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Non-tangential Maximal Function
Characterizations of Hardy Spaces
Associated with Degenerate Elliptic
Operators

Jungiang Zhang, Jun Cao, Renjin Jiang, and Dachun Yang

Abstract. Let w be either in the Muckenhoupt class of A, (R") weights or in the class of QC(R")
weights, and let L, := —w ™! div(AV ) be the degenerate elliptic operator on the Euclidean space R”,
n > 2. In this article, the authors establish the non-tangential maximal function characterization of
the Hardy space H{W (R™) associated with Ly, for p € (0,1],and when p € (-25,1]andw € Agy (R")

with go € [1, @ ), the authors prove that the associated Riesz transform VL;VI/ ? is bounded from

HIL)W (R™) to the weighted classical Hardy space HE, (R").

1 Introduction

Let w be a nonnegative weight function such that w is either in the Muckenhoupt class
of A,(IR™) weights or in the class of QC(R") weights with n > 2. Let Hy(w, R") be
the Sobolev space, which is defined to be the closure of C°(R") with respect to the
norm

iz = [ [FGP + 197G w(ydx}

Forall f, g € Hy(w,R"), the sesquilinear form a is defined by setting

) a(fg) = [ (ADVS(x)- Tg(x)dx,

where A := (A;j(x))7 ;_, is a matrix of complex-valued measurable functions on R”
satistying the degenerate elliptic condition; namely, there exist constants 0 < 1 < A <
oo such that for all £ and 4 € C*,

(1.2) [{AS )| < Aw(x)|¢][nl
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and

(1.3) R(AE, &) > Aw(x)[¢P,

here and hereafter, Rz for any z € C denotes the real part of z. Then the associated
degenerate elliptic operator L,, is defined by setting

(1.4) Lyf = —% div(AVf),

for all f € Hy(w,R™). This is interpreted in the usual weak sense via the sesquilinear
form; namely, for all f, g € Hy(w,R"),

15) a(f18) = (LufoQuaiwzny = [ Luf (0030w (x) dx.

From its form, it is easy to see that the degenerate elliptic operator L,,, with the de-
generacy controlled by the weight w, is a generalization of the usual uniformly elliptic
operator. One motivation to study the degenerate elliptic operator L,, comes from the
fact that, for some quasi-conformal mapping f and nonnegative harmonic function
u defined in the range of f, u o f satisfies a weighted degenerate elliptic equation with
the weight w := |f’|'"#, where |f’| denotes the absolute value of the determinant of
the Jacobian matrix f’ of f (see [21] for more details on this fact).

In recent years, the study of the degenerate elliptic operators and their associated
equations has attracted considerable attention (see, for example, [8-10, 21, 29] and,
especially, some recent articles by Cruz-Uribe and Rios [12-14]). We point out that
in the study of degenerate elliptic operators it is natural to assume that the weights w
are in the Muckenhoupt class of A,(IR") weights or in the class of QC(R") weights,
since the weighted Sobolev embedding theorems and the Poincaré inequalities hold
true in these cases.

Let L,, be a degenerate elliptic operator as in (1.4) with w either in the Mucken-
houpt class of A,(R") weights or in the class of QC(R") weights (see Subsection
2.1 for their exact definitions). The main purpose of this article is to complete the
real-variable theory of the weighted Hardy space associated with L,,.

It is well known that the theory of classical real Hardy spaces H? (R"), introduced
by Stein and Weiss [37] in the early 1960s and systematically developed by Fefferman
and Stein [22], is a suitable substitute of the Lebesgue space L? (R"), for p € (0,1], and

plays important roles in various fields of analysis and partial differential equations.
Notice that H? (R") is essentially associated with the Laplace operator A = 3%, a%;
see, for instance, [20,25,28].

The motivation to study the Hardy spaces associated with different operators (for
example, divergence form elliptic operators — div(AV) and Schrédinger operators
—A + V) comes from characterizing the boundedness of the associated Riesz trans-
forms and the regularity of solutions of the associated equations; see, for example,
[2,6,17-20,25,27,28,31,38].

To state the main results of this article, we first introduce some definitions and
notation. Let w € A;(R") u QC(R"), L,, be as in (1.4) and f € L*(w,R"), where
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L*(w,R™) denotes the weighted Lebesgue space with the norm

lisomen = { [ 1fPwx)dx)

It is well known thatif w € A, (R")u QC(RR"), then L*(w, R") is a space of homoge-
nous type in the sense of Coifman and Weiss, since w(x) dx is a doubling measure.
In what follows, let R?*! := R" x (0, 00). For any f € L*(w,R") and x € R", the
square function S, ( f) associated with L,, is defined by setting

1/2
(16) SLW f)(x) [/] |t L, e_t Lw(f)(y)| (B(x t)) dt:| >

where, for all x € R", t € (0,00), & € (0, 00) and balls B(x, ),

w(B(x,t)) := fB(x,t)W()’) dy,

and

(1.7) Ty(x):= {(y, t) e RZH Hx -yl < (xt}

denotes the cone of aperture a with vertex x. In particular, if @ = 1, we write I'(x)
instead of T, (x).

Definition 1.1 Let p € (0,1], w € A,(R") u QC(R") and let L,, be the degenerate
elliptic operator as in (1.4) with the matrix A satisfying the degenerate elliptic condi-
tions (1.2) and (1.3). The Hardy space H{w (R™), associated with L,,, is defined as the
completion of the space

{f € 2w, R") + [S1, (/) |urwizny < 00}

with respect to the quasi-norm

(1.8) HfHH{W @) =[S, () | e G, r)-

Remark 1.2 (i) The definition of the above Hardy space H IL’W (R") uses the strat-
egy that we first restrict the work space to L?(w, R") and then extend the work space
via the quasi-norm (1.8) defined by the square function. This strategy was first intro-
duced by P. Auscher, X. T. Duong, and A. McIntosh in an unpublished manuscript (see
also [2]) and has proved to be a very useful method in the study on the real-variable
theory of function spaces associated with operators.

(ii) It is easy to see that in Definition 1.1 if w = 1, then H{w (R™) is the Hardy
space associated with the second order divergence form elliptic operator studied in
[27,28,31], and, moreover, if L,, = —A, then H fw (R™) is just the classical Hardy space
H?(R") of Fefferman and Stein [22].

(iii) In [12, 13], Cruz-Uribe and Rios proved that L,, is a sectorial operator in
L*(w,R") satisfying the so-called bounded H., functional calculus and the weighted
Davies-Gaffney estimates in L*(w, R™). Namely, there exist positive constants ¢ and
C such that for all closed subsets E, F c R” and f € L*(w,R") with supp f c E,

_ _ . LaER)?
(L9) le™™ ™ (Alr2wry <Ce 0 | fll2qwp)-
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Here and hereafter, for any measurable function g, define || g|| 12 (w,) = | g XE | 12(w,R7)-
These results, together with Remark 2.10, show that L,, is a special case of the opera-
tors that were considered in [4], where a part of the real-variable theory of Hardy-type
spaces associated with some abstract operators was established. Thus, by [4, Theorem
4.8], we know that H fw (R™) has a molecular characterization (see Section 3 for more
details on this characterization). However, the non-tangential maximal function char-
acterization of wa (R") is still missing and we will show that this non-tangential
maximal function characterization strongly depends on the special structure of the
operator L,,.

Now, motivated by Hofmann and Mayboroda [27], for any f € L*(w,R"), we
define the non-tangential maximal function Ny, ( f) associated with the heat semigroup
generated by L,, via setting

1/2
1 2
(L10)  Np(f)(x):= sup [ le”" B () (2)Pw(z)dz|
(y,t)el(x) w(B(y,1t)) JB(y.1)

for all x € R". Then the Hardy space H fw,TN;. (R™), associated with L,,, is defined as in
Definition 1.1 with Sy, replaced by the non-tangential maximal function Ny,.

The following theorem establishes the non-tangential maximal function charac-
terization of H I[jw (R™).

Theorem 1.3  Let p € (0,1], w € Ay(R") U QC(R") and let L, be the degenerate
elliptic operator as in (1.4) satisfying the degenerate elliptic conditions (1.2) and (1.3).
Then the weighted Hardy spaces H{w (R") and ng,N;, (R™) coincide with equivalent
quasi-norms.

We prove Theorem 1.3 borrowing some ideas from Hofmann and Mayboroda [27],
where the authors considered the case when w = 1and p = 1. More precisely, to prove
the inclusion

HY  (R")cH] (R"),
we show that, for all f € L*(w,R")n H} . (R")and p € (0,1],

8L, () o weny S I8Ly (Flleouny S INWCF) 10wy

(see Theorems 3.5 and 3.6), where S;_(f), S, (f) and Ny, (f) are defined, respec-
tively, as in (1.6), (3.1), and (1.10).
To prove the inclusion

H{w (R") c H{W)Nh (R™),

we use the weighted molecular characterization of H{w (R") (see Theorem 3.4 be-
low) to prove that, for each weighted molecule m, Nj,(m) is uniformly bounded in
LP(w,R") (see Theorem 3.7). The proof of Theorem 3.7 rests on the weighted off-
diagonal estimates on balls of the heat semigroup generated by —L,, (see Proposi-
tion 1.5).
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We first recall from [1] the following notion of weighted off-diagonal estimates on
balls. In what follows, for p € [1,00), the space L (w,R") denotes the set of all
locally p-integrable functions on the measure w(x) dx of R".

Definition 1.4 ([1]) Let p,q € [1,00] with p < g, w € Ao (R") and let {T;}4-¢ be
a family of sublinear operators. The family {T;} o is said to satisfy weighted LP-L1
off-diagonal estimates on balls, denoted by T; € O,,(LP-L1?), if there exist constants
01,6, € [0,00), and C,c¢ € (0,00) such that, for all ¢ € (0, 00) and all balls B :=
B(xp,rg) c R" with xg € R" and rp € (0, 00),and f € L? (w,R"),

loc

0 (g [N s}

1/p

<c[v(5:)] (i S rerm@ ),
and, for all j € N with j >3,

1
w(2/B) Ju;(B)

cca[x(Br)] " L [ ropw )

) | TNl w(x) dx)

and

(113) /I t(XU,(B)f)(x)|qW(x)dx} "

(B)
j 2rg\19: _ @) 1 1/p
j61 < TB -k~ p

<2 y( it )] e {f(m) oo FE)Pw(x)dx}

where U;(B) is as in (1.15), and for all s € (0, o),

(1.14) Y(s) := max{ s, %} .

The following weighted off-diagonal estimates on balls play a key role in proving
Theorem 3.7. In what follows, for any p € [1, o], we denote by p’ its conjugate expo-
nent, namely, 1/p +1/p’ = 1.

Proposition 1.5 Letl € Z,, w € A;(R") u QC(R") and let L,, be the degenerate
elliptic operator satisfying the degenerate elliptic conditions (1.2) and (1.3). Then there
exists a number kg € (1, 00) such that, for all (2k¢)’ < p < q <2k and t € (0, o), the
family (tL,,) e”"t* € O,,(LP-L1). Moreover, when w € Ay(R"), ko = -

Recall that, in [12, Theorem 1.6], Cruz-Uribe and Rios established some weighted
Davies—Gaffney estimates for L,,, which are equivalent to (¢L,,)*e "t € O,, (L?-L?)
(see also [1]). Thus, Proposition 1.5 extends the corresponding result of Cruz-Uribe
and Rios [12]. Moreover, the proof of Proposition 1.5 is totally different from that
of [12, Theorem 1.6]. The proof of [12, Theorem 1.6] reduced the desired weighted
Davies-Gaffney estimates into the corresponding estimates of the resolvent, while the
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proof of Proposition 1.5 strongly depends on the local weighted Sobolev embedding
theorems in [21], for both A,(R") and QC(R") weights, and the weighted Davies-
Gaffney estimates for {\/tVe™"L*} ., (see Proposition 2.6), whose proof depends on
the exponential perturbation method from [15].

Finally, as an application of HY (R”) we establish the following boundedness of
the associated Riesz transforms VL 12,

Theorem 1.6 Let p € ('5,1], w € Ay (R") with qo € [1, @) and L,, be the
degenerate elliptic operator as in (1.4) satisfying the degenerate elliptic conditions (1.2)
and (1.3). Then the Riesz transform VL, is bounded from H{w (R™) to HE (R™).

Recall that the boundedness of operated-adapted Riesz transforms on the associ-
ated Hardy spaces was first established by Hofmann et al. [25] in the case p = 1. To
prove Theorem 1.6, we borrow some ideas from [3, 4, 18, 25, 28, 31, 32]. In particular,
we need some off-diagonal estimates of the following families of operators

{VL;VI/Z(I—e_tLW)M}t>o and {VL;I/Z(tLWe_”“W)M}DO

(see Proposition 4.1), whose proofs rest on the weighted off-diagonal estimates of
the gradient semigroup {v/tVe "t} (see Proposition 2.7). We point out that,
since we can only show that, for each (p,2, M, €)1, -molecule m (see Definition 3.1),
v,/ (m) is a classical weighted Hardy molecule (see Definition 4.6), which only has
the zero-order vanishing moment, this forces us to restrict the range of the weights to
a smaller Muckenhoupt weight class A4, (R"), with go € [1, w ), than A, (R").

This article is organized as follows. In Subsection 2.1, we first recall some notions
and results on Muckenhoupt weights and QC(R") weights; then, in Subsection 2.2,
we establish the weighted off-diagonal estimates of L,, and prove Proposition L.5. Sec-
tion 3 is devoted to the proof of Theorem 1.3, while Theorem 1.6 is proved in Section
4.

We end this section by making some conventions on notation. Throughout this
article, L,, always denotes a degenerate elliptic operator as in (1.4). We denote by C
a positive constant that is independent of the main parameters, but which may vary
from line to line. We also use C(, g, .. ) to denote a positive constant depending on the
parameters «, f3, ... The symbol f < g means that f < Cg. If f < gand g < f, then
we write f ~ g. For any measurable subset E of R", we denote by EC the set R"\E.
LetN:={1,2,...} and Z, := NuU {0}. For any ball B := B(xg,rp) c R" with x5 ¢ R"
and rg € (0,00), a € (0,00), and j € N, we let aB := B(xp, arg),

(1.15) Uo(B):=B and U;(B):=(2'B)~ (27'B).

2 Preliminaries

In this section, we first recall the definition of the Muckenhoupt weights, the QC(R")
weights, and some of their properties. Then we establish the weighted off-diagonal
estimates on balls of the operator L,,, which play a key role in the proofs of our main
results.
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2.1  Muckenhoupt Weights and QC(R") Weights

Let g € [1, 00). A nonnegative locally integrable function w on R" is said to belong to
the Muckenhoupt class Ay(IR"™) if there exists a positive constant C such that, for all

balls B c R”",
1 1 1 -1
ﬁwa(x) dx{ﬁfB[w(x)] a dx} <C

when g € (1, 00), and, when g =1,
1
Bl fB w(x)dx < Cesie}gnfw(x).

Wealsolet Ao (R") = Ugef1,00) Aq(R") and w(E) := [ w(x) dx for any measurable
set Ec R".
Let r € (1, 00]. A nonnegative locally integrable function w is said to belong to

the reverse Holder class RH,(R") if there exists a positive constant C such that, when
r € (1, 00), for all balls B c R",

{é/[ w(x)]" dx <C—/w(x)dx,

where we replace {\Tlfl [5[w ()] dx}V" by |w| L= () when r = 0o

To define the QC(R") weights, forn > 2,let f := (f1,..., f4):R" - R" beahome-
omorphism whose components { f; }?, have dlstrlbutlonal derivatives in L], (R").
Then f is called a quasi-conformal mappmg if there exists a positive constant k such

that, for almost every x € R”,

[ 215 wr] " sk,

i,j=

where
ofi .. Of
dx1 0x,
(2.) f'(x)=det| :
ofs 3 fs
o b

denotes the determinant of the Jacobian matrix of f. Given such an f, the locally
integrable function w(x) := |f'(x)|'"2/" (specifically, when n = 2, w(x) = 1) for
almost every x € R” is called a QC(R") weight, denoted by w € QC(R").

Recall that QC(R") c A, (R") (see [21, p. 107]).

We recall some properties of the Muckenhoupt classes and the reverse Holder
classes in the following two lemmas (see, for example, [16] for their proofs).

Lemma 2.1
(i) Ifl1<p<q<oo, then Ay(R") c Ay(R") c Ag(R™).
(11) Aoo(Rn) = Upe[l,oo) Ap(Rn) = Ure(l,oo] RHr(Rn)

Lemma 2.2 Letq € [1,00) and r € (1, 00]. If a nonnegative measurable function
w e Ag(R") nRH,(R"), then there exists a constant C € (1, oo) such that, for all balls
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B c R" and any measurable subset E of B,

S |EINE  w(E) El\ %
C (ﬁ) s%sc(m) .

2.2 Weighted Off-diagonal Estimates for L,

In this subsection, we establish some weighted off-diagonal estimates for L,,. To this
end, by using the method of Davies [15], we need to introduce a twist sesquilinear form
of a in (1.1) under exponential perturbation. More precisely, let £(R") be the set of all
bounded real-valued functions ¢ € C*°(R") such that, for all multi-indices « € (Z, )"
and|a| = 1, [0% | (rn) < 1. Theset E(R™) of functions plays an important role when
we consider the distance between two closed sets in R”.

Let E and F be two disjoint closed subsets of R”. Let d(E, F) be the Euclidean
distance between E and F, namely,

d(E,F):=inf{|x —y|: x € E, y € F}.
Define
d(E,F):= sup [inf{qS(x)—qS(y):er,yeF}].
pe&(R")

The following result implies that d(E, F) and d(E, F) are comparable. Notice that
Davies [15, Lemma 4] proved a similar result, in a different way, by requiring the sets E
and F to be compact and convex. Lemma 2.3 is more general, and its proof is simpler
than that of [15, Lemma 4].

Lemma 2.3  There exists a positive constant C such that, for any two disjoint closed
subsets {E, F} of R",

(2.2) ég(E,F) <d(E,F) < Cd(E,F).

Proof Let ¢ € E(R"). The fact that [0%¢| e (rny < 1forall @ € (Z,)" and |af = 1
implies that, forall x € E and y € F,

lp(x) = d(W)| S |x - yl,

which further yields d(E, F) < d(E, F).

Let us prove the second inequality of (2.2). If d(E,F) = 0, then the required
inequality is obvious. Suppose now that d(E,F) > 0. Let ¢ € CZ(R") satisfy
supp ¢ c B(0,1) and [, ¢(x) dx =1. Let

Fi{xeR": d(xE) < id(E,F)}.
For e := 1d(E, F) and ¢ () := € "¢(=), let
€
V= ——Xp * Pes

Co)
where C(g) == [z [V@(x)|dx > 0. The choice of ¢ implies that y € E(R").
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Moreover, for all x € E, by the definition of E, we know that B(x, 1d(E,F)) c E.
Thus, for all x € E and y € F, it holds true that

e"¢( x—z) dz = ;d(E,F),

1
xX)— =y(x)=——d(E,F =
V) =) =y(x) = go ~d(EF) . o)

B(x,3d(E,F))

which implies the second inequality of (2.2). This completes the proof of Lemma 2.3.
|

Now, for v € R, := (0, 00) and ¢ € E(R"), let
(2.3) Ly = e"?L,e"?.

Forall f, g € Hy(w,R"), the twist sesquilinear form a, 4 is defined by setting

ey au(f9)= [ (ARTETNE) V() dx,
Then, by the definition of L,,, we know that
(2.5) av,¢(f’g) = (LV,¢(f)’g) L2(w,R")"

Namely, L, 4 is the operator associated with a, 4. Let also {e"Lv¢} .0 be the heat
semigroup generated by L, 4.

Notice that conditions (1.2) and (1.3) imply that L,, is of type w := arctan(A/A) €
[0, 2); see [33] (also [12, p. 293]) for details. Hence, for z € £(7/2 — w), where

(/2 -w):={zeC~{0}:|argz| < n/2 - w},
it holds true that
1
2.6 —zLw :—fzflL‘l dé,
o) ()= s [ E L) () de
where 0 € (/2 + |arg(z)|, 7 — w) and
[:=y"uy := {ze@:z:rie,re (0,00)} u{ze(C:z:r_ie,re (0,00)}.

This, together with (2.3), implies that, for all ¢ € (0, c0),
(2.7) e e = g9 thu Ve

We have the following perturbation estimate.

Lemma 2.4 Letw € A;(R")uQC(R") and let L,, be the degenerate elliptic operator
satisfying the degenerate elliptic conditions (1.2) and (1.3). Then there exists a positive
constant C such that, for allv e Ry, ¢ € E(R"), and f € Hy(w,R"),

08 gl )= ol NI < R0l )} + O By
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Proof Let f € Hy(w,R"). By (2.4) and an elementary calculation, we see that
@) a(fi )= [ (A@FETI)) - V() d

—v [ (A S(x)79(x)) - T (x) dx

v [ (ADVS(x) - F)T(x) dx

+ [ (AVI()- T dx,

which, together with (1.1), implies that
(2.10)

avs (£ D) =aln NI <[ [ (AW SE)T(x)) - T TH(x) da
# v [ (A FV9()) - T (x) da
; ‘V/Rn(A(x)Vf(x)) TV da| =1+ 1y + 1.

For I}, by the condition that ¢ € E(R") and the degenerate elliptic condition (1.2),
we know that

1 Lsv? [ 1FGOPw) dx ~ VL f ey

For I,, using again the condition that ¢ € E(R"), the degenerate elliptic conditions
(1.2) and (1.3), and the Young inequality with €, we see that

eR) Lsv [ &IV () dx
se [ 9fCoPwedxs [ 1w x
sen( [ (AT TN dx) + 2|l
<R a1} + s

Similar to (2.12), we also have

2
v
I3 S ei)%{ a(ﬂf)} + Zg”f“%l(w,w)’

which, combined with (2.9)-(2.12), and a suitable choice of ¢, implies that (2.8) holds
true. This finishes the proof of Lemma 2.4. ]

We also need the following technical lemma. Recall that for all f, g € L*(w,R"),
Qe = [, F()g@w(x) dx.

Lemma 2.5 Letw e A;(R")UQC(R"), k € Z, and let L,, be the degenerate elliptic
operator satisfying the degenerate elliptic conditions (1.2) and (1.3). Then there exist
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positive constants Coy and Cy such that for all v € R,, ¢ € E(R"), t € (0,00), and
feL*(w,R"),

(2.13) H(tLv,zp)ke_tLV"p (O 2wy < Coe“” t”fHLZ(W,R")'

Proof We first prove Lemma 2.5 in the case k = 0. Let f € L*(w,R") and f; :=
e 'L (f). Using (2.5), Lemma 2.4, and the degenerate elliptic condition (1.3), we
conclude that for all v e Ry, ¢ € E(R"), t € (0, 0), and f € L*(w,R"),

d d, _ -
il gy = (750 () e ()12

= { (Ly,g (ft)s f) + (fes Lug ( ft))} :—Zm{avrp(ft’ft)}
= 2R%{[a¢(fi. fr) —a(fo- f)1} —2R{a(fi. i) }
<2lay,¢(fi 1) — a(fe, fo)| - 2R{a(fo. f1) }

3
< CV| fllzqwrny = 3R a(fis )} S V1AL uinys

where C is as in Lemma 2.4. By solving the above differential inequality, we see that
there exists a positive constant C such that, forall v e R, ¢ € E(R"), t € (0, c0), and
feL*(w,R"),

(214) [ () ez ny < € I f a2 guenys

which finishes the proof of Lemma 2.5 in the case k = 0.

Next we prove Lemma 2.5in the case k € N. For0 < A < A < oo asin (1.2) and (1.3),
let 7 := arctan \/27/\2 From [12, Lemma 3.3], we deduce that forall € (-7, 7), e’ A
also satisfies the degenerate elliptic conditions (1.2) and (1.3) with A and A therein
replaced by two other positive constants 1(9) and A (), depending on 6, respectively.
Let Lg := e'%L,, be the degenerate elliptic operator associated with the matrix e% A.

Let 7:= min{7/2 — arctan(A/A), 7}. By (2.3) and (2.6), we see that for all z = re*?
with r € (0,00) and 6 € (-7,7), and ¢ € E(R"), (Lg)v,p = €'°L, 4 and

e_ZLM’ _ ewpe—sz(e—vgb) _ evqﬁe—rLg(e—v(p) _ e—f(LB)v,vs'

Similar to the proof of (2.14) with L,, replaced by Ly, we see that there exists a positive
constant C, := C/cos T, where C is as in (2.14), such that, for all v € R, ¢ € E(R"),
z=re'% with r € (0,00) and 6 € (-7,7), and f € L?(w,R"),

_ 2 _ .0 2
(2.15) He z(Ly,p+Cav )(f) HLZ(W,]R") _ He T(La)v,¢(e re'’Cyv f)”LZ(w,]R")

=2 2
< er e rcos 6C,v HfHLZ(w,R") < Hf”Lz(w,]R")-

Since e *Lv is holomorphic with respect to z € X(7) (see [34, Theorem 1.53] or [12,

p-293]), it is easy to show that e~ # Lyt C2¥") g also holomorphic with respect to z €
3(7). For all k € N, by the Cauchy formula, we see that, forall v € R,, ¢ € E(R") and
t e (0,00),

2 2 d(
L Cov? ) ket Tnet ) _ (4 kk,if ~{(Lyp+Cav?) ’
[{(Lg + Cv)] e = (D Gmtl=nt (- t)ks
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where the positive constant # is small enough, and the integral does not depend on

1 (the choice 7 = 7 sin ; insures that {{ : |{ - t| < #t} is contained in £(7)). From

this and (2.15), we deduce that, for any k € N, there exists a positive constant C),
depending on k, such that forall v e R, ¢ € E(R"), t € (0,00), and f € L*(w,R"),

(2.16) H [t(Lv,gb + szz)]ke—t(LMwsz )(f) ||L2(W’]Rn) < C(k) ||fHL2(W’]Rn).

To show the conclusion of Lemma 2.5 in the case k € N, we apply an induction
argument. Assume that, for every j € {0, ..., k — 1}, there exists a positive constant
C(j)> depending on j, such that for all v € Ry, ¢ € E(R"), t € (0,00), and f €
L*(w,R"™),

(217) [(tLv.g) e ¢ () 120wirny S €SOV | fllr2(,rn)-
Observe that for all k € N,

(Lug + Cav?) e o (f)

-5 (k.)<Lv,¢>f<czv2>"*fe*“v'«>(f) + (Lug)ee B (f),
j=0\J

where (’; ) denotes the binomial coefficients. From this, (2.16), and (2.17), it follows

that, for any k € N, there exists a positive constant M) > max{Cy, C(g), . - .> C(k-1) }
depending on k, such that forall v e R, ¢ € E(R"), t € (0,00), and f € L*(w,R"),

[(Lv,g) e ¢ (£) 12 (wmm)
k-1 . .
S ” (Lv’¢ + C2v2)ke—tLv,¢ (f) ”LZ(W,]R") + ZO H (Lv,(p)-’(cz’vz)k_]e_tlzv)(b (f) HLZ(W,R")
j=
< ” (Lv,¢ + szz)ke_t(Lv‘¢+C”2)(ecwltf) HLZ(W,]R")

k-1 . .
+ ZO(szz)k_J [(Lv.s) e (2w,
-

1 2 k . 2 1 2
S tfk[ec” 4 Zo(vzt)k 7OV | fll 12w mm) S tfkeM“‘” A1z ey -
j=
Thus, (2.13) also holds true for k. This, together with (2.14), finishes the proof of
Lemma 2.5. |

Since the semigroup {e v}, satisfies the weighted Davies-Gaffney estimate
(1.9) and e ?L* is holomorphic in 2(7/2 — w), where w = arctan(A/1) (see [12,
p- 293]), by an argument similar to the proof of [25, Proposition 3.1], we obtain the
following proposition, the details being omitted.

Proposition 2.6 Let w € Ay(R") u QC(R") and let L, be the degenerate ellip-
tic operator satisfying (1.2) and (1.3). Then, for every k € Z,, the family of operators,
{(tL,)*e "} o, satisfies the weighted Davies-Gaffney estimates; namely, there exist
positive constants ¢ and C such that, for all t € (0, 00), closed subsets E,F ¢ R" and
f € L*(w,R") with supp f c E,

[d(E,P)]?

[(tLy)*eEn 2w,y < Ce™ 0 | fllr2w,E)-

https://doi.org/10.4153/CJM-2014-038-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-038-1

Non-tangential Maximal Function Characterizations 1173
We now turn to the weighted gradient estimates of { (tL,,)*e *t*} .o with k € Z,.

Proposition 2.7 Letw € A,(R") u QC(R") and let L,, be the degenerate elliptic
operator satisfying (1.2) and (1.3). Then, for every k € Z,, there exist positive constants
Cand C such that forall t € (0, 00), closed sets E, F c R", and f € L*(w, R") supported
inE,

[d(E,F)]?

IVEv(eLw ) e ™ () 2gury < €™ I fliwp)-

Proof Letk eZ,,veR,, and ¢ € E(R"). To prove Proposition 2.7, we first show
that there exist positive constants M and M, such that for all v € R,, ¢ ¢ E(R"),
te(0,00),and f € L2(w,R"),

@18) L VAL TF e (€ ) ey € MM sy
Indeed, from the fact that
"V ([tLy] e (e ) = (V ~ vV ) (e (tLy) e (70 f)),
it follows that for all v € R, ¢ € E(R"), t € (0,00), and f € L*(w,R"),
e V/ET ([tLuT e (e ) |13 oty
< [Vev(e *[tLu] e (€7 1)) 12 (e
+ [vVte"? (tL,) e (€7 )V 2w mry =t 1 + o

By the definition of ¢, (2.3), (2.7), and Lemma 2.5, it is easy to see that forall v e R,
¢pe&(R™), te(0,00)and f e L*(w,R"),

(2.19) J2 S W (tLy,g) e ()] 12w ,rm)

2 2
< v\/;eCw tHfHLZ(W,R") < e(ClH)v tHfHLZ(W,R")’

where the positive constant C; is as in Lemma 2.5.
On the other hand, using (2.3), (2.7), and the degenerate elliptic condition (1.3),
we see that, for all v e Ry, ¢ € E(R™), t € (0,00),and f € L?(w,R"),

@m)Owsﬁmhadwﬁfmﬂﬁmdwﬁfmﬂﬁﬂ

< TR{a((tLye) e 1 (1), (1Log) e 04 ()
= g ((tL0,0) 04 (f), (1L, ) €04 (f)) }
# 1R (tLug) e (1), (1) e ()} =Ko + Ko,

where the positive constant A is as in (1.3).
By Lemmas 2.4 and 2.5, we see that for all v € R, ¢ € E(R"), t € (0,00), and
feL*(w,R"),

K < ﬁm{a((tu,qs)"e““"”(f), (tLyg) e ()}

Cﬁ L k —tLy,¢ 2
+ C (L) e ()22 oy
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t _ _
< ﬁ%{ a((tLy,g) e ™0 (f), (tLyg) e ()}

2
vt 2
+ CTeZClV N2 ey

where the positive constants C and C; are, respectively, as in Lemmas 2.4 and 2.5.
From this and (2.20), we further deduce that for all v € R,, ¢ € E(R"), t € (0,00)
and f € L*(w,R"),

4 4
21)  (J1)*< acme“wz'n Flizuny + 3Kz ~ V2| 12y + Ko

From (2.5), the Holder inequality, and Lemma 2.5, we deduce that there exists
a positive constant C such that, forall v € Ry, ¢ € E(R"), t € (0,00), and f ¢
L?(w,R"),
(2.22) Ko § 1)Ly (tLu) e 2 (), (tLy,g) €4 () 12|
< (tLv,gb)kHe_tLv"’ Iz G memy | (”~v,¢)ke_tLv’qs 22 ()
~ .2
S e f 172 oy
Combining (2.21) and (2.22), there exists a constant M; > (max{2Cy, C,})/2 such
that forall v e R, ¢ € E(R"), t € (0,00), and f € L*(w,R"),
s [P 1207 4 O f sy § €M f g,
This, together with (2.19), implies that (2.18) holds true.

Take ¢ € E(R") satisfying ¢|r > 0 and ¢|g < — av(fr’j) , where € is some suitable

positive constant (see [15, p.151] for the existence of such a function). By this and
(2.18), we find that for all k € Z, t € (0, o), closed sets E, F c R", and f € L*(w, E)
supported in E,

IVEV((eLw) e ()22 wry
= e V1v((tLy) e (70" 1)) |12 (ury
< e Vv ((tLy) e (e e )12 w,ry

S eMOVZtHewaLZ(w,E) S eM"VZ'e*VE(li’:)

‘fHLz(w,E)a

where the positive constant My is as in (2.18). This, together with Lemma 2.3 and the
choice that v := (d(E, F))/(Cot) with Co > (1+ €)M, implies that there exists a
positive constant C such that, for all k € Z,, t € (0, o), closed sets E, F ¢ R" and any
f € L*(w,R") supported in E,

VIV ((tLy) et R
VeV ((tLyw) e™ ™ (f)) 12qw.r) S € D% | £ 2y

_laEn?
~e O HfHLZ(w,E)-

This finishes the proof of Proposition 2.7. ]

To show Proposition 1.5, we also need the following local weighted Sobolev em-
bedding theorems (see [21, Theorem (1.2) and Property 4, p.107], respectively).
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In what follows, for a subset E c R", C°(E) denotes the set of all C* functions
with compact support in E.

Theorem 2.8 ([21]) For any given p € (1,00) and w € A,(R"), there exist positive
constants ¢ and 8 such that for all balls B = B(xp,rg) of R" with xg € R" and rp €
(0,00), allu € C(B), and all numbers ko € R, satisfying1 < ko < -5 + 0,

Q. 23)

[my o Cr e as]

Theorem 2.9 ([21]) Let w € QC(R"). Then there exist positive constants ¢ and
ko € (1, 00) such that for all balls B = B(xp, rg) of R" with xg € R" and rp € (0, 00),
and allu € C°(B),

(2.24) [ﬁ/}gm(xﬂzkow(x)dx

1/(kop)

<cr3[ﬁfB|Vu(x)|Pw(x) dx]l/P

]1/(2k0) g CTB[ﬁ fB|Vu(x)|2W(x) dx] 1/2

We are now in a position to prove Proposition 1.5.

Proof of Proposition 1.5 We first prove that for all [ € Z,,
(tLy) e € 0, (L7 - L*%),

where the positive number kg e (1, 00) satisfies (2.23) with p = 2 and (2.24) (when
w € A, (R"), we choose ko = ;75

Given any ball B = B(xB,rB) of R” with xg € R” and rg € (0, 0), we define
H}(w, B) to be the closure of C2°(B) with respect to the norm

1/2
Fligeosy = {[IFCOP +19FC)P D) )
Take ¢ € CZ(2B) such that [V¢(x)| S 1/rp, supp¢ c 2B, ¢ = 1 on B, and for all
x € R", 0 < ¢(x) < L Then it is easy to show that forall / € Z, and f € L} (w,R"),
¢L(tLw)" e (x5)] € Hy(w,2B).

Since C°(2B) is dense in Hy(w, 2B), by the choice of ¢, Lemma 2.2, Theorems 2.8
and 2.9, Propositions 2.6 and 2.7 and a density argument, we know that for all [ € Z,,,
B= B(xB,rB) c R” with xg € R” and rp € (0,00), t € (0,00) and f € L% (w,R"),

[ 1L e GNP w(x) dx

loc

loc

1/(2ko)
(B) ]

]1/(2k0)

w(ZB)f |@(x) (tLw) e (xm./) () [Fow(x) dx

STB (23)[' ¢[(tLw) ‘L‘“()asf)])(x)lzw(x)dx]l/2

/ (L)' e (ea ) CPw(x) dx]

W(ZB)

+\/_ w(ZB) f Vv ((tLy) e (x51))(x)] W(x)dx]l/2
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<+ 2/, FPwx dx]”
SY(% me|f(x)|2w(x)dx] ,

where Y is as in (1.14). This shows that (1.11) holds true in the case where q = 2k, and
p=2.

Next, we prove (1.12) in the case where g = 2ko and p = 2. For all j € N and
j >3, let S;(B) := (27*'B) \ (2/°?B). Take 1; € C(S;(B)) satisfying that, for all
x € R", 0 < 5j(x) <1 |Vnj(x)| S 2” ,and #; = 1 on Uj(B). By the fact that
we A (R")UQC(R") c A (R") and Lemma 2.1(ii), we know that there exists some
r € (1, 00) such that w € RH,(R"). From the choice of #;, Lemma 2.2, Theorems 2.8,
and 2.9, Propositions 2.6 and 2.7, and a density argument, it follows that there exists
a positive constant ¢ such that foralll € Z,, j e Nn[3,00), B = B(xp,rp) c R" with

xp € R"and rp € (0,00), £ € (0,00),and f € Lloc(W:RH),
1 1 —tL 2k 1/(2ko)
W2y th w 0 d
[w(sz) U;(B) [(tLyy) e (xsf) () ow(x) x]

1/(2ko)
S [m fm 1) (L) e (s ) () PFow () dix | ¢

S [L (tLw) e (x5 ) (x)Pw(x) dx]l/z

w(2/+1B) Jainp
. 2jr3[ 1
Vi Lw(2/41B) Jaing

< (14 208) e

Vi

VAT (1) e o)) () o) ]

i @]

2 TB _ (Zj”B) 1/2
s 2%y e [|f(x)|2w(x) dx| ,
where 6, = =~ 1y and Y is as in (1.14). This implies that (1.12) in the case where g = 2k,

and p = 2 holds true.
Similarly, (1.13) in the case where g = 2k and p = 2 also holds true.
Thus, we conclude that there exists a number kg € (1, o) such that for all I € Z,,

(tLy) e " € 0, (L* - L**).

The remainder of the proof of Proposition 1.5 follows from the duality and the compo-
sition rule of the weighted off-diagonal estimates on balls (see [1, Comments (6), The-
orem 2.3(b)]), the details being omitted. This finishes the proof of Proposition 1.5. W

Remark 2.10 Recall thatin [4] Bui et al. establish an abstract theory of Hardy spaces
on the space (X, d, u) of homogenous type, associated with operators satisfying the
bounded H,, functional calculus and the off-diagonal estimates on balls. Proposition
1.5 shows that L,, satisfies the oft-diagonal estimates on balls when

(X, d, ) = (R% [, w(x) dox).
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Moreover, by [12, pp. 291-294], we know that L,, has a bounded H., functional cal-
culus in L?(w, R™). Therefore, L,, satisfies the assumptions of the operators in [4].

3 The Maximal Function Characterization of H{W (Rm)

In this section, we give the proof of Theorem 1.3. We begin by introducing some
notions and recalling some needed results from [4,27,32,35].

Definition 3.1 Letw € A;(R")u QC(R"), p € (0,1, M e N,and € € (0,00). A
function m € L?(w,R") is called a (p, 2, M, €)1, -molecule if m € R(LM) (the range
of LM) and there exists a ball B = B(xp, rg) c R” with xp € R” and r € (0, 00), such
that for every k € {0,1,..., M} and j € Z,, it holds true that

|G L)  (m) 12,3y < 27 [w(2B)]2 [w(B)] /7,
where U;(B) is as in (1.15).
Remark 3.2 We point out that by the weighted Poincaré inequality (see [21, p. 95
and p.110]), L,, is injective from D(L,,) c L*(w,R") to L*(w,R"), where D(L,,)

denotes the domain of L,,. Hence, L, makes sense.

Definition 3.3 Let p € (0,1] and f be a measurable function on R”. The formula
f =X Ajmj is called a molecular (p,2, M, €)1, -representation of f if {A;}7, € I?,
each m;isa (p,2, M,€), -molecule and the summation converges in L*(w,R"). Let

HP>M (R™) := {f e L*(w,R") : f has a molecular (p,2, M, €); -representation}.

L,,,mol

The molecular Hardy space Hfi’mol (R™) is defined as the completion of H‘L’iﬁﬂ (R™)
with respect to the quasi-norm

oo 1/p o
= | Y oS
”f”H‘L”;:ﬁol(R") . 1nf{ (El M]| ) S ng Ajmj} i
where the infimum is taken over all the molecular (p, 2, M, €),, -representations of f

as above.

Since L,, satisfies the assumptions of the operators in [4] (see Remark 2.10), we
have the following theorem, which is just a special case of [4, Theorem 4.8].

Theorem 3.4 ([4]) Letw € Ay(R") with q € [1,00) and p € (0,1]. Assume that
M e N with

M>%[%+%—niq] and se(ﬂ,oo).

Then HP>M (R") = H{w (w,R"™) with equivalent quasi-norms.

L, ,mol
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Let us now introduce an auxiliary square operator gﬁi ), which, when w(x) =1 is
just [27, (6.3)]. Let B € (0, 00). For any f € L*(w,R") and x € R", let

dty /2
3 8P = ff tve " br 2 i ,
(3) (Nx) = Ve DN Sy 1)
where I is as in (1.7) with & replaced by 8. We denote ggw) (f) simply by Sy, (f).
In the following subsections, we will prove the following theorems using this aux-
iliary operator.

Theorem 3.5 Letw € Ay(R") u QC(R"). Then, for all p € (0, c0), there exists a
positive constant C := C(y, ), depending on n and p, such that for all f € L*(w,R"),

182, () o ey < CHng () e w,rm)-

Theorem 3.6 Let w € Ay(R") u QC(R"). Then, for all p € (0,1], there exists a
positive constant C := C(y, ), depending on n and p, such that for all f € L*(w,R"),

(3.2) Hng () zewrry < CINK() o (Y-
Recall that QC(R") c Ao, (R™) (see [21, p.107]).

Theorem 3.7  Suppose w € A,(R") u QC(R"). Let q € [2,00) be such that w €
Ag(R™). Then for all p € (0,1], M € N satisfying M > %(1 -2)ande ¢ (%,oo),

it holds true that H>® MI(R") c HIL)W,N,,(W’R")' Moreover, there exists a positive

L, ,mo

constant C such that, for all f € HPPM (RM),

L,,,mol

ING )2,y < CHfHH{ﬂﬁol(Rn)-

Remark 3.8 In'Theorem 3.7, if w € A,(R"), then, by Lemma 2.1(i), we know that,
forall g € [2,00), w € Ag(R").

If w e QC(R"), then w € RH,/(,—2)(R"). Indeed, if n = 2, this is obviously true.
Now, we assume n > 2. Then for any quasi-conformal mapping f:R"” — R” and

x e R”, let
L¢(x) :=limsup M
f
yox ly - x|
From the definition of quasi-conformal mappings, we deduce that for almost every
x eR",
(33) [Lr ()] ~ 1 (o)l

where f'(x) is asin (2.1).
By the Gehring lemma (see [24, Lemma 4]), we know that for all balls B in R",

(|B|f[Lf(x)] dx) N| |fo(x)dx,
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which, together with (3.3) and the Holder inequality, implies that if w € QC(R"),

then
( IB| f ol )
dx

(7 fiwena) ™ [ [1rconas] ™
1 n-2 s -2
(151 J, [0 dx) (|B|[[<>]z )’

sﬁwa(x)dx,

namely, w € RH,,(,—2)(R"). By this and Lemma 2.1(ii), we see that w € A, (R") for
some g € [1,00).

AN

Our main Theorem 1.3 then follows directly from Theorems 3.5-3.7 as follows.

Proof of Theorem 1.3 Let w € A,(R") u QC(R") and p € (0,1]. For any g «
L*(w,R"), by Theorems 3.5 and 3.6, we see that

IS, (&) Izoqw.rny S INK() e w,m)-
Then it follows from a density argument that for all f € H? LN, (w,R"),
I8, (F)llzew,rry S INK(F) [ Lo (w.rys
which further implies that
(3.4) H} o, (w,R")cH} (w,R").
Next, we prove the converse of (3.4), namely, wa (w,R") c HlL)W,N;. (w,R"). By

Remark 3.8, we know that, for w € A,(R") u QC(RR"), there exists some q € [2, 00),
such that w € A4 (R"). Let

1 2
M>max{@(1—£), nq[q+ P ]} and ee(ﬂ,oo).
2ph 2 2 nq(2-p) nq P
From Theorems 3.4 and 3.7, we deduce that, for all f € wa (w,R"),
NG () zr oy S 1 g gmy = 1 g, oy

which implies H} (w,R") ¢ H] . (w,R"). This, together with (3.4), shows that
wa (w,R") and H fwaNh (w,R") coincide with equivalent quasi-norms, which com-
pletes the proof of Theorem 1.3. ]

In subsections 3.1, 3.2, and 3.3, we prove Theorems 3.5, 3.6, and 3.7, respectively,
and hence complete the proof of Theorem 1.3.

3.1 Proof of Theorem 3.5

For a € (0, 00) and a closed set F of R”, we set Ry (F) := Uyer Lo (x), where Ty (x)
for all x € F is as in (1.7). For simplicity, we often write R(F) instead of R;(F).
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Let F c R" be a closed set and O := FC. For any fixed y € (0,1), the set Fy of points
with global y-density with respect to F is defined by

. .. W(B(x,r)nF)
(3.5) F, .—{xER : Wzyforallre(o,oo)}.
It is easy to see that F c F and
(3.6) (E)C={xeR": M,(x0)(x)>1-7},

where M,, denotes the central weighted Hardy-Littlewood maximal operator; namely,
forany f € Ll (w,R") and x € R",

loc

1
M, x):= sup ———— w(y)dy.
(N)(x) re(o’r;) W B Jecen fOIw(y) dy
Lemma 3.9 is just an analogue of [32, Lemma 6.2], which was proved by borrowing
some ideas from the proof of [11, Proposition 4], the details being omitted.

Lemma 3.9  For any a € (0, 00), measurable function f on R"*', and x € R", let

dy diq1/?
Ay = Ik -7
N =[] 00 gty ]
Then for p € (0, 00) and a, § € (0, 00), there exists a positive constant C := C(y, 4,8, p)>
depending on n, a, B, and p, such that, for all measurable functions f on R"*,

C71\|Aﬁ(f) Iee(w,rry < JAa(f) Lo w,rny < CIAB(F) Lo (w,rn)-

Finally, we have the following weighted elliptic Caccioppoli inequality for solutions
to the degenerate parabolic system.

Lemma 3.10 Letw € A;(R")UQC(R") and let L,, be the degenerate elliptic operator
satisfying (1.2) and (1.3). Assume, in the distributional sense, that dyu = —2tL,u in
B(x9,2r) x [to — 2cr, tg + 2cr], where xg € R", r,c € (0,00) and 3cr < ty < oo.
Then there exists a positive constant C := C(, ) a ), depending on n, A, A, and c, but
independent of xo, to, and r, such that

(3.7)

to+cr

[ tIVu(x, t)]*w(x) dx dt < gz f
B(x0,7) r to

The proof of Lemma 3.10 is an analogue of the corresponding Caccioppoli inequal-
ity in the case where w = 1 (see, for example, [30, Lemma 3.3]), choosing a suitable
cut-off function, the details being omitted.

to+2cr

f tu(x, £)Pw(x) dx dt.
B(x9,2r)

to—cr —2cr

Proof of Theorem 3.5 Forall @ € (0,00),0 < € < R < o0 and x € R”, we define the
truncated cone I g o (x) by

Tera(x):={(y,t) eR" x (&,R) : |x - y| < at}.

Take a function 1 € CZ°(T¢/22r,3/2(X)) satisfying 7 = 1on T ri(x), 0 < 7 < 1,
and, for all (y,t) € T¢/p2r,3/2(%)s [Vy,e11(ys t)| S 1/t, where the implicit constant is
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independent of y and t. Then, by the definition of L,, (see (1.5)), the degenerate elliptic
condition (1.2), and the Holder inequality, we conclude that

(3.8)
[fw 1 Lye ™M () () Pw(y) ——— (B(x R

ff sames(s) PLye M ()()

x 2 Lye e (f)(y)n(y, Hw(y) (B(y t)) dt }1/2

diy 172
)

([ 1tave  ()0) - tVIELe T (AT )

Te/2,2R,3/2 (x)

+ t2A(y)Ve—t2Lw () - Vi(y, t)tsze_tsz(f)(y)]w(l:i/’m %}1/2

£

{Jf o)

2 2L, d)’ dty1/2
<V Le DI gy 7 )
_L, 5 —£L, dy dty1/2
{ [ OO (O s =

L, 2 dy diy1/4
f/ T OOPY) S5 =

-£L, 2 _dy dt 14
AL oo T OO 505 )

. dy  diyv
f[ OO s =

th 2 d 1/4
{ [ WP OO S (B(x > t}

To control the above integrals, we first decompose T, /4 3,2 (x) into a family of Whit-
ney balls, {B((yx, tk)> 7k) } rog> Such that U2, B((yk> tk)> k) = Teja3r,2(X)s

arr < dist(B((yxs t)s i) (Tefasr2(%))C) < cares
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and forallz € Te /4 3r,5(%), X2 XB((yi,t0),3r) (2) < No, where (yi, ti) € R"x (0, 00),
3 < ¢ < ¢y < 00,and Ny € Nare fixed constants independent of T'/4 3z 2(x). Con-

sider a subsequence of {B((y«,tk), k) } 1o, (Without loss of generality, we may use
the same notation as the original sequence) such that

re/z,zR,3/z(x)CkQOB((ykstk),Tk) and  dist(B((yk. tx)> %), {t = 0}) ~ 1.

Then by Lemma 3.10, we know that

I L DI s
2 o IR (DI ) (nyt)) &
<2 L OI0P) s
ST IPLe (0P ) (B‘(ﬂ{ e
S E oy L OOIW0) 5 s

_2L, 2 dt
S e OR) s

This, together with (3.8) and the Young inequality and via letting ¢ - 0 and R — oo,
shows that for any € € (0, o0),

(L e =00 S s )

L, 2 dty /4
ffm() (N )Pw U)w(B(ﬁ 5

A oL OO0 o T
L, 2 dty1/2

[/r()vL e (NGIP() (B(ﬁ ' =)
iy dt

L OO st T

which, combined with Lemma 3.9 and a suitable choice of €, implies that for all f ¢
L?(w,R"),

I8z, () lLe(w,rey S IS, () Ie (w,rn)-

This finishes the proof of Theorem 3.5. ]
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3.2 Proof of Theorem 3.6

Before showing Theorem 3.6, let us first introduce the non-tangential maximal func-
tion of B-angle, 8 € (0, 00), by setting, for all f € L?(w, R") and x € R",

(A) x):= su __r e v 2)|*w(z "
NN = s [ D@ ]

The following lemma is an analogue of [32, Lemma 6.2], the details being omitted.

Lemma 3.11 Let0<7y<f <ooandp e (0,1]. Then there exists a positive constant
C := C(n,y,p)> depending on n,y, and p, such that for all f € L*(w,R"),

CUND (A oy < INF ) o mzny < CIND )l e ) -

Proof of Theorem 3.6 By Lemma 3.9, we see that

(3.9) 182, () o qwzny S 182 (F) oo ny-

forall p € (0,1] and f € L*(w,R™). Therefore, to finish the proof of Theorem 3.6, it
suffices to prove (3.2) with gLW replaced by :g'gw/z)‘
For0<e<R<oo,Be(0,00), feL*(w,R"),and x € R", let

SRR (f)(x) = L)y )y _diyi”
S () () ._[f/rsyw(x)vw DOP 5t 5 e

For any o € (0, c0), let
(3.10) E:={xeR" :Ngfg)(f)(x)ﬁa},

where f is a fixed positive constant to be determined later and £* := E*, is the set

1/2
of points having the global 1/2-density with respect to E (see (3.5)). Let B* := (£*)C,
Rer,p(€%) = Useer Ter,p(x) andletu(y, t) := e " (f)(y), t € (0,00), y e R". By
[12, Proposition 3.7], it is easy to see that u is a weak solution of the parabolic equation
2t div(AVu) = wou. By the definition of ggf’R’l/ ?) and the Fubini theorem, we know
that

(.10 [8* [giis,R,l/z)(f)(x)]Zw(x) dx s ff

Reori(E*

 Hvuly HPPw(y)dydt.

Let G := Re2r,1(€7) and Gy := Ry p 4r,2(€7). Takeareal-valued function 7 € C° (Gy)
satisfying 7 =1on G, 0 < 7 <1and, forall (y,t) € Gy, |V,,n(y, t)| S 1/t. By (1.3), the
definition of L,,, integration by parts, (1.2), and the Hélder inequality, we conclude
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that
(3.12)

[ dvutr0Pwin) dyar

< %9%{ /fG tA(y)Vu(y,t) - Vu(y, Dn(y. t) dydt)
-2 [ 1r40) ) o 01)

~ tA(y)Vu(y, £) - Vi, u(y, )] dy dt}
=2 ] [tLanCn G 00w ()

~ tA(y)Vu(y, £) - Vi (y, Ou(y, )] dydt
- ([ [5G 0P 0w ()

~ tA(y)Vu(y, £) - Vi (y, u(y, 1) | dydt]
s [ G 0Py, Olw(y) dy de

v [[L A vuty. 1) VG Ouly, O] dydt

s ffcl\c [u(y, OPw(y) dy?
L ey ] %]

For ¢ € (0, o), consider the following three regions:

(3.13) Bf(&") :={(x,t) e R" x (g/2,¢) : dist(x, ") < 2t},
(3.14) BR(&*) == {(x,t) e R" x (2R, 4R) : dist(x, £*) < 2t},
(3.15) B(&*):={(x,t) € B* x (&2R) : t < dist(x, £*) < 2t},

and observe that
(Gi~ G) € (B*(€*) UBX(E") UB(E")).

Next, we consider integrals in (3.12) corresponding, respectively, to the regions in
(3.13) through (3.15).
For each ¢ € (0, 0), let

dt
1®) ::f/ D dy —.
Bs(s*)lu(y Ww(y)dy =

For every (y, t) € B¢(£"), there exists some y* € £* such that |y — y*| < 2¢. From the
definition of £*, it follows that w(E n B(y*,2t)) > 2w(B(y",2t)). By the fact that
B(y*,2t) c B(y,4t) and Lemma 2.2, we see that

w(EnB(y,4t)) >w(EnB(y*,2t)) 2 w(B(y*,2t)) 2 w(B(y,4t)).
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By this, Lemma 2.2, and the Fubini theorem, we have

dy dt
3.16 I(”gf[ [ P d ey a4
(316) Be(&*) JENB(y,41) [uly ) w(z) dzw(y) w(B(y,4t)) t

E ! 2 dt
sf/zf w(B(z,4t)) B(“)Iu(}/,t)l w(y)aly]w(z)dzT
f/zf N(ﬂ)(f) Z)] w(z) dZ f[N(.B)(f)( )]ZW(Z) dz,

forall > 4.
For each ¢ € (0, 00), let

e . —[[ tivu(y, t)w(y) dy dt.

By an argument similar to that used in the estimate for I(*), we conclude that

(e) 2
(317) I sf f B(z,4t)) Bt Hvu(y,t)| w(y)dy]w(z)dzdt

) w(z) dz
/ //2 /B(z4 ) vuly. O wly)dydt 2200 w(B(z,4¢))’

From the definition of u(y, t) = e L f(y), together with the Caccioppoli inequality
(3.7), we deduce that

€ 1 5¢e/4
[ vuGaoPwdydes 5 [ 5[ tu(noPw()dydr.
e/2 J B(z,4¢) € e/4 B(z,8¢)

Combining this, Lemma 2.2, and (3.17), we find that

© 2 _w(z)dz
(318) II </ / fB(zs )t|u(y, 1l dydtW(B(Z,‘le))

5e/4
/ f o w(B(z, 32t)) poan) 0P OPW) dy #w(z) dz

for all § > 32. By the same argument as above, we have

0y ] PRIy s [P ()@ () dz
and
620y [f avuGn0PwG)dydrs [N ()@ w(e) de

forall 8 > 32.
To control the integral over B(E*), we first decompose B* := (£*)C into a family
of Whitney balls, { B(x, 7k) } s> such that B* = U2 B(xk, 7k )»

crdist(xg, £F) < rp < cp dist(xg, £F)
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and every point x € B* belongs to at most ¢3 balls. Here 0 < ¢; < ¢; <1and ¢3 € Nare
some fixed constants, independent of B* (see, for example, [36, Theorem 3]). Then by
the definition of B(€*) and Lemma 2.2, we see that

(3.21)

~ dt
I::/f~ u(y, )Pw(y)dy —
B *)I O Fw(y) dy -~
S L WO PR
uLy, w —
k0 3 (5 -Dri JB(xiori) 4 4 }/

oo )k 1
s S [ wBeer)) s [ WO OPw () dy

%_1) 2 W(B(xk’ z_it)) B(’Ck’l—cz

From the fact that £* c E, it follows that dist(xy, E) < dist(xg, *) < a 2;2)6 t. Hence,

]dt

we have
1

w(B(xx, £21)) JB(r 2t

forall > i ZC”Z) . By this and (3.21), we see that

OO w(y) dy 5 [sugwﬁﬂ’<f><z>J2,

(322) T kZ::Ow(B(xk,rk)) [suENzﬁ)(f)(z)] s W(B*)[SUIIE)Niﬁ)(f)(Z)]Z,

forall 8 > (1_2;2)61 .

Similar to (3.21) and (3.22), by using Lemma 3.10 to control the gradient of u, we
conclude that there exist positive constants C and C := G(CI,CZ), depending on ¢; and
¢, such that

(3.23) n_ff {vu(y, O)Pw(y) dy dt < Cw(B*) [sup NP (£)(2)]2,

z€E
forall B> C.
Now, by choosing
262 ~
=2 _C
(1 - C2)C1 }
in (3.10), and via (3.22) and (3.23), we conclude that
Tso*w(B*) and 115 c*w(B*).
By this, (3.11), (3.12), (3.16), (3.18), (3.19), and (3.20), we further find that

[ BERD () Pw(x) dx s a?w(B) + [ NP (D) Pwiz) dz.

ex*

B = max{ 32,

Passing to the limit as ¢ - 0 and R — oo, we see that
G2 [ BIP(N@Pwxdx s otwB) + [P (@) Pw() dz
x Lo E

Let /\N}(lg)(f)
any a € (0, c0),

be the distribution function of N,(f ) (f) with respect to w; namely, for

N(ﬂ)(f)(a _w({xeRn N(ﬁ)(f x)>a})
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Recall that N,Sﬁ)(f) < o on E (see (3.10)). From the definition of B*, (3.6) and the
boundedness of M,, from L'(w,R") to the weak-L'(w,R"), it follows that

w(B*) =w({x e R": My, (xgc)(x) >1/2}) s w(EC) ~ AN}(lp)(f)(O').
By this and (3.24) we have

Agpy (0) <w({x € €81 (1)(x) > o)) +w(B")

s L [ B (0P d s w(B”)

&

1 o

5;[0 t/\N;(‘;;)(f)(t)dt+/\N;(lﬁ)(f)(O').

From this and Lemma 3.9 we deduce that

LB ()01 w(x) dx
:fo up‘l/lgil‘jz)(f)(u)du
(o) _ 1 u (o) _
S—/(; uf lﬁfo tANiﬁ)(f)(t)dt+A uf I/IN;ﬁ)(f)(u)du
<[Ta tfw 3 gy dt f NP Pw(x)d
L w0 [ auars [ NP (1)) w(x) dx

s [P Owe)dxs [ N1 w(x) d,

which together with (3.9) completes the proof of Theorem 3.6. ]

3.3 Proof of Theorem 3.7

The following lemma is a special case of [4, Corollary 4.7].

Lemma 3.12 ([4]) Letw € Ay(R") with q € [1,00), p € (0,1], € € (0,00), and
M € N satisfy M > Cp,q.n)> where C(p, q.n) is a positive constant depending on p, q,
and n. Suppose that T is a linear (resp. non-negative sublinear) operator that maps
L*(w,R™) continuously into weak-L*(w, R"). If there exists a positive constant C such
that for any (p, 2, M, €)1, -molecule m associated with the ball B,

fRn IT(m) (x)|Pw(x) dx < C,

then T can extend to be a bounded linear (resp. sublinear) operator from H{i’rﬂil(R”)
to LP (w,R").

Recall that an operator T is said to be non-negative, if T(f) > 0 for all non-negative
functions f in the domain of T. Theorem 3.7 then follows from establishing the
boundedness of N, on all (p,2, M, €)1, -molecules.
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Proof of Theorem 3.7 For M € N, we first introduce the radial maximal functions,
Rp and REM), respectively, by setting, for all f € L>(w,R") and x € R",

Ry(f)(x) = sup | R

1
te(0,00) - W(B(x, 1)) JB(xt

and

R (f)(x) = sup |

1 2 M _—t’L, 2 1/2
S [ S5001) oy L DO ]

Both of the operators above are bounded on L*(w, R"). Indeed, by Proposition 1.5,
we know that there exists some p € (1,2) such that e” v € O,,(LP-L?). From this
and the boundedness of M,, in L% (w,R"), it follows that for all f € L?(w,R"),

| RA ()12 o e

<

>, 1
: fw{tef& ]Z[ w(B(x,1))

2L 2 1/25 2
Sl Cuaein NPy dy] ) i) d

Sf{ sup izﬂ’l[){(%t)]eze“"fth

te(0,00) j=3

o P F)lPw(y) dy

]I/P
w(2/B(x,t)) J2iB(x.1)

osup [t FONPw(y) dyl/?) wix) dx

te(0,00) W(B(x,4t)) JB(x,41)

: fﬂgn{izj(e‘”’)e‘c“ (A7) T + ML) (2)]77) i) dx
j=2
< [ @y s [ 1) Pwx) ds,

where 61, 65, Y, and c are as in Definition 1.4 with g = 2 and {U;(B(x,t))}jez, are
as in (1.15) with B replaced by B(x, t). By a similar argument as above, we also obtain

the boundedness of REM) in L*(w,R").
Observe that by the definitions of R, (f) and Ngl/ 2) (f), together with Lemma 2.2,

we conclude that forall f € L*(w, R"), NS/Z) (f) S Ru(f). From this and Lemma 3.11
we further deduce that for all f € L*(w, R"),

NGO zowzny S INSD ) o gry $ 1R 2o (w2 -

By this and Lemma 3.12, to prove the desired conclusion of Theorem 3.7, it suffices to
prove that for all (p,2, M, €)1, -molecules m associated with the ball B = B(xp,75)
with xg € R" and rp € (0, 0),

[ R (m) | Lo o,y S 1.
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To this end, by the Holder inequality, we write
LR ()17 w(x) dx

<3 [ [Rm)E)Pw) d

j=0JU;

< SN [ Rum@)Peo de}

=0 j(B)

-

10 )id
< E [w(U;(B))]"" % |Rn(m) Hfz(w,U,-(B))

+
j

where U;(B) is as in (1.15).
Since R}, is bounded on L?(w, R™), from the definition of m, it follows that I < 1.

L8

1-£ P .
DU BNT R (M) [ 0,y = T+ T

To estimate the term II, we fix some constant a € (0,1) such that M > 51" (1= £y,
which is possible, since M > L2 (1 2. Then for every j > 11and x € U (B) wr1te
(3.25)

1

Ra(m)) s s [

1 —tLy, 2 12
S B B O R COLCO A CORP)

te(2%-2rg,00)
=: Hl,]‘ + Hz,]'.
To handle I, , let S;(B) := (2/*°B) \ (27’B),
R;(B):=(2/"°B)~ (2’°B) and E;(B):=[R;(B)]°.
Write m = myg, () + mxg;(8)- Since t < 2977 2pp, it follows that for any x € U;j(B),
B(x,t)c S;j(B) and dist(S;(B),E;(B)) ~ [2/*® = 2/"rp ~ 2/rp.
By Lemma 2.2, we see that for any x € U;(B) and t € (0,2%%rg],

L, 2 1/2
fB(x,t)'e (m)()IFw(y) dy]

W(B(x, 1)) = w(B e, V1)) 5 wB(x, ) 22) "

From this and (1.9) we deduce that for every j > 11,

1 —2L 2 1/2
su e v(m ) ) w d
H te(o,zajlzzrs [W(B( )) | ( XE}(B) (y)| (}’) )’] ‘
1
su - - @@
H te(o,zaﬁzm] [w(B(-,t))]V/?

—tzLW 2 d 1/2
* [fsj(B) e (mxe,5) ()w(y) )’]

L*(w,U;(B))

<

L*(w,U;(B))
< ” 1 _ L (B)ZE (BN H H ‘
S sup —_— t miz JEi(B
te(oont2ry) W(B( D)2 (r B (B

L2(w,U;(B))
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p H sup S (7? )N’ lm ] 2w, mm
te(0,202r5] (W(B(+, 8))]V2\ 201/ 1 12(w,U;(B)) ’
1 ﬂ—N)' t N_%
S su : 2027V — ml| 20 mr
H tG(O,Z“Eer] [W(B(XB,ZJT’B))]]/Z ( rB) LZ(W,U]-(B))H HL (w,R")

an _NY)i 2aj7'3 N’qzl _ N
S2E () gz 20700 ] 1 ),
B

where the positive constant N is greater than ngg:g)) . Thus, by this and the definition

of m, we further conclude that

1

326) ¥ [w(U;(B))]"* w(B(-, 1))
029 S| wp [

j=11

P

,tsz 5 1/2
S ) D) ]

L2(w,U;(B))

§ 5 P CENi 2= E)in [y (B) 1012 "

<
2 n ~
i L2 (w,R")

As for the estimate of m yg, (5), from the L?(w,R™)-boundedness of R}, the definition
of m and the fact that € € (%, 00), it follows that

x _er
(3.27) .ZO[W(UJ'(B))]1 R (mxw, ) 172 0,08y
=
= . =20 P S 9-ipeqing
S Z DU Imlia g pymy) $ B 2772751

Combining (3.26) and (3.27), we find that

(3.28) PG N

Now we consider the term I ;. For every j > 11 and x € U;(B), we have

1
IL,,; = sup —
! ze(zaf—er,oo)[ w(B(x,1))

s 1/2
x [ IR (ML () () P () dy)
B(x,t)

; 1
S 2—2aM] sup -
ze(zaf—er,oo)[ w(B(x,t))

, 1/2
x [P (LM ) () () dy
B(x,t)

$ 2R (7ML (m)) (),
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which, together with the boundedness of iRElM) in L?(w,R") and the definition of m,
further implies that

[SThc3

P
H Hz,j H L>(w,U;(B))

(329) 3 [w(U;(B)]"”
j=11

S 3 2720PMi[yy (21 B) ] E | RO (rg ML M (m)) P

5 L2(w,R")
® ; i _r, _ _

s ¥ 2P Iw@B)] 3 g ML (m) 2
j=

< 3 plapM-(-Hanlj ¢
j=1
where M > %(1 - 5.
By combining (3.25), (3.28), and (3.29), we have II < 1. This further implies that
|Rn ()| Le(w,rmy S 1, which completes the proof of Theorem 3.7. ]

4 Boundedness of Riesz Transforms

In this section, we give the proof of Theorem 1.6. Before going into the details, we
present some technical propositions.

Observe that when w € A,(R"), vL,"? is bounded from L2(w,R") to itself (see
[13, Theorem 1.1]) and \/tVe "L satisfies the weighted Davies—Gaftney estimate (see
Proposition 2.7). Proposition 4.1 is a special case of [5, Lemma 4.4] with (X, d, ) :=

(R™,|-], w(x) dx) and DL™V2 := vL,"/2.

Proposition 4.1  For every M € N, there exists a positive constant C(yy, depending
on M, such that for all t € (0, 00), closed subsets E, F of R" with dist(E, F) > 0 and
f € L*(w,R") supported in E,

1207 —tL,\M t M
VL2 = M Dlaznny < Conl G pp) W mme

“1/2 LM t M
VL2t ) Dlizones < Con( gz ) Wl

We also need the following technical lemma.

Proposition 4.2 Let M € N and let E, F be closed subsets of R". If d(E, F) > 0, then
there exists a positive constant C(yy), depending on M, but independent of E and F, such
that for all t € (0, 00) and f € L*(w,R™) supported in F,

D=

. i £\ M-
L= )M () 2ty < Coan VI W) [ATENoN

_ _ t M-3
L2 (e ) (F) 2ty < CanVE( ) Wl

[d(E, F)
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Ifd(E, F) = 0, then there exists a positive constant Cyy), depending on M, but inde-
pendent of E and F, such that for all t € (0, 00) and f € L*(w,R") supported in F,

1L (1= )M () 120w,y < ConVELFliagorys
1L (Loe™ )M (F) 12,y < Comny VELF L 120,p)-

Proof Notice that for every k € Z,, {(tL,,)*e "t} ¢ satisfy the weighted Davies—
Gafney estimates (see Proposition 2.6), namely, there exists a positive constant C
such that for all ¢ € (0, %), closed subsets E, F of R” and f € L?(w,R") supported
in F,
_ _claEny?

(4.1) [CLw) ™ (N)rzonry S €7 1 fl2gur)-

The remainder of the proof of this proposition is completely analogous to that of [26,
Lemma 2.2], replacing the Davies-Gaffney estimates used therein for the gradient of
semigroup by (4.1) above, the details being omitted. This finishes the proof of Propo-
sition 4.2. u

In what follows, let S(R") denote the space of all Schwartz functions and let 8’ (R")
be the space of all Schwartz distributions.

Let y € S(R"), [gaw(x)dx = land y,(x) = t"y(%) for all x € R" and
t € (0,00). Forall f € 8(R") and x € R", the non-tangential maximal function
vo (f)(x) is defined by setting

vy (f)(x) = sup (i =+ F)(¥)]-

|x—y|<t
te(O,oo)

Then for p € (0,1] and w € A (R"), f € 8'(R") is said to belong to the weighted
Hardy space H, (R™), if y& (f) € LP(w,R"); moreover, define
[ £ e ey = 195 () o oo, en).

An important fact is that every element in the Hardy space H (R") admits an
atomic decomposition. Let us first recall the definition of (p, g, s),,-atoms as follows.
Recall that |s| for any s € R denotes the maximal integer not more than s.

Definition 4.3 ([23]) Letp e (0,1],g € [1,00) withg > pandw € A4(R"). Assume
that s € Z, satisfies s > [n(qw/p —1) |, where

gw =inf{q € [1,00) : w e Ag(R")}.
A function a is called a (p, g, s),,-atom associated with the ball B if

(i) suppac B;
(i) [ allpawrny < [w(B)]/47/P;
(iii) forall o € Z" with |a| <s, ]Rn a(x)x® dx = 0.

Definition 4.4 Let p, g, s, and w be as in Definition 4.3. The atomic weighted Hardy
space HY T (R") is defined by setting

H%Q,S(RH) = {f € SI(RH) :f = ]§0A1d1 ill SI(Rn)}a
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where {a;}7 is a sequence of (p, q,s)-atoms and {A;} 72, c Csatisfies 3272 [A;|7 <
oco. The quasi-norm of f is defined by setting

oo l/p
s (omy 1= iNf AP ,
I gy = int{ ( 2 I017)
where the infimum is taken over all possible decompositions of f as above.

The following atomic characterization of H% (R") can be found in [23].

Lemma 4.5 ([23]) Let p, q, s, and w be as in Definition 4.3. Then the spaces H% (R™)
and HE ¥ (R™) coincide with equivalent quasi-norms.

Definition 4.6 Let p € (0,1], w € A,(R") and ¢ € (0,00). A function m €

L*(w,IR") is called a (p, 2, €),,-molecule associated with the ball B if

(i) for every j € Zy, |m|r2(w,u,(m)) < 277¢[w(2/B)]Y27Y/?, where U;(B) is as in
(1.15);

(ii) fg.m(x)dx=0.

Proposition 4.7 Let
n n
pe(m,l], we Ay (R"),

with qo € [1, @) and ¢ € (2n + 2, 00). Then there exists a positive constant C such
that for all (p, 2, €),,-molecules m, it holds true that

m= Y Ajajin L*(w,R"),
j=0

where{1;}3, c Cand{a;}7, is afamily of (p,2,0),,-atoms up to a harmless constant
multiple, and |[m || 20 .y < C.

Proof Let m bea (p,2,¢€),-molecule associated with a ball B. To prove Proposi-
tion 4.7, we borrow some ideas from [7] (see also [3,32]).

For each j € Z,, let B; := fU]_(B) m(y)dy and y;j = mei(B)' Then for each
x € R", we define

M;(x) = m(x) yu,(s) (%) = Bjxj(x)
and N; := 332 ; B Since [p, m(x) dx = 0, we write
(4.2) m=3y Mj+ ¥ Nin(xjn—xj) = X Mj+ ¥ Pj,
j=0 j=0 j=0 j=0

where the summations converge for almost every x € R”.

For each j € Z,, it is easy to see that [;, M;(x) dx = 0 and supp M c 2/B. More-

over, by the fact w € A,(R"), the Holder inequality, and the definition of m, we find
that

1M 2 (0 e

1Bl
|U;(B)|

< ml 2 w,u;y) + [w(U;(B))]"?

https://doi.org/10.4153/CJM-2014-038-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-038-1

1194 J. Zhang, J. Cao, R. Jiang, and D. Yang

S Imzw,uy(my)

[w(2/B)]/? /- 2 f , 12

w(@'B)]" P )
o OIS B N ORIORY
Slimlz2w,u;8)) S 27i(e=2n/p) [y, (27 B) Y2V,

By this together with the fact that go € [1, @) implies [n(%" -1)| = 0, we see
that 2/(=2%/P) M is a (p, 2,0),,-atom associated with the ball 2/B, up to a harmless
constant multiple.

On the other hand, for each j € Z,, we see that [, Pj(x) dx = 0, supp P; c 2/*'B
and

w(Uj 1/2 w(U; 1/2
(43) |Pj|Lz<w,Rn>s|N,-+l|{[ (U (B2 [w(U;(B))] }

Ua(B)  |Ui(B)]

Since w € Ay(R") and € € (2n + 2, 00), by Lemma 2.1(ii), we know that there exists
some r € (1, 00) such that w € RH,(R"). Moreover, by this, the Holder inequality,
Lemma 2.2 and the definition of m, we have

Nyl < )| d
Npal € £ [, ) Imldx

gkzj{kaw)[ w(x)] ™ dx} Z[ka(B)|m(x)|2w(x)dx]l/2

o0 |2%B|
E:WH ‘|L2(w,Uk(B))

|2/B] i p\11/2-1/py—j(e- S = (k=j)[e-2
<— =1 1yw(2/B py—i(e=2n/p) 5 5=(k=j)[e=5(3+])]
mwmy ) z

< 27e=2n/P) 2] B|[w(2/B) ]V,
which, together with (4.3) and Lemma 2.2, implies that

i(e-2n ; a1 w(U;n(B)Y?  [w(U;(B))]Y?
17120,y 5 27772227 B|[w(2/B)] /P{[ (IUjm((B)))I] - (IU]J-((B)))I] }

< 2—1(8—2”/17) [W(zj“B)]l/Z—l/P‘

Hence, 2/(¢72"/P)P; is a (p, 2,0),,-atom associated with the ball 2/*!B, up to a harm-
less constant multiple. By (4.2), we have

oo N\ 1/p
P
Imlganqany 5 (2 27) 7 51
which completes the proof of Proposition 4.7. ]

Using Proposition 4.7, we now prove Theorem 1.6.

Proof of Theorem 1.6  Suppose that m is a (p,2, M, €)r, -molecule associated with
aball B = B(xg,rp) with xg € R" and rg € (0,00), and € € (2n, 00). We first show
that VL;VI/Z(m) isa (p,2, €),-molecule associated with B.
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By the boundedness of VLV_\,I/2 in L*(w,R"™) (see [13, Theorem 1.1]), together with

Definition 3.1 and Lemma 2.2, we conclude that for j € {0,1,...,10},
IVL2(m) [ 12gw,v,8y) < VL2 (M) L2y S [l 22y S [w(B)]V/2YP
< z—js[w(sz)]l/Z—l/P‘
For j > 11, let W;(B) := (2/*3B) \ (27°B) and E;(B) := [W;(B)]C. Write
IVLL2(m) | 2,0,y < VL7201 = €55 M () 12,0,

VLGP = 1= e 1) (m) 12 w08
= Il + Iz.

From Proposition 4.1 and the boundedness of VL, in L? (w,R™), together with
Definition 3.1 and Lemma 2.2, it follows that

L < VL2 (1= e ) M (mxw,8)) 2000, (8)
_ _2
+[ VLA (I-e rBL”)M(mXE,-(B))HLZ(w,U,-(B))

"B
S Imllzz o, wymy) + ( M) Il 22,58y
< 2—je[w(2jB):|1/2—l/p i 2—2jM|:W(B)]1/2—1/p
< {2—1'8 + 2—21‘[M—n(1/P—1/2)]} [w(2/B)]Y/* VP < 277¢[w(2/B)]Y? VP,
where 0 < ¢/2< M - n(1/p —1/2).

Similar to the estimate for I;, by Proposition 4.1, the boundedness of VL,
L?(w,R™), Definition 3.1, and Lemma 2.2, we see that

1/2 .
/ll'l

I, $ sup H VL;VI/ZI:(@

k2L, 4 M
1<k<M M )e‘ K ] (ij(B)(réLW)‘M(m))‘

L*(w,U;(B))

" 1gsllclgpMH VL;VI/Z[( kr]%/[LW ) e_kr%w ] M( XE;‘(B)(’%LW)_M(Y”)) ‘

L2(w,U;(B))
- g \M -

S IC3L) ™ (M) |12 wi3y) +(ﬁ) | CBL) ™M) 12,y

< 2—js[w(2j3)]1/2—1/1>_

Since w € A,(R") and € € (n, o), combining the above estimates for [; and I,
and using the Holder inequality we conclude that

-1/2 2 -1/2
SR m@dx = [ 9L @] dx

™8

1 1/2 -
<3[ [ o dx] VL m)usu oy

j=ot J2iB w(x)

< § |ZfB|[W(21B)]—l/22—j£ [W(sz)]l/Z—l/p
j=0
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$ 3 277 BIw(B) VP < |BI[w(B)] ™7,
j=0

which further implies that VL2 (m) e LY(R™).

For j € {0,1,...,10}, using the facts that L;,l/z(m) = [ e"Lv(m)ds and
(tL,)*e 't is bounded on L2(w,R") for every k € Z,, together with Definition
3.1, we see that

L) ooy < [ 1 m) v, ds

B o _2
A oI

& 2
Sralmliauzn + [ 521 Lwe B (L) |12 ey ds
B

S 7w,y + 75 L3 () 12,y S T [w(B)]2P.

From this, the fact that w € A,(IR"), and the Holder inequality, we deduce that

(44) |L2(m)] < L] 1 m)
. w LY(U;(B)) S 28 w(x) w L%(w,U;(B))
25

S VBW[W(B)]I/Z_I/P < rp|B|[w(B)] /7.

For j > 11, let W;(B) = (27**B) \ (2/B) and E;(B) = [W;(B)]C. By the Holder
inequality, we have

1L (m) | v,y

<[ [ s a] P e o) o
= 2B w(x) w (w,U;(B))

- ax] L = (= €M) Ly = o 4T
2iB w(x) v "

By Lemma 2.2, we see that there exists some r € (1, 00) such that w € RH,(R").
This, together with Proposition 4.2 and Definition 3.1, implies that

1 1/2 -1/2 —r2L,\M
<[ [, oo @] LI = M G oy m) oo

— *TZ w
LM = e M () 2 0,00 |

|2jB| }’]23 2
S W{ B HmHLz(W,Wj(B)) + T’B( %) HmHLZ(w,E]-(B))}

< {z—j[s—n(3xl)] 4y i2M-1-n(52 ]}rB|B|[w(B)]‘1/p

and

[ (*3) ]

J2 5 [/sz W(lx) dx] v sup

1<k<M

2 -M
< [Oowm) + X ) CEE) M| o
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|27 B| _
S W{ 78] (r5Lw) ™™ (M) 12w, w(8)

ero( o) AL M ) s
B 2%ir2 Bw L2(w,E;(B))

< {27lemnCE] | i BMA=nCEDIL 1y B 4w (B)] V2,

which, together with (4.4) and ¢ € (2n, 00), further implies that L;l/z(m) e LY(R™).
Next, we prove that [, VL;VI/Z(m)(x) dx = 0. From [34, Theorem 8.1], it fol-
lows that D(L%z) = D(a), where D(a) c Hy(w,R") is the domain of the sesquilin-
ear form (1.1) associated with L,,, which implies that R(L;l/ %) ¢ HY(w,R"), where
R(L;l/ ?) denotes the range of LY
We now choose {¢;}%2, ¢ Cz°(R") such that
(@) X721 ¢j(x) =1for almost everywhere x € R";
(b) for each j € Z,, there exists a ball B; c R” such that supp ¢; c 2B}, ¢; =1 on B;
and0<¢; <L
(c) there exists a positive constant Cy such that for all j € Nand x € R", [V¢;(x)| <
Cys
(d) th¢ere exists Ng € N such that Y732, X2B; < No.
Forall j € N, let 7; € C.(R") such that 5; = 1 on 2B; and supp #; c 4B;. Since
R(L,M*) ¢ H'(w,R") and VL,""*(m) € L'(R"), from the properties of {¢;};, the
facts that L, *(m), vL,Y ?(m) € L'(R"), and integration by parts, we deduce that

ST m@ = [ 9([E 6,]1m) ) dx

(o]

" fR V(§iL, 2 (m))(x) dx

Jj=1

=5 [ VL m) (x) dx

~.
L

) _1'3:21 Rr Vﬂj(x)gbj(x)Lv_vl/z(m)(x) dx =0.

By the above arguments, we see that vL,Y *(m) is a (p,2, €),-molecule, associated
with B, up to a positive constant multiple.

Now, suppose that f € H{f”f‘ﬂ(R"). By the definition of H{iﬁ)l(R" ), there exist
a family {m;}?*, of (p,2, M, €),-molecules and numbers {1}, c C such that

oo l/p
~ .|P
g ooy = (S 7)™

Foreach (p, 2, M, €), -molecule m, by the above arguments, we see that VL,_‘,I/2 (mj)
isa (p,2, €),-molecule up to a positive constant multiple. Moreover, by Proposition
4.7, we know that there exist { A« } 2, ¢ C and a family {ay } 32, of (p,2,0),,-atoms
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with a harmless constant multiple such that

VLY (m;) = kz Ajgoy in L*(w,R")
=1

and
1) s P 1/p
[9L2(m) | gpzo gy < (X 1A14P) T < C
k=1
where C is a positive constant independent of j. By the boundedness of VL% in

L2(w,R"), we know that
VL, (f) = '21 kZl AjAj ok
Jj=lk=

in L2(w,R"). Hence, from the definition of H.>° (R"), we deduce that

_ ) l/p
IV () gz oy <[ T X W51P1AG 17 ]
j=lk=1

oo l/p
S[ZP]T ~ Iflgpan (R).
]=1 Ly ,mol

Then by a standard argument we see that VL;l/ ? extends to a bounded linear operator
from Hff"ﬁl(R”) to H2»°(R™). This, together with Lemma 4.5, finishes the proof

>

of Theorem 1.6. n
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