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ABSTRACT. A glacierized terrain comprises different land covers, and their mapping using satellite
data is challenged by their spectral similarity. We propose a hierarchical knowledge-based classification
(HKBC) approach for differentiation of glacier terrain classes and mapping of glacier boundaries, using
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and Global
Digital Elevation Model (GDEM). The methodology was tested over Kolahoi Glacier, Kashmir Himalaya.
For the sequential extraction of various glacier terrain classes, several input layers were generated from
the primary datasets by applying image-processing techniques. Noticeable differences in temperature
and spectral response between supraglacial debris and periglacial debris facilitated the development of
a thermal glacier mask and normalized-difference debris index, which together with slope enabled their
differentiation. These and the other layers were then used in several discrete tests in HKBC, to map
various glacier terrain classes. An ASTER visible near-infrared image and 42 field points were used to
validate results. The proposed approach satisfactorily classified all the glacier terrain classes with an
overall accuracy of 89%. The Z-test reveals that results obtained from HKBC are significantly (at 95%
confidence level) better than those from a maximum likelihood classifier (MLC). Glacier boundaries
obtained from HKBC were found to be plausibly better than those obtained from MLC and
visual interpretation.
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INTRODUCTION
As an integral part of the cryosphere, mountain glaciers
constitute one of the most important components of the
Earth’s natural system and serve as sensitive climate-change
indicators (Scherler and others, 2011). Therefore, their
accurate mapping and monitoring are of vital importance
for the proper planning and management of water resources.
Considering the extent and inaccessibility of glaciers,
remote sensing acts as an effective technology for their
regular mapping in a comprehensive and effective manner
(Bolch and others, 2010; Bhambri and others, 2011; Paul
and Mölg, 2014). Precise areal extents of various glacier
terrain classes are directly or indirectly used in various
studies. Different snow-ice classes (e.g. dry snow, wet snow,
ice, ice-mixed debris) have different water storage capacity,
and changes or inter-conversions between them greatly
influence the storage of glaciers (Jansson and others, 2003).
Dry and wet snow areas are important for avalanche
vulnerability assessment. Differentiation of snow and ice
also facilitates mass-balance estimates based on obser-
vations of the accumulation–area ratio. Thus, accurate
mapping of these classes would greatly influence the
precision of hydrological modelling, avalanche prediction/
forecasting models and glacier mass-balance studies. Also,
correct quantification of the areal extents of the supraglacial
debris and its temporal variations may give a clear
indication of the glacier’s health (Shukla and others, 2009;
Racoviteanu and Williams, 2012; Reid and Brock, 2014).

Techniques for glacier-cover mapping include (1) band
ratio techniques (Kääb, 2002; Paul and others, 2013);
(2) image classification techniques based on spectral indices

(Keshri and others, 2009; Burns and Nolin, 2014; Bhardwaj
and others, 2015); (3) morphometric analysis of attributes
such as slope, aspect and elevation (Bolch and others, 2007;
Shukla and others, 2010a); (4) multi-source and texture
analysis (Paul and others, 2004; Racoviteanu and Williams,
2012); and (5) supervised classification (Bayr and others,
1994; Shukla and others, 2009; Khan and others, 2015).
These research methodologies have mapped glacier facies
with varying success and have been effective in distinguish-
ing debris-free glacier ice from debris cover, but report
difficulties in separating debris on the glacier surface from
surrounding terrain (Shukla and others, 2010a,b; Raco-
viteanu and Williams, 2012). Debris may be present either
on the surface of the glacier, called supraglacial debris
(SGD), or along the margins of the glacier, called periglacial
debris (PGD) (Shukla and others, 2010a). In the ablation
zone, towards the glacier terminus, as ice starts giving way
to supraglacial debris, there forms a mixture of the two
classes called ice-mixed debris (IMD) (Keshri and others,
2009), also sometimes referred to as ‘dirty glacier ice’ or
‘mixed ice’ (Bhardwaj and others, 2015). This mixed class
covers a region between the total ice-covered area in the
upper reaches of the ablation zone and the total debris-
covered area in the lower reaches of the ablation zone, i.e.
the glacier snout. Both SGD and PGD originate from
surrounding valley rock, and are indistinguishable on
multispectral satellite images. Thus, they act as a major
constraint on accurate satellite-based mapping of glaciers
(Paul and others, 2004, 2013; Shukla and others, 2010a).
Differentiation of SGD and PGD classes can facilitate
automatic glacier mapping (Shukla and others, 2010a,b).
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Many works have reported this problem and have proposed
improved techniques for mapping the margins of glaciers
with varying amounts of debris cover in the ablation area.

A literature review suggests that optical data alone are
insufficient for mapping glacier margins, especially when
they are covered with varying amounts of debris. Previous
studies have shown that inputs from other sources such as
geomorphometry (Bolch and Kamp, 2006), thermal data
(Ranzi and others, 2004) or a combination of these (Paul and
others, 2004; Bolch and other, 2008; Shukla and others,
2010a,b; Bhambri and others, 2012; Karimi and others,
2012; Tiwari and others, in press) are needed together with
optical data for effective mapping of glacier margins.
Recently Bhardwaj and others (2015) demonstrated a Land-
sat 8 Operational Land Imager sensor based algorithm for
automated mapping of glacier facies and supraglacial debris.
This method used a manually digitized glacier boundary for
extracting the glacier area to map glacier facies within it, and
does not consider separation of SGD from surrounding
terrain. However, most of these studies either have ambitious
data and processing requirements, complex procedural steps
or have transferability issues (Tiwari and others, in press),
which limits repeated applicability.

Thus, there is still a need to devise a methodology that
may prove more efficient and consistent in mapping various
glacier terrain classes (snow-ice, vegetation, water, IMD,
SGD, PGD and valley rock), leading towards automatic
mapping of glacier boundaries. To this end, a hierarchical
knowledge-based approach is proposed here for sequential
differentiation of various glacier terrain classes, with
particular emphasis on SGD, PGD and valley rock owing
to their spectral similarity.

STUDY AREA
The current study is focused on Kolahoi Glacier and the
adjoining areas (34°110–34°210N, 75°270–75°390 E), located
in Lidder valley, western Himalaya (Fig. 1). The meltwater
stream of Kolahoi Glacier is known as the West Lidder River
and joins the East Lidder River at Pahalgam (35 km from the
snout). Pahalgam is connected to Srinagar by road and from
there to Aru (i.e. first 11 km). Beyond that, the remaining
24 km to the glacier snout have to be covered either on foot
or by pony (Ahmad and Hashmi, 1974). The glacier is�5 km
long and has an area of �11 km2. Its headwall is located at
5425ma.s.l. on Kolahoi mountain, between the peaks of
Dudnag in the west and Hiurbagwan in the east (Kaul, 1990).
The glacier surface is marked by crevasses along the eastern
margins of the ablation zone and an extensive mass of debris
along the western margin (Kaul, 1990).

Records of previous visits to, and studies on, Kolahoi
Glacier suggest that the focus was mainly on field mapping
(Neve, 1910), estimates of retreat (Neve, 1910; Odell, 1963;
Kaul, 1990; Kanth and others, 2011), geomorphology and
palaeoglaciation (Ahmad and Hashimi, 1974; Kaul, 1990) of
the glacier. However, to date, there has been no study
reported on differentiation of glacier facies and boundary
mapping of Kolahoi Glacier.

DATA AND METHODOLOGY
Dataset used
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data acquired on 20 September 2003
were selected as the primary dataset, on the basis of minimal

Fig. 1. The ASTER false-colour composite on the right shows Kolahoi Glacier and the adjoining area, with band combination R = near
infrared, G = red and B = green band. In this map the abbreviations are W: water; V: vegetation; SI: snow-ice; S: shadow; IMD: ice-mixed
debris; SGD: supraglacial debris; PGD: periglacial debris; VR: valley rock. Circles represent the set of field-based observations collected
during September 2014. Zoomed-out images on left show location of the study site within the region (bottom) and of the region within the
subcontinent (top).
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cloud cover, good contrast between various land covers and
suitable acquisition date (ablation season). The scene was
devoid of seasonal snow cover. Two ASTER data products,
namely AST14DMO (registered at sensor L1B) and AST08
(surface kinetic temperature), were downloaded free of
charge from NASA’s Earth Observing System Data and
Information System (https://reverb.echo.nasa.gov), under the
auspices of the Global Land Ice Measurements from Space
(GLIMS) project. The ASTER Global Digital Elevation Model
(ASTER GDEM v2), which is freely available, was also
downloaded from the US Geological Survey (USGS) website
(http://glovis.usgs.gov/). Additionally, 42 field-based obser-
vations were collected during September 2014, using a
handheld Trimble GPS (Fig. 1). Such GPS devices provide
horizontal accuracy of up to �3.9m and vertical accuracy
of �15m in mountainous terrain (Racoviteanu and others,
2007; Bhardwaj and others, 2015). The comparison of
z-coordinates of the field points and corresponding elev-
ations of the GDEM showed a mean difference and standard
deviation of –33m and 23m, which we take as the offset
and uncertainty, respectively. Information regarding the
glacier terrain classes (vegetation, water, PGD, SGD and
valley rock) present at these measurement points was
recorded and later used to assess the positional accuracy
of the glacier terrain classes mapped using hierarchical
knowledge-based classification (HKBC).

Implementation of HKBC
Mapping of various glacier terrain classes (snow-ice,
vegetation, water, IMD, SGD, PGD and valley rock) using
HKBC involves several steps, namely data preprocessing,
derivation of the knowledge base and hierarchical classifi-
cation of glacier terrain classes, which are described below.

Preprocessing of data
Preprocessing involved the conversion of visible near-
infrared (VNIR) and shortwave infrared (SWIR) data to
reflectance, and thermal data to brightness temperature.
Optical data were first converted to radiance, then radio-
metric (atmospheric and topographic) corrections were
applied to retrieve reflectance values. Details of these
procedures are provided by Shukla and others (2010a). It is
pertinent to mention that coefficients of determination
obtained by regression between corrected reflectance and
terrain illumination were found to be near zero (r2 =�0.005),
suggesting minimal effect of topography. Atmospherically
corrected radiances of thermal infrared (TIR) bands were
converted to brightness temperatures (K) using Planck’s
radiation equation (Yin and others, 2013). Finally, ASTER
SWIR, thermal bands and GDEM were resampled to 15m by

nearest-neighbour interpolation in order to match the spatial
resolution of the visible bands for band ratio computations.

Derivation of the knowledge base
The approach proposed here requires several input layers:
NIR/SWIR ratio and spectral indices (normalized-difference
glacier index (NDGI), normalized-difference water index
(NDWI), normalized-difference debris index (NDDI))
(Table 1), image transformations (intensity hue saturation
(IHS) image), topographic attributes (slope) and the thermal
glacier mask (TGM). The various processing steps involved
in generating these input layers are discussed next.

The NIR/SWIR ratio image (Fig. 2a) and NDGI (Keshri and
others, 2009) were obtained from multispectral ASTER data
for mapping of snow-ice and IMD. The normalized-differ-
ence snow index (NDSI) was also tested, but not used here as
it misclassified water bodies as snow-ice, probably because
of their similar bulk optical properties in the VNIR (Dozier,
1989). The NDWI (Fig. 2b) was derived from ASTER1 and
ASTER3 bands and facilitated the delineation of water
(McFeeters, 1996). Many previous studies have applied
band ratio algorithms for mapping of snow-ice, IMD and
water, with satisfactory results (Paul and others, 2004; Bolch
and Kamp, 2006; Keshri and others, 2009; Racoviteanu and
Williams, 2012).

Nevertheless, the main challenge in the current study was
to differentiate and map PGD and SGD. To achieve their
differentiation, two new input layers (TGM and NDDI) were
generated which depend upon the optical and thermal
characteristics of these classes (Fig. 3a and b). Past remote-
sensing studies have revealed that there exists considerable
temperature difference between SGD and PGD cover classes
(Taschner and Ranzi, 2002; Ranzi and others, 2004; Shukla
and others, 2010a), probably due to glacial ice present
beneath the SGD. This has been used by some workers as a
source of additional information for segregation of PGD and
SGD (Shukla and others, 2010a; Casey and others, 2012).
Using this preliminary idea, an in-depth investigation of
surface temperatures was carried out and it was observed
that the surface temperature of glacier cover classes (snow-
ice, IMD and SGD) does not exceed 283K. Therefore, this
criterion has been applied here for generation of a TGM,
separating the classes with temperature below 283K as
glacier cover classes (snow-ice, IMD and SGD), from the
classes with temperature above 283K as non-glacier cover
classes (PGD, vegetation, water and valley rock) (Fig. 2c).
The TGM so obtained is a binary map (TGM=0 for non-
glacier area and TGM=1 for glacier area; Fig. 2c). The
temperatures of the non-glacier cover classes in the
shadowed regions were found to exceed those of glacier

Table 1. Description of the spectral indices discussed in this study. Formulation subscripts indicate ASTER band numbers

Spectral index Source Formulation Utility

Normalized-difference
snow index (NDSI)

Dozier (1989) NDSI ¼
Greenðast b1Þ � SWIRðast b5Þ

Greenðast b1Þ þ SWIRðast b5Þ
Mapping and differentiating between snow-ice
covered areas and non-snow-and-ice areas

Normalized-difference
debris index (NDDI)

This study NDDI ¼
SWIRðast b6Þ � � TIRðast b14Þ

SWIRðast b6Þ þ TIRðast b14Þ
Mapping and differentiating between supra-

glacial debris and that of the terrain
Normalized-difference
water index (NDWI)

McFeeters (1996) NDWI ¼
Greenðast b1Þ � � NIRðast b3Þ

Greenðast b1Þ þNIRðast b3Þ
Mapping surface water

Normalized-difference
glacier index (NDGI)

Keshri and others (2009) NDGI ¼
Greenðast b1Þ � � Redðast b2Þ

Greenðast b1Þ þ Redðast b2Þ
Mapping and differentiating between snow-ice

and ice-mixed debris class
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cover classes. This is in agreement with the results obtained
by Shukla and others (2010b) and Karimi and others (2012).

Observing the spectral curves of SGD vis-à-vis other
classes, it was noticed that SGD showed higher response in
the SWIR region (ASTER band 6), similar to PGD and valley
rock (Fig. 3a and b), because the three are compositionally
the same. However, the response of supraglacial debris
deviates considerably from the other two classes (PGD and
valley rock) in the TIR region (ASTER band 14). This is
because SGD has lower temperature than PGD and valley
rock (Taschner and Ranzi, 2002; Ranzi and others, 2004)

due to the underlying glacier ice. The contrasting spectral
response of these classes was used to formulate a new index,
the NDDI. The SWIR and TIR bands were normalized before
creation of NDDI in order to resolve the dimensional
conflict. This index highlights the supraglacial debris in the
region (Fig. 2d). The formulation of the index is given in
Table 1. Thus, both TGM and NDDI were employed to
separate SGD from PGD and valley rock.

ASTER bands 1–3 were transformed to intensity–hue–
saturation (IHS) space (Fig. 2e). The hue component high-
lighted the vegetated area (purple) and thus facilitated the

Fig. 2. The main input layers used in the hierarchical knowledge-based classifier: (a) NIR/SWIR (values 0–0.9); (b) normalized difference
water index (values 0.27–1); (c); thermal glacier mask (TGM) (NGA: non-glacier area, GA: glacier area); (d) normalized-difference debris
index (NDDI) (values 0.06–0.68); (e) hue image (values 0.074–1); and (f) slope map (values 0–89).

Fig. 3. (a) Spectral response curves derived from ASTER image; (b) zoomed-in view of spectral response curve from B6 to B14. Coloured
lines represent the spectral behaviour of various classes. The x-axis represents different ASTER spectral bands (B1–B14). The y-axis denotes
percentage spectral radiance. PGD: periglacial debris; SGD: supraglacial debris; IMD: ice-mixed debris.
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extraction of vegetation (Fig. 2e). Paul and others (2004) and
Racoviteanu and Williams (2012) have previously used the
IHS transformation to map vegetation and bare rock. A slope
map (Fig. 2f) derived from the ASTER GDEM facilitated the
separation of PGD and valley rock. DEM-derived attributes
(slope, aspect and curvature) have been used for glacier
terrain mapping in previous studies (Paul and others, 2004;
Bolch and others, 2010; Racoviteanu and Williams, 2012).

Hierarchical classification of glacier terrain classes
Under this heading, we describe the individual steps
followed in HKBC for mapping different glacier terrain
classes. The processing workflow is schematically shown in
Figure 4.
(a) Shadow and water
Before mapping any glacier terrain class, the shadowed

regions were automatically delineated using ASTER band 3,
and a threshold value of 0.043 (band 3 < 0.043 = shadow)
was applied (Fig. 4). This helped to reduce misclassifications
among glacier terrain classes. Racoviteanu and Williams
(2012) adopted a similar approach to remove shadowed
regions. In the same step, water was differentiated by
NDWI, applying a threshold of 0.35 (NDWI < 0.35 = water).
The shadowed areas are shown in black, and water as blue,
in Figure 5a.
(b) Snow-ice and IMD
Both snow-ice and IMD were mapped using the NIR/

SWIR ratio image and NDGI. A threshold value of 0.45
(NIR/SWIR > 0.45 = snow-ice) was found to be suitable for
snow-ice, and for IMD a threshold of 0.4 (NDGI < 0.4 =
IMD) was found to be satisfactory (Figs 4 and 5b). Snow was
more prevalent than ice, but the classification does not
distinguish between them.
(c) Vegetation
The hue and NIR/SWIR images were found to be useful

for mapping vegetation with a threshold of 0.48 and 0.45,
respectively (Hue > 0.48 and NIR/SWIR > 0.45 = vegetation)
(Figs 4 and 5c). Caution was exercised in selecting this

threshold as it is known that sparse vegetation can grow on
debris-covered parts of glaciers during spring (Bolch and
others, 2007).
(d) Supraglacial debris
TGM and NDDI were used to map the SGD in the area,

by employing a threshold of 0.115 (TGM = 1 or NDDI >
0.115 = SGD) (Figs 4 and 5d). TGM was able to classify
those regions as SGD where NDDI could not map it and
vice versa.
(e) Periglacial debris and valley rock
In-depth analysis of the slope values showed that the

debris-covered regions had a slope range of 0–24°. A
maximum value of 24° (slope < 24° = PGD, else valley rock)
was selected to map PGD in agreement with previous
studies (Paul and others, 2004; Karimi and others, 2012),
which suggest that most of the debris-covered regions can
be captured at this slope threshold since debris tends to rest
on gentler slopes (Fig. 4). This step resulted in the final
glacier terrain map, showing PGD (grey) and valley rock
(tan) in addition to the other glacier terrain classes discussed
above (Fig. 6a).

Once the glacier terrain classes have been mapped, the
glacier boundary can be delineated by merging the glacier
cover (i.e. snow-ice, IMD and SGD) and non-glacier cover
(i.e. PGD, valley rock, water, shadow and vegetation)
classes (Shukla and others, 2010a).

RESULTS AND DISCUSSION
The efficiency of the proposed HKBC approach for mapping
various glacier terrain classes was tested by a two-way
accuracy assessment process. First, the accuracy of the
glacier terrain maps obtained via HKBC and MLC was
assessed against the reference image (ASTER VNIR).
Secondly, the boundary of the glacier delineated using the
glacier terrain map was evaluated against the manually
digitized boundary of the glacier (by visual interpretation of
the ASTER VNIR image).

Fig. 4. Conceptual flow chart of the HKBC scheme for glacier terrain mapping. TH: threshold; NDWI: normalized-difference water index;
NDGI: normalized-difference glacier index; IHS: intensity hue saturation; TGM: thermal glacier mask; NDDI: normalized-difference debris
index; IMD: ice-mixed debris; SGD: supraglacial debris. Final Map constitutes shadow, water, snow-ice, IMD, vegetation, SGD, periglacial
debris and valley rock.
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Accuracy of glacier terrain mapping
The final glacier terrain map obtained from HKBC was
validated against the ASTER VNIR image (15m spatial
resolution) and 42 field-based observations. The ASTER
VNIR image was considered as reference because there was

no higher-resolution image available for this date. To
determine the efficacy of HKBC, conventional-error-matrix
based measures, namely overall user’s and producer’s
accuracy (Foody, 2002), were determined (Table 2). The
overall accuracy (OA) is used to indicate the accuracy of the
whole classification (i.e. number of correctly classified pixels
divided by total number of testing pixels). OA does not take
into account the off-diagonal elements of the error matrix
which represent the misclassification errors, i.e. errors of
omission and commission. However, the kappa coefficient
does take these errors into account, and is thus considered a
better estimate of classification accuracy. Corresponding to
these errors, a new set of accuracy measures may be derived:
producer’s accuracy (PA) and user’s accuracy (UA). The PA
relates to the probability that a reference sample is correctly
mapped and measures the error of omission. The UA
indicates the probability that a sample from the classified
map actually matches what it is in the reference data and
measures the commission error. High individual accuracies
with minimal difference between them indicate accurate
differentiation of the concerned class.

A testing dataset constituting 650 pixels was taken using
stratified random sampling, and additionally 42 ground
control points (692 points in total) were taken for evaluating
the accuracy of various glacier terrain classes. Reference

Fig. 5. Six of the classes obtained through HKBC: (a) shadowed areas in black, and water in blue; (b) snow-ice in white, and gold pertaining
to ice-mixed debris; (c) vegetation in green; (d) SGD in brown. SGD: supraglacial debris; IMD: ice-mixed debris.

Table 2. User’s accuracy (UA) and producer’s accuracy (PA) of
individual glacier terrain classes derived from HKBC and maximum
likelihood classifier (MLC). The overall accuracy produced by
HKBC is 89%, and a kappa coefficient of 0.86 and MLC resulted in
an overall accuracy of 63% with a kappa coefficient of 0.60

Class name HKBC MLC

UA% PA% UA% PA%

Snow-ice 91 94 89 83
IMD 91 85 62 70
SGD 81 88 41 46
PGD 78 81 36 35
Valley rock 87 80 49 45
Vegetation 95 100 91 92
Water 88 93 69 85
Shadow 89 83 53 48
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classes for all the testing pixels were derived on the basis of
visual image interpretation of the reference image with
special consideration of their respective spectral curves
(Fig. 3a and b). The accuracy of the present classification was
reduced after inclusion of the field reference points in the
testing dataset. This may be attributed to the considerable
time gap between image acquisition (2003) and field survey
(2014) as well as to the limited accuracy of the GPS
observations. Lacking any other reliable data for validation,
these observations on relatively stable land covers were
accepted as valid. Further, the results from HKBC were also
compared with a supervised classification, performed on the
same dataset using a maximum likelihood classifier (MLC)
(Richards and Jia, 1999). MLC is known to have serious
limitations in processing data from multiple sources, as it
requires the data to follow normal distributions (Watanacha-
turaporn and others, 2008). Nonetheless, it remains the most
widely used classifier for glacier terrain mapping (Karimi and
others, 2012; Khan and others, 2015; Tiwari and others, in
press). Thus, a critical assessment of the relative utility of the
two classifiers for glacier terrain mapping is pertinent to
encourage the future use of HKBC, instead of MLC.

The classification generated from HKBC showed an
overall accuracy of 89% and kappa coefficient of 0.86,

whereas MLC yielded an overall accuracy of 63% with a
kappa coefficient of 0.60. Table 2 shows the individual class
accuracies, i.e. UA and PA, of various glacier terrain classes
obtained from the two classifiers. The accuracy with which
the glacier cover and non-glacier cover were mapped is
discussed next.

Glacier cover classes
The glacier cover classes are snow-ice, IMD and SGD. HKBC
achieved high UA and PA in the range 85–94% for mapping
of snow-ice and IMD (Table 2). However, the difference
between the two accuracies was lower for snow-ice (3%)
than for IMD (6%), which may be attributed to the spectrally
mixed nature of IMD. Although MLC yielded comparable
results to HKBC in mapping snow-ice, it misclassified parts of
snow-ice as IMD, evident through visual inspection of the
ASTER image (Fig. 1; black arrow in Fig. 6a). These
differences in the classification accuracy results arose by
misclassification of IMD into snow-ice and SGD.

Identification and mapping of SGD is critical due to its
spectral similarity with PGD and valley rock. The novel
approach used here in HKBC successfully mapped SGD
with high accuracy (UA=81%, PA=88%). The 7% differ-
ence here between UA and PA may be linked to

Fig. 6. Comparison of the glacier terrain mapping from the proposed HKBC and supervised classification (MLC). (a) Final map obtained from
HKBC scheme; (b) map obtained from MLC. The rectangles in (a) and (b) are enlarged in (c) and (d) respectively. SGD: supraglacial debris;
IMD: ice-mixed debris; PGD: periglacial debris.
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misclassification as SGD of some pixels scattered into the
TGM, owing to their lower temperatures (<283K). MLC was
poor at classifying SGD (UA=41%, PA=46%). This fact is
well established from the spatial disposition of this class in
the glacier terrain map (Fig. 6c and d) as well as the
individual accuracy values of these classes (Table 2). Lower
individual accuracies of SGD clearly show the inability of
MLC to handle the inherent spectral variability of this class.

Non-glacier cover classes
The non-glacier cover classes include vegetation, water,
shadow, PGD and valley rock. Results from HKBC for
mapping of vegetation, water and shadow showed that it
performed well (Table 2; Fig. 6c and d). Both UA and PA
exceed 83%, and a difference of not more than 6% is found
in these cases (Table 2). This connotes accurate mapping
and minimal misclassification among these classes, which is
probably a result of distinct mapping methodologies
adopted in HKBC while segregating each of these classes.
While MLC achieved comparable results for vegetation, its
mapping of water and shadowed regions was unsatisfactory
(Table 2). Most of the shadowed regions in MLC were
misclassified as valley rock and PGD (red arrows in Fig. 6b).

Separation and precise mapping of PGD was again a
crucial step as far as non-glacier cover classes were
concerned. PGD exhibited the lowest values of both
accuracies (UA=78% and PA=81%) relative to other
classes (Table 2). This is probably due to the application
of fixed thresholds for separating PGD from SGD and valley
rock. The misclassification of PGD as valley rock is also
evident from the glacier terrain maps (blue arrow in Fig. 6b)
and can be mainly accredited to the constant criterion of
slope (slope > 24° = valley rock, else PGD) applied for its
differentiation. In particular, this slope threshold may not be
appropriate for some parts within the scene. Despite this, the
importance of slope among other topographic attributes in

glacier terrain mapping has been emphasized by several
previous studies (Paul and others, 2004; Bolch and Kamp,
2006; Shukla and others, 2010a; Racoviteanu and Williams,
2012; Rastner and others, 2014). Similarly, the constant
temperature criterion (<283K) applied for separation of SGD
and PGD may not be applicable to some parts of the scene
where it resulted in mutual misclassifications. Detailed
analysis of these layers and application of variable thresh-
olds (sector-wise) needs to be further investigated. MLC
performs poorly in mapping PGD (Table 2). Figure 6c and d
focus on comparative misclassification of SGD and PGD,
which is more pronounced in MLC than HKBC. Again,
HKBC mapped valley rock comprehensively with accuracy
values of UA=87%, PA=80%, but MLC accuracies were
lower (UA=49%, PA=45%). The lower mapping accuracy
of MLC can be ascribed to the spectral similarity of PGD,
SGD and valley rock (Fig. 3a and b).

A Z-test at the 95% confidence level was performed on
classification results. In summary, HKBC has proved to be a
more consistent classifier for glacier terrain mapping,
especially with reference to spectrally similar classes
(SGD, PGD and valley rock) which usually limit the
accurate mapping of glaciers.

Glacier boundary
Here we evaluate the glacier boundary obtained from HKBC
by comparing it with those derived from MLC and manual
digitization. Comparing these boundaries, it is found that
HKBC maps the glacier boundary most accurately where it
is concealed by debris cover (Fig. 7a and b). While the
boundary delineated by visual interpretation relies mostly
on the optical properties of the debris cover (pinkish red hue
in Fig. 7a and b), that from HKBC utilizes information from
SWIR and thermal data to map the extent of debris-covered
ice. The MLC boundary shows gross errors. It may either
follow the edge of the exposed ice (Fig. 7b) or even exclude

Fig. 7. Comparison of the glacier boundary derived from the present approach with the MLC boundary and the manual interpretation.
(a) Delineation of the boundary where glacier margin is heavily debris-covered. White arrows show SGD areas misclassified as PGD by
MLC and hence excluded from glacier area. Pink arrow shows exclusion of IMD from glacier area by MLC-derived boundary. (b) Glacier
boundary mapping at the secondary snout of Kolahoi Glacier. Note that while MLC boundary follows the edge of exposed ice and manual
boundary relies on debris hues, the HKBC boundary follows the edge of ice extensions beneath debris cover. (ASTER false-color composite
with band combination R = SWIR, G = NIR and B = red band is displayed as background.)
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some of it when mixed with debris cover (pink arrow in
Fig. 7a). MLC misclassified some SGD as PGD (white arrows
in Fig. 7a), resulting in elimination of some glacier area.
However, the boundary derived from HKBC neither simply
follows the ice margins nor depends solely on the optical
spectral properties of debris cover. It maps the glacier
boundary including the hidden ice beneath the debris cover.

Sources of uncertainty, limitations and scope of
refinement
Possible sources of uncertainty in mapping glacier terrain
classes include positional, preprocessing, data quality,
interpretative and conceptual errors (Racovitaneau and
Williams, 2012; Paul and others, 2013). The positional error
of various glacier-terrain class boundaries mapped by HKBC
was quantified by estimation of error-matrix based accuracy
measures, taking the ASTER VNIR image and 42 field points
as reference. These accuracy values were within the
acceptable value of 85% suggested in the USGS classifi-
cation scheme (Foody, 2002). The availability of a higher-
resolution reference dataset would have resulted in better
retrospective appraisal of the results. The lower values of the
coefficient of determination obtained by regression of
reflectance against illumination of the terrain (cos i) prove
the reliability of the preprocessing techniques applied here.
Moreover, the error involved in the elevation data was also
quantified by using the altitude points collected in the field.
The interpretation and conceptual errors, which may
constitute prime sources of uncertainty, also appear to be
within acceptable limits (Table 2).

At this stage, it is also important to evaluate the limitations
of the approach when applied over an extended area, which
should be taken as a continuation of this study. As HKBC
involves the application of various thresholds, these may
vary when the approach is applied elsewhere. For example,
mapping PGD and valley rock in the proposed approach
relies on a slope threshold, which may differ with variation in
topography and glacier type (Bolch and Kamp, 2006; Rastner
and others, 2014). Also, the differentiation of SGD from other
classes relies on thermal data, and thresholds that depend
upon variations in the local temperature regime may
drastically change. The solution to this may be to conduct
a thorough sensitivity analysis to explore the possibility of
standardizing the thresholds. A sensitivity analysis would be
required primarily to assess the impact of changing thresh-
olds on segregation of different glacier classes. Additionally,
delineation of glacier terrain classes in shadowed regions
remains a bottleneck. The potential of thermal and slope
information revealed by the present study suggests that better
spatial resolution of these properties would definitely
enhance the precision of glacier terrain mapping. Further-
more, it would be interesting to explore the SWIR bands of
Landsat 8 for application of this approach in the absence of
these bands in newer ASTER datasets.

SUMMARY AND CONCLUSIONS
In this study, a hierarchical knowledge-based classifier was
proposed for mapping various glacier terrain classes. The
classifier discerned snow-ice, water, IMD and vegetation by
employing NIR/SWIR, NDWI, NDGI and hue, respectively.
The spectral response ratios and temperature analysis of
spectrally similar classes (PGD, SGD and valley rock)
differed noticeably. Hence, this idea was employed to

generate TGM and NDDI, which along with slope were
used for their differentiation. The HKBC results were tested
against the ASTER VNIR image and 42 field reference points.
HKBC was successful in classifying all eight glacier terrain
classes mapped here, with an overall accuracy of 89%. UA
and PA of all the classes were within acceptable limits,
except for PGD which showed relatively lower values. The
study also compared the HKBC results with those obtained
from MLC, which misclassified the spectrally similar classes
(PGD, SGD and valley rock). The significance of HKBC
results relative to those from MLC was also corroborated
through a Z-test. Similarly, the glacier boundary derived
from HKBC proved to be more appropriate when compared
with those obtained from MLC and visual interpretation, as it
was capable of delineating debris-covered ice by incorpor-
ating thermal information. Future work should be focused
on eliminating the limitations of the present study and
enhancing its robustness, particularly by sensitivity analysis
to explore the possibility of standardizing the various
thresholds applied in the approach. Transferability of the
methodology presented here to some other area, in its
absolute form, would necessitate thorough understanding of
the datasets, study area and basis behind each condition
applied for sequential retrieval of various classes. Moreover,
the thresholds applied to derive the final results may vary
with scene and study area although the rationale behind the
outlined steps would remain the same. Also, the mapping
accuracy can be greatly enhanced by improving the spatial
resolution of the thermal bands and DEMs.

From the outcomes of this study, it can be concluded that
this approach may prove effective in mapping glacier terrain
classes, especially where glaciers are accompanied by
varying amounts of debris in their ablation areas, which is
a persistent challenge.
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