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Abstract
A fundamental problem in research into language and cultural change is the difficulty of distinguishing
processes of stochastic drift (also known as neutral evolution) from processes that are subject to selection
pressures. In this article, we describe a new technique based on deep neural networks, in which we refor-
mulate the detection of evolutionary forces in cultural change as a binary classification task. Using residual
networks for time series trained on artificially generated samples of cultural change, we demonstrate that
this technique is able to efficiently, accurately and consistently learn which aspects of the time series are
distinctive for drift and selection, respectively. We compare the model with a recently proposed statistical
test, the Frequency Increment Test, and show that the neural time series classification system provides a
possible solution to some of the key problems associated with this test.
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Media summary:We develop a new method based on neural networks to distinguish between cultural
selection and drift.

1. Introduction

To study the mechanisms underlying cultural change, detailed information is needed about the com-
plex mix of, for example, cognitive, social, and memory-based biases of individuals that bring about a
certain change. However, for most real-world examples of cultural change, information at the level of
individuals is not available, thus forcing us to resort to (shifts in) frequency distributions at the popu-
lation level. A central challenge in research into cultural change is, therefore, to develop methodologies
and techniques that can infer biases active at the level of individuals from signatures in population-
level statistics (Acerbi & Bentley, 2014; Kandler & Powell, 2015; Kandler & Shennan, 2013;
Mesoudi & Lycett, 2009). Recently, various inference techniques have been proposed, in which
observed, real-world population-level statistics of cultural change are compared and contrasted with
the outcomes of theoretical simulation models. By investigating divergences between simulated and
real-world frequency distributions (Bentley et al., 2004, 2007; Hahn & Bentley, 2003; Herzog et al.,
2004; Ruck et al., 2017) or turnover rates (Acerbi & Bentley, 2014; Youngblood, 2019), or applying
likelihood-free inference techniques (Carrignon et al., 2019; Crema et al., 2014, 2016; Kandler &
Powell, 2015; Kandler & Shennan, 2013, 2015; Lachlan et al., 2018), arguments for the presence of
individual-level biases underlying cultural change have been made, such as conformity bias in bird
song (Lachlan et al., 2018) and music sampling traditions (Youngblood, 2019), or anti-conformity
bias in archaeological pottery data (Crema et al., 2016). Knowledge of such biases operating at the
individual level is crucial to better understand how they ‘can affect the populational profile of a
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collection of ideas, skills, beliefs, attitudes, and so forth’ (Lewens, 2015, p. 57, and see Boyd &
Richerson, 1985; Cavalli-Sforza & Feldman, 1981; Richerson & Boyd, 2005).

Despite these advances, it remains challenging to single out specific individual-level processes under-
lying cultural change with sufficiently high certainty. As such, it has been proposed to shift attention to
the exclusion of certain mechanisms that are unlikely to have produced the observed data (Kandler et al.,
2017). In a similar vein, it has been proposed to first establish whether there is evidence for selection in
the first place, before examining specific selection processes and individual-level biases (Brantingham &
Perreault, 2010; Feder et al., 2014; Lycett, 2008; Newberry et al., 2017; Zhai et al., 2009). A recent pro-
posal (Newberry et al., 2017) is to employ the ‘Frequency Increment Test’ (FIT), which is borrowed
from population genetics (Feder et al., 2014). The FIT provides an elegant tool to test for the presence
of directed selection in processes of, for example, language change, against a null model of stochastic
drift (i.e. unbiased selection). The FIT has been used to systematically quantify the role of biased selec-
tion and unbiased, neutral change in a number of grammatical changes in English. The results high-
light the importance of selectional forces in language change, but at the same time they emphasize the
often underappreciated role of stochasticity in language change (Baxter et al., 2006; Bentley et al., 2011;
Kauhanen, 2017; Reali & Griffiths, 2010; Ruck et al., 2017) – and, by extension, cultural change in
general (Carrignon et al., 2019; Karsdorp & Van den Bosch, 2016).

While promising, a systematic, critical assessment of the applicability of the FIT to linguistic data
demonstrates that the statistical power of the FIT (i.e. the probability of the FIT correctly rejecting the
null model of stochastic change) is sensitive to a number of factors (Karjus et al., 2020). First, when work-
ing with linguistic or cultural data, researchers are often confronted with sparse and incomplete data, both
in space and in time. This sparsity forces researchers to group (i.e. ‘bin’) linguistic variants within a spe-
cific geographical region or time period. It is shown that the number of temporal segments severely
impacts the statistical power of the FIT (Karjus et al., 2020). Most importantly, the number of false posi-
tives increases when fewer bins are available, both when selection strength is high and when selection
strength is absent (i.e. with stochastic drift). Second, since the statistical test underlying the FIT is a one-
sample t-test (see below), the assumption of normality must be accounted for. However, in linguistic and
cultural time series of frequency increments, the normality assumption is often violated, thus rendering
the FIT results uninterpretable. Finally, the statistical power of the FIT is generally weak when selection
coefficients are either too low or too high. In case they are too low, the generated time series become indis-
tinguishable from those produced by stochastic drift. If, on the other hand, selection coefficients are too
strong and few data points are available (e.g. owing to the binning strategy applied), changes might take
place too fast to be noticed by the FIT (Feder et al., 2014; Karjus et al., 2020).

In this article we reformulate the problem of detecting evolutionary forces in cultural change as a
time series classification problem. The method we propose employs Residual Networks (Fawaz et al.,
2019; Wang et al., 2016), trained on time series simulated with the Wright–Fisher model (Ewens,
2012). The neural networks are able to efficiently and accurately learn which aspects of the time series
are relevant to distinguish stochastic drift from changes subject to selection pressure. We critically
compare and contrast the performance and behaviour of the neural classifier with that of the FIT,
and show how it solves a number of problems of the latter:

1. First, the neural networks are barely affected by varying numbers of temporal segments, thus
effectively solving the aforementioned binning problem.

2. Second, the neural networks do not assume a particular distribution underlying the data, which
increases their applicability to time series with non-normally distributed frequency increments,
and for example, time series following sigmoid S-curves often observed in language and cultural
change (Acerbi et al., 2016; Blythe & Croft, 2012; Denison, 2003; Smaldino et al., 2018).

3. Third and finally, we show that the neural networks are affected less by distortions of the time
series compared with the FIT, making the method more applicable to the noisy, sparse and
incomplete data that we often find in historical collections of cultural data.
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After a critical assessment of the behaviour and performance of the proposed method, we apply the
neural network to a real-world data set, and discuss its predictions in relation to those of the FIT.

2. Methods

2.1. The Frequency Increment Test

The FIT (Feder et al., 2014) is based on the key idea that statistics at the population level have certain
characteristics that can be traced to processes or behaviour at the individual level. For example, it is
hypothesized that processes subject to selection forces look different from processes driven by stochas-
tic drift, and that these processes leave their signature in the observed statistics. The statistics studied
here are time series consisting of ordered sets of relative frequencies of cultural variants. For a time
series of length T, we calculate at each time point ti the relative frequency f(ti) of the variants of a cul-
tural trait. Each time series Xi can thus be described as a univariate series Xi = [ f(t1), f(t2), …, f(tT)].

The FIT operates on these time series by rescaling them into ordered sets of frequency increments Q:

Qi = f (ti)− f (ti−1)��������������������������������
2f (ti−1)(1− f (ti−1))(ti − ti−1)

√ , i = 2, 3, . . . , T (1)

where f(ti) represents the relative frequency of a cultural variant at the current time step ti, and
f(ti−1) that in the previous one. The reason for this rescaling is that Q is approximately normally dis-
tributed under stochastic drift, with a mean of zero. In contrast, when selection pressures are present,
the distribution is also normally distributed, but with a non-zero mean. Rescaling the data in this way
allows us to employ a classical t-test to investigate whether the frequency shifts in a time series are
subject to drift (H0) – in which case the mean frequency increment does not deviate significantly
from zero – or to selection (H1) – in which case the mean increment deviates significantly from
zero. The null hypothesis of unbiased selection is rejected if the two-sided p-value of the t-test is
below some threshold α. In this study, we set α to 0.05. As the FIT assumes frequency increments
to be normally distributed, we need to test this assumption. To this end, we follow prior work and
perform a Shapiro–Wilk test, with a p-value threshold of 0.1 (Karjus et al., 2020).

2.2. Time series classification

2.2.1. A machine learning approach
As an alternative to the FIT, we propose to conceptualize the task of detecting evolutionary forces in
language and cultural change as a binary time series classification (TSC) task. In this respect, our
methodology is borrowed from the field of supervised classification research in machine learning
(Sen et al., 2020), which is concerned with the development of computational models that can be
trained on example data to learn how to automatically assign (unseen) instances from a particular
domain into a set of (mutually exclusive) categories – such as a positive or negative class in the
case of a binary classification setup like ours. More specifically, we resort to a sequence classifier,
which will map an input in the form of a time series vector to one of two category labels (i.e. the
absence or presence of selection pressure in a time series). Formally, given a data set D consisting
of N pairs of time series Xi and corresponding labels Yi∈ 0, 1, i.e. D = (X1, Y1), (X2, Y2), …,
(XN, YN), the task of TSC is to learn a mapping function for the input series to the output labels.
Yi = 1 when Xi was produced under selection forces, and Yi = 0 otherwise.

For this purpose, we use deep neural networks, a broadly applicable learning framework which has
recently gained much popularity (LeCun et al., 2015; Schmidhuber, 2015). An important advantage of
neural classifiers is that no advanced feature engineering is needed on the researcher’s side in order to
present the data to the model in an optimal format: neural networks are designed to independently
learn which characteristics in the input are most useful to solve a particular classification task. A con-
ventional deep neural network takes the form of what is known as a multilayer perceptron (LeCun
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et al., 2015; Schmidhuber, 2015), a networked structure through which information can be propagated:
the architecture feeds an input vector, representing an instance (such as a time series), through a stack
of layers that consecutively transform the input through multiplying it with a weight matrix, followed
by a non-linear activation function (such as the sigmoid), to bound the output. The more intermediate
or ‘hidden’ layers such a ‘deep’ network has, the more modelling capacity it provides to fit the data. In
the case of a network for binary classification, the last layer will transform the output of the penulti-
mate layer into a single score that can be interpreted as the probability of the positive class (e.g. the
presence of selective force in the series of trait frequencies). To bound the output score to a suitable
range, a squashing function can be applied, such as the logistic function. Nowadays, neural networks
are trained with a procedure known as stochastic gradient descent, where each layer’s weight matrix is
progressively optimized in light of an objective function or criterion that monitors the network’s loss
or how strongly its predictions diverge from the ground truth in the training data. By fine-tuning these
weights in multiple iterations over the available training data, the classification performance of the net-
work gradually improves.

2.2.2. Residual networks
More specifically, we employ residual networks (He et al., 2016), which have been shown to act as a
strong baseline, achieving high quality and efficiency on a rich variety of time series classification tasks
(Fawaz et al., 2019; Wang et al., 2016). A residual neural network is characterized by the addition of
so-called ‘skip-connections’ that link the output of a layer with the output of another layer more than
one level ahead. The introduction of residual blocks has been crucial to enable the training of deeper
networks, resulting in increasingly strong performance (He et al., 2016; Srivastava et al., 2015). The
network architecture underlying the present study consists of three residual blocks. Instead of plain
linear transformations followed by a non-linear function, each residual block is composed of weights
that are ‘convolved’ with the input vector (LeCun et al., 1998; Szegedy et al., 2015). Each of these con-
volutional weights (typically known as a convolutional filters or kernels) is slid over the input values,
generating a windowed feature vector for consecutive segments of the timeseries.

The concept of convolutional filters was originally developed in computer vision (LeCun et al., 1998)
to enable the detection of meaningful, local, spatial patterns regardless of their exact position in a time
series. For the present study, each residual block consists of three convolutional blocks that have 64 filters
of size 8, 128 of size 5 and 128 of size 3. The outputs of all convolutional filters are passed through the
non-linear rectified linear unit activation function (Nair & Hinton, 2010) and concatenated into an out-
put matrix of dimensionality proportional to the input size and the number of filters. The output matrix
of the last residual block is transformed into a single vector by averaging over all the units (i.e. global
average pooling). Finally, this vector is passed into the last layer which outputs a scalar that is trans-
formed into a probability with the logistic function. For more information and further details about
the mathematical definition of the architecture and training details, see the original proposal (Wang
et al., 2016) and the Supplementary Materials accompanying this paper (Karsdorp et al., 2020).

2.2.3. Generation of training data
A supervised classification system requires labelled examples or training material in order to optimize
its weights (which are initialized randomly). However, no extensive data sets are available of linguistic
data, in which the development of certain cultural traits has been annotated for particular evolutionary
forces. The solution to this problem is to simulate artificial training data. We employ a simple Wright–
Fisher model (Ewens, 2012) to simulate a sufficient amount of time series representing frequency
changes over time. The model assumes a population of constant size N and discrete, non-overlapping
generations. We define z(ti) as the number of times some cultural variant A occurs in generation ti,
and f(ti) as the relative frequency of that variant. Under a neutral, stochastic drift model, the occur-
rence count of A in generation ti+1 is binomially distributed:

z(ti+1)|z(ti) � Binomial(N , f (ti)), (2)
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where Binomial(N, f(ti)) is a binomial distribution with N trials (i.e. for each individual in the
population) and a probability of success p = f(ti). A more general formulation, which allows for selec-
tion pressures on the cultural variants, is the following:

z(ti+1)|z(ti) � Binomial(N , g( f (ti))), (3)

where g is a function with which the sampling probability of a cultural variant is altered (Tataru et al.,
2016). With β representing the bias towards the selection of one of the variants, we define the follow-
ing linear evolutionary pressure function to alter the sampling probability:

g( f (ti)) = (1+ b)f (ti)
(1+ b)f (ti)+ (1− f (ti))

(4)

Note that when β = 0, the model reduces to stochastic drift. With this model we simulate time series
with T = 200 generations, a population of N = 1000 individuals, and varying selection coefficients (see
below for more information about how the data was simulated during training). Starting frequencies at
ti = 0 are sampled from a uniform distribution f (ti) � U(0.001, 0.999).

2.2.4. Data distortion
For the time series classifier to be effective, an important challenge is to simulate data that are repre-
sentative of real-world time series. After all, while neural networks are likely to generalize beyond data
samples seen during training, data samples that are too distant or different from the training material
may hurt the performance of the models. This, of course, is a problem common to every supervised
system, given its dependence on the amount and diversity of available training material. However,
since the training material is simulated, we can apply certain data distortion strategies to make the
data more realistic (Fawaz et al., 2018; Le Guennec et al., 2016). As a proof of concept, we propose
the following two data distortion strategies:

1. Frequency distortion – it is rare for time series of cultural data to be complete. Usually we have to
deal with messy, battered data, that for whatever reason are incomplete, contaminated or other-
wise distorted. As a simple, albeit somewhat naive way to approximate such real-world aberra-
tions, we propose to augment the relative frequencies f(ti) of the Wright–Fisher model with an
error term δ. For each time step i = 1, 2, …, T, we sample an error term from a normal distri-
bution with zero mean and variance σ:

f (ti) = f (ti)+ di
di � Normal(0, s)

(5)

The augmented frequencies are subsequently truncated to the interval [0, 1].
2. Varying temporal segments – As a second strategy to mimic real-world time series distortions, we

propose grouping the time series into varying numbers of temporal segments. This data augmen-
tation strategy is again motivated by the fact that data points are often missing in cultural data,
resulting in time series with either high-frequency fluctuations owing to the few data points
per time step, or time steps with no data at all. To circumvent this issue, a common strategy in
cultural analyses is to group the data points of a time series into a reduced number of temporal
segments, or bins. We randomly sample a number of bins in the range [4, T] and group the simu-
lated time series accordingly before computing the relative frequencies in each new time step.
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2.2.5. Training procedure
We train the TSC using mini-batches of simulated time series. In each training epoch, 50,000 time
series are generated, which, using a batch size of 500, are split into 100 mini-batches. Each time series
in a mini-batch, as described above, is then simulated with a selection coefficient β in the range [0, 1].
Subsequently, it is binned into a randomly sampled number of temporal segments and the bin values
are distorted as described above. To ensure that, after varying the number of temporal segments, all
time series in a mini-batch have the same length, we apply zero-padding, in which the time series
are extended with zeros, as necessary. Positive selection coefficients, β > 0, are sampled from a
log-uniform distribution, which ensures that we obtain many samples with low selection pressure.
These samples are the most difficult ones to distinguish from stochastic drift (Karjus et al., 2020),
and as such, help the network in reaching more efficient and faster convergence. Importantly, the
ratio of positive and negative instances in the data are kept balanced in the generated data (i.e. 50–
50%). We employ the Adam optimizer (Kingma & Ba, 2015) with a small learning rate of 6×10−5.
The loss function we aim to optimize is the binary cross-entropy loss.

For each epoch in the optimization regime, a new set of training data is generated. We monitor the
network’s performance after each epoch on a held-out development set (that is generated analogously
to the training data, but only once at the start of the regime). Finally, the training procedure is halted
after no improvement in the loss on the development data has been observed for five, consecutive
epochs. For further details, we refer to the Supplementary Materials accompanying this paper.

3. Results

3.1. Critical parameter analysis

We first validate the time series classifier without varying the number of temporal segments (T = 200).
Figure 1 displays time series generated with the Wright–Fisher model with increasing selection coeffi-
cients β. All simulations were run for 200 generations (see the Methods section for more details about
the parameter settings). The top row shows the results for the FIT. For each time series, we calculate
the FIT p-value, and classify time series with a p-value higher than 0.05 as examples of stochastic drift.
Correct classifications are coloured grey, incorrect ones are marked with a yellow colour, and time ser-
ies with non-normally distributed frequency increments are coloured blue. Each subplot provides a
classification accuracy score, which was computed based on 1000 simulations. The accuracy score
for the FIT is computed by excluding non-normally distributed time series. The plots provide the per-
centage of cases in which the FIT was not applicable owing to normality violations. In the bottom row,
we present the results of the neural network classifier, with the same colouring for correct and incor-
rect classifications.

With an accuracy score of approximately 94.8% when selection is absent (i.e. β = 0), the FIT has a
small false positive rate of 5.2%. This result aligns with prior analyses that reported a value of around
5% (Karjus et al., 2020). The time series classifier has a slightly higher false positive rate (6.4%), cor-
responding to an accuracy score of about 93.6%. Note, however, that the FIT is not applicable for
approximately 120 of the 1000 generated time series, since they fail the normality test. As was
shown in previous analyses (Feder et al., 2014; Karjus et al., 2020), the statistical power of the FIT
is low with very small selection coefficients. At β = 0.001, most simulated time series are virtually indis-
tinguishable from stochastic drift (6% accurate and 8.5% inapplicable). This problem also plays a role
for the neural classifier, but to a slightly lesser extent (10.2% accurate). Once the selection strength
becomes more pronounced (i.e. β≥ 0.01), both the FIT and the classifier are able to discriminate
between time series subject to drift and selection more accurately. However, with β≥ 0.01, the normal-
ity assumption required for the FIT’s underlying t-test is often not met, because the stronger selection
coefficients can quickly lead to absorption events (i.e. frequency changes to 1 or 0 followed by a series
without change). Strictly speaking, we should treat these non-normal time series (cf. the many blue
lines in the third and fourth columns) either as misclassifications, or as cases where the FIT is simply

6 Folgert Karsdorp et al.

https://doi.org/10.1017/ehs.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2020.52


not applicable. To remedy this situation, we truncate all values after the absorption events (cf. the inset
graphs in the third and fourth columns), and subsequently compute the accuracy scores for these trun-
cated time series. With an accuracy score of 100% for β = 0.1 and β = 1, the FIT is able to accurately
discriminate between drift and selection. However, the number of cases in which the test cannot be
applied increases sharply with higher values of selection pressure (12.7% for β = 0.1 and 20.4% for
β = 1). Not being affected by the normality assumption, the time series classifier requires no post-hoc
truncation, is applicable to all time series, and accurately predicts all time series generated with β≥
0.01 to be subject to selection.

Without binning, the two methods yield comparable performance. However, when binning is
applied, marked performance differences arise. The differences in performance are revealed primarily
in the false-negative rate (where time series are incorrectly classified as examples of stochastic drift),
while both methods display similar false-positive rates (where selection pressures are erroneously
assumed). We first focus on the differences in the false-negative rate, and subsequently address the
false positives.

In Figure 2, we show the interaction between different selection coefficients and varying numbers of
binning (for the same, unaltered model from the previous section). The y-axis represents the number
of bins used to group the data points, ranging from 4 to 200 bins (which, being equal to the number of
generations, amounts to no binning). We simulated 1000 time series for 200 generations for each com-
bination of selection coefficient and number of bins. The left subplot (A) shows the mean error rate
per parameter combination for the FIT. The results for the FIT are largely in line with those from earl-
ier research (Karjus et al., 2020). First, as we discussed before, the statistical power of FIT is generally
lower when there is little selection pressure. In this context, binning does not seem to play a role, either
negatively or positively. However, the impact of binning on the performance of the FIT becomes more
articulated as the selection strength becomes stronger. With higher selection coefficients and increas-
ingly fewer bins, the statistical power of the FIT degrades rapidly. Additionally, the normality assump-
tion of the FIT is increasingly violated with stronger selection values and fewer bins as shown in the

Figure 1. Time series generated with the Wright–Fisher model with increasing selection coefficients β. For each selection strength
value β, we simulated 1000 time series of 200 generations (100 shown). Starting frequency values were set to 0.5. The top row dis-
plays the results for the FIT, and the bottom row shows the results of applying the time series classifier. Grey lines indicate correct
classifications, yellow lines mark incorrect classifications and blue lines indicate inconclusive cases for which the normality
assumption is not met. The accuracy scores for the FIT are computed by excluding non-normally distributed time series. The per-
centage of time series for which the test is inapplicable is given.
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middle subplot (B) in which (a) non-normal samples and (b) samples with too few data points after
adjusting for absorption events are left out. This negative impact of binning on the FIT contrasts
sharply with the insensitivity of the time series classifier to varying temporal segments. Indeed, the
right subplot (C) makes it abundantly clear that the performance of the classifier is primarily influ-
enced by selection strength, but not by the chosen number of bins.

This relative insensitivity to binning also manifests itself when selection pressure is completely
absent, that is, in the context of stochastic, unbiased selection. This is visualized in Figure 3, which
draws the mean false positive rate at increasing numbers of temporal segments. The false-positive
rate of the TSC is only mildly affected by varying numbers of bins. On average, and leaving out sam-
ples with non-normally distributed frequency increments, the false-positive rate of the FIT is slightly
higher than the TSC, with mean false-positive rates of 10.1 and 8.1%, respectively. Thus, the analyses
of the false-negative and false-positive rates seem to suggest that the neural time series classifier is
robust to binning variation.

3.2. Application to real-world data

In the previous section, we compared the performance of FIT and TSC based on simulated data. The
analysis showed that the TSC is less sensitive to variation in binning than the FIT, and furthermore
that the TSC is unaffected by specific assumptions about the underlying distributions of the time series
(such as the normality assumption of frequency increments). In this section, we continue our evalu-
ation and comparison of the systems by applying them to the historical process of (ir)regularization of
English past-tense verbs, which is the main grammatical change described in the original proposal to
apply the FIT to language change (Newberry et al., 2017). The case of verb (ir)regularization was also
recently thoroughly reviewed to assess the applicability of FIT to language change (Karjus et al., 2020).
In a nutshell, the linguistic change under scrutiny simultaneously concerns the rise of ‘regular’ past
tense forms such as helped at the expense of ‘irregular’ forms such as holp, as well as the rise of irregu-
lar past tense forms such as wore and lit at the expense of the (initially dominant) regular forms
weared and lighted. Both changes, regardless of their direction (towards a regular or irregular
form), are commonly described in the linguistic literature as cases of analogical change (Fertig, 2013).

We apply the two methods, FIT and TSC, to a previously examined set of 36 verbs, which either
regularized or irregularized in the Late Modern English period. As in the previous accounts that

Figure 2. Interaction between selection coefficients and number of bins. For each unique combination of selection coefficient and
number of bins, we simulate 1000 time series using the Wright–Fisher model, and compute their mean error rate. Simulations were
run for 200 generations. The simulated time series were subsequently binned according to the specified number of bins. Subplot
(A) displays the FIT results. Subplot (B) plots the same results but masking (a) all samples violating the normality assumption and
(b) all samples with too few data points after adjusting for absorption events (white colour). The results for the time series classifier
are shown in subplot (C). The colour bar at the far right of the plot functions as a legend of the error rate values.
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addressed detecting patterns of drift and selection by considering verb (ir)regularization in Late
Modern (American) English (Karjus et al., 2020; Newberry et al., 2017), we extract all past-tense
occurrences of each of these 36 verbs from the Corpus of Historical American English, which covers
a time period between 1810 and 2009 (Davies, 2010). Subsequently, we calculate how often the regular
instances occur in relation to the irregular instances per year (for more information about data (pre-)
processing, see Newberry et al., 2017; Karjus et al., 2020). To allow comparison with results from pre-
vious research (Karjus et al., 2020), we apply two binning strategies for the FIT. The first is a com-
monly used fixed-width binning strategy, in which all occurrences of a verb within equally sized
time windows are collected, and their counts subsequently summed. We group the verb occurrences
into time windows of 1, 5, 10, 15, 20, 25 and 40 years (Figure 4 displays some example time series with
the time window set to 10 years). However, a potential problem with this binning strategy is that the
verb data are not distributed uniformly in time, which violates the FIT’s requirement that each meas-
urement has about the same variance (homoscedasticity), and causes the normality test to fail fre-
quently. To remedy this issue, Newberry et al. (2017) and Karjus et al. (2020) apply a
variable-width binning strategy, in which time series are grouped into a number of quantile bins, n
(b), consisting of roughly the same number of tokens. The number of variable-width bins n(b) is com-
puted by taking the log of the total number of past-tense tokens v of a particular verb, ⌈ln(v)⌉ (see
Newberry et al., 2017; Karjus et al., 2020 for more information). To further control the number of
variable-width bins, Karjus et al. (2020) experiment with a constant c, ⌈c ln(v)⌉, which we also
adopt in the analyses below. Since homoscedasticity is not required for the TSC, we can resort to
the fixed-width binning strategy here.

In Figure 5, we show the results of applying the FIT and the TSC to the time series of past-tense
verbs. The upper panel shows the results of the FIT with a variable-width binning strategy using

Figure 3. The impact of binning on the false-positive rate of the FIT and the time series classifier. With β set to 0 (i.e. stochastic
drift), we simulate 1000 time series for each number of bins using the Wright–Fisher model. Simulations were run for 200 genera-
tions. The plot shows the mean error-rate for each bin number (solid lines), as well as the 95% confidence interval (shaded area)
which was computed using a bootstrap procedure.

Evolutionary Human Sciences 9

https://doi.org/10.1017/ehs.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2020.52


different constants c. The middle panel presents the results for the fixed-width binning for the seven
different binning strategies of 1, 5, 10, 15, 20, 25 and 40 years. The top and middle panels are exact
reproductions of the results shown in Figure 1 of Karjus et al. (2020). The circles represent time series
that meet the normality assumption of the frequency increments. Squares, on the other hand, indicate
that the normality assumption is violated. The colour fill of the circles and squares corresponds to the
p-values returned by the FIT. Unfilled items correspond to a FIT p-value of >0.2, which should indi-
cate that these time series are subject to stochastic drift. Blue-coloured circles and squares correspond
to a p-value of <0.2, and if an item is coloured yellow, the FIT p-value is <0.05. In both cases, this
indicates that the time series were produced under some selection pressure. Finally, the consistency
of the predictions of the FIT across the different binning strategies is summarized in the pie charts
underneath each panel. In these charts, black parts represent the fraction of time series classified as
stochastic drift, whereas blue and yellow parts represent time series undergoing selection with a
p-value of <0.2 and <0.05, respectively. Time series violating the normality assumption are masked
with the colour white.

In accordance with Newberry et al. (2017), we find that with both variable-width (top panel) and
fixed-width (middle panel) binning, the frequency increments of several verbs (e.g. smell, light, spell
and wake) deviate significantly from zero, allowing us to reject the null-hypothesis of stochastic
drift with a p-value of <0.05. Relaxing the threshold of p < 0.05 to 0.2, the set of verbs flagged as under-
going selection increases slightly, adding verbs such as quit, learn and sneak. In addition, there is a
large number of verbs for which no selection signal is detected by FIT: any frequency changes that
verbs such as know, draw and dream have undergone are attributed to processes of stochastic drift.
However, whether FIT detects a selection signal strongly depends on the chosen binning strategy
(Karjus et al., 2020). Using a variable-width binning strategy, 26 of the 36 verbs are seen as examples

Figure 4. Relative frequency of past tense variants over time. The y-axis displays the fraction of regular variants of a particular verb.
The variants of five verbs (dreamt–dreamed, lit–lighted, snuck–sneaked, spillt–spilled, spoilt–spoiled) are highlighted.
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of both selection and neutral evolution, depending on the number of quantile bins; employing a fixed-
width binning, only five verbs are unambiguously classified across different binnings (i.e. knit, strew,
wet, dive and lay). Moreover, the pie charts show that the prediction consistency across bins decreases
even further when the cases that violate the normality assumption of the frequency increments are left
out. In extreme cases such as draw, lean, dream, burn and spell, this drastically reduces the number of

Figure 5. Results of applying the FIT and the TSC to the verb time series. The upper panel displays the results for the FIT with a
variable-width binning strategy, the middle the results for a fixed-width binning strategy and the bottom panel those for the TSC.
Circles indicate that the normality assumption of the t-test is met (according to a Shapiro–Wilk test with a threshold of p ≥ 0.1),
while squares indicate that it is not met (p < 0.1). The colouring of the circles or squares corresponds to the results of the FIT.
Unfilled items correspond to a FIT p-values of ≥0.2. Blue items have a p-values of <0.2, and yellow items have a p-value <0.05.
The bottom panel shows the results for the TSC. Items with a probability greater than 0.5 to be generated through selection
are coloured yellow; the others are unfilled. The bottom rows underneath each panel display little pie charts, which provide infor-
mation about the classifying consistency of the two systems across the different binning strategies. The colour black marks neutral,
stochastic drift (with a FIT p-value ≥0.2 and a TSC probability value ≤0.5). Blue is reserved for the FIT results and corresponds to
time series with a p-value smaller than 0.2. Yellow is used for time series with a corresponding FIT p-value of <0.05, as well as for
series with a TSC probability value >0.5. Finally, white is used for time series that violate the normality assumption.
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usable test outcomes (both using the variable-width and the fixed-width binning strategy), thus limit-
ing the conclusion we can draw.

The bottom panel presents the results for the TSC. Since the normality assumption of the frequency
increments does not play a role for the TSC, only circles are displayed. The colours correspond to the
probabilities produced by the TSC, with unfilled circles indicating stochastic drift (with a probability
<0.5), and filled yellow circles indicating a selection process underlying the time series (with a probability
>0.5). Two important observations can be made when studying the results of the TSC. First, the TSC’s
predictions appear more consistent than those of the FIT, and are less subject to variation owing to the
chosen binning strategy. The eight most frequent verbs (from know to catch) are all consistently classi-
fied as examples of stochastic drift. We find this consistency in 15 more verbs, with verbs such as learn,
lean, burn and dream as examples of selection, and, for instance, hang, build, plead and speed as exam-
ples of drift. In total, 24 out of 36 verbs are consistently classified as either selection or drift. This con-
trasts sharply with the small number of consistently classified verbs by the FIT. In addition to differences
in predictive consistency, there are also differences in which verbs are considered examples of selection
or drift. Those differences consist only of verbs for which the FIT could not detect a selection signal,
while the TSC identifies them as examples subject to selection. In other words, if FIT designates a
verb as undergoing some selection pressure, then the TSC does too, but not vice versa. Interestingly,
these are often cases where the frequency increments are not normally distributed, for example, the
verb dream is (predominantly) classified as drift by the FIT, while the TSC marks it as subject to selec-
tion. The sharp rising frequency curve of dream in Figure 4 is probably the reason why the frequency
increments are not normally distributed: as noted before (Karjus et al., 2020), the FIT does not cope well
with such S-curve-like increases, with non-normally distributed frequency increments and high selection
coefficients. Similarly, we can explain the differences between FIT and TSC for verbs such as spill, spoil
and spell, which are also characterized by rapidly increasing, non-normally distributed frequency incre-
ments. In conclusion, compared with previous research based on the FIT (Newberry et al., 2017), the
TSC attributes more verbs to selectional processes. However, a significant group of verbs that do not
contain a selection signal according to both FIT and TSC remain. Thus, we should not interpret the
results as an invalidation but rather as a refinement of the role of stochasticity in language change.

4. Discussion

In this article, we have described a new system we developed to detect evolutionary processes under-
lying linguistic and cultural change in general. The system formulates the problem of detecting evo-
lutionary forces as a classification task, in which residual networks are trained on artificially
generated time series of cultural change. We compared the performance of this neural TSC with
the FIT (Newberry et al., 2017), which has been thoroughly evaluated as a tool to test for the presence
or absence of selection pressure in processes of language change (Karjus et al., 2020). Assessing our
proposed neural network system against the discussion surrounding the FIT, we found that the
TSC proved to be successful in that (a) it enabled us to efficiently, consistently, and accurately distin-
guish time series produced by stochastic drift from time series subject to selection pressure, while (b)
solving a number of outstanding problems of the FIT (cf. Table 1). First, the TSC has only limited
sensitivity to specific binning strategies. While the results of the FIT strongly depend on the number
of temporal segments chosen, the predictions from the TSC are generally consistent regardless of the
partitioning of the data. The difference in the impact of binning is especially prominent at higher
selection coefficients. With fewer bins, the TSC’s predictions remain accurate even with strong
selection pressure. The performance of the FIT, on the other hand, degrades with increasingly
fewer bins, erroneously flagging such cases as examples of stochastic drift. A second advantage of
the TSC over the FIT is that the TSC does not make assumptions about specific distributions that
underlie the data. For example, the FIT assumes that the frequency increments must be normally dis-
tributed, which is not a problem in itself, but facing distorted, real-world data, limits its application
possibilities and reduces its statistical power.

12 Folgert Karsdorp et al.

https://doi.org/10.1017/ehs.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2020.52


Thus, it appears that the neural TSC provides a solution to some of the major problems of the FIT.
However, it must be acknowledged that this does not mean that the TSC solves all ‘99 problems’ of
detecting evolutionary forces in language and cultural change. On the one hand, there are still several
issues with the FIT that we have not addressed in the current study, and, on the other hand, the TSC
itself is not without flaws either. We highlight two additional problems of the FIT mentioned in the
literature (Karjus et al., 2020). First, the FIT assumes a constant selection coefficient β for the entire
investigated period. However, it is not unlikely that β is unstable, and fluctuates over time. Second, the
FIT struggles with incomplete time series, in which the entire process of change has not been observed.
Whether the performance of the TSC is also affected by these issues cannot be ruled out without
proper testing in the future. Yet the prospects are hopeful, as tackling such issues can be addressed
by manipulating the artificially generated training material. An important advantage of the machine
learning approach is the flexibility with which we can generate new training material. This allows us to
prepare the system for incomplete time series, or series with variable selection strength.

At the same time, this inherent flexibility can unfortunately also be seen as a disadvantage of the
supervised machine learning approach: after all, how can we make sure our simulated data is
representative of real-world time series? Strictly speaking, this problem also applies to the FIT, as
the motivation for its underlying t-test lies in the zero-mean frequency increments produced by the
Wright–Fisher model. As a counterargument to such criticism, we thus wish to argue that, with a
machine learning approach like the TSC, the problem becomes more explicit and imminent, thus
forcing us to more thoroughly investigate how simulated data can be made more diverse and realistic.
The data augmentation techniques applied in this article can serve as a first step, but future research
should be directed toward investigating more extensive and comprehensive time series augmentation
strategies (Fawaz et al., 2018).

Finally, we would briefly like to discuss the way we conceptualized the task of detecting evolution-
ary processes, that is, as a binary classification task. While this conceptualization makes the task effi-
cient and simple, such binary all-or-nothing conceptualizations are not always the most informative.
Consider, for instance, the information loss the binary approach entails in cases where the selection
pressure is small (for example, <0.001): in such cases, it is more informative to know selection pressure
exists in a small or negligible form (rather than simply lumping the case with all other cases of con-
firmed selection). In other words, instead of approaching questions of language evolution by classify-
ing the time series into two categories, we may benefit more from an approach where we infer the
selection pressure parameter from the data (see, for example, Newberry et al., 2017). In recent
years, various methods and techniques have been developed to infer parameters based on simulation
models (e.g. Crema et al., 2014; Kandler & Powell, 2015). Because the likelihood (the probability dens-
ity for a given observation) is often intractable in complex simulation models, solutions are sought that
bypass the computation of the likelihood. These so-called likelihood-free inference techniques – or,
more generally, simulation-based inference techniques (Cranmer et al., 2019) – have been the focus

Table 1. Overview of potential problems with detecting evolutionary forces in language change (and cultural change in
general). Unsolved problems are marked as ×; problems solved with the time series classification task are marked as
✓. Problems in need of more research are marked as .

Problem Frequency Increment Test Time series classifier

Variable number of bins

Variable selection strength

Non-normal frequency increments

Distorted time series data

Entire change has not been observed
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of attention in recent years and have also been applied (with varying success) to cultural phenomena
(Carrignon et al., 2019; Crema et al., 2014, 2016; Kandler et al., 2017; Kandler & Powell, 2015;
Rubio-Campillo, 2016; Scanlon et al., 2019). One of the major stumbling blocks to these inference tech-
niques is the curse of dimensionality and the consequential use of summary statistics, which reduce
complex, multidimensional observations to a low-dimensional space. Crucially, the quality of the infer-
ence depends on whether the statistics are able to sufficiently summarize the observations, but it is often
unclear which statistics are capable of doing so. A promising solution to this problem, again, can be
found in machine learning algorithms (and in particular, neural networks), which allow us to work
with high(er)-dimensional representations of the data, and thus circumvent the problem of summary
statistics (Cranmer et al., 2015, 2019; Dinev & Gutmann, 2018; Gutmann et al., 2018; Hermans et al.,
2019; Papamakarios et al., 2018). One such technique is the application of networks inspired by gen-
erative adversarial networks, which are trained to discriminate between data generated by parameter
point θ0 from data simulated with θ1 (Cranmer et al., 2019; Hermans et al., 2019). We consider it a
fruitful and exciting future line of research to investigate whether these new neural inference techniques
can be combined with the neural network of the TSC, in order to improve the detection of – and, by
extension, our understanding of – evolutionary forces in language and cultural change.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ehs.2020.52
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