i = 1, 2, 3, j = 2, 3, 4.
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Let

A1 = K =


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

0 0 0 0

 , B1 =


0 0
0 0
0 0
0 0
c1 c2

 , A2 =


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0

 .
In this case rank(A1, B1, A2) = 5 and B1E2B∗1 = 0. Then in terms of Theorem 4.13, we
obtain the equivalence of the conditions for self-adjointness:

(1) M12 = N12;
(2) M13 = N13;
(3) M24 = N24;
(4) M34 = N34;
(5) s(M14 − N14) = l;
(6) s(M23 − N23) = −l.

Therefore, if s = 1 and l > 0 so M14 − N14 = l and M23 − N23 = −l, and (1), (2), (3),
(4) are satisfied, then the boundary conditions (5.2) are self-adjoint.

Note that by studying the two-interval theory in direct-sum spaces with inner
product multiples we obtain self-adjoint operators for any real coupling matrix K
satisfying M14 − N14 = l > 0, M23 − N23 = −l < 0 and (1), (2), (3), (4). This contrasts
with the results in [7] which require M14 − N14 = 1, M23 − N23 = −1 and (1), (2),
(3), (4).

E 5.4. Assume d1 = 3, d2 = 3. Then d = 6, and m1 = 2, m2 = 2. Let a1 be
regular, b1 singular, a2 singular and b2 regular. Consider two pairs of coupled
conditions: (

[y2, v1]2(a2)

[y2, v2]2(a2)

)
= G

(
[y1, u1]1(b1)

[y1, u2]1(b1)

)
, (5.3)

G = (gi j), gi j ∈ R, i, j = 1, 2, det G > 0,
y2(b2)

y[1]
2 (b2)

y[2]
2 (b2)

y[3]
2 (b2)


= K


y1(a1)

y[1]
1 (a1)

y[2]
1 (a1)

y[3]
1 (a1)


, (5.4)

K = (ki j), ki j ∈ R, i, j = 1, 2, 3, 4, M14 − N14 < 0, M23 − N23 > 0,

Mi j =

∣∣∣∣∣∣ki2 ki3

k j2 k j3

∣∣∣∣∣∣ , Ni j =

∣∣∣∣∣∣ki1 ki4

k j1 k j4

∣∣∣∣∣∣ , i < j, i = 1, 2, 3, j = 2, 3, 4.

Proceeding as in the previous example we obtain the equivalence of conditions for
self-adjointness:

sGE2G∗ = lE2 and sKE4K∗ = lE4,
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s(det G) = l and the following equations.

(1) M12 = N12.
(2) M13 = N13.
(3) M24 = N24.
(4) M34 = N34.
(5) s(M14 − N14) = −l.
(6) s(M23 − N23) = l.

If we choose s = 1 and l > 0 so det G = l > 0 and M14 − N14 = −l < 0, M23 − N23 =

l > 0, and (1), (2), (3), (4) are satisfied, then boundary conditions (5.3) and (5.4) are
self-adjoint.

R 5.5. Using appropriate multiples of the usual inner product, we establish
self-adjoint operators for any real coupling matrix K satisfying det G = l > 0 and
M14 − N14 = −l < 0, M23 − N23 = l > 0 and (1), (2), (3), (4). This contrasts with the
results in [7] which require det G = 1 and M14 − N14 = −1, M23 − N23 = 1 and (1), (2),
(3), (4).

E 5.6. Assume d1 = 3, d2 = 4. Then d = 7 and m1 = 2, m2 = 4. Let a1 be
regular, b1 singular, a2 regular and b2 singular. Consider separated conditions at a1

and at b1 and coupled conditions at a2, b2:

y1(a1) + iy[1]
1 (a1) = 0, iy[2]

1 (a1) + y[3]
1 (a1) = 0,

C1[y1, u1]1(b1) + C2[y1, u2]1(b1) = 0, C1,C2 ∈ R, (C1,C2) , (0, 0), (5.5)

A2


y2(a2)

y[1]
2 (a2)

y[2]
2 (a2)

y[3]
2 (a2)


+ B2


[y2, v1]2(b2)

[y2, v2]2(b2)

[y2, v3]2(b2)

[y2, v4]2(b2)

 = 0. (5.6)

Then sA1E4A∗1 − sB1E2B∗1 = 0 for any s since A1E4A∗1 = 0 = B1E2B∗1. In terms of
Theorem 4.13, the boundary conditions (5.5) and (5.6) are self-adjoint if and only
if rank(A2, B2) = 4 and

A2E4A∗2 − B2E4B∗2 = 0.

Note that these conditions are independent of l and s and are simply the one-interval
self-adjointness conditions for each of the two intervals separately. Thus the above
example just gives the two-interval self-adjointness conditions which are generated by
the direct sum of self-adjoint operators from each of the two intervals separately.

E 5.7. Assume a1 is regular, b1 is singular, a2 is regular and b2 is singular.
In the maximal deficiency case d = 8, we have d1 = 4, d2 = 4 and m1 = 4, m2 = 4.
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Consider separated conditions at a1 and at a2 and coupled conditions at b1, b2:y1(a1) + iy[1]
1 (a1) = 0, iy[2]

1 (a1) + y[3]
1 (a1) = 0,

y2(a2) + iy[1]
2 (a2) = 0, iy[2]

2 (a2) + y[3]
2 (a2) = 0,

(5.7)


[y1, u1]1(b1)

[y1, u2]1(b1)

[y1, u3]1(b1)

[y1, u4]1(b1)

 = K


[y2, v1]2(b2)

[y2, v2]2(b2)

[y2, v3]2(b2)

[y2, v4]2(b2)

 , (5.8)

K = (ki j), ki j ∈ R, i, j = 1, 2, 3, 4, M14 − N14 > 0, M23 − N23 < 0,

Mi j =

∣∣∣∣∣∣ki2 ki3

k j2 k j3

∣∣∣∣∣∣ , Ni j =

∣∣∣∣∣∣ki1 ki4

k j1 k j4

∣∣∣∣∣∣ , i < j, i = 1, 2, 3, j = 2, 3, 4.

Let

A1 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 i 0 0
0 0 i 1
0 0 0 0
0 0 0 0


, B1 =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


,

A2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 i 0 0
0 0 i 1


, B2 =



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

In this case rank(A1, B1, A2, B2) = 8 and sA1EA∗1 + lA2EA∗2 = 0 for any s, l since
A1EA∗1 = 0 = A2EA∗2. Therefore the boundary conditions (5.7) and (5.8) are self-
adjoint if and only if:

(1) M12 = N12;
(2) M13 = N13;
(3) M24 = N24;
(4) M34 = N34;
(5) l(M14 − N14) = s;
(6) l(M23 − N23) = −s.
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If we choose l = 1 and s > 0 so M14 − N14 = s > 0 and M23 − N23 = −s < 0, and (1),
(2), (3), (4) are satisfied, then the boundary conditions (5.7) and (5.8) are self-adjoint.
Note that the matrices generating this self-adjoint operator are nonreal.

References

[1] J. P. Boyd, ‘Sturm–Liouville eigenvalue problems with an interior pole’, J. Math. Phys. 22(8)
(1981), 1575–1590.

[2] W. N. Everitt and A. Zettl, ‘Sturm–Liouville differential operators in direct sum spaces’, Rocky
Mountain J. Math. 16(3) (1986), 497–516.

[3] W. N. Everitt and A. Zettl, ‘Differential operators generated by a countable number of
quasidifferential expressions on the line’, Proc. Lond. Math. Soc. (3) 64 (1992), 524–544.

[4] F. Gesztesy and W. Kirsch, ‘One-dimensional Schrödinger operators with interactions singular on
a discrete set’, J. reine angew. Math. 362 (1985), 28–50.

[5] X. Hao, J. Sun, A. Wang and A. Zettl, ‘Characterization of domains of self-adjoint ordinary
differential operators q’, Results Math., to appear.

[6] O. S. Mukhtarov and S. Yakubov, ‘Problems for differential equations with transmission
conditions’, Appl. Anal. 81 (2002), 1033–1064.

[7] J. Q. Suo and W. Y. Wang, ‘Two-interval even order differential operators in direct sum spaces’,
Results Math., to appear.

[8] A. P. Wang, J. Sun and A. Zettl, ‘Two-interval Sturm–Liouville operators in modified Hilbert
spaces’, J. Math. Anal. Appl. 328 (2007), 390–399.

[9] A. Wang, J. Sun and A. Zettl, ‘Characterization of domains of self-adjoint ordinary differential
operators’, J. Differential Equations 246 (2009), 1600–1622.

[10] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121 (American
Mathematical Society, Providence, RI, 2005).

JIANQING SUO, Math. Dept., Inner Mongolia University,
Hohhot, 010021, China
e-mail: sjq.hello@163.com

WANYI WANG, Math. Dept., Inner Mongolia University,
Hohhot, 010021, China
e-mail: wwy@imu.edu.cn

https://doi.org/10.1017/S0004972711002991 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002991

