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Abstract
This paper extends our previous study of the gyro-emission by energetic electrons in the magnetospheres of rapidly rotating, magnetic massive
stars, through a quantitative analysis of the role of cooling by Coulomb collisions with thermal electrons from stellar wind material trapped
within the centrifugal magnetosphere (CM). For the standard, simple CM model of a dipole field with aligned magnetic and rotational axes, we
show that both gyro-cooling along magnetic loops and Coulomb cooling in the CM layer have nearly the same dependence on the magnitude
and radial variation of magnetic field, implying then that their ratio is a global parameter that is largely independent of the field. Analytic analysis
shows that, for electrons introduced near the CM layer around a magnetic loop apex, collisional cooling is more important for electrons with
high pitch angle, while more field-aligned electrons cool by gyro-emission near their mirror point close to the loop base. Numerical models
that assume a gyrotropic initial deposition with a gaussian distribution in both radius and loop co-latitude show the residual gyro-emission is
generally strongest near the loop base, with highly relativistic electrons suffering much lower collisional losses than lower-energy electrons
that are only mildly relativistic. Even for cases in which the energy deposition is narrowly concentrated near the loop apex, the computed
residual emission shows a surprisingly broad distribution with magnetic field strength, suggesting that associated observed radio spectra should
generally have a similarly broad frequency distribution. Finally, we briefly discuss the potential applicability of this formalism to magnetic
ultracool dwarfs (UCDs), for which VLBI observations indicate incoherent radio emission to be concentrated around the magnetic equator, in
contrast to our predictions here for magnetic hot stars. We suggest that this difference could be attributed to UCDs having either a lower
ambient density of thermal electrons, or more highly relativistic non-thermal electrons, both of which would reduce the relative importance of
the collisional cooling explored here.
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1. Introduction

Hot magnetic stars with moderately rapid rotation show in-
coherent, circularly polarized radio emission, thought to arise
from gyro-synchrotron emission of energetic electrons trapped
in magnetic loops (e.g. Drake et al., 1987; Andre et al., 1988;
Trigilio et al., 2004). Empirical analyses show that the radio
emission depends on both the magnetic field strength and the
stellar rotation rate (Leto et al., 2021; Shultz et al., 2022), with a
scaling that is well explained by a model in which the electrons
are energized by magnetic reconnection events that arise from
centrifugal breakout (CBO) of plasma trapped in the rotating
magnetosphere (Owocki et al., 2022).

A previous paper (Das & Owocki, 2023, hereafter Paper I)
examined how gyro-synchrotron radio emission cools the elec-
trons, and how this affects the spatial and spectral distribution
of the observed radio emission. Paper I provided a broader
discussion of the history of observational and theoretical stud-
ies of such incoherent radio emission from these magnetic
hot stars, and also presented a preliminary initial discussion of
the potential importance of additional cooling from Coulomb
collisions with ambient thermal electrons.

Building on this, the present paper now carries out a de-
tailed analysis of such collisional cooling by electrons in the
dense “centrifugal magnetosphere" (CM) layer that forms in

the common rotational and magnetic equator of rapidly rotat-
ing early-type stars with a rotation-aligned dipole fielda (Petit
et al., 2013; Owocki et al., 2020). As in Paper I, the analysis
here assumes that repeated CBO-driven magnetic reconnec-
tion events seed a quasi-steady, gyrotropic population of ener-
getic electrons around the tops of underlying closed magnetic
loops. In the standard scenario (e.g. Leto et al., 2021), the spi-
raling of these energetic electrons as they mirror between the
opposite footpoints of the loop leads to the gyro-synchrotron
emission of the observed radio.

The present study now accounts (Section 2.2) for the Coulomb
collisional energy loss of such mirroring energetic electrons
each time they cross the dense CM layer near the loop apex
(which here lies in the common rotational/magnetic equa-
tor), showing how this scales with electron Lorentz factor γ
and stellar parameters (see Equation (5)). Comparison (Sec-
tion 2.3) of such CM-cooling and gyro-cooling shows they
each have nearly the same dependencies on the magnetic field
strength and its radial variation, so that their ratio becomes a
global parameter that is surprisingly independent of the field;
but its overall value (see Equations (9) and (10)) confirms that
Coulomb cooling in the CM layer can indeed dominate, at
least for electrons with high pitch angle, which mirror close

aThe generalization to oblique dipoles is left to future study.
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to the loop apex.
A more complete analysis (Section 3) of the relative en-

ergy losses when integrated along the loop shows, however,
that more field-aligned electrons that mirror in the stronger
magnetic field close to loop footpoints have gyro-emission that
competes or even exceeds collisional cooling from CM cross-
ings (see Equation 24). Numerical computations in Section 4
then give results for full models with an initially gyrotropic dis-
tribution introduced over a range of loop heights, confirming
that residual gyro-emission is generally concentrated around
the loop footpoints in the magnetic polar regions near the star.
Section 5 discusses the potential application for radio emission
from cooler objects such as brown dwarfs and also the need
for resolved radio imaging of magnetic hot stars. We conclude
(Section 6) with a brief summary and outline for future work.

2. Cooling by collisions with thermal electrons
2.1 General scalings
In addition to the gyro-cooling examined in Paper I, non-
thermal electrons can also cool by the energy exchange from
Coulomb collision with an ambient population of thermal
electrons of much lower energy (see Güdel, 2009, e.g., their
section 8.4.3). For potentially relativistic electrons with speed
v = βc near the speed of light c, thus with Lorentz factor γ ≡
1/
√

1 – β2 and kinetic energy E=(γ – 1)mec2 (me is the mass
of an electron), the cooling time for collisions with thermal
electrons of number density ne is (Leach & Petrosian, 1981,
see their Equation 1)

tc ≡ E
dE/dt

=
β(γ – 1)

ne4πr2o lnΛ c
= 1.7 × 1012 s

β(γ – 1)
ne cm3 , (1)

where for electron charge qe and mass me, ro = q2
e/mec2 is

the classical electron radius, and the latter evaluation assumes
a characteristic value lnΛ ≈ 20 for the Coulomb logarithm
(which accounts for the cumulative effect of many small-angle
scatterings, Λ–1 represents the minimum angle of deflection
in the Coulomb integral, Leach & Petrosian, 1981).

Assuming an isotropic pitch-angle distribution with〈
sin2 α

〉
= 2/3b (where α is the pitch-angle), comparison with

Equation 2 of Paper I shows that the ratio of the Coulomb to
gyro-synchrotron cooling times te is given by

tc
te

≈ 2.2 × 103 (γ2 – 1)βB2

ne
, (2)

where B is the magnetic field strength. Both B and ne are taken
to be in CGS units.

2.2 Cooling in the dense CM layer
To proceed, we need to specify a model for the density distri-
bution of thermal electrons. For CMs of hot stars, the strongest
collisional cooling in the extended CM should be in the dense,
compressed layer near the tops of magnetic loops. For the

bThe averaging is performed over the solid angle dΩ = sinθdθdϕ. In
this context, θ ≡ α, where α is the pitch angle.
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Figure 1. For our assumed model of a centrifugal magnetosphere (CM) lim-
ited by centrifugal breakout (CBO), the color plot shows the log of electron
density normalized to its maximum value in the equator at the Kepler ra-
dius, which for this model with critical rotation fraction W = 1/2, occurs at
RK /R = W–2/3 = 1.59 (denoted here by the white circle). The yellow contours
show magnetic field lines extending to an outer radius r = 12R, with spacing
set to follow the field strength.

simple axisymmetric case of a rotationally aligned dipole field,
the CBO analysis by Owocki et al. (2020, see their Equation
7) provides a scaling for the radial variation of mass column
density in this CM layer. Through the mean mass per electron
µe = 1.16mp, where mp is the mass of a proton, this can be
used to derive an associated electron column density of this
thin, dense CM layer,

Ne ≈ 0.3
B2

K
4πµegK

(
ra
RK

)–p
(3)

≈ 4.85 × 1022cm–2 B2
kG
g4

(
RK
R

)–4( ra
RK

)–5
, (4)

where BKand gK are the magnetic field strength and stellar
gravity at the Kepler radius RK, and the power index p allows
for generalizations from the original p = 6 assumed in Equation
7 of Owocki et al. (2020); ra is the apex radius of the magnetic
field loop under consideration.

Following Berry et al. (2022) and ud-Doula et al. (2023),
the latter equality instead takes p = 5, and provides numerical
scalings in terms of the scaled surface gravity g4 ≡ g∗/(104 cm/s2),
and the polar surface field in kG, BkG ≡ Bp∗/kG. For a
star with critical rotation fraction W at its equatorial surface,
RK/R = W–2/3.

For our assumed standard model with W = 1/2 (and thus
RK = 1.59R), Figure 1 illustrates the spatial variation of elec-
tron density to an outer radius r = 12 R, with yellow curves
showing dipole field lines.

For high-energy electrons with speed v along a path s
through this CM layer at the loop apex, application of Equation
(1) implies that the fractional loss of energy is set by the collision
depth,

τc =
∫

ds
v tc

=
Ne4πr2o lnΛ

β2(γ – 1)
(5)

≈ 0.96
B2

kG
g4β2(γ – 1)

(2W)8/3
(

ra
RK

)–5
. (6)
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For each pass through the CM layer, the fractional energy loss
is 1 – e–τc .

2.3 Reduction of gyro-emission
Let us next consider how such cooling from Coulomb collision
competes with the gyro-cooling over a given mirror cycle.
Equation 11 of Paper I defined a constant k to characterise the
energy loss to gyro-cooling during each mirror cycle. Noting
that the Thomson cross section σT = (8/3)πr2o and casting this
in terms of these Kepler-radius parameter scalings, we have

k =
4B2

KRKr2o
3mec2β0

(
ra
RK

)–5
(7)

= 0.0032
B2

kGR12

β0
(2W)10/3

(
ra
RK

)–5
, (8)

where R12 ≡ R/(1012cm) and β0 ≡ v0/c.
Comparison of Equation (8) with (5) shows that, quite

remarkably, both gyro-cooling along magnetic loops and
Coulomb cooling in the CM layer have the same dependence
on the magnitude and radial variation of magnetic field, im-
plying then that their ratio is a global parameter that is fully
independent of the field,

k
τc

≈ Ck (β2/β0)(γ – 1) (2W)2/3 M/R (9)

where M/R is the star’s ratio of mass to radius in solar units.
Combining (3), (5) and (7), we find the coefficient Ck has a
very small value, set by the scaling

Ck ≡ 2.8
lnΛ

GM⊙
R⊙c2

µe
me

≈ 6.3 × 10–4 , (10)

where the latter evaluation again uses lnΛ = 20 and µe =
1.16mp.

For typical scaled parameters of order unity, equations (9
and (10) indicate that collisional cooling should dominate over
gyro-cooling, at least for electrons with large pitch angle that
mirror near the loop apex.

However, for lower pitch angles that mirror closer to the
loop footpoints, where the much stronger field implies a much
stronger gyro-emission, quantifying the net reduction requires
integration over the full loop, as discussed next.

3. Analytic comparison of loss rates
Building upon the Paper I analysis of pure gyro-cooling of
energetic electrons introduced near the loop tops of closed
dipole field lines, let us now add the competing energy loss
from collisional cooling within a dense CM layer near the loop
apex. For potentially relativistic electrons, the relevant time
evolution for energy e, magnetic moment p and co-latitude
cosine µ are given by equations (A5), (A6), and (A3) of Paper I,
with the energy loss now supplemented by the collision cooling
rate that we now derive.

3.1 Energy loss rate from Coulomb cooling
Using Equation (1), the rate of energy loss from Coulomb
collisions is

dE
dt

= –
E
tc

= –
mec2nec4πr2o lnΛ

β
. (11)

Using E = (γ–1)mec2 and e = (γ–1)/(γ0 –1), for initial Lorentz
factor γ0, we have

de
dt

= –
nec4πr2o lnΛ

β(γ0 – 1)
(12)

Scaling the time in units of the initial apex crossing time ta =
ra/v0, we find

ėc ≡ de
dt
ta = –

nec4πr2o lnΛ

β(γ0 – 1)
ra
v0

(13)

= –
τcβ(γ – 1)
β0(γ0 – 1)

e–(µ/µH)2

√
πµH

, (14)

where the second expression uses (5) and invokes the gaussian
density stratification of the CM layer over a scale height given
by (see Owocki & Cranmer, 2018, their Equation 4 )

H =
√

2cs/Ω√
3 – 2(RK/ra)3

, (15)

with Ω the stellar rotation frequency. For ra ≥ RK, the corre-
sponding scale in co-latitude µ is

µH ≡ H
ra

=
0.063

√
M/R

√
3W2 – 2(R/ra)3

R
ra

, (16)

where the latter evaluation assumes an isothermal sound speed
cs = 20 km/s. For standard parameters 2W = M/R = 1, we
find µH = 0.026 for ra = 3R and µH = 0.012 for ra = 6R.

Finally, using (9) to eliminate τc in favor of the gyro-
cooling parameter k, we find

ėc = –
1600 k

β(γ0 – 1)(2W)2/3M/R
e–(µ/µH)2

√
πµH

. (17)

3.2 Quantitive scaling of collisional cooling vs. gyro-cooling
By comparison, Equation (A5) of Paper I gives the relativistic
form for the competing gyro-cooling emission term. Noting
that the relativistic correction factor in curly brackets just
becomes (γ + 1)/2, their ratio can be characterized by〈

ėe
〉〈

ėc
〉 = 3.1×10–4β(γ0 –1)(γ+1)

〈
pb3
〉

(2W)2/3M/R , (18)

where the angle brackets denote the cumulative time average
(see Equation 21 below) from the apex µ = 0 to the mirror
point µ = µm.

In the common simple case that both energy losses are small
across a single mirror loop crossing, implying then that γ ≈ γ0
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and β ≈ β0, we can approximate the ratio of gyro-emission
to Coulomb loss as

δeg
δec

≈ 3.1 × 10–4β3
0γ

2
0

〈
pb3
〉

(2W)2/3M/R . (19)

Note that for non-relativistic electrons with β0 < 1, this ra-
tio declines as δeg/δec ∼ β3

0, implying strong dominance of
Coulomb cooling.

On the other hand, in the relativistic regime γ0 > 1 ,
the ratio increases as δeg/δec ∼ γ2

0, implying a much reduced
importance of Coulomb cooling for such relativistic electrons.

For electrons with large pitch angles, which mirror near
the loop top,

〈
pb3〉 remains of order unity, showing again that,

unless the electrons are highly relativistic γ0 ≫ 1, losses by
Coulomb collisions should dominate over gyro-cooling.

But this factor
〈
pb3〉 can become large for field-aligned

pitch angles, for which the mirror radius rm ≪ ra, implying an
increase field strength that scales as b ∼ 1/r3m, allowing a poten-
tially significant gyro-cooling even for the mildly relativistic
case, γ0 ≳ 1.

3.3 Pitch-angle dependence
To quantify this pitch-angle dependence, let us again assume
we can neglect the energy losses for a single mirror cycle. By
conservation of the scaled magnetic moment p = sin2 αa, the
apex-scaled field strength at the mirror point then just varies
as

bm ≡ Bm
Ba

=
1

sin2 αa
=

1
p

. (20)

Since an electron mirroring from the loop apex spends the
greatest time near its mirror radius, one might initially estimate
that

〈
pb3〉 ≈ b2

m ≈ (sinαa)–4 .
But using p = sin2 αa, the full average over the mirror time

tm can be readily computed from numerical integration over
a mirror cycle,

〈
pb3
〉

=
sin2 αa
tm

∫ tm

0
b(t)3 dt . (21)

In the upper panel of Figure 2, the black curve plots the re-
sulting

〈
pb3〉 vs. sinαa on a log-log scale. Comparison with

the red and blue dashed lines show that, instead of the above
simple estimate (sinα)–4, a much better fit to the full integral
(21) is given by 〈

pb3
〉
≈ 0.4(sinα)–3.3 . (22)

The vertical dotted lines in Figure 2 mark the minimum
apex pitch angle for the mirror radius rm to remain above the
stellar radius R for the labeled values of apex radius ra. The
black dots thus mark the maximum possible value of

〈
pb3〉 for

loops with these apex radii.
The black curve in the lower panel of Figure 2 then plots

this maximum vs. ra/R. Comparison with the red dashed line

Figure 2. Top: On a log-log scale, the black curve plots the mirror-cycle
time-average of

〈
pb3〉 computed from (21 vs. sine of apex pitch angle sinαa.

The red and blue dashed lines show that (sinα)–3.3 is a much better fit to〈
pb3〉 than the simple estimate (sinα)–4. The vertical dotted lines mark the

minimum apex pitch angle for the mirror radius rm to remain above the stellar
radius R for the labeled values of apex radius ra. The black dots thus mark
the maximum possible value of

〈
pb3〉 for loops with these apex radii. Bottom:

The black curve now shows this
〈
pb3〉

max plotted vs. ra/R. The red dashed
curve shows that this maximum is quite well fit by (ra/R)5.
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shows that, quite remarkably, the maximum has the approxi-
mate simple scalingc

〈
pb3
〉

max
≈
( ra
R

)5
. (23)

This indicates that in high-lying loops with large ratio of
apex to stellar radius ra/R, electrons with low pitch angle αa
that mirror just above the stellar radius can have

〈
pb3〉 that

approach the large maximum set by Equation (23); this can
thus compensate for the small numerical factor in Equation
(19).

For example, applying (23) into (19), we can solve for the
apex radius ratio that would give δeg/δec = 1,

( ra
R

)
1
≈ 5

(
β3

0γ
2
0 (2W)2/3M/R

)–1/5
. (24)

The upshot here is that for even mildly relativistic electrons
(β0 ≈ 0.76, γ0 ≈ 1.5) for which β3

0γ
2
0 ≈ 1, loops with an

apex radius near ra ≈ 5R can have gyro-cooling that competes
with collisional cooling, despite the small numerical value of
the factor (Ck/2) in (19).

4. Numerical computations
Building upon the above analytic analyses, let us now extend
the numerical computations of Paper I to include the effects of
Coulomb collisional cooling, as given by Equation (17). All
models presented assume a standard stellar parameter set with
2W = M/R = 1.

4.1 Single electron evolution
In analogy with Figure 1 of Paper I, Figure 3 here illustrates the
evolution of the energy e, magnetic moment p, and latitudinal
cosine µ for an electron introduced at loop apex radius ra with
initial pitch angle αa = 30o, and with an initially relativistic
Lorentz factor γ0 = 1.5. The left and right panels contrast
results for ra = 6R vs. ra = 10R. For the higher apex radius,
the much lower value of the magnetic field, and thus of the
gyro-cooling constant k, leads to many more mirror cycles
than for the lower apex radius ra = 6R.

One key difference from the case without collisional cool-
ing is that here the time evolution of the particle is governed
by the evolution of p, since once p becomes zero (i.e. the
particle’s velocity becomes parallel to the magnetic field), it
will no longer lose energy by radiation. Thus, any further loss
of energy occurs only by collisions, which do not produce
observable radio emission. For the initial pitch angle of 30◦,
collisional cooling always dominates over gyrocooling, which
is consistent with the analytical analysis in §3.3 with ⟨pb3⟩ ≈ 4
following Eq. 22.

For the case with ra = 10R, the top panel of Figure 4 com-
pares the numerical values ⟨pb3⟩ with the analytic predictions

cIf we approximate the mirror radius ratio rm/ra ≈ (sinαa)–2/3 and set
rm = R for the minimum pitch angle, application in (22) gives this scaling in
(23).

from Eq. 22. For the relatively large values of initial pitch
angle, the two agree remarkably well; but for the smaller val-
ues of initial pitch angles, the numerically obtained values are
higher than predicted. The reasons for this are illustrated in
the middle panel, which shows that the final to initial value
of p decreases sharply with lower initial pitch angle sinαa,
demonstrating then that the analytic assumption that p does
not change significantly over a mirror cycle is simply not valid
for such low initial pitch angles. The bottom panel shows that
this enhances electron penetration into the lower magneto-
sphere, thus increasing values of ⟨pb3⟩ from what’s predicted
from the analytic analysis.

Another important difference between the analytical and
numerical results is that, while the former shows the minimum
value of sinαa for ra = 10R to be ≈ 0.024, in the numerical
simulation, electrons with such low pitch angle completely
lose their magnetic moment p by the time they come out of
the dense plasma at the apex, and so no longer contribute to
radiation.

A first order estimate of the minimum sinαa for a given
value of k and ra can be obtained as follows. For electrons
close to the apex radius, gyrocooling is negligible compared
to collisional cooling. Thus, we can write:

dp
dt

≈ 1
b

(
de
dt

)
col

Changing the variable from t to µ, we get:

dp
dµ

≈ –
1
b

√
1 + 3µ2√
e – pb

1600k
β(γ0 – 1)

exp {–(µ/µH)2}√
πµH

≈ –
1600k

√e – pβ(γ0 – 1)
√
πµH

exp {–(µ/µH)2}

where we have set b = 1 and
√

1 + 3µ2 ≈ 1 for regions close
to the apex. Also, under the assumptions:

ṗ = ė (25)
⇒ p = p0 + ėdt ≈ p0 + e – 1 (26)

⇒ e – p ≈ 1 – p0 (27)

where p0 is the initial value of p. Thus, we can write,

p = p0 –
1600k

(γ0 – 1)
√

1 – p0

∫ µ

0

exp {–(µ/µH)2}
β
√
πµH

dµ

Here µ ≫ µH represents a value just outside the dense plasma
layer. Now p will be greater than zero, if

p0 >
1600k

(γ0 – 1)
√

1 – p0

∫ µ

0

exp {–(µ/µH)2}
β
√
πµH

dµ

≥ 1600k
β0(γ0 – 1)

√
1 – p0

∫ µ

0

exp {–(µ/µH)2}√
πµH

dµ

For µ ≫ µH, the integral equals 1/2. Also, since we are
considering the cases where the initial p0 is already small, we
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Figure 3. For a mildly relativistic electron with initial Lorentz factor γ0 = 1.5 and initial pitch angle αa = 30o, the variation of magnetic moment p, energy e, and
latitudinal cosine µ plotted vs. the dimensionless time t/ta = v0t/ra (left columns), latitude µ (middle columns), and magnetic moment p (right columns), for
apex radii ra = 6R (left) and ra = 10R (right). The weaker field strength and gyro-cooling in the right set leads to many more mirror cycles on the right vs. left.
But the net relative importance of collisional vs. gyro-synchrotron cooling across the CM layer – shown by the drops in e and p across µ = 0 – are the same in
the left vs. right cases.

can set 1 – p0 ≈ 1. Thus, we get:

p0 >
800k

β0(γ0 – 1)

| sinαa| >
(

800k
β0(γ0 – 1)

)1/2
(28)

For our numerical simulation, we have used B∗ = 3.8 kG,
R = 2R⊙ and W = 0.5 (parameters similar to CU Vir), which
gives | sinαa| > 0.043 for ra = 10R. The minimum value of
sinαa in Figure 4 is 0.055.

Because the actual minimum value of pitch angle is larger
than that considered in the analytical analysis, we also find that
the value of ⟨pb3⟩max is smaller than that predicted by Eq. 23,
which can also be seen from Figure 5. The consequence is that
the value of ra beyond which gyrocooling becomes significant
is larger than that estimated from Eq. 24. For example, the nu-
merical values can be reasonably approximated as 0.8× (ra/R)5,
in which case, the minimum ra will be 6.25R (instead of 5 R,
§3.3). Note, however, that beyond this radius, gyrocooling
will dominate over collisional cooling only for the nearly field
aligned electrons. Thus, for an isotropic distribution, colli-
sional cooling will still dominate unless we consider very high
values of the Lorentz factor. The effect of increasing the initial
electron energy (γ0) is demonstrated in Figure 6.

Finally, for the case of a gyrotropic distribution of elec-
trons injected at an apex radius of 10R, Figure 7 shows that,
except for the ultra-relativistic case shown in green, most of
the energy deposition occurs close to the magnetic poles.

4.2 Spatial distribution of emission from Gaussian deposi-
tion
To complete comparisons with Paper I, let us next consider a
model in which the initial energy deposition has a gaussian
spread in both field co-latitude µ =

√
1 – r/ra and apex radius

ra = r/(1–µ2), centred on a peak radius rp with radial dispersion
σr (cf. Equation 16 of Paper I),

eµ,ra = Cµ,ra exp

[
–

(ra – rp)2

2σ2r

]
exp

(
–
µ2

2σ2
µ

)
, (29)

where Cµ,ra is a normalization factor such that∫ ∞

R

∫ +µ∗

–µ∗
eµ,radµ dra = 1 ,

with µ∗ ≡
√

1 – R/ra.
Figure 8 shows the distribution of radiative energy loss

for mildly relativistic electrons (γ0 = 1.5) with σµ = 0.1 and
σr = 0.5 deposited around three different values of the apex
radius: 3R (left), 5R (middle) and 10R (right). The top panel
shows the input energy distribution, the middle panel shows
the resulting radiative cooling taking into account of colli-
sional cooling (this work) and the bottom panel shows the
corresponding distribution in the absence of thermal plasma
causing collisional cooling (Paper I). Note that the net emission
is scaled by the respective maxima, which differ significantly,
since, the total radiative energy lost is significantly smaller (by
≈ 2 orders of magnitude) when collision is considered for
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Figure 4. Top: Comparison between numerically computed values of ⟨pb3⟩
(as defined in §3.3) with the analytically predicted ones, plotted as a function
of initial pitch angle for a fixed apex radius of 10R. Middle: The ratio between
final value of p to its initial values over the time ranges considered for the
top panel. Bottom: Ratio between predicted mirroring cosine to the ‘actual’
(numerical) mirroring cosine.

Figure 5. Numerically computed ⟨pb3⟩max as a function of ra/R.

Figure 6. Time evolution of energy lost by radiation and collision for an
electron with initial pitch angle of 30◦, injected at the magnetic equator at
an apex radius of 10R for three different values of initial Lorentz factor γ0.
Note that the times here refer to the dimensionaless times (scaled by the
respective ta, §3.1).

Figure 7. Distribution of energy lost by radiation over co-latitude for a gy-
rotropic electron distributions with three different values of initial Lorentz
factor. The apex radius for all three cases is 10 R.
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Figure 8. Top: Spatial distribution of input energy (Equation 29) for three different values of mean ra . The mean Lorentz factor and the parameter σµ (see
§4.2) are fixed at 1.5 and 0.1 respectively. The Kepler radius is 1.59R. Middle: The corresponding distribution of energy lost via radiation. The white lines
represent contours of magnetic field strength B, spaced logarithmically by –0.1 dex from the stellar surface value at the magnetic equator. For comparison,
the corresponding distributions of radiative energy lost in the absence of collisional cooling are also shown in the bottom panels. Note that, since we are
interested in the distribution only, we have normalised the energy values by dividing them by the respective maxima (which vary significantly between the
cases with and without collisional cooling, but are comparable for the different values of mean ra).
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Figure 9. Top: Spatial distribution of input energy (Equation 29) for two values of σµ. Middle and bottom: The corresponding distribution of energy lost via
radiation for a mean Lorentz factor of 1.5 (middle row) and 11 (bottom row). Note that, since we are interested in the distribution only, we have normalised the
values by dividing them by the respective maximum values. The maxima of the output energy distributions are higher for the case of the higher Lorentz factor
by approximately an order of magnitude. For a fixed value of the Lorentz factor, more energy is lost via radiation when σµ is higher. The white lines again
represent contours of magnetic field strength B, spaced logarithmically by –0.1 dex from the stellar surface value at the magnetic equator.
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this mildly relativistic case (e.g. see the top panel of Figure
6). In terms of spatial distribution of emission, the key dif-
ference is that, in the absence of collisional cooling, radiative
cooling predominantly occurs close to the magnetic equator,
but when collisional cooling is taken into account, the high-
density plasma at the magnetic equator suppresses radiative loss,
especially for smaller values of mean ra, and the electrons lose
their energy via radiation predominantly close to the magnetic
poles only. Also, for the pure radiative cooling case (Paper I),
the spatial distribution remains qualitatively the same for the
different values of the mean deposition radius. However, in
the presence of collisional cooling, the radiative energy loss
close to the magnetic equator gradually increases with increas-
ing apex radius. This is because the thermal plasma density
falls sharply away from the Kepler radius (taken to be 1.59R,
Figure 1).

Finally, we examine the effect of varying the electron ener-
gies, as well as the distribution of the initial energy deposition.
For cases with ra = 10R and σr = 0.5R, the top row of Figure
9 shows the assumed energy deposition eµ,ra for cases with
σµ = 0.1 (left column) and σµ = 0.5 (right column). The
rows below show the resulting net emission (scaled here by
their respective maxima) for cases with moderately relativistic
(γ0 = 1.5; middle row) and highly relativistic (γ0 = 11; bottom
row) injection energies.

The results show that, rendered and scaled in this way,
the computed spatial distribution of emission is surprisingly
independent of the assumed parameter for deposition width
σµ and even deposition energy γ0. In all cases, the domi-
nant emission occurs near the loop footpoint, where the field
strength is strongest, leading to strong gyro-emission, with
also minimal collisional cooling, due to the large distance from
the dense CM region around the loop top. The more highly
relativistic case does also show a relatively greater level of such
scaled emission near the dense loop top, owing to the reduced
collisional cross section at for higher electron energies.

4.3 Emission distribution as a function of magnetic field
strength
The great distance of massive stars makes it difficult to resolve
directly the spatial distribution of radio emission from their
magnetospheres. But because the electron gyro-frequency
scales directly with magnetic field strength, characterising the
emission distribution with field strength provides an initial
basis for deriving observable gyro-emission spectra.

Let us thus define a differential emission luminosity dL ≡
ϵµ,radµdra associated with a spatial differential dra of magnetic
loops around a central apex ra, and a co-latitude differential
dµ along the loops. For a dipole field, we can readily identify
the associated differential in field strength db, scaled by the
loop strength at the central loop apex ra. For the same set
of parameters shown in Figure 9, Figure 10 now plots the
emission distributions dL/db versus the scaled field b. The
dashed curves show the corresponding input distributions for
σµ = 0.1 (red) and σµ = 0.5 (blue). The other associated
curves show results for the cases γ0 = 1.5 (solid) and γ0 = 11

(dot-dashed).
Reflecting the much reduced collisional loss of energy for

higher energy electrons, the curves for the strongly relativistic
case γ0 = 11 (dot-dashed curves) are about two orders of
magnitude higher than those for the mildly relativist case γ0 =
1.5 (solid curves).

But the similarly broad distribution of the emission for
the red versus blue curves, for spatially narrow (σµ = 0.1)
versus broad (σµ = 0.5) energy deposition along the loops,
again demonstrates the surprising insensitivity of the resulting
emission to assumptions about this spatial distribution of energy
deposition.

Incoherent radio emission from magnetic hot stars is inter-
preted as gyrosynchrotron emission (e.g. Drake et al., 1987)
for which the emission occurs at the harmonics of the electron
gyrofrequency that is proportional to the local magnetic field
strength. Because of the complexity of the emission spectrum
(for a fixed magnetic field) and the requirement to perform
detailed radiative transfer modeling, quantitative derivation
of observed spectra is beyond the scope of this paper, so will
be deferred future work. But the overall results here suggest
that such spectra should generally have a broad distribution in
frequency.

Figure 10. Distribution of radiated energy as a function of magnetic field
strength corresponding to the cases shown in Figure 9. The dashed lines rep-
resent the input energy distribution. The vertical line on the right represents
the polar magnetic field strength.

5. Discussion
5.1 Potential application to magnetic ultra-cool dwarfs
Similar to the magnetic hot stars, large-scale (dipolar), kG-
strength magnetic fields have also been observed in ultracool
dwarfs (UCDs), including brown dwarfs. Despite their much
lower surface temperature, their magnetospheric radio emis-
sion exhibits striking similarities with that of magnetic hot
stars. Both types of objects are known to be capable of produc-
ing periodic radio pulses by electron cyclotron maser emission
(Trigilio et al., 2000; Berger et al., 2001, etc.). Leto et al. (2021)
showed that an empirical relation connecting incoherent radio
luminosity and magnetospheric parameters derived for mag-
netic hot stars could also hold in the UCD regime, and even
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for Jupiter. Most recently, a brown dwarf’s magnetosphere
was resolved for the first time using Very Long Baseline Inter-
ferometry (VLBI, Kao et al., 2023; Climent et al., 2023). These
images revealed that the radio emission is highly extended and
has a double-lobed morphology distributed in the magnetic
equatorial plane similar to the radiation belt observed in so-
lar system planets. Kao et al. (2023) also inferred a Lorentz
factor of γ ∼ 30 and speculated that the CBO mechanism,
proposed for magnetic hot stars, might also be in play in the
magnetospheres of brown dwarfs.

Both the locations of the radio emitting sites (magnetic
equator) and the presence of highly relativistic electrons con-
tradict the scenario for magnetic hot stars. The properties of
incoherent radio emission from magnetic hot stars are consis-
tent with gyrosynchrotron suggesting that the non-thermal
electrons are mildly relativistic (Drake et al., 1987; Linsky et al.,
1992; Trigilio et al., 2004, etc.). The rotational modulation
of incoherent radio flux density and their circular polarisa-
tion suggest that the radio emitting cites are located along the
magnetic poles (Leone & Umana, 1993; Leto et al., 2021, etc.).
Thus, although the magnetospheres of hot stars are yet to be
resolved, the current data appear to suggest that the magne-
tospheres of hot stars and UCDs have certain fundamental
differences.

The formalism presented in this work provides a plausible
explanation for this difference. A key characteristic of hot
stars that separates them from the UCDs (and other cool stars)
is that the former drives a strong stellar wind, but the latter
cannot. A consequence could be that brown dwarfs may not
have sufficient thermal plasma in their magnetospheres to cause
collisional cooling of non-thermal electrons. In addition, the
high Lorentz factor (∼ 30) of the electrons will further sup-
press collisional cooling. From Figure 8, we find that in the
absence of collision, radiative cooling of electrons predomi-
nantly occurs around the magnetic equator. The introduction
of thermal plasma at the equator increases collisional cooling
there, so the regions close to the magnetic poles become the
primary sites of radiative energy loss. Thus, it is possible that
the relative importance of collisional cooling is responsible
for the difference in the spatial radio maps of magnetic hot
stars and magnetic UCDsd. The reason behind the difference
in the energetic electron population is, however, yet to be
understood.

5.2 VLBI imaging of magnetic hot stars
Recently, Klement et al. (2025) reported near-infrared spec-
trointerferometric observation of a magnetic hot star ρ Oph
A. These observations enabled them to detect changes in the
location of the emission regions as a function of stellar rota-
tional phases and verify that the locations are consistent with
those predicted from the model of Hα emission. Similarly, to
test existing notions about the sites of radio emission and the

dOn the other hand, if the acceleration of high-energy electrons in UCDs
is taken to be from CBO-induced magnetic reconnection, the density of
thermal plasma should follow the scalings assumed here, which are insensitive
to whatever wind or other mechanism that is populating the magnetosphere.

emission morphology, it is important to conduct VLBI experi-
ments at radio bands on magnetic hot stars. The best angular
resolution that can be obtained with the current generation
of VLBI instruments at a representative frequency of 8 GHz
is ∼ 1 mase. Following the strategy of Kao et al. (2023), the
angular extent of the magnetosphere of a star with a dipolar
magnetic field of polar surface strength BkG (in kG) can be
estimated using the following relation:

θν,s =
2R
d

(
BkG × 2.8s
νGHzx

)1/3
, (30)

where s is the harmonic number, d is the distance to the star,
and νGHz is the frequency of observation in GHz. BkG × 2.8
gives the electron gyrofrequency in GHz corresponding to a
magnetic field strength of BkG. The above formula assumes
that the radio emitting sites are located along the magnetic
poles and θν,s is the separation between the radio emitting sites
located in opposite magnetic hemispheres (which introduces
the factor of ‘2’). For gyrosynchrotron emission, 10 ≲ s ≲ 100
(Güdel, 2002).

Figure 11. Variation of the angular extent of the magnetosphere of the radio-
bright magnetic hot star HD 142184, as a function of frequency for different
harmonic numbers s, as predicted by Equation 30. The stellar and magnetic
parameters are taken from Shultz et al. (2019) and the distance is obtained
from the Gaia parallax measurement (Gaia Collaboration et al., 2021). The
vertical line marks the frequency of 8 GHz, and the horizontal line marks
θ = 1 mas.

The radio-bright magnetic hot star HD 142184 (also known
as HR 5907) has the highest incoherent radio luminosity in
the sample of Leto et al. (2021). It has a strong polar magnetic
field strength of BkG ≈ 9 (Shultz et al., 2019) and is located
at a moderate distance of 143 pc (Gaia Collaboration et al.,
2021). The angular size of its magnetosphere as a function of
frequency is shown in Figure 11 for s = 10 and s = 100, which
approximately mark the lower and upper limits of the angular
extents, respectively. Thus, in principle, the star’s magneto-
sphere can be resolved with existing VLBI instruments. Note,
however, that the star has a declination of ≈ –24◦, which is

ee.g. https://evlbi.org/capabilities
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not ideal for achieving the best performance from Northern
VLBI instruments like the European VLBI Network (EVN)
and the High Sensitivity Array (HSA).

6. Summary
This paper examines the effect of high density plasma on the
spatial distribution of radio emission produced by large-scale
stellar magnetospheres. This is an extension of the work pre-
sented in Paper I that provides a framework to calculate such
spatial distribution, albeit without taking into account colli-
sional loss. For simplicity, we have assumed an axisymmetric
dipolar case aligned to the rotation axis such that CBOs take
place close to the magnetic equatorial plane. This justifies the
assumed scenario of non-thermal electron deposition symmet-
rically around the magnetic equator.

The key result from Das & Owocki (2023) is that for a
low-energy electron distribution, and when the energy is
injected over a relatively small spatial scale, the emission occurs
primarily at the magnetic equatorial plane, but as the energy
deposition occurs over a larger spatial scale, the emission sites
get shifted towards the regions with stronger magnetic fields,
i.e., closer to the stellar surface. They also found that increasing
the energy of the electron distribution has only a modest effect
on the spatial distribution.

The addition of collision significantly changes the above
scenario. Since for the CBO model, the high density plasma
resides primarily around the Kepler radius and around the
magnetic equator, radiative loss is strongly suppressed close
to the magnetic equator and the emission sites are pushed
close to the magnetic poles. At the same time, radiative loss is
more efficient away from the Kepler radius. Thus, radiative
loss occurs along magnetic field lines with equatorial radii
significantly higher than the Kepler radius, and at sites close
to the magnetic poles. This is consistent with the currently
assumed picture of hot magnetic stars’ radio emission.

The main takeaways from this work are listed below:

1. Even though CBOs can occur all over the CM (around
the magnetic equator for an aligned rotator) depositing
non-thermal electrons, radio emission is more efficient
along magnetic field lines lying in the outer parts of the
CM away from the Kepler radius.

2. The emission sites are most likely located along the mag-
netic axis. Note that this was already suggested based on
the correlation observed between the rotational modula-
tion of incoherent radio emission as well as the circular
polarisation fraction with that of the longitudinal mag-
netic field (e.g. Linsky et al., 1992; Leone & Umana, 1993).
While our work only considers the case of aligned rotators,
for which no rotational modulation in either the longitu-
dinal magnetic field or the incoherent radio flux density is
expected, it provides an explanation for the inferred spatial
distribution of sites under the assumption that the effect
of a tilted magnetic pole is not significant in this context.
This, however, need not be true for highly misaligned ro-
tators (rotation and dipole axes are misaligned by ∼ 90◦) as
the corresponding thermal plasma density is predicted to

be significantly different from that for an aligned rotator
(Townsend & Owocki, 2005; ud-Doula et al., 2023).

3. The location of emission sites in hot stars’ magnetospheres,
thus appear to be different from that for magnetic ultra-
cool dwarfs, where the emission sites are believed to lie at
the magnetic equatorial plane (Kao et al., 2023; Climent
et al., 2023). However, this could be due to the fact that in
brown dwarf’s case, collisional cooling does not play any
significant role.

4. The effect of collisional cooling can be compensated for by
considering ultra-relativistic electrons (e.g. Lorentz factor
γ > 10). However, for mildly relativistic to relativistic
electrons (γ ∼ 1 – 10), collision plays a very strong role
in determining the spatial distribution of emission. Note
that electrons in hot stars’ magnetospheres are believed to
be mildly relativistic with γ ≳ 1.2 (Trigilio et al., 2004),
so that one cannot ignore the role of collisional cooling.
Interestingly, for brown dwarfs, a recent study has sug-
gested the presence of relativistic electrons with γ ∼ 30
(Kao et al., 2023).

5. The emission distribution is only slightly sensitive to the
distribution of energy deposition along the co-latitude axis.

Both in Paper I and this work, it is assumed that the initial
non-thermal electrons have a gyrotropic distribution. This is
essentially a simplifying assumption, the actual parent electron
distribution can have pitch angle anisotropy ingrained dur-
ing the magnetic reconnection process (e.g. Comisso & Jiang,
2023). A more field aligned distribution will lead to enhanced
emission closer to the stellar surface compared to that at the
apex radius.

While the current framework only provides a qualitative
understanding of the spatial distribution, the results will allow
us to obtain insights about the energy deposition by CBOs if
the spatial distribution of emission can be actually observed.
As outlined in §5.2, the magnetic hot stars can have angular
extents that are, in principle, resolvable with existing VLBI
instruments. The growing number of radio-bright magnetic
hot stars in recent times (Driessen et al., 2024, Das et al. under
review, etc.) should further enhance the feasibility of these
experiments. The ultimate goal will be to obtain rotational
phase resolved spatial radio maps spanning a wide frequency
range. This will allow testing not only the relative importance
of collisional cooling, but also the current notions about mag-
netospheres of hot stars and their similarities (differences) with
those of brown dwarfs.
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