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It is known that the pitchfork bifurcation of Kelvin–Helmholtz instability occurring at
minimum gradient Richardson number Rim � 1/4 in viscous stratified shear flows can
be subcritical or supercritical depending on the value of the Prandtl number, Pr. Here,
we study stratified shear flow restricted to two dimensions at finite Reynolds number,
continuously forced to have a constant background density gradient and a hyperbolic
tangent shear profile, corresponding to the ‘Drazin model’ base flow. Bifurcation diagrams
are produced for fluids with Pr = 0.7 (typical for air), 3 and 7 (typical for water).
For Pr = 3 and 7, steady billow-like solutions are found to exist for strongly stable
stratification of Rim beyond 1/2. Interestingly, these solutions are not a direct product
of a Kelvin–Helmholtz instability, having half the wavelength of the linear instability, and
arising through a superharmonic bifurcation. These short-wavelength states can be tracked
down to at least Pr ≈ 2.3 and act as instigators of complex dynamics, even in strongly
stratified flows. Direct numerical simulations of forced and unforced two-dimensional
flows are performed, which support the results of the bifurcation analyses. Perturbations
are observed to grow approximately exponentially from random initial conditions where
no modal instability is predicted by a linear stability analysis.
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1. Introduction

Kelvin–Helmholtz instability (KHI) is believed to be important in geophysical flows found
in both the oceans (Smyth & Moum 2012) and atmosphere (Fukao et al. 2011; Sun
et al. 2015). Of particular importance is the generation of abyssal oceanic turbulence by
the break down of shear instabilities, which is an area of significant uncertainty in climate
modelling (Gregg et al. 2018). Direct observations in the atmosphere, such as of sheared
clouds, are relatively straightforward to perform, whereas only a few studies have observed
Kelvin–Helmholtz billows in the abyssal ocean (Van Haren & Gostiaux 2010). Amongst
other parameters, the Prandtl number Pr := ν/κ (the ratio of kinematic viscosity ν to
thermal diffusivity κ) involved in these two settings is different, making it important to
understand any resulting differences in the dynamics. In the atmosphere, Pr � 0.7 whereas
in the ocean Pr � 7 and when the diffusion of salt is important (described by a diffusivity
κs), the equivalent Schmidt number Sc := ν/κs � 700 (Thorpe 2005).

Several simple models of stratified mixing layers have been proposed which exhibit
KHI. The two most commonly used, the Drazin (1958) and Holmboe (unpublished lecture
notes 1960) models, are both found to be linearly stable in the inviscid case when the
minimum gradient Richardson number Rim (as defined below) is greater than one quarter.
This observation led to the celebrated Miles–Howard theorem (Howard 1961; Miles 1961),
which shows that inviscid flows are always linearly stable when the gradient Richardson
number is everywhere greater than one quarter. A longstanding challenge has been to
determine whether significant nonlinear dynamics is also precluded for Rim > 1/4.

With viscosity, the Prandtl number enters the problem and there is a body of evidence
suggesting this parameter has a significant impact on the behaviour of KHI (Klaassen
& Peltier 1985a; Salehipour, Peltier & Mashayek 2015; Rahmani, Seymour & Lawrence
2016) and stratified turbulence generally (Brucker & Sarkar 2007). In particular, it has
been shown that the bifurcation of KHI near (minimum gradient) Richardson number 1/4
is subcritical when Pr > 1 and supercritical when Pr < 1 (Brown, Rosen & Maslowe
1981; Churilov & Shukhman 1987; Lott & Teitelbaum 1992; Mkhinini, Dubos & Drobinski
2013). (In this paper we use the dynamical systems convention that ‘subcritical’ refers to
the stable region Rim > Ric and ‘supercritical’ to the unstable region Rim < Ric.) Despite
this, most simulations studying the nonlinear behaviour of KHI have concentrated on the
degenerate value Pr = 1 (Klaassen & Peltier 1985b; Caulfield & Peltier 2000; Mashayek
& Peltier 2011; Kaminski, Caulfield & Taylor 2017), which allows a coarser computational
grid to be used compared with higher Pr.

Although the effect of Pr on the sub/supercriticality of the bifurcation is well
documented, this gives only a weakly nonlinear understanding beyond classical linear
stability analyses, and cannot predict the full nonlinear effects. It could be the case that
full turbulence is possible through subcritical transition for flows with high minimum
Richardson numbers, substantially above 1/4, where turbulence is usually assumed to be
suppressed (Thorpe 2005), or it could be that non-trivial, nonlinear states do not exist in
flows with Rim significantly larger than 1/4, and that the behaviour is simple and transient,
as was found for Pr = 1 (Parker, Caulfield & Kerswell 2019). Below, we argue for
the former scenario by presenting direct evidence that two-dimensional finite-amplitude
billow-like states exist for Rim � 0.4 – i.e. substantially above 1/4 – for Pr � 2.3 and
indirect evidence that this situation continues below this threshold. Importantly, this
implies that complicated temporal dynamics is possible for flows generally considered
inert due to a lack of a Kelvin–Helmholtz linear instability.

To establish this key result, the paper proceeds as follows. In § 2, the equations of
our forced model and numerical methods are briefly presented while in § 3, bifurcation
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diagrams of the forced two-dimensional flow are given for Pr ∈ {0.7, 3, 7}, and the
differences and continuous change between these two values are discussed. Finally,
§ 4 compares the time evolution of the forced and the equivalent unforced systems by
performing a two-dimensional direct numerical simulation (DNS) of the flow at various
Richardson numbers, before concluding remarks are made in § 5.

2. Methods

We study the Boussinesq equations for velocity u and buoyancy b

∂u
∂t

+ u · ∇u = −∇p + Ribbez + 1
Re

∇2u, (2.1a)

∂b
∂t

+ u · ∇b = 1
RePr

∇2b, (2.1b)

∇ · u = 0. (2.1c)

The non-dimensional parameters are the Reynolds number Re, quantifying the relative
importance of inertia to viscosity, the Prandtl number Pr, quantifying the relative
importance of diffusion of buoyancy to viscosity, and the bulk Richardson number Rib,
quantifying the relative importance of buoyancy to shear. With a gravitational acceleration
g, shear layer depth 2d∗, velocity difference 2U∗, reference density ρ∗, reference density
gradient �ρ∗/d∗ and diffusivities ν and κ for momentum and density respectively, these
are calculated as

Re := U∗d∗/ν, Pr := ν/κ and Rib := g�ρ∗d∗

ρ∗U∗2 . (2.2a–c)

In this paper we consider the evolution of perturbations away from the flow u = tanh zex,
b = z. This is the so-called ‘Drazin model’ of a mixing layer, for which weakly nonlinear
analyses have been performed (Churilov & Shukhman 1987). Unlike the perhaps more
commonly considered ‘Holmboe model’ with b = tanh z, the Drazin model does not
exhibit the viscous Holmboe instability discussed in Parker, Caulfield & Kerswell (2020),
which would complicate our picture. Using the Drazin model, the gradient Richardson
number of the flow Rig is bounded below by Rib, since

Rig(z) := Rib
db/dz

(du/dz)2 ≥ Rim = Rib = Rig(0). (2.3)

Therefore, for this flow, the dynamically significant minimum gradient Richardson number
Rim corresponds to the bulk Richardson number Rib which appears as a coupling parameter
in the governing equations. Furthermore, the Miles–Howard theorem thus implies linear
stability for Rib > 1/4 at infinite Re.

For finite Re, these choices of velocity and buoyancy profiles are not steady solutions
of (2.1), but will diffuse away on an O(Re) time scale. Nevertheless, the background
profiles can be considered steady for the perturbation dynamics over a shorter time scale.
Therefore, when finding bifurcation diagrams (which require a non-decaying base state
from which finite amplitude states can bifurcate), we study solutions of the related forced
equations

∂u
∂t

+ u · ∇u + tanh z
∂u
∂x

+ w sech2z = −∇p + Ribbez + 1
Re

∇2u, (2.4a)
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∂b
∂t

+ u · ∇b + tanh z
∂b
∂x

+ w = 1
RePr

∇2b, (2.4b)

∇ · u = 0, (2.4c)

where now u, b and p represent the (possibly large) disturbances away from the background
flow. Throughout, we take Re = 1000 which is relatively low compared with most modern
DNSs, (see for example Salehipour et al. 2015) but the high Pr combined with the
computational intensity of the state tracking means that higher Re are not at present
feasible. This limitation is discussed in § 5.

The equations are solved on a two-dimensional domain periodic in the x direction with
length Lx. Stress-free boundary conditions are imposed at z = ±Lz. Both the solution of
these equations and the finding and tracking of states and bifurcations largely uses the
procedures presented in Parker et al. (2019). The key difference is that the non-uniform
vertical grid has been modified to give a broader region of high resolution in the centre of
the domain, in that we now use grid points located at

zn = Lz

3

[
2

(
2n − Nz − 1

Nz − 1

)7

+
(

2n − Nz − 1
Nz − 1

)]
. (2.5)

States are converged using Newton-generalised minimal residual (GMRES), then followed
as parameters vary using pseudo-arclength continuation. The bifurcation analysis of § 3
uses a grid with Nx = 64 horizontal grid points and Nz = 512 vertical grid points, which
was shown to be sufficiently accurate by reconverging some of the points at Nx = 256,
Nz = 768. For the DNSs of § 4, for which much more complex spatial structures are
possible, Nx = 256 and Nz = 768 are used.

For a state X = (u, b), we define the (energy-like) norm

‖X‖ :=
√

1
Lx

∫ Lz

−Lz

dz
∫ Lx

0
dx

(|u|2 + Ribb2
)
. (2.6)

We also define a second function m(X) of a given state, a measure of the component of the
vertical velocity in the first Fourier mode

m(X) := 1
Lx

∫ Lz

−Lz

dz
∫ Lx

0
dx uz sin

2πx
Lx

. (2.7)

3. Bifurcation diagrams

Figure 1 shows the linear stability, calculated using a code from Smyth & Carpenter (2019),
of the flows considered. The shape of the stability boundary is very close to the inviscid
analytical result Rib = k2(1 − k2) (Drazin 1958), which is overlaid. One curious difference
is the presence of bands of instability at low wavenumbers. These have non-zero phase
speed, and are similar to the ‘Holmboe instability’ mentioned in passing by Smyth &
Peltier (1989) for a linear stratification and piecewise linear shear. The exact structure of
these unstable bands is highly sensitive to the domain height, and they are believed to
be caused by a resonance between discretised internal waves and the shear. This diagram
varies little as Pr is changed. However, as we demonstrate below, the nonlinear behaviour
is strongly affected by Pr.

Henceforth we concentrate on the case of a domain of fixed streamwise length Lx =
2
√

2π. This is the wavelength of the marginally unstable mode at Rib = 1/4 in the
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Figure 1. Linear stability diagrams of the flow at Re = 1000 for (a) Pr = 0.7, (b) Pr = 7, given as contours
of the growth rate σ plotted against the wavenumber k and Rib, where the fastest growing mode of the form
exp(ik(x − ct) + σ t)û(z) has been found. The vertical line marks the wavenumber corresponding to a mode-1
disturbance in our domain of length 2

√
2π. Note that mode-n, n ≥ 2, are all stable for all Rib. The dashed

line shows the stability boundary calculated by Drazin (1958) for Re → ∞. Here, as with all the nonlinear
calculations, the domain half-height is Lz = 10.

inviscid, unbounded case, which is little modified in our viscous domain of finite height.
The associated wavenumber k1 := 1/

√
2 is marked on figure 1 as a vertical line. For

0.7 ≤ Pr ≤ 7 the critical Richardson number Ric is close to, but slightly less than 1/4 due
to viscous effects: Ric ≈ 0.246 for Pr = 0.7 and Ric ≈ 0.248 for Pr = 7. Note that, for this
choice of domain size, only mode-1 disturbances (i.e. those which have one wavelength in
the domain) are linearly unstable, as any mode with k ≥ 2k1 (and therefore any mode with
two or more wavelengths in the domain) is linearly stable. A domain height of Lz = 10 was
chosen, as this was assumed to be sufficiently large compared with Lx that the behaviour
at large Rib is not significantly altered, while still being computationally efficient. At low
Rib, this choice of Lz becomes significant, as discussed a little later.

Figure 2 shows the primary branch of steady Kelvin–Helmholtz (KH) states at Pr = 0.7
which bifurcates from the background flow at Rib ≈ 0.246, in agreement with the linear
stability analysis of figure 1(a). The branch was found to be stable at Rib = 0.24, and a
state was converged here using a simple timestepper. The rest of the branch was traced
out using pseudo-arclength continuation. The pitchfork bifurcation is clearly supercritical,
in agreement with weakly nonlinear theory. Figure 2 also shows the bifurcation curve at
Pr = 1 described in Parker et al. (2019). This is close to the degenerate case between
super- and sub-criticality; it can just be made out that this case is very slightly subcritical.

Figure 3 shows the much more complicated situation at Pr = 7. The pitchfork
bifurcation P0 at Rib ≈ 0.247 of the background flow is subcritical, in agreement with
weakly nonlinear theory. The state which arises is therefore unstable, and was converged
by a conventional edge-tracking procedure (e.g. Schneider, Eckhardt & Yorke 2007). Edge
tracking was performed at Rib = 0.26, applying interval bisection with initial conditions
of the upper branch state with wavenumber k = k1 (see below), scaled to have lower
amplitudes. At P1, two symmetric branches of wavenumber k1, which differ in phase by
π/2, collide to give a state with wavenumber k2 := 2k1. The saddle-node bifurcations S1,
S2 and S3 indicate the location of this mode-2 branch.

Separately to this, a stable upper branch state from Pr = 3 (where the system gives
a simpler subcritical bifurcation, see below) was continued up in Pr to give rise to the
mode-1 states of wavenumber k1 which join at the pitchfork P2. At this value of Pr, none of

915 A37-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.125


J.P. Parker, C.P. Caulfield and R.R. Kerswell

5.0

1.0

1.5

2.0

2.5

3.0

P0
S0

||X ||

0 0.05 0.10 0.15

Rib
0.20 0.25 0.30

Figure 2. Bifurcation diagram for the Drazin model with a domain width of 2
√

2π, with Re = 1000 and
Pr = 0.7 (blue) and Pr = 1 (pink). The line represents a steady state solution with magnitude shown on the
vertical axis. The crosses mark points reconverged at a higher resolution.
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Figure 3. (a) As for figure 2, but with Pr = 7. (b) The same data, showing the contribution of the first Fourier
mode in the streamwise direction to the states. The blue lines show states with wavenumber k1 := 1/

√
2, in

agreement with the linear instability of the background flow. The red lines show states with wavenumber k2 :=
2k1, which arise at the pitchfork bifurcation P1. The crosses mark points reconverged at a higher resolution.

this branch is stable. In fact, numerous other pitchfork and Hopf bifurcations, the precise
locations of which were not determined, were found to exist on all branches, so that only
a small section of the k2 branch is stable. These secondary bifurcations give rise to the
complex and apparently chaotic behaviour of the system discussed in § 4. A systematic
stability analysis of all the states in the figures was not performed, but none of a sample of
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Figure 4. Vorticity fields of the steady perturbation states at Pr = 7 on the mode-1 branch connecting P0 and
P1; (a) Rib ≈ 0.3, (b) Rib ≈ 0.4, (c) at P1, Rib ≈ 0.41. Here, and in all other such figures, two domain widths
have been plotted to show the periodic structure.
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Figure 5. Vorticity fields on the upper mode-1 (k = k1) branch at Pr = 7; (a) Rib ≈ 0.34, (b) Rib ≈ 0.38,
(c) at P2, Rib ≈ 0.39.

states at Pr = 7 was found to be stable using a simple Arnoldi algorithm (see Parker et al.
2019).

As the states in figures 2 and 3 are traced to lower Rib and their amplitude and therefore
physical extent becomes sufficiently large, the states begin to ‘feel’ the effects of the
boundaries at z = ±Lz = ±10. At this point, the structure changes dramatically, with the
branches folding back to higher Rib, and the results are no longer physically relevant to
unbounded flows. We have therefore chosen to exclude these sections from the diagrams.
In an unbounded or sufficiently tall domain, the unstable states presumably continue past
Rib = 0, as the unstratified KHI saturates as a finite amplitude ‘billow’, although whether
this also occurs for the k2 branch is unclear.

Figure 4 depicts three low-amplitude states on the branch between the pitchfork
bifurcations P0 and P1. Figure 4(a) is relatively close to the primary pitchfork P0,
and shows a clear mode-1 structure of wavenumber k1, in agreement with the unstable
eigenmode of the background flow, which the structure closely resembles. Figure 4(b) is
further along the branch and there is now a noticeable mode-2 signal, manifesting as a
structure emerging between the two ‘billows’. The amplitude has also increased. There
is a natural transition therefore between the eigenmode and the pure mode-2 structure at
P1, as shown in figure 4(c). A similar transition, at significantly higher amplitude, with
structures much more closely resembling classic KH billows, is observed on the upper
branch, as Rib increases towards P2 (figure 5).

Figure 6 shows the mode-2 structures, i.e. those with wavenumber k2, at the three
saddle-node bifurcation points. They are all qualitatively different. S1 and S3, in figures
6(a) and 6(c) respectively, are both highly reminiscent of classical KH billows, with a
clear elliptical vortex. At S1 the billows are significantly separated spatially, but at S3 they
are much more closely backed, but still with a distinctive ‘braid’ region connecting them.
At S2, a low-amplitude state intermediate between S1 and S3, the structure is different
again, and much less familiar.
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Figure 6. Vorticity fields of the mode-2 (k = k2) steady states at Pr = 7 at the saddle-node bifurcations
(a) S1, (b) S2, (c) S3.

The bifurcation points labelled in figure 3 can themselves be converged using a
Newton-GMRES method, and tracked as Pr is varied, in a way identical to the tracking
of bifurcation points as Re varies in Parker et al. (2019). The basic (mode-1) saddle-node
bifurcation found in that paper, which we call S0, was continued to larger values of Pr
just as those of figure 3 were continued to smaller values of Pr. The primary pitchfork
P0, which exists for Pr < 1 too, can be found using this method or from linear stability
analysis of the background flow. The results are shown in figure 7; S1 and S3 were found to
be difficult to converge and continue, due to the presence of several marginally stable
eigenvalues nearby, but were located directly at Pr = 7 and Pr = 3; S0 could not be
continued beyond Pr = 3.8, and there is no obvious bifurcation point which corresponds
to S0 in figure 3; P1, P2 and S2 all stopped converging below Pr = 2.3 and they appear to
collide and disappear.

To clarify the situation, the intermediate value Pr = 3 was studied in detail (figure 8).
The main (mode-1) branch, with k = k1 and which connects to the fundamental pitchfork
P0, is a simple subcritical curve, extending up to Rib ≈ 0.3. Completely disconnected from
this, extending to higher Rib, is a mode-2 loop (with k = k2), which is a continuation of
the similar curve shown in figure 3. There is also a mode-1 branch (k = k1) connected to
this, which links P1 and P2. Between Pr = 3 and Pr = 7, this mode-1 branch collides with
the fundamental mode-1 branch to give the situation in figure 3. Below Pr = 3, it appears
that this disconnected curve closes at Pr ≈ 2.3, although the picture is incomplete, since
the behaviour of the states at high amplitude is unknown. The most natural explanation
would be that the k2 branch is a closed loop, but no evidence of this has been found up to
amplitudes for which the finite vertical domain size becomes important and obscures the
results.

4. Direct numerical simulations

As mentioned in § 2, the (2.4) are an approximation for large but finite Re, which ignores
the fact that the background profiles diffuse. This is not a problem for rapidly changing
perturbations to the background flow, but many of the connections between the steady
states found in § 3 appear to be very slow dynamically. In particular, although the KHI
grows rapidly from small disturbances to the background, it took exceptionally long time
integrations, of non-dimensional times an order of magnitude larger than Re, before the
billow states were steady enough for the Newton iteration to converge on the stable states.
For this reason, it is unwise to draw conclusions about the unforced system directly from
the results of § 3. The steady states of the forced system do not correspond to steady
states in the unforced system, and a bifurcation analysis in the same way is not possible.
Therefore, we explore the behaviour of the unforced system (2.1) using (two-dimensional)
direct numerical simulation.
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Figure 7. Tracking of the various bifurcation points shown in figures 2 and 3 as Pr varies; S1 and S3 were not
tracked, but their locations at Pr = 3 and Pr = 7 have been marked and interpolated with dashed lines.

DNSs started from randomly perturbed states may follow chaotic trajectories and
visit states much more spatially complex than the simple steady states discussed in § 3.
Therefore, a much higher resolution is required to avoid ‘ringing’ artifacts and be confident
that the equations are being solved accurately. It was found to be sufficient to use 256
horizontal modes and 768 grid points vertically. All the simulations are performed at
Re = 1000, with a domain half-height Lz = 10, in agreement with the calculations of the
previous section.

4.1. DNS of exact states
We directly compare DNS of states found in § 3, with and without the background forcing
and an additional perturbation. Our aim is to determine how much the forcing affects
the dynamics, rather than a complete characterisation of the dynamics without forcing.
Therefore, we concentrate on one choice of parameters, for which we have a number of
interesting exact states, Pr = 7 and Rib = 0.3. We initialise the flows with the k = k1
and k = k2 states at Rib = 0.3 which both have ‖X‖ ≈ 0.75. To these we add a random
perturbation of energy 1

2‖X‖2 = 0.001.
The results are shown in figures 9–12, as well as the supplemental movies available

at https://doi.org/10.1017/jfm.2021.125. As expected, the forced, unperturbed simulations
(figures 9c–12c) show perfectly steady states. Without the artificial forcing (figures
9a–12a), the states gradually decay, with only slow changes in form. This suggests that
the dynamics of the forced system is, in some sense, orthogonal to the diffusion of the
background flow. When a perturbation is added to the k2 state, chaotic behaviour develops
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Figure 8. As for figure 3, but with Pr = 3.
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Figure 9. Total vorticity field of simulations at time t = 20 for the k1 exact state at Pr = 7, Ri = 0.3.
(a) Unforced, unperturbed. (b) Unforced, perturbed. (c) Forced, unperturbed. (d) Forced, perturbed.

in both the unforced (figures 11b and 12b) and forced (figures 11d and 12d) cases. This
takes the form of a k1 billow, although of a significantly higher amplitude that the k1 steady
state. This is an example of a ‘billow pairing’ subharmonic instability (Winant & Browand
1974; Klaassen & Peltier 1989). In the perturbed simulations of the k1 steady state, there
is no such energetic activity, suggesting that the state is fairly stable. A linear stability
analysis shows that it is in fact weakly unstable, perhaps explaining why, in the unforced
case, a k2 billow is beginning to develop at the end of the t = 100 time window. Overall,
good agreement between the forced and unforced cases is observed, and the differences
can be attributed to the obvious decay of energy, as well as the random nature of the
perturbations.
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Figure 10. Vorticity at t = 100 for the k1 exact state at Pr = 7, Ri = 0.3. (a) Unforced, unperturbed.
(b) Unforced, perturbed. (c) Forced, unperturbed. (d) Forced, perturbed.
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Figure 11. Vorticity at t = 20 for the k2 exact state at Pr = 7, Ri = 0.3. (a) Unforced, unperturbed.
(b) Unforced, perturbed. (c) Forced, unperturbed. (d) Forced, perturbed.
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Figure 12. Vorticity at t = 100 for the k2 exact state at Pr = 7, Ri = 0.3. (a) Unforced, unperturbed.
(b) Unforced, perturbed. (c) Forced, unperturbed. (d) Forced, perturbed.

4.2. DNS of random initial conditions
In the previous subsection, the initial conditions in the unforced simulations were billow
structures, so it is no surprise that billows are observed later in the simulations. However,
from those results, it is not clear that KH billows can develop ‘naturally’ (i.e. from random
perturbations of sufficient amplitude) in the subcritical regions of parameter space, in
what might be called a nonlinear KH instability. Therefore, here we additionally perform
DNS using completely random, large-amplitude perturbations to the one-dimensional
background flow.

Eight different simulations were performed. We study the cases of Pr = 0.7 and Pr = 7,
modelling air and water; Rib = 0.1 and Rib = 0.3 for the supercritical and subcritical
regions; and initial disturbance wavenumbers k1, for which the linear instability is
approximately maximised, and k2, for which no linear instability is predicted but for which
we found nonlinear steady states. The simulations of (2.1) are started from the Drazin
model plus a random perturbation,

u = tanh zex + u′, b = z + b′, (4.1a,b)

where the perturbation X = (u′, b′) has components only in the first 42 Fourier modes
horizontally (with even-numbered modes only for k2) and first four Hermite polynomials
vertically, as in Parker et al. (2020). This perturbation is entirely random, and does not
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Figure 13. Total vorticity field of the unforced flow at time t = 20 for the Drazin model plus a random
perturbation. Parameter values: Re = 1000, Pr = 0.7. For (a) Rib = 0.1, k = k2, (b) Rib = 0.1, k = k1,
(c) Rib = 0.3, k = k2, (d) Rib = 0.3, k = k1.
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Figure 14. Vorticity at Re = 1000 and Pr = 0.7 at t = 100. For (a) Rib = 0.1, k = k2, (b) Rib = 0.1, k = k1,
(c) Rib = 0.3, k = k2, (d) Rib = 0.3, k = k1.

correspond to the modes found by bifurcation analysis, except insofar as the streamwise
wavelength of the disturbances are the same, as they are required to be by the periodic
boundary conditions imposed on all domains considered here. The initial perturbations are
scaled to have amplitude ‖X‖ = 0.3, a relatively large disturbance, which is significantly
greater than that of the lowest branch of states in figure 3, and therefore should be sufficient
to push the dynamical system out of the basin of attraction of the laminar background
flow. Due to the random nature of the initial conditions, it is possible that no instability is
detected even when the parameters are favourable. The results presented here represent a
single realisation of the random initial conditions, and since reasonable agreement was
found with our bifurcation results, no attempt has been made to more systematically
sample the possible results.

The relative phases and amplitudes of the individual Fourier modes within the initial
conditions are likely to have a significant impact on which structures ultimately develop, in
a situation such as that at Pr = 7, where several different steady states are known to exist in
the forced model. One particular consequence of choosing the initial conditions in this way
is that the random perturbation in general adds a mean streamwise velocity to the flow, so
that billows appear to propagate through the domain. These do not represent intrinsically
moving structures, but are merely a symmetry of the system which was suppressed in the
previous section.

For perturbations with k = k2 at Pr = 0.7, no significant nonlinear behaviour was
observed at either value of Rib. Figures 13(a) and 13(c) both show S-shaped vorticity
streaks characteristic of the transient, linear Orr mechanism at t = 20. By t = 100, as
shown in figures 14(a) and 14(c), these have diffused away to give simple shear layers,
which are slightly asymmetric due to the random nature of the initial perturbations. These
results are unsurprising, since no linear instability exists at this wavelength and we did not
detect any nonlinear modes at this Pr either.
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Figure 15. Vorticity at Re = 1000 and Pr = 7 at t = 20. For (a) Rib = 0.1, k = k2, (b) Rib = 0.1, k = k1,
(c) Rib = 0.3, k = k2, (d) Rib = 0.3, k = k1.
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Figure 16. Vorticity at Re = 1000 and Pr = 7 at t = 100. For (a) Rib = 0.1, k = k2, (b) Rib = 0.1, k = k1,
(c) Rib = 0.3, k = k2, (d) Rib = 0.3, k = k1.

For perturbations with k = k1 at Pr = 0.7, long-lived, nonlinear billow structures are
observed at both Rib = 0.1 (figures 13b and 14b) and Rib = 0.3 (figures 13d and 14d). The
former is to be expected since a linear instability exists, but the latter is more surprising,
as the base flow is linearly stable and the results of § 3 show the bifurcation to be a simple
supercritical one. The existence of a finite-amplitude steady state in the forced model
should be expected to imply non-trivial dynamics in the unforced simulations, but the
converse is not necessarily true. We speculate further on this case in § 5.

The k = k2 simulation at Pr = 7 and Rib = 0.3 shows what we believe to be the
most novel result reported here, namely that Kelvin–Helmholtz-like billows can exist in
domains too narrow to support a linear instability. Figures 15(c) and 16(c) show the slow
development of a higher-amplitude state, which is very similar to the exact solution shown
in figure 6(a). Figure 15(a) with Rib = 0.1 appears to show only the results of the Orr
mechanism on the initial perturbation, but by t = 100 shown in figure 16(a) one can just
discern a long-lived, low-amplitude structure which is reminiscent of the lower branch of
solutions found in § 3, as shown in figure 6(b).

Figures 15(b) and 16(b) show the large billow which develops at Pr = 7 and Rib = 0.1.
This is despite the fact that we also found steady states with double this wavenumber in
the forced model, but since all the states we found at these parameters were unstable, it
is difficult to draw conclusions. Similarly at Rib = 0.3 in figures 15(d) and 16(d), a small
billow of wavenumber k1 is observed. It could be the case that the initial perturbation
determines whether a mode-1 or mode-2 structure develops in the wider domain, since the
initial amplitude is rather large and the results are noisy, or this could be evidence that the
mode-1 structure is, in some sense, more stable.

Since in this unforced version the background flow diffuses away, the energy in the
perturbation to this background, i.e. the energy in the billow states, is also expected to
diffuse away. Figures 17 and 18 show the evolution of the total energy of the perturbation
1
2‖X‖2 for these simulations. Although in several cases there is an initial growth of energy

915 A37-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.125


J.P. Parker, C.P. Caulfield and R.R. Kerswell

0

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100

E

t
Figure 17. Perturbation energy from unforced DNS at Pr = 0.7, as depicted in figures 13 and 14. Blue:

Rib = 0.1, pink: Rib = 0.3. Solid: k = k1, dashed: k = k2.
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Figure 18. Perturbation energy from unforced DNS at Pr = 7, as depicted in figures 15 and 16. Blue:

Rib = 0.1, pink: Rib = 0.3. Solid: k = k1, dashed: k = k2.

before it decreases, there is no one clear energy level or steady state to which the state
is attracted, and so direct comparison with the amplitudes on the bifurcation diagrams in
§ 3 is not fruitful. The k1 simulations show wavy lines at large energy, in agreement with
the simulations in § 4.1, for which chaotic k1 billows were found – in that case triggered
by perturbing k2 exact states. The simulations restricted to k2 instead show slow decay,
regardless of whether long-lived billow states develop or not, indicating that the clear k2
structures visible in the simulations are potentially less physically relevant than the k1
structures.

Movies of all eight of these simulations are available in the supplementary material.
In the movies, a clear distinction is visible between the strongly unstable cases, with k =
k1, for which the initial billow growth leads to energetic and chaotic behaviour, and the
remaining cases, for which the initial structures, if they develop at all, merely diffuse
away without any strong overturning. We note again that in some situations the billows are
observed to propagate through the domain; this is not evidence of a Holmboe wave type
instability with phase speed significantly different from the mean flow speed, but rather
a consequence of the large-amplitude initial perturbation having a net effect on the mean
flow.

5. Conclusion

This paper presents a systematic study of the nonlinear behaviour of the Drazin model of a
two-dimensional finite Reynolds number stratified shear layer – a hyperbolic tangent shear
and constant density gradient – at three different values of Pr, using both the tracking
of exact coherent structures in the forced system and DNSs of the forced and unforced
systems.

In the Pr = 0.7 case, we found a simple, supercritical pitchfork bifurcation, with the
resulting steady-state Kelvin–Helmholtz billows increasing in amplitude as (minimum)
Richardson number is decreased, so far as we could track them. This agrees with weakly
nonlinear results which predict a supercritical bifurcation for Pr < 1. Despite the fact

915 A37-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.125


The effects of Prandtl number on Kelvin–Helmholtz instability

that we have found no finite-amplitude steady states at Rib > 1/4 when Pr = 0.7, the
unforced simulations of § 4 showed clear nonlinear billow-like structures at Rib = 0.3.
This could mean that there are additional steady states which are either connected to the
primary instability by a bifurcation of the upper branch, or disconnected, perhaps through
a homotopic continuation of the disconnected states found at Pr = 3 (see figure 8). It
could also be the case that these structures appear on trajectories which do not have an
associated steady state, but rather represent an excitable system, for which the base state is
stable but fast/slow dynamics nevertheless allows rapid transient growth. The observation
of this structure means we are unable to state categorically whether significant nonlinear
behaviour – which could lead to turbulence and mixing in the three-dimensional case – is
likely to occur for Rib > 1/4 in gases, although these results and the work of Kaminski
et al. (2017) are highly suggestive that there is more to discover at Pr � 1.

We observed a strongly subcritical pitchfork bifurcation in the flow modelling water
with Pr = 7, as expected from the weakly nonlinear predictions. Significantly, states were
found to exist well above Rib = 0.5. Moreover, the fact that the mode-1 structure bifurcates
in a superharmonic instability into a hitherto-unknown mode-2 structure implies that
billow structures exist at wavelengths which are linearly stable. In § 4, we demonstrated
good agreement between the forced model used for the bifurcation diagrams, and an
unforced model, which may be seen as more realistic for geophysical flows (the other
approximations notwithstanding). In particular, we observed that random initial conditions
can trigger both k1 and k2 billows at both Rib = 0.1 and Rib = 0.3. These results clearly
indicate that in oceanic flows, the Miles–Howard criterion for linear stability does not
preclude complicated mixing dynamics on times short compared to viscous diffusion.

The transition between Pr = 0.7 and Pr = 7 was studied in the forced model, to
understand how the structures relate to one another. Both Pr = 1 and Pr = 3 show
the primary branch of billow states to be a simple subcritical one, but at Pr = 3,
disconnected mode-1 states were also found, connecting to the mode-2 states at Pr = 7,
and apparently disappearing below Pr = 2.3. Increasing the Prandtl number above 3,
the disconnected mode-1 branch collides at some point (<7) with the primary mode-1
branch to fundamentally change the mode-1 solution topology. Given this microcosm of
behaviour, it is entirely plausible that (a) further loops of mode-1 solutions exist off the
mode-2 branch and survive down below Pr ≈ 2.3 as well as (b) the mode-2 branch itself
reaches to much lower Pr. In fact, it is not inconceivable that the mode-2 branch exists at
Pr = 1 but is not at all connected to the primary mode-1 branch of KHI tracked in Parker
et al. (2019).

The results presented here add to a body of literature considering the dependence on
Pr of the behaviour of KHI, with possible consequences in oceanographic applications.
Previous authors have found that mixing efficiency decreases with Pr when Re and Rib are
kept fixed; Brucker & Sarkar (2007) showed this for a DNS initialised with turbulence and
Salehipour et al. (2015) for an idealised KH billow. No clear reason for this is known,
although it has been suggested it could be attributed to higher stratification near the
centreline, reduced length scales, or higher isotropy, as Pr is increased. The existence of
the k = k2 structures we have found at higher Pr is further evidence of these reduced length
scales, in addition to shorter-wavelength secondary instabilities documented by Salehipour
et al. (2015).

It should be clear that there are numerous natural extensions to the present study. It
would be of interest to see how the results vary with Re, as Re = 1000 is much lower than
in geophysically relevant flows. It is assumed that if complex behaviour exists at Re = 1000
for given Pr and Rib, it will also do so for higher Re – in Parker et al. (2019) it was shown
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that increasing Re corresponds to an increase in the maximum Rib of steady states, at least
for Pr = 1. Much higher values of Pr, as would be relevant to salt-stratified water, could
also be an area for future study. Our results suggest that the dynamics only gets more
complex with increasing Pr, and higher Rib can give rise to steady states. Increasing either
Re or Pr significantly would require a finer discretisation of the domain, necessitating
either much more computational resources or a different strategy from that pursued here.

We focussed on the case of a fixed domain size corresponding to one wavelength of the
most unstable mode at Rib = 1/4 (see figure 1). This leaves the possibility of different
behaviour at different wavelengths, but also more importantly ignores the interplay of
different wavelengths of instability with one another. The subharmonic ‘pairing’ instability
of KH billows is widely documented in laboratory experiments and computational
simulations, and has not been studied here as the behaviour cannot be captured in our
short domain. Previous authors (Mashayek & Peltier 2011; Salehipour et al. 2015) have
demonstrated that such subharmonic merging instabilities are suppressed at sufficiently
high Re, which may explain why they are not observed in geophysical applications.
The short domain size also means we capture only one discretised unstable wavelength
rather than a range, and there could be significant interaction between these, leading to
important dynamics (see, for example, Scinocca & Ford 2000). This gap between idealised
simulations of single KH billows and the messy turbulence seen in geophysical fluid
dynamics (GFD) settings and larger DNS studies remains an important area for future
research.

Even at the parameters we studied, much remains unclear. To what other states do
the secondary bifurcations give rise? Hopf bifurcations were detected, so periodic orbits
as well as steady states are expected. What new dynamics does a third, spanwise
dimension add to the flow? Certainly all two-dimensional states we have found will exist
in three dimensions, but many more secondary instabilities will exist and we expect those
states found to be stable in two dimensions to become unstable in three. From DNSs,
three-dimensional flows prone to primary KHI are known to behave very differently,
quickly breaking down into turbulence, without long-lived coherent billows; most of the
mixing associated with KHI is due to this billow breakdown in three dimensions. There
is no guarantee that the states we have found in two dimensions will be sufficiently stable
to be realisable in three dimensions. Nevertheless, the existence of the structures implies
the possibility for complex behaviour and mixing in geophysical flows at these parameters
even if billows do not directly develop.

Supplementary movies. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2021.125.
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