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Abstract

Prior to this paper, all small simple groups were known to be efficient,
but the status of four of their covering groups was unknown. Nice,
efficient presentations are provided in this paper for all of these
groups, resolving the previously unknown cases. The authors’
presentations are better than those that were previously available,
in terms of both length and computational properties. In many cases,
these presentations have minimal possible length. The results pre-
sented here are based on major amounts of computation. Substantial
use is made of systems for computational group theory and, in partic-
ular, of computer implementations of coset enumeration. To assist in
reducing the number of relators, theorems are provided to enable the
amalgamation of power relations in certain presentations. The paper
concludes with a selection of unsolved problems about efficient
presentations for simple groups and their covers.

1. Introduction

For a finite group G, the group H is a stem extension of G if there is A � Z(H) ∩ H ′
with G ∼= H/A. A stem extension of maximal order is called a covering group of G and
the maximal A in this case is the Schur multiplier of G, denoted by M(G). If G is perfect,
then G has a unique covering group, which we denote by Ĝ. The deficiency of a finite
presentation {X | R} of G is |R| − |X|. The deficiency of G, def(G), is the minimum of
the deficiencies of all finite presentations of G. For a good overview of Schur multipliers
and related topics, see [24], where Corollary 1.2 shows that rank(M(G)) is a lower bound
for def(G). The group G is said to be efficient when this lower bound is achieved.

Deciding whether a given group is efficient may be difficult; indeed, the problem is
unsolvable in general [1]. Previous work has used a variety of techniques to try to find
efficient presentations. In particular, considerable effort has been put into showing that
simple groups and their covering groups are efficient. We give the names of simple groups
in Atlas format [10]. A survey of results for simple groups of order up to one million has
been given by Campbell, Robertson and Williams [8]. Subsequent to this, L3(5) has been
shown to be efficient by Campbell, Havas, Hulpke and Robertson [7], and M̂22, the covering
group of the Mathieu group M22, has been shown to be efficient by Havas and Ramsay [18].

No comprehensive, systematic approach to finding such efficient presentations has pre-
viously been taken. One basic method has been to start with a presentation on a minimal
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Nice efficient presentations

generating pair for these groups (see [5] for the definition), and then to try combining rela-
tors. Intuition has suggested that presentations on a pair of generators will be more likely to
lead to presentations that could be reduced to efficient ones than those on larger generating
sets. When this approach has failed, other ad hoc methods have been used.

We report on systematic attempts to look for efficient presentations of small simple
groups and their covering groups. By ‘small’, we mean that the underlying simple group
has order at most 105. One systematic approach examines presentations on all distinct
generating pairs for the groups in a search for short efficient presentations and for efficient
presentations that lead to easy coset enumerations. A second approach involves looking at
short presentations of perfect groups. A third approach generates special kinds of relators.

In the process of finding ‘nice’ presentations, we resolve all previously unresolved prob-
lems about the efficiency of small simple groups and their covers: we show that L̂3(4),
Â8, Ŝ4(3) and M̂12 are efficient by giving efficient presentations for them. To facilitate the
construction of efficient presentations, we give theorems that show how to combine certain
kinds of power relations in presentations for simple groups and their stem extensions so
that we obtain presentations for covering groups.

There is an undefined term in the title: ‘nice’. What makes an efficient presentation
a nice one? One view is that short presentations are nicer than longer ones. Also, since
presentations may be used as input into group-theoretic programs, we want them to behave
well in that role. An important computer procedure for finitely presented groups is coset
enumeration, and we assess the presentations in terms of their behaviour as targets of coset
enumeration. Further, in view of our theorems for combining power relations, presentations
that include relators showing the order of generators are nice. We list instances of nice
efficient presentations found by our methods.

Since the groups L2(p) for primes p � 5 have been covered by Sunday [23], and L̂2(p)

by Campbell and Robertson [3], we consider the other small simple groups here. This is
not meant to imply that the general presentations given in those papers provide the shortest
presentations for the individual linear groups and their covering groups, but merely explains
why we omit them from this paper.

2. Methodology

The availability of systems for computational group theory (for example, GAP [14],
Magma [2] and Magnus [21]) makes it quite easy to experiment with groups. Havas,
Newman and O’Brien [19] have developed a Magma program that enables us to find
all distinct generating sets for moderately sized permutation groups. (The program uses
representatives from appropriately merged orbits of the action of the automorphism group
of each permutation group studied.) Our first method is to use this program to find such
distinct generating pairs for groups under consideration, and then to use the built-in
algorithm of Magma to find a presentation of the group on each of these generating sets.

Presentations found in this way tend to have a reasonably low number of relators, but are
rarely efficient, even for small groups. However, often simply checking all efficient-sized
subsets of the relators reveals efficient presentations. These checks are done by first quickly
checking that a subset presents a perfect group (otherwise, it does not present a group that
we are seeking). Note that here we might be looking for either the underlying simple group,
or some stem extension. If this test is passed, we attempt to check that the presentation is
correct by coset enumeration. We use the ACE enumerator [17], either as available in GAP
or Magma, or as a stand-alone program for some more difficult cases.
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Most of our groups succumb to this straightforward search. For those that do not, we
attempt to amalgamate relations, again preserving the property that the amalgamated pre-
sentation is that of a perfect group. Here we start with small, but not efficient, sets of relators.
In particular, we give in Section 4 one theorem that shows how to combine certain kinds of
power relations so that we obtain presentations for covering groups.

Our second source of nice presentations for small simple groups and their covers is
provided by censuses of short presentations of perfect groups, extending work by Havas and
Ramsay [18]. The extension includes: two-generator, two-relator presentations with length
up to 24; two-generator, three-relator presentations with length up to 26; three-generator,
three-relator presentations with length up to 20; and one-relator quotients of Cl ∗ Cm (the
free product of an l-cycle and an m-cycle) for coprime l and m. (By ‘a one-relator quotient
of a particular group’, we mean a presentation obtained by adding one extra relator to a
presentation for the specified group.)

The third method extends the idea of enumerating one-relator quotients of Cl ∗ Cm to
building appropriate one-relator quotients that present a simple group – or a stem exten-
sion – by computing and testing relators that hold. This is an easy modification of the
process described by Campbell, Havas, Hulpke and Robertson [7] using the GAP program
PGRelFind (see [13, 15]).

When we find a suitable one-relator quotient of Cl ∗Cm, Theorem 4.1 enables us to build
efficient presentations for the cover of the underlying simple group, and for all quotients of
that cover.

One problem that we face in producing our table of new presentations is that once
we are able to find an efficient presentation for a group, then there are arbitrarily many.
In Table 2, we give an instance of a presentation with the shortest-found length (which
is often the shortest possible length on two generators). It is chosen such that, within
the presentations for the group of that length that we have investigated, it has best coset-
enumeration performance. We measure coset-enumeration performance by the total number
of cosets used in a successful enumeration of the trivial subgroup using the Hard strategy
of ACE, with the group generators given in alphabetical order.

We take the presentation as produced by our process and generally do not make efforts
like those described in [16] to improve it. Thus we give presentations produced by Magma
without modification, including various relators in what may seem less natural forms (in
the sense that inversion or cyclic rotation may produce more usual forms). In contrast,
presentations from censuses of short presentations arise with relators in canonic form, as
described in [18]. Generally speaking, there are often longer presentations that enumerate
better. We comment on each of the groups in Section 5.

As far as the reliability of our results is concerned, we claim that all the presentations
given in this paper correctly define the groups. Each presentation that appears has been
verified by both GAP and Magma programs to present the specified group.

3. Results

In this section we give nice, efficient presentations for simple groups of order less than
105 and for their covering groups, excluding L2(p) for p prime. For convenience, we adopt
the convention of using upper-case letters to denote inverses in presentations so that, for
example, A = a−1. We denote the commutator ABab by [a, b]. We give presentations that
list sequences of relators and/or relations. For coset-enumeration purposes, the generators
are always given in alphabetical order.
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Table 1: Previous shortest efficient presentations

Name Relators and/or relations Length Cosets Ref.

A6 a2 = (ab)5, b4, (ab2)5 29 2609 [5]

Â6 ab3(ba)−4, (ab2ab−2)2ab2 27 16278 [22]

L2(8) xyXyxY, x4(y2xy)2y 19 855 [4]

A7 a3 = (ab2)4, b5, (b2Aba)2 28 4144 [4]

Â7 a3 = (ab2)4, b5 = (b2Aba)2 24 111022 [4]

L2(16) xyXyxY, xyx4yxy3x3y3 23 7852 [4]

L3(3) a2B3, BA(ba)5(BA)7(bA)3(Ba)2ba(Ba)2(ba)2 51 148825 [5]

U3(3) B2ABa3BA, b2AB2Ab2aBa 20 26722 [19]

L2(25) a2, b3, (ab)2(AB)2(ab)2(AB)4(ab)5(AB)4 43 8828 [4]

L̂2(25) xyXyxY, x2y2x2y4x5y4 25 22397 [4]

M11 aba4b3, babABaBabA 19 13822 [20]

L2(27) a2, b3, (ab)(AB)2(ab)3(AB)2(ab)(AB)8 39 11269 [4]

L̂2(27) xyXyxY, x(yx5y)2xy7 29 1759965 [4]

A8 a2B4, (ab)15(ab2)4,

(ab)6bab(aB)2(ab)2aB(ab)7aB 89 636449 [5]

Â8 not known to be efficient

L3(4) a2 = (ab)7, (ab2)5 = b4, (b(ab)3)7,

b(ab)3b(ba)4b2(ab)3(ba)3b2aB(ab)3(ba)3b2ab 128 288596 [5]

L̂3(4) not known to be efficient

S4(3) a2 = (ab)9, [a, b]4 = b4,

(ab)2baB(ab)3aB(ab2ab)3b(aB)3 73 13658840 [5]

Ŝ4(3) not known to be efficient

Sz(8) a2 = (ab)7, (ab2)13, [a, b]13 = b4,

ab(ab2(aB)2)2abaB(ab2)6 145 2927643 [5]

Ŝz(8) a2 = (ab)5, (ab2aB)2(aB2ab)2a = (baBa)5b2 53 227854383 [4]

L2(32) xyXyxY, (xyx)2y3x5y3 23 37177 [4]

L2(49) a2, b3, (ab)(AB)2((ab)2(AB)3(ab)2)2(AB)2 45 60069 [4]

L̂2(49) xyXyxY, xy2(x2y3x2)2y2 25 141922 [4]

U3(4) a2 = b3, a3b(aB)2(ab)2aBab(aB)4abaB(BA)8b 50 602000 [5]

M12 a2 = b3, (ab)10 = [a, b]6, ((ab)4aBabaB)3 87 243246 [5]

M̂12 not known to be efficient
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We put our results in context by comparing them with the previous shortest efficient
presentations explicitly published, and we provide citations for those earlier presentations
(see Table 1). Sometimes those presentations imply the existence of shorter presentations.
For example, where presentations include relators like a2 and b3, or like a2b3, it is possible
to follow the ideas explained in [4] to give shorter presentations on x = ab and y = aB or
y = AB.

The tables give the name of the simple group, relators and/or relations for the group,
the total length of the relators in the corresponding presentation (freely and cyclically
reducing relators as done by ACE), and the total number of cosets used in a successful coset
enumeration for this presentation over the trivial subgroup using the Hard strategy of the
ACE enumerator. In Table 1 we provide a citation, and in Table 2 we provide a reference to
the subsection in which we give further information on the group.

Table 2: Our short presentations

Name Relators Length Cosets Order Ref.

A6 a4, b5, abaBabaBAB 19 1546 360 5.1
Â6 a3bA2b, ab2AbAB3aB 18 2210 2160 5.1
L2(8) a2bABAb, abAbab2AB2aB 19 592 504 5.2
A7 a5, ababaB3, (a2bAB)2 23 3253 2520 5.3
Â7 a4bAbAb, a2bab2A2B2 19 43805 15120 5.3
L2(16) a3b2A2b2, abAB2AbaB 18 21825 4080 5.4
L3(3) a3bAb2AB, a2b2aB2AbAb2 21 158892 5616 5.5
U3(3) a3bAbAb, a2b2AB3Ab2 19 198076 6048 5.6
L2(25) a5, a2b2a2b2, ab3Ab3aB 23 14917 7800 5.7
L̂2(25) a2bABABAb, a3Bab3aB 19 16779 15600 5.7
M11 bA3bAb3, baBABAbaBa 19 10428 7920 5.8
L2(27) (ab)2, a7, a2bAbaBAb4 23 10509 9828 5.9
L̂2(27) a6bAb, a3BAb4aB2 21 47253 19656 5.9
A8 (a2b)2, a7, abAB3AbAB2 24 427065 20160 5.10
Â8 a5bA2b, a2b2ABab2ABaB 22 1252222 40320 5.10
L3(4) a5, b5, (ab)3, a2B2ABaB2abAB 29 30500 20160 5.11
L̂3(4) a4bAbAb, a2bab2aB2ABA2b 23 30181644 967680 5.11
S4(3) a5, ab2ab2, a2BaBabaB2 21 26561 25920 5.12
Ŝ4(3) a5b4, abAbAbAB2aB2 21 166020 51840 5.12
Sz(8) B5, A7, AB2a3ba2B, BaBABA2b2a2ba 35 29420 29120 5.13
Ŝz(8) a3bA2b, ab2ab2ab6aB 22 346104 116480 5.13
L2(32) a2bABAb, abAbAbAbab5 21 35631 32736 5.14
L2(49) a4, b5, a2Ba2BababaB 21 223362 58800 5.15
L̂2(49) BAB2Ab2AB, A2Ba3BA2b 19 214508 117600 5.15
U3(4) a4bAbAb, a3BAb2ABA2B2 22 1557671 62400 5.16
M12 (Ba)3, a5b6, ab2aBa2ba2b2 29 119334 95040 5.17
M̂12 xyxYXY, x2Y 3x2YxYx2Y 2xYxY 5x5 33 11717995 190080 5.17
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In earlier work on presentations for simple groups, D- oković [12] pointed out the dif-
ficulty of finding shortest presentations in general. His length measure is somewhat more
complicated than ours, but his sentiments still apply.

We mention that the problem of finding a shortest presentation for a given finite
group G is quite open. We do not know the answer even in the case when G is
a cyclic group of prime order.

Our census-based approach enables us to provide shortest presentations on fixed numbers
of generators for many of the groups under consideration here. The proof is obtained by
adequately identifying all shorter possible presentations, extending the ideas in [18]. Indeed,
all the presentations in Table 2 with length less than 20 are the shortest possible on two
generators.

4. An amalgamation theorem

Group presentations frequently include relators that specify the orders of the group
generators. When we have suitable relators like this in a presentation for a simple group
(or a stem extension), we can effectively amalgamate them and obtain a presentation for a
stem extension of the original simple group. We start with an amalgamation theorem that
handles the situation where we have three relators: two giving generator orders, plus one
other relator.

Theorem 4.1. Let G be a finite simple group. Suppose that G, or some stem extension of G,
can be presented as

P = {
a, b | ap = bq = w(a, b) = 1

}
.

Then the covering group of G, all stem extensions of G, and G itself, are efficient.

Proof. If we show that the covering group of G is efficient, then the efficiency of G, and
all stem extensions of G, follows by adding relations to kill factors in M(G).

Let ea and eb be the exponent sums of a and b in w(a, b) respectively. Note that (ea, p) =
(eb, q) = 1 since, by assumption, the group presented by P is perfect.

Assume first that peb + qea = 1. Then consider the group H with presentation
{
a, b | apb−q = w(a, b) = 1

}
.

Now H is a stem extension of 〈P 〉 and, by assumption, 〈P 〉 is a stem extension of the simple
group G. Let A = H , B = H , and take C to be the second centre of H . Since [[B, C], A] =
1 and [[C, A], B] = 1, then, by the Three Subgroup Lemma, [[A, B], C] = 1. But H is
perfect, so C = Z(H). Now H is perfect, H/Z(H) ∼= G, and H has trivial multiplier
(since it has a balanced presentation), so it follows that H is the covering group of G.

Now consider the case where peb + qea �= 1. Certainly, (p, q) = 1 since 〈P 〉 is perfect,
so there exist m, n with pm + qn = 1. Choose s and t so that sea ≡ 1 mod p and
teb ≡ 1 mod q, and consider the transformation a −→ asn, b −→ btm. Then w −→ w̃

with a-exponent sum congruent to n mod p and b-exponent sum congruent to m mod q

so, inserting powers of ap and bq into w̃ if necessary, we can transform P to P̃ where

P̃ = {
a, b | ap = bq = w̃(a, b) = 1

}
.

Now 〈P 〉 = 〈P̃ 〉, but w̃ has the property that it satisfies ea = n and eb = m, and so in P̃

we have peb + qea = 1, as required.
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Theorem 4.1 has already been applied by Havas, Newman and O’Brien [19] to obtain
special kinds of presentations for U3(3).

Corollary 4.2. Let G be a finite simple group. Suppose that G, or some stem extension
of G, can be presented as

P = {
a, b | u(a, b)p = v(a, b)q = w(a, b) = 1

}
.

Suppose also that u(a, b) and v(a, b) generate the free group on a and b. Then the covering
group of G, all stem extensions of G, and G itself, are efficient.

Proof. Let r = u(a, b) and s = v(a, b). Then G can be presented as
{
a, b, r, s | u(a, b)p = v(a, b)q = w(a, b) = 1, r = u(a, b), s = v(a, b)

}
.

However, since u(a, b) and v(a, b) generate the free group on a and b, we can write
a = U(r, s) and b = V (r, s). Add these relations to the presentation for G, and then use
them to eliminate a and b. The relations r = u(a, b) and s = v(a, b) vanish when we
substitute a = U(r, s) and b = V (r, s), since u(a, b) and v(a, b) are free generators.

We thus have a presentation for G of the form

P = {
r, s | rp = sq = W(r, s) = 1

}
,

and we can apply Theorem 4.1.

A natural extension of Theorem 4.1 gives methods for amalgamating relations, given a
presentation for (a stem extension of) a simple group with more relations, such as

P = {
a, b | ap = bq = w1(a, b) = . . . = wn(a, b) = 1

}
.

We point out that our primary focus is on presentations that are efficient in terms of
deficiency. This does not always coincide with best presentations for other purposes. In
particular, for deficiency-zero groups, the deficiency-one presentation

{
a, b | ap = bq = w(a, b) = 1

}

is likely to be much more useful for practical computation than the efficient presentation
produced by Theorem 4.1,

{
a, b | apb−q = w̃(a, b) = 1

}
.

For example, these deficiency-one presentations are better for coset enumeration than the
corresponding efficient presentations. Likewise, a presentation explicitly involving an in-
volutory generator (a, say, with the presentation including the relator a2) is generally better
for coset enumeration than presentations without such a relator, because coset-enumeration
programs usually save space and time by utilizing the fact that a = a−1. In our commentary
on each group in the next section, we provide some information on such presentations.

5. Commentary

Our methodology produces a very large number of efficient presentations for most of
the groups under consideration. Then simple modifications to these lead to many more
presentations that are efficient. In our tables we have given the shortest efficient presentation
that arose as one of our generated presentations, and that enumerates with the least total
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cosets over the trivial subgroup. We emphasise that we use this purely as a measure of coset-
enumeration performance; we do not suggest that enumerations over the trivial subgroup
are the best way to compute with the presentation to gain other information about the group.
We also give further information for each simple group.

5.1. A6

For A6, we investigated thirty-three distinct generating pairs, and found eight efficient
presentations amongst presentations on these generating sets. Four of these were one-relator
quotients of C4 ∗ C5 with length 19, like the tabulated presentation which arises in both a
census of one-relator quotients of C4 ∗ C5 and in a census of short two-generator, three-
relator presentations. Two other presentations on the distinct generating pairs were one-
relator quotients of C2 ∗ C5. A shortest instance of one of these,

{
a, b | (ab)2, a5, ab2AbAb2aB2}

(one longer than the tabulated presentation), uses a total of 501 cosets, which is much better
than our tabulated presentation.

We can use Theorem 4.1 to construct an efficient presentation for Â6 from any of the
one-relator quotients of Cl ∗ Cm. We also find forty-nine efficient presentations from the
978 distinct generating pairs of the group. We tabulate a presentation from a census of short
two-relator presentations for perfect groups. It is one of two length-18 canonic presentations
for the group, and can be obtained by amalgamating the power relations in a presentation
for A6 which is a one-relator quotient of C2 ∗ C5. It follows from the analysis of shorter
presentations in [18] that this is a shortest possible two-relator presentation for Â6.

The best efficient canonic presentation for A6 with respect to total cosets that we have
found is {

a, b | a4, ab2aB3, abaBABaBAB
}
,

which uses a total of 392 cosets. Note that the deficiency-two presentation
{
a, b | (ab)2, a5, b5, (aB)4}

(already investigated as (5, 5 | 2, 4) by Coxeter [11]) allows enumeration of the cosets
of the trivial subgroup using a total of 360 cosets – that is, without the definition of any
redundant cosets.

5.2. L2(8)

For L2(8), we investigated eighty-five distinct generating pairs, but did not find any
efficient presentations directly. However, among the three-relator subsets of presentations
we found fifteen one-relator quotients of C2 ∗ C9, thirteen of C2 ∗ C7 and one of C2 ∗ C3,
which present the group. Presentations for L2(8) also arise as one-relator quotients of
C3 ∗ C7. Theorem 4.1 enables us to construct an efficient presentation for L2(8) from any
of these. We tabulate a presentation from a census of short two-relator presentations for
perfect groups. The shortest such presentations that we have found have length 19, and we
found sixteen different canonic ones. The group arises implicitly as a one-relator quotient
of C2 ∗ C3 via one of the length-19 canonic presentations:

{
x, y | xyxYXY, x4Y 2xY 3xY 2},
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which uses 849 cosets and is the canonic variant of the Table 1 presentation. Setting x = ab

and y = aB in the second relator of this presentation to produce a relator w3 gives{
a, b | a2, b3, w3

}

as an explicit presentation for L2(8) as a one-relator quotient of C2 ∗ C3 where w3 has
length 26, which improves on the shortest extra relator with length 30 found for one specific
generating set in [15]. If we count only relator length, then shorter efficient presentations
exist: for example, on three generators and with length 16,{

a, b, c | a2bAc, abcAB, b2CBCC
}

which requires 552 cosets.
Note that various deficiency-one presentations, including{

a, b | (ab)2, a7, a3bAb3Ab
}
,{

a, b | a2, b7, abaBab3ab3aB
}

and{
a, b | a2, b9, abab4abaBaB

}
,

allow enumeration of the cosets of the trivial group using a total of 504 cosets – that is,
without the definition of any redundant cosets.

5.3. A7

For A7, we investigated 505 distinct generating pairs and found 330 three-relator pre-
sentations for preimages of A7 that define finite perfect groups. Amongst these were many
efficient presentations for A7 itself, and also one-relator quotients of C2 ∗ C7, C3 ∗ C4,
C3 ∗ C5 and C3 ∗ C7, which presented A7 or a stem extension. We can use Theorem 4.1 to
construct an efficient presentation for Â7 from any of these one-relator quotients of Cl ∗Cm.

The tabulated presentation for A7 was obtained from a census of short two-generator,
three-relator presentations. For Â7, we tabulate a presentation from a census of short two-
relator presentations for perfect groups, which is the unique shortest canonic two-relator
presentation for this group. A 2-longer canonic presentation enumerates better:{

a, b | a3bAbAb, a2BabAB2Ab2AB
}

uses 21125 cosets.

5.4. L2(16)

For L2(16), we investigated 524 distinct generating pairs and, in contrast to the situation
with L2(8), we found fifteen efficient presentations directly. We also found one-relator
quotients of C2 ∗ C3, C2 ∗ C5 and C2 ∗ C15 that present the group. Theorem 4.1 enables us
to construct an efficient presentation for L2(16) from any of these. We tabulate a length-18
presentation from a census of short two-relator presentations for perfect groups, which is
the unique shortest canonic two-relator presentation for this group. A canonic length-19
presentation, {

a, b | a2bABAb, ab2Ab2aB5},
enumerates much better, using 4575 cosets. The group arises implicitly as a one-relator
quotient of C2 ∗ C3 via the length-23 presentation:{

x, y | xyxYXY, x3YxY 4xYx3Y 3},
which uses 7515 cosets, and is the canonic variant of the Table 1 presentation.
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5.5. L3(3)

For L3(3), we investigated 1275 distinct generating pairs, and found twelve efficient
presentations directly. We also found one-relator quotients of C2 ∗C3, C3 ∗C4 and C3 ∗C8
that present the group. Theorem 4.1 enables us to construct an efficient presentation for
L3(3) from any of these. We tabulate a length-21 presentation from a census of short two-
relator presentations for perfect groups. Three-generator efficient presentations with length
20 exist; {

a, b, c | a2bAb, abcbCaC, acAcb3C
}

is the best canonic one found for total cosets, 92576. The best canonic two-generator pre-
sentation for coset enumeration that we found has length 24,

{
a, b | a4bAb2AB2, a4B2ab5},

and uses 27778 cosets.

5.6. U3(3)

This group has been considered in detail by Havas, Newman and O’Brien [19] in the
context of efficient semigroup presentations. For U3(3), we investigated 1442 distinct gener-
ating pairs, and found two efficient presentations amongst presentations on these generating
sets. We also found one-relator quotients of C3 ∗ C4, C3 ∗ C7 and C3 ∗ C8 that present the
group. Theorem 4.1 enables us to construct an efficient presentation for U3(3) from any of
these. We tabulate a presentation from a census of short two-relator presentations for perfect
groups, the unique canonic presentation with length 19. This may be obtained by amalga-
mating the power relations in a one-relator quotient of C3 ∗C4. A canonic presentation with
length 20, {

a, b | a2bA2b2AB, a3b2AB2A2B
}
,

enumerates better, using 15583 cosets. A three-generator, three-relator presentation with
length 19, {

a, b, c | a2bAb, abcBcAC, aB2CbAC
}
,

uses fewer cosets: 10673. A canonic presentation with length 21,
{
a, b | a2ba2B2, a3bABABAba3B

}
,

is better again, at 8878 cosets.

5.7. L2(25)

As the number of generating sets goes up, it becomes very time-consuming to look at all
three-relator subsets for each generating set. L2(25) has 1016 distinct generating pairs. We
investigated only a sample of three-relator subsets, and found many efficient presentations
for L2(25), including one-relator quotients of C2 ∗ C3, C2 ∗ C5 and C2 ∗ C13. We can
use Theorem 4.1 to construct an efficient presentation for L̂2(25) from any of these one-
relator quotients of Cl ∗ Cm. For L2(25), we tabulate a presentation from a census of short
two-generator, three-relator presentations. For its cover, we tabulate a presentation from
a census of short two-relator presentations for perfect groups; this is the unique shortest
canonic two-relator presentation for this group.
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5.8. M11

For M11, we investigated 3297 distinct generating pairs, and found many efficient pre-
sentations directly, including two with what turns out to be minimal length. The group also
arises readily as one-relator quotients of C2 ∗ C5, C4 ∗ C5, C3 ∗ C8, C5 ∗ C6 and C5 ∗ C8.

The census of short two-relator presentations for perfect groups reveals exactly one
canonic two-relator presentation for the group with length 19, and nothing shorter. This
presentation must be shortest, by an extension of the argument in [18]; Kenne [20] had
already found a form of it.

However, we tabulate one that enumerates better. In this case, since there is only one
canonic presentation of this length, we find the best coset enumeration for a shortest presen-
tation using the method of [17] applied to all different two-generator, length-19 presentations
for the group.

5.9. L2(27)

L2(27) has 864 distinct generating pairs. We investigated only a sample of three-relator
subsets, and found many efficient presentations. We also found one-relator quotients of
C2 ∗C3, C2 ∗C7 and C3 ∗C7. We can use Theorem 4.1 to construct an efficient presentation
for L̂2(27) from any of these one-relator quotients of Cl ∗ Cm. For L2(27), we tabulate a
presentation from a census of short two-generator, three-relator presentations. For its cover,
we tabulate a presentation from a census of short two-relator presentations for perfect groups.
Notice the enormous improvement in coset-enumeration performance of our presentation
for L̂2(27), compared with the Table 1 presentation.

5.10. A8

For A8, we investigated 3868 distinct generating pairs. We found a number of effi-
cient presentations for A8, including some, like the one tabulated (from a census of short
two-generator, three-relator presentations), that are one-relator quotients of C2 ∗ C7. This
implicitly solves the first of the previously unsolved problems by providing a base for
constructing an efficient presentation for Â8 via Theorem 4.1 and Corollary 4.2. A longer
presentation for A8 (from the distinct generating pairs),

{
a, b | B7, babA3Ba2b2, B2AbA2b2a2B

}
,

uses only 22363 cosets. Presentations for A8 also arise as one-relator quotients of C4 ∗ C7.
For Â8, we tabulate a presentation from a census of short two-relator presentations for
perfect groups. This presentation can also be obtained by simply amalgamating the power
relators in a presentation for A8 as a one-relator quotient of C2 ∗ C7, namely

{
a, b | (A2b)2, a7, a2b2ABab2ABaB

}
.

The best coset enumeration that we have found for a canonic, two-generator, efficient
presentation for Â8 uses 63560 cosets:

{
a, b | a2bAbaBA2B2, a2bAbAbabAbab

}
.

If we count only relator length, then shorter efficient presentations exist: for example, on
three generators and with length 19,

{
a, b, c | a2bAb, bcbcBC, abcAbcAc

}
,

which requires 52934 cosets.
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5.11. L3(4)

For L3(4), we investigated 779 distinct generating pairs. This is a moderate enough
number. However, a problem with this group is that it is the smallest simple group with
multiplier of rank 2. This implies that efficient presentations have four relations, and there
are very many four-relator subsets of the presentations on the distinct generating pairs. We
investigated all of them, and found many efficient presentations. In the same way that Cl∗Cm

is a good basis for three-relator presentations, the group (l, m, n) = {a, b | al, bm, (ab)n} is
a good basis for four-relator presentations. Included in the efficient presentations of L3(4)

that we found were a substantial number of variants of one-relator quotients of (5, 5, 3), but
no one-relator quotients of any other (l, m, n). Having observed this, we listed one-relator
quotients of (5, 5, 3), and found four canonic extra relators with length 13 that yield L3(4),
and we list the one with best coset-enumeration behaviour.

Unfortunately, none of the efficient presentations for L3(4) that were found this way
initially enabled us to construct an efficient presentation for L̂3(4) by amalgamating relators.
So we looked at three-relator preimages of L3(4), hoping to find a stem extension that we
could use as a starting-point. A presentation satisfying Theorem 4.1 would have been ideal.
We found no such presentation; however, we did find eleven variants of

{
a, b | a5, (ABAb)3, w3

}

that present a stem extension, 12.L3(4). When we simply amalgamate the power relators,
we obtain as a first efficient presentation for L̂3(4):

{
a, b | a5(ABAb)3, a2B2A2baBAb

}
.

This presentation is difficult to use for coset enumeration, using 145807531 cosets. This
practical construction is an instance of the following easy theorem, which can in fact be
viewed as a precursor to Theorem 4.1 and Corollary 4.2.

Theorem 5.1. Let G be a finite simple group. Suppose that G, or some stem extension of G,
can be presented as

{
a, b | u(a, b)p = v(a, b)q = w(a, b) = 1

}
.

In addition, suppose that G̃, presented by
{
a, b | u(a, b)kpv(a, b)lq = w(a, b) = 1

}
,

is perfect, and is generated by u(a, b) and v(a, b). Then G̃ is the covering group of G.

The structure of our first efficient presentation for L̂3(4) suggests that it might be
profitable to study one-relator quotients of C3 ∗ C5 more carefully. We did so, and
uncovered various useful presentations that we had ignored in our censuses because the
coset enumerations attempted during the census process failed due to space limitations.
These include as presentations for 12.L3(4):

P1 = {
a, b | a3, b5, ababAbAB2Ab2ab2aB

};
P2 = {

a, b | a3, b5, ab3aB2AB2ABAbabab2}.
Over the trivial subgroup, ACE uses 41128739 and 60689170 cosets, respectively.

Theorem 4.1, applied to P1, yields a variant of P2. The power relations of P2 amalgamate
simply to give {

a, b | a3b5, ab3aB2AB2ABAbabab2}
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as an efficient presentation for L̂3(4). This presentation uses a total of 315894198 cosets
over the trivial subgroup, worse than our first presentation.

Finally, by looking carefully at one-relator quotients of {a, b | a5, (ab)3}, we discovered
that {

a, b | a5, (ab)3, a2bA2bAb2AB2aB
}

is a presentation for 12.L3(4), leading to{
a, b | A5(ab)3, a2bA2bAb2AB2aB

}

as a presentation for L̂3(4). This presentation has length 23, and its canonic version is in our
tabulation, using a more modest 30181644 cosets over the trivial subgroup. In retrospect,
we see that the difficulty of the coset enumeration meant that the presentation was initially
classified as an overflow in our census process.

5.12. S4(3)

For S4(3), we investigated 5993 distinct generating pairs. Presentations on these include
ten that are already efficient, and 105 with four relators. From the 105 deficiency-two pre-
sentations, we can build another sixty-seven efficient presentations. Seven of these efficient
presentations include relators u(a, b)4 and v(a, b)5, where u(a, b) and v(a, b) generate the
free group on a and b. Using these and Corollary 4.2, we obtained efficient presentations
for Ŝ4(3), for which efficient presentations had not previously been known. For S4(3), we
tabulate a presentation from a census of short two-generator, three-relator presentations.
For its cover, we tabulate a presentation from a census of short two-relator presentations for
perfect groups. Adding the relator a5 to the presentation for Ŝ4(3) and simplifying gives a
presentation for S4(3) as a one-relator quotient of C4 ∗ C5 that has the same length as the
tabulated presentation but enumerates somewhat worse, at 44575 cosets.

5.13. Sz(8)

For Sz(8), we investigated 4577 distinct generating pairs. This is the second smallest
simple group with multiplier of rank 2. We found very many efficient presentations but, in
contrast to the situation with L3(4), none as variants of one-relator quotients of (l, m, n).
However, they did arise as two-relator quotients of C5 ∗ C7 and C7 ∗ C7. We tabulate a
two-relator quotient of C5 ∗ C7, and mention that a two-relator quotient of C7 ∗ C7,{

a, b | A7, B7, BaBaBAb2AB, a2bA3BabAB
}
,

has the same length and enumerates almost as well (29859 cosets). There are very many
efficient presentations for this group that enumerate well.

By simply looking at two-relator preimages of the presentations on the distinct
generating pairs, we find many efficient presentations for Ŝz(8). We tabulate one found
in a census of short two-relator presentations for perfect groups. A three-generator, three-
relator presentation with length 18,{

a, b, c | a2bcB, abaCAc, a2BCAbc
}
,

uses fewer cosets, 131283.

5.14. L2(32)

For L2(32), we investigated 3351 distinct generating pairs and (not unlike the situation
with L2(16)) we found many efficient presentations directly. We also found one-relator
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quotients of C2∗C3 and C2∗C11 that present the group. We tabulate a length-21 presentation
from a census of short two-relator presentations for perfect groups.

5.15. L2(49)

For L2(49), we investigated 7553 distinct generating pairs, and we found many efficient
presentations directly. We also found one-relator quotients of C2 ∗C3, C2 ∗C5, C3 ∗C4 and
C4 ∗C5 that present the group. We can use Theorem 4.1 to construct an efficient presentation
for L̂2(49) from any of these one-relator quotients of Cl ∗ Cm. For L2(49), we tabulate a
presentation from a census of short two-generator, three-relator presentations. For its cover,
we tabulate a presentation obtained from looking at presentations on distinct generating
pairs. Its canonic version,

{
a, b | a2ba2bA2b, ab2Ab2aB3},

is the unique shortest canonic two-relator presentation for this group, but enumerates a little
worse, at 265430 cosets.

Other longer presentations enumerate better. For L2(49),

P = {
x, y | (xY 2)2, (xY )3, xy2(x2y3x2)2y2}

uses 59769 cosets. For its cover, the Table 1 presentation (which is based on the same long
relator as in P ) is better; the presentation

{
a, b | a3bA2BA2b, a4BaB3aB

}

is better again, using 126569 cosets. A three-generator, three-relator presentation with
length 17, {

a, b, c | a2bAb, acACC, b3cB2c
}
,

uses 432168 cosets.

5.16. U3(4)

For U3(4), we investigated 7778 distinct generating pairs. In a partial search of two-
relator preimages on these generating sets, we detected only proper preimages. However,
among the three-relator preimages we found a number of one-relator quotients of C3 ∗ C5
that present the group. We can use Theorem 4.1 to construct an efficient presentation from
any of them. We tabulate, from a census of short two-relator presentations for perfect groups,
the length-22 canonic presentation that enumerates best.

A length-23 canonic presentation enumerates substantially better:
{
a, b | a3bA2BA2b, a3b2a2B3AB2}

uses 416708 cosets. We found a one-relator quotient of C2 ∗ C3:
{
a, b | (bA)3, (bAb)2, a7b2a4bab2a2b2},

which requires 98318 cosets. Applying Corollary 4.2 and simplifying, we obtain
{
r, s | s3, r2, (sr)7(Sr)2(sr)4Srsr(Sr)2(sr)2(Sr)2}.

Then, applying Theorem 4.1, we can obtain as an example efficient presentation
{
r, s | s3r2, (sR)7(Sr)2(sr)4SrsR(Sr)2(sr)2(Sr)2},

which uses 477214 cosets.

279https://doi.org/10.1112/S1461157000001121 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001121


Nice efficient presentations

5.17. M12

M12 is the largest simple group in our catalogue. It has 19801 distinct generating pairs,
and M̂12 has 77979 distinct generating pairs. We investigated all the distinct generating sets
for M12, and found many efficient presentations for the group. Unfortunately, none was of a
form suitable to apply Theorem 4.1 or Theorem 5.1. We tabulate the shortest instance found
with best total cosets. The length-39 presentation

{
a, b | bABaBABa2b2aB2ab, ABa3BA2, aBaBaBA2b2Ab2ab

}

enumerates quite well, using 106282 cosets.
We investigated some of the distinct generating sets for the cover, and failed to find any

efficient presentations, or any presentations to which Theorem 4.1 or Theorem 5.1 could be
applied.

The group M̂12 is not only the last group in our catalogue, but was the last for which
we were able to find an efficient presentation. It did not arise in our censuses. In the end,
it succumbed to our third method; we studied longer, one-relator quotients of C2 ∗ C3. On
mapping C2 ∗C3 onto a representation of M12 satisfying presentation 13.1 of [9], we found
various words with length from 54 up which mapped onto the identity. Furthermore, in
many cases we could show that the words sufficed to produce M̂12 as a one-relator quotient
of C2 ∗ C3.

Starting with {a, b | a2, b3} and defining x = ab and y = aB, we found, inter alia, that
the word

w = x2y3x2yxyx2y2xyxy5x5

maps to the identity in the representation of M12. We investigated the group presented by
{
a, b | a2, b3, w

}
,

and found (by coset enumeration) that it is M̂12. Theorem 4.1 then delivers us many efficient
presentations for M̂12, including:
{
a, b | a2b3, (Ab)2(aB)3(ab)2(aB)(ab)(aB)(ab)2(aB)2(ab)(aB)(Ab)(AB)5(Ab)5},

which was chosen somewhat arbitrarily from among the options. We can enumerate the
cosets of the trivial subgroup for this presentation using a total of 27890300 cosets. From
this, we constructed the shorter presentation that we tabulate.

6. Review

In retrospect, we observe that many deficiency-zero presentations that we list can be
viewed as results of applications of Theorem 4.1, Corollary 4.2 or Theorem 5.1. These
include most of the deficiency-zero presentations in both Table 1 and Table 2.

Observe that in our Table 2 presentations, all enumerations over the trivial subgroup
can be completed using a total of less than 31 million cosets. This is in sharp contrast to
many earlier efficient presentations, for which the coset enumerations are much harder.
Perhaps the worst example is the first published presentation for L2(49), referred to in [8]
and appearing in [6], which is theoretically correct but fails to complete enumerations over
cyclic subgroups even when allowed to define more than 2 × 109 cosets.

It suffices to say that our methods enable us to produce efficient presentations that are
both short and computationally useful.
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7. Open problems

We list below some standard open problems, and some that have arisen during the work
described in this paper.

(1) Is every simple group efficient? If not, which is the smallest inefficient simple group?
Only one simple group with order less than one million is a candidate, S4(4). In particular,
is L2(2n) efficient for all n? Note that this has a positive solution for n = 2, 3, 4, 5, 6.

(2) Does the covering group of every finite simple group have a balanced presentation?

(3) Is An efficient for all n? This has a positive solution for n � 9. A much weaker
question even appears to be open: Is there a two-generator presentation for An with k

relators, where k is independent of n?

(4) Is there a group with two generators that has an efficient presentation on three or
more generators, but not on two generators?

(5) Do there exist groups with efficient presentations on one generating set but not on
another? In particular, do the small simple groups have efficient presentations on every
generating pair?
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