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Abstract
Background
Understanding the relative costs and effectiveness of all competing interventions is crucial to informing health
resource allocations. However, to receive regulatory approval for efficacy, novel pharmaceuticals are typically only
compared against placebo or standard of care. The relative efficacy against the best alternative intervention relies on
indirect comparisons of different interventions. When treatment effect modifiers are distributed differently across
trials, population adjustment is necessary to ensure a fair comparison. Matching-Adjusted Indirect Comparisons
(MAIC) is the most widely adopted weighting-based method for this purpose. Nevertheless, MAIC can exhibit
instability under poor population overlap. Regression-based approaches to overcome this issue are heavily
dependent on parametric assumptions.

Methods
We introduce a novel method, ‘G-MAIC,’ which combines outcome regression and weighting-adjustment to
address these limitations. Inspired by Bayesian survey inference, G-MAIC employs Bayesian bootstrap to
propagate the uncertainty of population-adjusted estimates. We evaluate the performance of G-MAIC against
standard non-adjusted methods, MAIC and Parametric G-computation, in a simulation study encompassing 18
scenarios with varying trial sample sizes, population overlaps, and covariate structures.

Results
Under poor overlap and small sample sizes, MAIC can produce non-sensible variance estimations or increased
bias compared to non-adjusted methods, depending on covariate structures in the two trials compared. G-MAIC
mitigates this issue, achieving comparable performance to parametric G-computation with reduced reliance on
parametric assumptions.

Conclusion
G-MAIC presents a robust alternative to the widely adopted MAIC for population-adjusted indirect comparisons.
The underlying framework is flexible such that it can accommodate advanced nonparametric outcome models and
alternative weighting schemes.
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Highlights
What is already known?

• Health technology assessments often rely on indirect comparisons for evaluating treatment efficacy.
Population adjustment is typically required to reduce the bias in these comparisons.

• When the trials used to construct the indirect comparison have small sample size and poorly overlapped
population, the most popular population adjustment methods, Matching-adjusted indirect comparisons
(MAIC) may produce non-sensible estimates without strong parametric assumptions.

• Regression-based adjustment like parameteric G-computation overcomes the problem of overlap, but relies
heavily on parameteric assumptions

What is new?

• Inspired by Bayesian survey inference literature, we propose G-MAIC, a regression-based population
adjustment method that occupies the middle ground between MAIC and parameteric G-computation.

• Using a comprehensive simulation study, we demonstrate that G-MAIC largely overcomes the instability
problem of MAIC under small sample size and poor overlap.

• We show that population covariate structure can be important to the performance of population adjustment:
joint population covariate distribution with non-linear dependency structure can break the implicit assign-
ment model in MAIC, making it potentially more biased than non-adjusted methods.

Potential impact for RSM readers

• The proposed G-MAIC presents a robust and flexible alternative to the best parametric counterpart, with the
potential to accommodate non-parametric regression models and different weighting approaches.

• Population covariate structure is another important factor to consider when evaluating the performance of
population adjustment methods. Focusing solely on standard parametric distributions with different locations
may obscure important limitations of these methods.

1. Introduction

Health technology assessment (HTA) plays a vital role in informing healthcare resource allocation
decisions in publicly funded health systems, such as those in the United Kingdom, Canada, and
Australia. Through systematic evaluation of the clinical and cost-effectiveness of health technologies,
including drugs, devices, and procedures,1,2 HTA provides evidence-based recommendations to help
decision-makers maximise health improvements within limited financial resources.

Randomised controlled trials (RCT) form the bedrock of clinical development and are required to
demonstrate safety and efficacy for market approval.3,4 However, for novel interventions, reimburse-
ment decisions are often made without direct RCT evidence on the relevant head-to-head comparisons
(e.g., new vs existing drugs, rather than placebo).

In HTA, methods for ‘indirect’ comparisons estimate the relevant incremental clinical benefits
even in the absence of RCTs directly comparing the two competing interventions. Standard indirect
comparisons mainly focus on ‘connected’ networks, where two alternative interventions are assessed
in two RCTs against a common comparator (often placebo or standard of care). In this case, the effect
of the two interventions can be obtained by contrasting their relative effects against the common
comparator. This is known as ‘Bucher’s method’5 and preserves randomisation within trial to provide
an unbiased estimate of the treatment effect, under the assumption that it is constant across trials.6

Unfortunately, Bucher’s method is biased when effect-modifiers exist and are distributed dif-
ferentially in the two trials, a common situation in practice. Thus, to provide accurate inference,
analysts have to first ‘transport’ the relative treatment effects to a common population and then apply
Bucher’s method. In a two-trial network with individual participant data (IPD) available from both
trial populations, one could re-weight the IPD from one of the trials by the inverse odds of assignment
to that study,7 which can balance the distribution of effect-modifiers across trials. However, due to
confidentiality and commercial reasons, IPD are rarely available for all relevant sources. It is more
common to have IPD from one company’s own sponsored trial, but only aggregated-level data (ALD),
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usually from summary statistics reported in published studies, for the comparator’s trial. The limited
data accessibility poses additional challenges and has received an increasing amount of attention in
recent years.8–10

When only ALD are available from one study in a two-trial network, population adjustment methods
are either classified as ‘weighting-based’ or ‘regression-based.’ The most popular weighting-based
method is Matching-Adjusted Indirect Comparisons (MAIC),11,12 while the most common regression-
based methods are Simulated Treatment Comparisons (STC)13 and parametric G-computation.14

Recently, another method has been specifically designed for evidence synthesis in larger networks and
is known as Multi-Level Network Meta Regression (ML-NMR).15 As a network evidence synthesis
method, ML-NMR estimates a full outcome regression model by jointly synthesising data from multiple
IPD and ALD studies. The resulting model naturally accommodates conditional estimands, and can be
further marginalised over any chosen target population to produce the marginal estimand of interest—a
key advantage for informing population-level decision-making.15–17

In the broader context of HTA, multiple relevant studies frequently exist beyond the simplified two-
trial network we mentioned above, and methods like MAIC and STC are inherently limited to indirect
comparisons of two trials. Consequently, such methods cannot coherently synthesise multiple sources of
evidence across complex networks due to target population mismatch. Nevertheless, two-trial networks
remain highly relevant, particularly when evidence is limited—such as shortly after regulatory approval
when a novel treatment is only compared against placebo or standard care in an efficacy trial. Under
such circumstances, indirect comparisons based on two-trial networks may offer critical preliminary
evidence regarding comparative effectiveness while broader comparative evidence is still developing.

MAIC is a weighting-based method that generates weights based on the odds of assignment to the
ALD trial in a limited data context. The weights, i.e., the odds of being assigned to the ALD trial, are
not directly estimable due to the lack of IPD, but can be obtained through optimisation if combined with
a moment-matching constraint.11 The optimised weights are used to fit a weighted regression model on
the available IPD, with a treatment indicator as the only covariate. The estimated coefficient from this
model quantifies the marginal treatment effect that might have been observed in the ALD population.
MAIC provides unbiased estimate of the indirect treatment effect under the correct specification of
the trial assignment model.18,19 However, poor overlap of the covariates combined with small sample
sizes, a common issue in practice, can lead to extreme weights, potentially leading to higher bias than
Bucher’s method.20 The associated bootstrap variance estimator21 can also be unstable, with weight
estimation failing in some bootstrapped datasets and the estimated variance being unrealistically large.22

Regression-based methods can overcome the problem of unstable weights under poor population
overlap by extrapolating beyond the covariate space of the IPD. A key consideration in using
regression-based methods is the choice between marginal and conditional estimands; the former
represents the average treatment effect averaged over a certain population, while the latter is conditional
on specific covariate profile. As an example, the Simulated Trial Comparison (STC),23 which ‘reads off’
the regression coefficients as the estimate of population-adjusted treatment effects, typically targets the
conditional estimand.18,24 This would not align with the marginal estimand for non-collapsible outcome
measures, such as odds ratios and hazard ratios.24,25 We acknowledge that the selection of an estimand
is critical but also nuanced, with profound implications on the transportability of the results, and there
are varying perspectives regarding this choice.24,26 This manuscript will primarily focus on methods
target the same estimand as used in MAIC, i.e., the marginal estimand, setting aside the broader debate
for a more focused discussion.

Another regression-based adjustment method, Parametric G-computation, provides a marginal
estimand even for non-collapsible outcome measures.24,26,27 It predicts the treatment effect in the ALD
population by fitting an outcome regression model using IPD and extrapolating the fitted relationship
to the simulated ALD population. However, this method assumes the covariates in the ALD population
follow specific parametric distributions. The covariate-outcome relationship must also be correctly
specified beyond the boundary of IPD, making analysts cautious about trusting results based on
extrapolation and a fully simulated population.
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Figure 1. (a) shows an example of ‘Anchored comparison’, where the two treatments of interest A and
B are compared against the common comparator C in two separate trials; (b) shows an example of
‘Unanchored comparison’ where the two treatments of interest A and B are compared against different
comparators C and D in respective trials.

We propose a method that occupies the middle ground between MAIC and parametric
G-computation. This regression-based method requires a parametric outcome model but does not
parametrise the covariate distribution in the ALD population. Instead, the ALD population is
approximated by re-weighting the IPD population using mean-balancing weights, similar to MAIC. To
coherently propagate uncertainty, we also adopt a Bayesian framework. The variance of the adjusted
treatment effects can be estimated directly from the predicted treatment effects in each draw of
approximated ALD population, operationalised via Bayesian bootstrap.28 This article introduces the
population adjustment problem and discusses two main methods. We then introduce our proposed
method before benchmarking it against existing methods in a simulation study. The simulation results
are discussed, along with general issues in population adjustment, in the final section.

2. Overview of population adjustment

We aim to estimate the incremental benefit of intervention A compared to intervention B, to inform
a decision model. We have evidence from two randomised trials, one for A and one for B, which
may or may not have the same comparator to form a connected or disconnected ‘network’ (Figure 1a
and 1b, respectively). An anchored network occurs when treatments A and B are connected through
a common treatment C, allowing for unbiased indirect comparisons if the relative treatment effect
remains constant. Conversely, the unanchored network (Figure 1b) requires stronger assumptions: the
A vs B effect is unbiased only if the absolute effect of treatment A is constant, which requires the two
trial population to be exchangeable in terms of both effect modifiers and prognostic factors. Given that
this requirement can be too stringent to be realistic, we will focus on anchored comparisons.

For all discussions concerning anchored comparisons, we use the following notation for clarity:
𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐵𝐶 refer to the A vs B, A vs C and B vs C treatment effects respectively. The standard
‘Bucher’s method’ estimates 𝑑𝐴𝐵 = 𝑑𝐴𝐶 − 𝑑𝐵𝐶 . As mentioned, this gives biased estimates in the
presence of effect-modifiers. Population adjustment methods are thus required for a ‘fair comparison.’

2.1. MAIC

MAIC is likelihood reweighting applied in the limited data context.29,30 It determines the estimated
treatment effect in the ALD population by reweighting the individual-level likelihood contributions
in the IPD according to trial assignment odds, effectively estimating the treatment effect in a pseudo
population that is exchangeable with the ALD. The calculation of weights consists of two pillars: a
parametric model for the probability that each patient is enrolled in the ALD trial and a constraint
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that ensures equal means of effect modifiers across both trials. When MAIC was introduced,11

the weights were trial assignment odds, parametrised using their corresponding K effect-modifiers
XEM

IPD =
(
𝑋EM

1,IPD, . . . , 𝑋
EM
𝐾,IPD

)
, on the log scale. In other words, if 𝑝𝑖 is the probability of individual

i being assigned to the ALD trial, then the (log)-weights are computed as

log𝑤𝑖 := log
(

𝑝𝑖
1 − 𝑝𝑖

)
= logit(𝑝𝑖) = 𝛼0 +

𝐾∑
𝑘=1

𝛼𝑘𝑋
EM
𝑖,𝑘,IPD. (1)

When we do not have access to individual-level data for the ALD population, a complete likelihood
function cannot be formed and the coefficients in Equation 1 cannot be estimated using standard
statistical methods.

Nevertheless, if we combine the expression for the 𝑤𝑖’s with a mean-balancing constraint:∑𝑛
𝑖=1 𝑤𝑖X

EM
𝑖,IPD∑𝑛

𝑖=1 𝑤𝑖
= X̄EM

ALD, (2)

where X̄EM
ALD is the mean of the effect-modifiers in the ALD population, Equation (2) can be solved as

an optimisation problem. The optimised weights are then used in a weighted regression with treatment
indicator as the only covariate, equivalent to applying an unadjusted regression model to a population
where the distribution of effect-modifiers are balanced, on average.

To quantify uncertainty in the MAIC estimator, we can use non-parametric bootstrap, which
repeatedly samples the IPD to compute the weights and run a weighted regression for each re-sampled
dataset. This generates a ‘bootstrapped distribution’ of the MAIC estimates, whose empirical variance
can be used as the estimate for variance of the MAIC estimator.

MAIC is appealing as it only assumes a logistic regression model for trial assignment. The
correctness of this assignment model rest on the assumptions that the trial assignment odds are log-
linear in covariates.19,31 From a population density estimation perspective, reweighting the IPD by
MAIC weights lead to an exponential tilted population distribution. Implicitly, this implies that the
assignment model would be mis-specified if the joint distributions of effect-modifiers are complex, or
exhibit non-linear dependence structure. Additionally, the mean-balancing requirement in equation (2)
enhances robustness; the final population-adjusted estimate will be unbiased irrespective of the trial
assignment model, if the outcome model is linear in the covariates on the natural scale.19,31 However,
popular models in HTA analysis, e.g., logistic regressions and survival models, are not linear in the
covariates; thus, the accuracy of MAIC requires a correct trial assignment model. Standard MAIC
estimates would be biased if the joint distributions of effect-modifiers within the ALD trial populations
become complex, an example would be mixing in skewed or heavy-tailed distributions.32

2.2. Parametric G-computation

Regression-based methods view population adjustment as a prediction problem. In order to target a
marginal treatment effect similar to MAIC, the marginal distribution of the outcome variable must be
modelled in the target population with and without treatment.14Parametric G-computation uses IPD for
the AC trial to fit an outcome model, which predicts the outcomes under different treatment conditions
and computes the treatment effects of interest in the fully-parametrised ALD trial population.

Although parametric G-computation has no theoretical restrictions on the type of outcome, here we
illustrate it for a binary outcome𝑌𝑖 , where the probability of occurrence is described for each individual
𝑖 = 1, . . . , 𝑛 as

E(𝑌 | X ,T ) = 𝑔
(
𝛽0 + βPVX

PV +
(
𝛽𝑡𝑟 𝑡 + βEMXEM

)
T
)
, (3)
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where 𝑔(·) is the inverse logit function and the term E(𝑌 | X ,T ) is the probability that the outcome
occurs conditional on the treatment assignment T and a given covariates profile. The model includes:
an intercept 𝛽0 for the baseline odds; a coefficient 𝛽𝑡𝑟 𝑡 for the treatment effect that does not vary
according to covariates; a vector βPV for the effect of the prognostic variables XPV; and a vector βEM
for the effect of the effect-modifiers XEM.

Remiro-Azocar et al. implemented this outcome regression in a Bayesian framework.24 After fitting
the regression model, parametric G-computation is based on the distribution of effect-modifiers and
prognostic variables in a target population. If we set X = (XPV,XEM) to include both prognostic
variables and effect-modifiers, we then define the theoretical covariates distribution in the target
population as 𝑓X (x). Conditional on coefficients β, individual-level predictions are aggregated to
obtain the distribution of averages of hypothetical outcomes:

E(𝑌 𝑝𝑟𝑒𝑑 | β) =
∫
x∈S

𝑔
(
𝛽0 + βPVx

PV + (𝛽𝑡𝑟 𝑡 + βEMxEM)𝑇
)
𝑓X (x)𝑑x

≈

∫
x∈S′

𝑔
(
𝛽0 + βPVx

PV + (𝛽𝑡𝑟 𝑡 + βEMxEM)𝑇
)
�̂�X (x)𝑑x, (4)

where S is the support of the theoretical distribution 𝑓X (x), which is generally unknown in practice.
Thus, we approximate it using a finite population approximation �̂�X (x), defined over its support S′.

The posterior distribution of the conditional mean under either treatment condition, 𝜇(𝑡), can be
found using a simulation approach by incorporating L posterior draws of the regression coefficients β
into Equation 4. Thus, the l-th draw of the average hypothetical outcomes can be calculated as

𝜇𝑙 (𝑡) =
∫
x∈S′

𝑔
(
𝛽𝑙0 + β𝑙1x

PV + (𝛽𝑙𝑡𝑟 𝑡 + β𝑙𝑬𝑴xEM)𝑡
)
�̂�X (x)𝑑x, (5)

where t is the treatment condition of interest.
In standard G-computation, �̂�X (x) is usually the empirical covariate distribution of the sample

IPD. However, in population adjustment, �̂�X (x) is based on simulating 𝑁∗ covariate profiles from the
assumed ALD trial population, x𝑖 , 𝑖 = 1, . . . , 𝑁∗. Thus, (5) can be simplified to

𝜇𝑙 (𝑡) =
𝑁 ∗∑
𝑖=1

𝑔
(
𝛽𝑙0 + β𝑙1x

PV
𝑖 + (𝛽𝑙𝑡𝑟 𝑡 + β𝑙𝑬𝑴xEM

𝑖 )𝑡
)
.

Finally, the lth draw from the posterior of the treatment effect can be computed as

Δ̂ 𝑙 =

(
𝜇𝑙 (1)

1 − 𝜇𝑙 (1)

)/ (
𝜇𝑙 (0)

1 − 𝜇𝑙 (0)

)
.

By directly parametrising the ALD population and extrapolating the outcome model beyond the
covariate space of the IPD trial, parametric G-computation avoids the problem of unstable weights
caused by the limited population overlap. In simulation studies, it provides more efficient estimates
with minimal bias.14 However, parametric G-computation achieves this at the cost of stronger
assumptions; it relies heavily on parametric assumptions—both the parametric representation of the
ALD population and the outcome model must be correct for unbiased estimation. While the effect of
model misspecification is still under investigation, results based on extrapolation and a fully simulated
population may not be taken at face value.

3. G-MAIC

To overcome the limitations of the two procedures shown above, we propose a method, called G-MAIC,
that reduces the small-sample bias and improves precision compared to MAIC, without explicitly
parametrising the ALD trial population. G-MAIC combines weighting adjustment with G-computation
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Table 1. General building blocks for population adjustment methods
targeting the marginal treatment effects.

Method Outcome model Covariate model

MAIC Implicit Indirect
G-MAIC Parametric Indirect
Parametric G-computation Parametric Parametric
Note: ‘Implicit’ outcome model refers to the mean-matching step in MAIC guarantees its unbiasedness
when the outcome is linear in covariates; ‘Indirect’ covariate model refers to first specifying a trial
assignment model for weights estimation, and then use weights for approximating the ALD trial.

and uses a variance estimator based on Bayesian bootstrap.28 As we will demonstrate in the simulation
study in Section 4, it offers a promising alternative to MAIC, performing comparably to parametric
G-computation.

Table 1 shows the connections between G-MAIC, MAIC, and parametric G-computation. G-MAIC
requires a parametric outcome model, similar to parametric G-computation. However, instead of
directly parametrising the distribution of effect-modifiers, G-MAIC indirectly parametrises �̂�X (x) in
Equation (5) by re-weighing the IPD using MAIC weights1, such that it resembles a population that
is exchangeable to the ALD population. Similar to MAIC, this approach creates a pseudo population
where the distribution of effect modifiers is, on average, balanced. The only difference being that G-
MAIC reweighs the covariate instead of individual likelihood contribution as in MAIC.

In order to propagate uncertainty from the approximated distribution of effect-modifiers in the
ALD population to the estimated treatment effect, we propose a variance estimator based on Bayesian
bootstrap.28 This variance estimator is more stable than the standard bootstrap used in MAIC, which
can reduce the covariate space and result in extreme weights in poorly overlapped scenarios. As
explained in the next section, the Bayesian bootstrap estimator treats approximating the effect-modifier
distribution in the ALD population as a prediction task based on limited data, and considers the
predictive distribution of the re-weighed population.

3.1. Covariate approximation using Bayesian bootstrap
In our view, the primary challenge in population adjustment lies in accurately approximating the
distribution of effect-modifiers, while adequately quantifying uncertainty. This is because explicit
parametric assumptions must be made (which may be hard to justify) and, in addition, the uncertainty in
the population approximation is often overlooked, as only a single draw from the assumed parametric
distribution is utilised for the analysis.

We attempt to address these issues in the following manner. Consider the following approximation
of �̂�X (x) in (5):

�̂�X (x) =
𝑛∑
𝑖=1

𝑚𝑖𝛿X𝑖 (x), (6)

where 𝛿X𝑖 (x) indicates that the effects modifiers are set to a fixed individual ‘profile’ x, without
uncertainty, effectively assuming a degenerate distribution for X . The values m = {𝑚1, 𝑚2, . . . 𝑚𝑛}
indicate weight parameters with the additional constraint that

∑𝑛
𝑖=1 𝑚𝑖 = 1. By assigning different

weights to different values of the effect modifiers, (6) can be employed to represent the empirical
distribution of effect-modifiers in a finite sample. Additionally, if m is drawn from a probability
distribution, the uncertainty in �̂�X (x) can be directly modelled.

Under a Bayesian framework, if the IPD and the ALD population can be seen as exchangeable,
we can construct an approximation to �̂�X (x) based on the empirical distribution of effect-modifiers in

11 Alternative sets of weights that enforce balance of covariate means across trials could be used instead.
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the IPD trial. Assume m is drawn from an improper Dirichlet prior m ∼ Dirichlet(0𝑛) and suppose
each observation corresponds to a unique covariate profile. The empirical data can be considered
as a realisation of a Multinomial distribution with parameters equal to 1

𝑛 for all n observed values.
Combining these data with the improper prior yields the conjugate posterior m | X = x ∼

Dirichlet(1𝑛).
As explained by Oganisian et al.,33 this is the Bayesian bootstrap developed by Rubin.28 More

intuitive interpretations of this procedure can be found in Bayesian survey inference under the term
‘Polya Sampling,’34,35 where the procedure is applied to impute the upsampled population based on
sampled units. Bayesian bootstrap can also be conceptualised as ‘predictive resampling’ in Bayesian
predictive inference, updating the ‘one-step predictive distribution’ by repeatedly resampling the
Bayesian posterior.36 Both ideas show that, under exchangeability assumptions, Bayesian bootstrap is
equivalent to modelling predictive distributions conditional on the known population.

In population adjustment, the two trial populations are not exchangeable. However, the re-weighed
IPD based on MAIC weights can be viewed as being exchangeable to the ALD population, to a
reasonable degree. By applying Bayesian bootstrap to the re-weighed IPD, we are essentially imputing
the ALD population based on the pseudo population, with uncertainty of approximating the ALD
contained within the predictive distributions.

3.2. Statistical implementations
As stated in Table 1, G-MAIC assumes a parametric regression model similar to G-computation. In the
marginalisation step, however, instead of averaging over a single simulated population, marginalisation
is combined with Bayesian bootstrap to compute the average treatment effect with its associated
uncertainty.

We have shown that applying Bayesian bootstrap to the re-weighted IPD gives us the posterior
predictive distribution of the adjusted population. Therefore, each draw of the population-adjusted
average outcomes under either treatment condition can be calculated as a weighted average by
combining one posterior draw of the conditional mean with a set of random Dirichlet weights. The
proposed population-adjusted treatment effect estimation can be implemented as follows.

We start by computing the normalised MAIC weights W based on (1) and (2), where
∑𝑛
𝑖=1 𝑤𝑖 =

𝑁 IPD, using the full sample. This then serves as the basis to construct our random weight vector
m; specifically, we replace the frequency of 1 in standard Bayesian bootstrap with the pseudo
frequency W . Starting with the same non-informative prior for random weights, by the same
Dirichlet-Multinomial conjugacy, the posterior distribution for the random weights m is: m |

W ∼ Dirichlet(W ), the random Dirichlet weights can then be attached to the observations as in
Equation (6).

Thus, the new adjusted distribution can be represented as

m | W ∼ Dirichlet(W )

�̂�X (x) =
𝑛∑
𝑖=1

𝑚𝑖𝛿X𝑖 (x).

After fitting the same outcome regression model as in parametric G-computation, the full posterior
inference for the treatment effect proceeds as in standard Bayesian G-computation. For the lth draw
from the posterior distribution of {𝛽𝑙0,β

𝑙
1, 𝛽

𝑙
𝑡𝑟 𝑡 ,β

𝑙
𝑬𝑴 }, a weight vector ml is drawn: ml | W ∼

Dirichlet(W ). The causal contrast can be computed as follows:

• For both T = {0,1}, average the conditional mean over the specific distribution of effect-modifiers:

𝜇𝑙 (𝑡) =
𝑛∑
𝑖=1

𝑚𝑙𝑖 𝑔{𝛽
𝑙
0 + β𝑙1x𝑖 + (𝛽𝑙𝑡𝑟 𝑡 + β𝑙𝑬𝑴x𝑖)𝑡}.
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• Compute the causal contrast (e.g., the odds ratio):

Δ 𝑙 =
𝜇𝑙 (1)/

[
1 − 𝜇𝑙 (1)

]
𝜇𝑙 (0)/

[
1 − 𝜇𝑙 (0)

] .
Repeating this step for 𝑙 = 1, 2, . . . , 𝐿 posterior draws gives L draws for the population-adjusted causal
odds ratio, which could then be used to compute any summary of interest.

3.3. Hypotheses and remarks
The proposed G-MAIC method employs the same logic as standard MAIC, which aims to estimate
the treatment effect in a pseudo population with balanced effect-modifiers. However, the two methods
differ in point and variance estimation. Instead of using an unadjusted estimator, G-MAIC utilises a
‘regression-then-marginalisation’ approach, which can increase efficiency, particularly for small sample
sizes. The approach, coupled with Bayesian bootstrap that relies on MAIC weights calculated using the
full sample, makes G-MAIC more reliable than traditional MAIC, as we will demonstrate in Section 5.

However, G-MAIC is still sensitive to population overlap. Limited population overlap leads to
weight concentration, resulting in an underestimation of the variance of treatment effects. This problem
becomes more severe as the overlap decreases. Therefore, when population overlap is poor, parametric
G-computation is preferred due to its ability to extrapolate. Based on the above features of G-MAIC,
we undertook the simulation study to verify the following hypotheses:

1. G-MAIC will have smaller variance than MAIC in small samples.
2. G-MAIC will have a more stable variance estimator than MAIC.
3. G-MAIC will have incorrect nominal coverage when overlap is poor.
4. G-MAIC will have worse under-coverage for small effective sample sizes (ESS).
5. G-MAIC will provide worse estimates than parametric G-computation with poor overlap.

4. Simulation studies

4.1. Aim
This simulation study aims to examine whether G-MAIC can improve over standard MAIC in
challenging anchored two-trial scenarios. We also aim to benchmark the performance of G-MAIC
against parametric G-computation, which is not affected by poor trial population overlap. We expect G-
MAIC to offer efficiency gains while being relatively robust when the trial assignment model of MAIC
is mis-specified. We will evaluate the following metrics under different data-generating mechanisms:
(1) unbiasedness; (2) variance unbiasedness; (3) coverage; (4) precision. The simulation study is
reported following the ADEMP (Aim, Data-generating mechanisms; Estimands; Methods; performance
measures) structure.37 The simulation study was implemented in R software version 4.1.1,38 with R code
available on github at https://github.com/garoc371/G-MAIC/tree/main.

4.2. Data-generating mechanisms
We consider a binary outcome, generated under a logit model as in (3). The two trials are 𝐴𝐶 and 𝐵𝐶,
involving three treatment (𝐴, 𝐵, 𝐶) with C being the common comparator.

We first generate IPD for both trials, with the 𝐴𝐶 trial designated as the IPD trial. The IPD consist
of individual-level outcomes Y , the treatment assignment status T and a matrix of five covariates X .
All covariates are assumed to be prognostic variables and effect-modifiers, i.e., X𝑬𝑴 = X in equation
(3). The BC trial is the ALD trial so the simulated IPD are aggregated to obtain covariate summaries;
overall event counts and the number of participants by treatment, where, specifically 𝑁𝐵, 𝑁𝐶 , 𝑛𝐵, 𝑛𝐶
are the sample sizes and overall event count in arm B and C. We fix the size of the ALD trial at 600,
corresponding to a typical Phase III trial,39 with a 1 : 1 allocation ratio.
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The model for the probability of experiencing the outcome is:

logit(𝜃𝑖) = 𝛽0 + β1X
EM
i + (𝛽𝑡𝑟 𝑡 + βEMXEM

i )𝑇𝑖 ,

where 𝛽0 is the fixed control group event rate. The strength of effect-modification β𝑬𝑴 is assumed
to be the same under the assumption of shared effect-modifiers,17 and we set β𝐸𝑀 = − log(0.6),
corresponding to strong effect-modification. The prognostic strength β1 is also assumed to be the same
and set to β1 = − log(0.8). The treatment effects are assumed to be equally large in both trials with
𝛽𝐴𝐶 = 𝛽𝐵𝐶 = 𝛽𝑡𝑟 𝑡 = log(0.25). The treatment effects correspond a decrease in baseline odds by 75%
but with strong effect-modification, the sign of the treatment can still be flipped.

The estimand of interest is the A vs B marginal treatment effect in the BC population. Based on the
current setup, the true A vs B effect is zero.

To assess the performance of population adjustment methods, we set the IPD sizes at 100, 200,
or 600. We devised high, moderate, and low population overlaps by adjusting covariate distributions,
each corresponding to different degrees of reductions in ESS. Factorial combinations of these factors
in multivariate normal and non-normal covariate structures yield 18 scenarios. Detailed parameter
configurations are in the appendix.

4.3. Methods
The following methods will be compared:

1. Bucher’s method
2. MAIC
3. Bayesian parametric G-computation from Remiro et al.14

4. Bayesian regression marginalisation with MAIC weights
5. Bayesian parametric G-computation with misspecified covariate structure:

• With the true Normal covariate structure, the ALD population is generated from a multivariate
Gamma distribution

• With the true non-normal covariate structure, a multivariate normal distribution is used to generate
the ALD population.

STC and ML-NMR15 are excluded in the simulation study. This is because the STC targets the
conditional estimand while we are targeting the population-adjusted marginal effect. Conversely,
the operation of ML-NMR, is similar to STC in two-trial targeted comparison scenario.22 It can
target the marginal estimand by parametrising the ALD population and marginalising over it, which
is equivalent to the parametric G-computation.

4.4. Performance measures
We simulate 𝑁𝑠𝑖𝑚 datasets for each scenario and estimate the treatment effect (𝑑𝑖) of A vs B in the BC
population. The true value of this effect (d) is zero. The bias of the population-adjusted estimator is the
expected difference between the estimated value and the truth. Variability is measured using empirical
standard errors, (the standard deviation of 𝑑𝑖 across all repetitions), model average standard errors (the
average of the standard error associated providing by the estimating procedure �̂�𝑖,𝑚𝑜𝑑). If these two
measures are close, this reflects that the variance estimator is stable. Finally, coverage is the proportion
of 95% confidence intervals that contain the true difference using Wald-type confidence intervals with
𝑑𝑢𝑝𝑝𝑒𝑟 (𝑙𝑜𝑤𝑒𝑟 ) ,𝑖 = 1.96 × �̂�𝑖,𝑚𝑜𝑑 ± 𝑑𝑖 . These measures can be calculated as:

• Bias = 1
𝑁𝑠𝑖𝑚

∑𝑁𝑠𝑖𝑚

𝑖=1 (𝑑𝑖 − 𝑑),

• Empirical standard error =
√

1
𝑁𝑠𝑖𝑚−1

∑𝑁𝑠𝑖𝑚

𝑖=1 (𝑑𝑖 − 𝑑)2,

• Model average standard error =
√

1
𝑁𝑠𝑖𝑚

∑𝑁𝑠𝑖𝑚

𝑖=1 v̂ar(𝑑𝑖),

• Coverage = 1
𝑁𝑠𝑖𝑚

∑𝑁𝑠𝑖𝑚

𝑖=1 1(𝑑𝑙𝑜𝑤𝑒𝑟 ,𝑖 ≤ 𝑑𝑖 ≤ 𝑑𝑢𝑝𝑝𝑒𝑟 ,𝑖).
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To determine 𝑁𝑠𝑖𝑚, the Monte Carlo standard errors (MCSE) of the performance measures should be
low relative to the estimates. Since the bias and precision are of primary interests, we base the number
of repetitions on the MCSE of them:

MCSE𝑏𝑖𝑎𝑠 =

√
v̂ar(𝑑𝑖)
𝑁𝑠𝑖𝑚

MCSE𝐸𝑚𝑝𝑆𝐸 =

√
v̂ar(𝑑𝑖)

2(𝑁𝑠𝑖𝑚 − 1)
.

We consider 2,000 Monte Carlo replications for our analysis. And we conduct a further simulation with
5,000 Monte Carlo replications to ensure stability, we present results under 2,000 simulation.

5. Results

All methods produced population-adjusted effect estimates in all but one simulated scenario. In the
situation where 𝑁𝐴𝐶 = 100 and 𝜇𝐴𝐶 = 0.25, MAIC failed to find suitable weights in 43 and 44 out
2,000 replicated datasets in the Normal and non-Normal cases, respectively. However, since G-MAIC
does not exhibit any estimation problems, it seems that feasible weighting solutions are available using
the full IPD, but are harder to find in bootstrapped samples. This could indicate that the proposed
method is more stable than the classic MAIC.

There are also 10–20 estimations that yield treatment effect estimates of negative infinity for both
of the parametric G-computation methods, regardless of the covariate structures (more in the non-
Normal scenario due to the slightly more skewed distribution). This is because the predicted outcome
probabilities in the 𝐵𝐶 population in those datasets were exactly 1, which equals infinity after a logit
transformation. This is unlikely to be an issue in practice, as these data structures are unlikely to be
replicated in reality. All those problematic results were considered missing when analysing the results.

We found our findings robust to a large number of Monte Carlo replications. Here we presented the
results with 2,000 Monte Carlo replications.

5.1. Bias
The bias across scenarios under the different covariate structures is shown in Figures 2 and 3. For
normally distributed covariates, where a logistic regression model is implied for the trial assignment,
MAIC estimates the population-adjusted estimate with minimal bias, even with small samples and
poor overlap. However, the large MCSE indicates that the estimates are highly variable across the
simulations. Our proposed G-MAIC recovers unbiased estimates across all scenarios and produces less
variable estimates with smaller bias compared to MAIC in extreme scenarios. Bayesian parametric
G-computation also has minimal bias under correctly parametrised covariate distributions but biased
estimates under mis-specification, increasing as IPD sample size decreases.

Results change when covariates are generated under the non-normal structure. Parametric G-
computation with a misspecified population remains accurate, suggesting that the multivariate normal
distribution approximates the true population adequately. Nevertheless, binary covariates and non-
linear dependence structure lead to the incorrect specification of implied assignment function for
MAIC. As shown in 3, estimates from MAIC become biased. In the worst performing scenario—where
smallest IPD sample size coincides with poor population overlap—the bias from MAIC exceeds that of
unadjusted comparisons. In this scenario, the low absolute ESS, a direct result of poor overlap combined
with already limited sample size, becomes further compounded by bootstrap resampling, ultimately
inducing finite-sample bias within logistic regression estimates. Indeed, as illustrated by Figure 3, at
similarly poor levels of overlap but with larger IPD sample sizes, the resulting bias is notably smaller.
Meanwhile, the issues caused by extreme weights can be partly alleviated by a correct outcome model—
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Figure 2. Estimation bias under multivariate Normal covariate structure with varying overlap and
sample size: from left to right average sample size reductions are 82.7% 55% and 31%.
Note: From top to bottom, methods are displayed in the order of: MAIC, G-MAIC, Bayesian Parametric G-computation, Bayesian Parametric

G-computation under misspecified covariate model, Bucher’s method.
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Figure 3. Esitmation bias under non-Normal covariate structure with varying overlap and sample
size: from left to right average sample size reductions are 32.7% 55% and 81%.
Note: From top to bottom, methods are displayed in the order of: MAIC, G-MAIC, Bayesian Parametric G-computation, Bayesian Parametric

G-computation under mis-specified covariate model, Bucher’s method.
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G-MAIC gives estimates with much smaller bias in small samples and poorly overlapped cases, despite
its slightly worse performance compared to the fully parametric methods.

5.2. Variance and variance estimation
Tables 2 and 3 show that MAIC estimates’ variability is determined by the ESS. The empirical standard
error of the estimator peaks under the smallest effective sample size, regardless of covariate structure.
However, G-MAIC produces more stable estimates in these extreme conditions. The variability of
G-MAIC is close to the fully parametric methods. This improvement becomes more prominent as
unadjusted estimates become more variable. This is due to augmentation with a regression model and
the use of the full samples instead of non-parameteric bootstrapped samples for variance estimation.
Therefore, re-weighted populations in G-MAIC will always have larger ESS. Additionally, using
weights for averaging potential outcomes can be more stable than weighted regressions. Finally, our
results indicate that dependence structures among covariates do not significantly impact variability.

We evaluate variance estimation by comparing empirical standard errors and model average standard
errors. Firstly, we confirm that the variance estimation from MAIC can be unstable under poor
population overlap. Comparatively speaking, variance estimation for G-MAIC is much more stable but
tends to underestimate true variability— especially under small ESS—due to concentration of weights
leading to an overly homogeneous ALD approximation. Fully parametric methods perform well as they
extrapolate and consider the variance information when simulating the ALD.

5.3. Coverage
Figures 4 and 5 display the coverage of the 95% confidence intervals for normal and non-normal
covariate structures, respectively. MAIC exhibits over-coverage in extreme scenarios due to failed
variance estimation. In less extreme cases, the Normal covariate structure exhibits largely correct
coverage due to minimal bias and largely correct variance estimation. Conversely, under the non-
normal covariate structure, the large estimation bias can sometimes ‘over-compensate’ exaggerated
model variance leading to correct coverage.

G-MAIC shows some under-coverage mainly driven by an underestimation of true variance; thus,
nominal 95% confidence interval coverage is worst with small ESS values. For fully parametric
methods, the parameterically specified populations offers sufficiently good approximations to the
underlying ALD covariate structure, so the coverage is close to the nominal 95%.

6. Discussion

In the real-world, regulators face increasing amounts of efficacy evidence that are based on small trials
that do not compare all relevant interventions. This is especially true for interventions for rare and more
severe diseases. In these scenarios, it is valuable to conduct population adjustment to enable ‘fairer’
comparisons between the available interventions. However, our simulation study demonstrates that
even when the trial assignment model is correctly specified, the large variability along with unstable
variance estimation, could render the standard MAIC method almost unusable. At the same time,
the regulator might be reluctant to accept results from parametric G-computation since it is based
on simulated covariates. Thus, we introduced G-MAIC that combines outcome regression with the
weighting adjustment used in MAIC. We have shown in a comprehensive simulation study that it
achieves better performance in terms of both unbiasedness and stable variance estimation that MAIC
and that it is more robust under mis-specification of the trial assignment model.

The proposed G-MAIC method can offer an acceptable compromise between MAIC and parametric
G-computation. With the correct trial assignment weights, G-MAIC provides an adjusted estimate with
minimal bias and stable variance estimation. Apart from the efficiency gains due to the usage of a
outcome model, the improved performance can also be explained by the use of Bayesian bootstrap,
which provides a more stable variance estimate. G-MAIC does underestimate variance in small samples
and warrants further investigations. ESS after estimating the weights can diagnose issues just as in
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Table 2. Empirical and Model SE across scenarios under multivariate Normal DGP.

Statistics Sample size IPD location Bucher Bayes Gcomp G-MAIC MAIC Bayes Gcomp(mis-specified)

Poor overlap

Empirical SE 100 0.25 0.458(0.00724) 0.744(0.0118) 0.783(0.0124) 1.913(0.0306) 0.743(0.0118)
Model SE 100 0.25 0.452(0.000316) 0.701(0.00159) 0.697(0.00189) 3.841(0.1380) 0.711(0.00144)
Empirical SE 200 0.25 0.341(0.00539) 0.512(0.00809) 0.522(0.00826) 0.71(0.0112) 0.511(0.00808)
Model SE 200 0.25 0.338(0.000133) 0.517(0.000755) 0.496(0.000849) 0.84(0.0159) 0.518(0.000713)
Empirical SE 600 0.25 0.231(0.00365) 0.313(0.00495) 0.314(0.00497) 0.409(0.00648) 0.31(0.0049)
Model SE 600 0.25 0.237(3.72e-05) 0.329(0.000259) 0.312(0.000282) 0.398(0.000848) 0.327(0.000244)

Moderate overlap

Empirical SE 100 0.375 0.439(0.00695) 0.577(0.00913) 0.57(0.00902) 0.66(0.0104) 0.577(0.00912)
Model SE 100 0.375 0.44(0.000155) 0.58(0.00104) 0.536(0.00102) 0.719(0.0111) 0.585(0.000978)
Empirical SE 200 0.375 0.332(0.00525) 0.4(0.00633) 0.398(0.0063) 0.446(0.00705) 0.399(0.00631)
Model SE 200 0.375 0.331(6.42e-05) 0.432(0.000507) 0.395(0.000485) 0.445(0.00088) 0.433(0.000451)
Empirical SE 600 0.375 0.232(0.00366) 0.264(0.00418) 0.263(0.00416) 0.287(0.00454) 0.262(0.00414)
Model SE 600 0.375 0.234(2.31e-05) 0.285(0.000171) 0.264(0.000165) 0.286(0.000295) 0.285(0.000165)

Good overlap

Empirical SE 100 0.45 0.434(0.00686) 0.515(0.00814) 0.501(0.00793) 0.534(0.00845) 0.518(0.0082)
Model SE 100 0.45 0.437(9.98e-05) 0.53(0.000802) 0.474(0.000685) 0.536(0.00108) 0.535(0.000734)
Empirical SE 200 0.45 0.331(0.00523) 0.37(0.00585) 0.362(0.00573) 0.38(0.006) 0.367(0.00581)
Model SE 200 0.45 0.329(3.84e-05) 0.398(0.000387) 0.354(0.000332) 0.38(0.000454) 0.399(0.000339)
Empirical SE 600 0.45 0.237(0.00375) 0.25(0.00395) 0.248(0.00392) 0.257(0.00407) 0.249(0.00394)
Model SE 600 0.45 0.233(1.93e-05) 0.268(0.000134) 0.245(0.000119) 0.254(0.000148) 0.268(0.000129)
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Table 3. Empirical and Model SE across scenarios under non-Normal DGP.

Statistics Sample size IPD location Bucher Bayes Gcomp G-MAIC MAIC Bayes Gcomp(mis-specified)

Good overlap

Empirical SE 100 0.275 0.483(0.00765) 0.545(0.00863) 0.55(0.00871) 0.603(0.00954) 0.55(0.00872)
Model SE 100 0.275 0.464(0.000452) 0.547(0.00115) 0.505(0.00094) 0.604(0.00317) 0.551(0.00121)
Empirical SE 200 0.275 0.344(0.00545) 0.384(0.00608) 0.382(0.00603) 0.408(0.00645) 0.389(0.00615)
Model SE 200 0.275 0.347(0.000176) 0.416(0.000547) 0.377(0.000443) 0.409(0.000618) 0.419(0.000557)
Empirical SE 600 0.275 0.251(0.00398) 0.268(0.00424) 0.265(0.0042) 0.276(0.00437) 0.269(0.00425)
Model SE 600 0.275 0.243(5.46e-05) 0.282(0.000181) 0.258(0.000147) 0.27(0.000199) 0.283(0.000185)

Moderate overlap

Empirical SE 100 0.4 0.465(0.00735) 0.589(0.00933) 0.606(0.00959) 0.706(0.0112) 0.594(0.00941)
Model SE 100 0.4 0.464(0.000442) 0.594(0.00137) 0.564(0.0012) 0.812(0.0116) 0.596(0.00136)
Empirical SE 200 0.4 0.345(0.00546) 0.43(0.00679) 0.429(0.00678) 0.487(0.0077) 0.434(0.00686)
Model SE 200 0.4 0.346(0.000188) 0.45(0.000706) 0.416(0.000593) 0.48(0.00118) 0.452(0.000697)
Empirical SE 600 0.4 0.248(0.00392) 0.286(0.00452) 0.283(0.00448) 0.309(0.00489) 0.287(0.00454)
Model SE 600 0.4 0.242(5.45e-05) 0.299(0.000235) 0.278(0.000199) 0.304(0.000346) 0.3(0.000238)

Poor overlap

Empirical SE 100 0.6 0.468(0.0074) 0.707(0.0113) 0.769(0.0122) 1.86(0.0297) 0.71(0.0113)
Model SE 100 0.6 0.464(0.000494) 0.692(0.0017) 0.699(0.00202) 3.63(0.109) 0.695(0.0018)
Empirical SE 200 0.6 0.354(0.0056) 0.512(0.0081) 0.524(0.00829) 0.724(0.0114) 0.517(0.00817)
Model SE 200 0.6 0.345(0.000188) 0.519(0.000886) 0.501(0.000817) 0.822(0.0143) 0.523(0.000896)
Empirical SE 600 0.6 0.24(0.0038) 0.33(0.00522) 0.328(0.00519) 0.418(0.00661) 0.331(0.00524)
Model SE 600 0.6 0.241(5.02e-05) 0.338(0.000311) 0.32(0.000276) 0.408(0.000877) 0.339(0.000307)
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Figure 4. Coverage of 95% confidence intervals under multivariate Normal covariate structure with
varying overlap and sample size: from left to right average sample size reductions are 82.7% 55%
and 31%.
Note: From top to bottom, methods are displayed in the order of: MAIC, G-MAIC, Bayesian Parametric G-computation, Bayesian Parametric

G-computation under misspecified covariate model, Bucher’s method.
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Figure 5. Coverage of 95% confidence intervals under non-Normal covariate structure with varying
overlap and sample size: from left to right average sample size reductions are 32.7% 55% and 81%.
Note: From top to bottom, methods are displayed in the order of: MAIC, G-MAIC, Bayesian Parametric G-computation, Bayesian Parametric

G-computation under mis-specified covariate model,Bucher’s method.
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MAIC. Analysts adopting G-MAIC could consider inflating the variance by slightly tempering the
estimated weights when faced with extremely small ESS (raise the weights to a power that is smaller
than 1). However, future work could focus on developing a more principled way to incorporate the
uncertainty in weights estimation.

Furthermore, a bigger challenge for MAIC is the mis-specification of the trial assignment model.
Under such mis-specification, the re-weighted population is no longer exchangeable with the ALD
population, and mean-balancing alone is insufficient to correct all the bias from effect modifications in
non-linear models. In HTA, effect-modifiers typically come in different data types, which implies that
the trial assignment models can often be mis-specified. The simulation results under the non-normal
data structure indicate issues with the use of MAIC in practice. We observe that low absolute ESS can
exacerbate the problem non-exchangeability. Under the most extreme scenario, where the absolute ESS
is drastically reduced due to the compounded effect of poor overlap and small IPD sample sizes, MAIC
can produce estimates that are more biased than the unadjusted method. Previous simulation studies
have assumed a multivariate Normal covariate structure, this is one of the few studies that explores
how non-Normal covariate structure affects the MAIC estimates.

G-MAIC on the other hand, substantially improves over MAIC in our simulations despite using the
same weights for re-weighting. This is likely due to a correctly specified outcome model. The estimate
under mis-specified weights is akin to the ‘true’ treatment effect in a population that is not exchangeable
with the ALD. And therefore the resulting bias depends upon the degree of non-exchangeability. It is
not unimaginable that the improvements can disappear in situations where the trial populations have
completely different covariate structure with different skewness. The non-exchangeability is not severe
in the scenarios we tested on its own but could worsen as ESS decrease. As seen in Figure 3, the
estimation bias is smaller in less extreme scenarios. In scenarios where the IPD sizes are 200 and 600,
G-MAIC still offers performance gains, but to smaller extent as the ESS becomes sufficiently large.

Nevertheless, we hesitate to conclude that G-MAIC offers a perfect solution to the problem of mis-
specified assignment model, as the estimand in these cases is not so interpretable. Strictly from an
estimand perspective, marginalising the correct outcome relationship in a non-exchangeable population
might be regarded as irrelevant to the indirect comparison problem at hand. However, we argue that
all population adjustment methods suffer from this problem—all estimands are irrelevant when the
covariate model is mis-specified. On a more practical level, when faced with covariate structures
with potentially different skewness, one should consider adopting alternative weighting schemes that
correspond to a more appropriate trial assignment model, or even matching on covariate medians
in addition to the original formulation of MAIC. The connections between calibration weights and
covariate structure are briefly mentioned in,19,32 and is an area for future work.

In addition, methods such as MAIC, parametric G-computation, and the proposed G-MAIC
inherently produce treatment effect estimates anchored exclusively to the specific ALD trial population,
substantially limiting their synthesis into larger evidence networks. As evidence accumulates and
the assumption of shared effect modifiers becomes increasingly justifiable, ML-NMR emerges as a
desirable alternative, as it integrates evidence from multiple IPD and ALD studies and enables the
estimation of marginal or conditional effects relevant to any selected decision-making target population
of interest. Nonetheless, the increased complexity, data requirements, and the stronger assumptions
around shared effect-modifiers may present practical challenges. Thus, methods only applicable to
pairwise indirect comparisons remain relevant in settings with early-stage evidence.

Recent work by Park et al.40 has highlighted the growing interest in doubly-robust methods for
population-adjusted indirect comparisons, which ensures the consistency of the estimator when either
the outcome or assignment model is correctly specified. Their approach combines MAIC weights
with an outcome regression model for unanchored comparisons involving survival outcomes. While
the research in doubly-robust methods continue to evolve, the G-MAIC offers a flexible framework
to accommodate all possible methods: the central goal of G-MAIC is to use Bayesian bootstrap to
construct the ALD population non-parametrically, while any suitable outcome modelling approach can
be applied in the first-stage regression.
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In conclusion, we emphasise two critical aspects of population adjustment: target population and
extrapolation methods. G-MAIC adopts MAIC weights, rendering estimates a ‘targeted comparison’
within the ALD trial population. This ‘fixation’ on the target population can yield different estimates
for the same trial pairs, contingent on ALD/IPD availability. However, this is not a major limitation, as
marginal estimands are sample-specific under effect-modifications. For G-MAIC, the target population
is an interpolation between weighted and unweighted IPD. Although differ from the decision popula-
tion, it might be the best compromise without additional parametric assumptions.

Extrapolation considerations are complex. G-MAIC does not extend beyond the IPD sample space,
making it sensitive to population overlap but enabling the safe adoption of novel Bayesian non-
parametric methods, such as Bayesian additive regression trees for outcome modelling. Extrapolations
from these methods can be unreliable, relying on limited observations at the IPD covariate boundaries.
In summary, future research should focus on innovative approaches to reconstruct the target population
based on ALD and develop methods for robust non-linear extrapolations.
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Appendix

• The number of participants in the IPD trial, 𝑁𝐴𝐶 ∈ {100, 200, 600}. We will use a 1 : 1 allocation
ratio for both sample sizes;

• The covariate structures of IPD in both trials:
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– The Normal case: five continuous covariates with each covariate k in trial j generated from a
Normal distribution: X𝒋𝒌 ∼ Normal(𝜇 𝑗𝑘 , 𝜎2

𝑗𝑘 ). The pairwise correlation 𝜌 has that 𝜌 = 0.25
– The non-Normal case: starting with a Normally distributed covariate 𝑋1 ∼ Normal(𝜇1, 𝜎

2
1 ), a

binary covariate 𝑋2 ∼ Bernoulli(𝑝2) is generated such that logit(𝑝2) = −0.5 + 0.5𝑋1. The
third covariate 𝑋3 depend on 𝑋2 with 𝑋3 ∼ Normal(−0.5𝑋2, 1). 𝑋4 is generated from a Gamma
distribution with mean 𝜇4 = |0.2𝑋1 + 0.3𝑋3 |, and dispersion parameter 𝑑4 = 0.5. Finally, a binary
𝑋5 ∼ Bernoulli(𝑝5) is generated with logit(𝑝5) = 0.1𝑋1 − 0.1𝑋2 + 0.05𝑋3.

• The overlap between trials: overlap between multivariate distributions is complex and hard to com-
pute. Instead, we choose the parameter values for the distributions to directly target a corresponding
reduction in ESS. This is achieved by repeatedly applying MAIC to 2,000 simulated 𝐴𝐶 and 𝐵𝐶
populations with 𝑁𝐴𝐶 = 𝑁𝐵𝐶 = 600, and compute the average reduction ESS across all repetitions.
In the Normal case, we have μ𝐵𝐶 = 0.6. The population standard deviation is fixed to be 𝑠𝑑𝑋 = 0.4
for both trials. The marginal mean in the 𝐴𝐶 population is set at 𝜇𝐴𝐶 ∈ {0.45, 0.375, 0.25}.
corresponding to 31%, 54% and 82.7% reduction in ESS. In the second scenario, we set 𝜇𝐴𝐶1 = 0,
𝜎2

1,𝐴𝐶 = 0.2, 𝜎2
1,𝐵𝐶 = 0.4 and 𝜇𝐵𝐶1 ∈ {0.275, 0.4, 0.6}, corresponding to 32.7%, 55% and 82.7%

reduction in ESS.
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