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Introduction. A topological space is called a uqu space [10] if it admits a unique
quasi-uniformity. Answering a question [2, Problem B, p. 45] of P. Fletcher and W. F.
Lindgren in the affirmative we show in [8] that a topological space X is a uqu space if and
only if every interior-preserving open collection of X is finite. (Recall that a collection <#
of open sets of a topological space is called interior-preserving if the intersection of an
arbitrary subcollection of % is open (see e.g. [2, p. 29]).) The main step in the proof of
this result in [8] shows that a topological space in which each interior-preserving open
collection is finite is a transitive space. (A topological space is called transitive (see e.g. [2,
p. 130]) if its fine quasi-uniformity has a base consisting of transitive entourages.) In the
first section of this note we prove that each hereditarily compact space is transitive. The
result of [8] mentioned above is an immediate consequence of this fact, because, obviously,
a topological space in which each interior-preserving open collection is finite is
hereditarily compact; see e.g. [2, Theorem 2.36]. Our method of proof also shows that a
space is transitive if its fine quasi-uniformity is quasi-pseudo-metrizable. We use this
result to prove that the fine quasi-uniformity of a 71 space X is quasi-metrizable if and
only if X is a quasi-metrizable space containing only finitely many nonisolated points. This
result should be compared with Proposition 2.34 of [2], which says that the fine
quasi-uniformity of a regular Tx space has a countable base if and only if it is a metrizable
space with only finitely many nonisolated points (see e.g. [11] for related results on
uniformities). Another by-product of our investigations is the result that each topological
space with a countable network is transitive.

Recently there has been some interest in the construction of uqu spaces (compare
[4]). In this connection our observation that the product of finitely many uqu spaces is a
uqu space may be useful. We prove this result in the second section of this note.
Topological spaces admitting a unique quasi-proximity are called uqp spaces in [10]. Each
hereditarily compact space is a uqp space [10, Theorem 2.4]. Answering a question [2,
Problem B, p. 45] of P. Fletcher and W. F. Lindgren in the negative, we show in [6] that
a (first-countable) uqp space need not be hereditarily compact. In fact, it is proved in [9,
Proposition 4] that a uqp space X is hereditarily compact if and only if each ultrafilter on
X has an irreducible convergence set. (Recall that a nonempty subset A of a topological
space is called irreducible (see e.g. [9, p. 238]) if each pair of nonempty A-open subsets
has a nonempty intersection.) In particular each uqp Hausdorff space is hereditarily
compact (and, thus, finite) [2, Theorem 2.36]. It seems to be unknown whether the uqp Tr

spaces can be characterized in a similar way. The last result contained in this paper shows
that, at least, each uqp Tx space with countable pseudo-character is hereditarily compact
(and, thus, countable). (Recall that a topological space ^ h a s countablepseudo-character
if each point of X is a Ga-set in X.)
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310 HANS-PETER A. KUNZI

Throughout this note we use the terminology of [2]. In particular all separation
axioms used are explicitly mentioned. By N we denote the set of positive integers.

1. Transitive spaces. It does not seem easy to construct nontransitive topological
spaces. In fact, essentially, the only nontransitive space known is the so-called
Kofner plane (see [2, p. 147]). For readers not familiar with this space, we will give an
"analytic" variant of Kofner's construction at the end of this section. Maybe this variant,
although closely related to Kofner's original idea, will turn out to be helpful in future
research.

On the other hand not too many classes of topological spaces are known to contain
only transitive members (see [2, chapter 6]). As we are going to prove in this section, the
class of hereditarily compact spaces is of this kind. We begin with some auxiliary results
that seem to be of independent interest.

First it seems useful to analyze the proof given in [8] that a topological space in which
each interior-preserving open collection is finite is a transitive space. To this end we have
to formulate two facts explicitly that are contained (implicitly) in [8].

To begin we characterize the topological spaces that have the property that the class
of the quasi-uniformities inducing the Pervin quasi-proximity contains a quasi-pseudo-
metrizable member. This class of rather peculiar topological spaces will turn out to be
helpful in the following investigations. (In this connection let us mention that the Pervin
quasi-uniformity of a topological space X is quasi-pseudo-metrizable if and only if the
topology of X is countable [3, Proposition 1].)

LEMMA 1.1. A topological space X has a o-interior-preserving topology if and only if
there exists a quasi-uniformity with a countable base on X that induces the Pervin
quasi-proximity for X.

Proof. Let X be a topological space with a a-interior-preserving topology 3'. Then
& = U {STn'-n G N} where we can assume that 2Tn is interior preserving whenever n e IU
For each n e N and each xeXsetSn(x) = (~){G:xeGe3~n}. (We use the convention that
(~\0 = X.) Moreover for each n e N set Sn = \J {{x} X Sn(x):xeX}. Suppose that G e STn

for some neN. Then J n c [ G x G ] U [(X\G) x X]. Thus the Pervin quasi-uniformity for
X is coarser than the (compatible) quasi-uniformity °U generated by the subbase
{Sn :n e f̂ l} on X. We conclude that °U induces the Pervin quasi-proximity for X, because
the Pervin quasi-proximity is the finest compatible quasi-proximity on X [2, §2.11]. Hence
°U is a quasi-uniformity on X with a countable base that induces the Pervin quasi-
proximity for X.

In order to prove the converse we assume that (X, ST) is a topological space, the
Pervin quasi-proximity of which is induced by a quasi-uniformity K o n l w i t h a countable
base {Un:n e N}. Since the Pervin quasi-uniformity ^{SP) for X is totally bounded, we
have that ^(ST) c °U by Theorem 1.33 of [2]. Therefore for each G e J there is an n € N
such that Un c [G X G] U [(X\G) x X]. Thus, for each G e ?T there is an n € N such that
Un(G) = G. We conclude that & = [J{9'n:neN} where STn = {G e ST: Un(G) = G} is
interior preserving for each n e N (compare [8, p. 41]).
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Another rather technical result implicitly used in [8] is the following. (Recall that a
topological space X is called quasi-sober (see e.g. [9, p. 238]) if the only irreducible closed
subsets of X are the closures of singletons.)

LEMMA 1.2. Let X be a topological space with a a-interior-preserving base 38 such that
no strictly decreasing sequence (Gn)neM of open subsets of X has an open intersection. Then
X is quasi-sober.

Proof. By our assumption we have that 3$ = {J {2ftn:n eM} where we can assume that
*Mn is interior preserving and that Sftn c g#n+1 for each neN. Let F be an irreducible closed
subset of X and for each n e N, set Sfn = {G e S8n : G n F * 0 } . Let n e N. Since X has no
strictly decreasing sequence of open sets with an open intersection and since 38n is interior
preserving, there exists a finite subcollection SPn of yn such that Pi $Pn = P | yn. Therefore
n ^ n F ^ 0 , because F is irreducible. Consider {(X\F) U (C) &„): n e N}, an open
family. Since X has no strictly decreasing sequence of open sets with an open intersection,
we conclude that there is an x e (~) {P| Sfn:neN}nF. Thus F = {x}. We have shown that
X is quasi-sober.

REMARK 1.3. We can now easily understand the basic ideas of the proof given in [8]
that the fine quasi-uniformity of a topological space in which each interior-preserving
open collection is finite has a transitive base.

To this end let (X, ZT) be a topological space in which each interior-preserving open
collection is finite and let Sf be an arbitrary quasi-pseudo-metrizable topology on X that is
coarser than 3~. In order to prove that (X, ZT) is transitive, it clearly suffices to show that
(X, y) is transitive. For in this case each entourage of the fine quasi-uniformity of the
space (X, ST) belongs to a transitive quasi-uniformity of a topology on X that is coarser
than ?f and, hence, contains a transitive £T-entourage.

It remains to show that (X, Sf) is transitive. In [8] this is done by showing that (X, y)
is a uqu space. (Of course, then (X, Sf) is transitive, because the transitive Pervin
quasi-uniformity is the unique quasi-uniformity that (X, y) admits.) The details are as
follows. First observe that since if is coarser than ST, each interior-preserving open
collection of (X, y) is finite, too. Then note that, because for the hereditarily compact
(hence uqp) space (X, y) the Pervin quasi-uniformity 0>(5f) is the coarsest compatible
quasi-uniformity, the topology y is a-interior-preserving according to Lemma 1.1. Hence
(X, y) is quasi-sober by Lemma 1.2. Therefore (X, y) is a uqu space, because a
hereditarily compact and quasi-sober space is a uqu space [9, Proposition 3(a)].

Let us observe that in the last step of the proof outlined above, instead of citing
Lemma 1.2 and Proposition 3(a) of [9], we could also use Corollary 1.6 below in order to
show that (X, y) is transitive. (Obviously (X, y) has a countable base, since it is a
topological space with a a-interior-preserving topology in which each interior-preserving
open collection is finite.)

Now we are ready to show that a variant of the argument given above proves that the
fine quasi-uniformity of every hereditarily compact space has a transitive base.

Recall that a binary relation V on a topological space X is called a (n open)
neighbornet of X (see e.g. [2, p. 4]), if V(x) = {y eX:(x, y)eV} is a (n open)
neighborhood at x for each x e X. We begin with a useful technical lemma.
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LEMMA 1.4. Let X be a topological space and let V be a neighbornet of X. Assume that
X has a sequence (3ftn)neN of interior-preserving open collections and a sequence (ffln)nsN

of closure-preserving collections so that for each xeX there exist zeX, n(x)eN,
m{x) e N, Gxe 98n(x) and Hx e dKmix) such that xeGxc V(z) and xeHxc V~\z). Then
V3 contains a transitive neighbornet of X.

Proof. A s u s u a l w e u s e t h e c o n v e n t i o n t h a t P | 0 = X. F o r e a c h n e N a n d e a c h x e X
set Tn(x) = r\{B:xeBe9Sn}, Hn(x) = X\\J {H:He Wn and x$H} and Sn(x) =
D{Tk(x)nHk(x):k = l,...,n}. Note that H~\x) = f i {H:He Wn and xeH)
whenever xeX and neN and that Sn = U {{x} x Sn(x) :x e X) is a transitive neighbornet
of X whenever neN. For each x e X set h{x) = max{n{x), m(x)}. Let P = (J {5^)(;t) X
Sh(x)(x)'x eX). Since (Sn)nsN is a decreasing sequence of transitive neighbornets of X, P
is a transitive neighbornet of X. (A similar idea is used in the proof of Theorem 5 of [5].)
Let x e X. Then SHx)(x) c Tn(x)(x) c G, cz V(z) and 5 ^ / x ) c H~m\x)(x) ^Hx^ V~\z) by
our assumption. Thus P c. V3.

Next we state several corollaries to Lemma 1.4 that seem interesting enough to be
included here, although we will not make any use of them in this paper.

COROLLARY 1.5. Let V be an open neighbornet of a topological space X. If there exists
a countable cover {An:n e N} of X such that U {An xAn:neN}cV, then V3 contains a
transitive neighbornet of X.

Proof. For each neN such that An ¥ = 0 choose hn eAn and set S8n = {V(hn)} and
dKn = {V~1{hn)}. Let xeX. Then there exists k(x) e N such that xeAk(x). Thus
xeV{hkix)) and xeV~\hk(x)). Set n{x) =m(*) = k(x), z = hk(x), Gx = V{hk(x)) and
Hx = V~x(hk(x)). We conclude that all conditions of Lemma 1.4 are satisfied. Hence V3

contains a transitive neighbornet of X.

Recall that a collection 58 of subsets of a topological space X is called a network for X
if for each point x of X and each neighborhood G of x there is a C € 38 such that
xeCcG.

COROLLARY 1.6. Let X be a topological space with a countable network and let V be a
neighbornet of X. Then V3 contains a transitive neighbornet of X. In particular, each space
with a countable network is transitive.

Proof. Let {Bn:neN} be a countable network for X. Set W = \J{{x}x
(int V(x)):x eX}. For each n e N set An = {x €X:x e Bn c W(x)}. Then {An:ne N} is a
cover of X such that U {An x An :n e Ĵ} c W. The assertion follows from Corollary 1.5.

COROLLARY 1.7. 4̂ preorthocompact space with a countable network is orthocompact.

Proof. The assertion is an immediate consequence of Corollary 1.6 (see [2, p. 100
and p. 104] for the definition of the notion of (pre)orthocompactness).

COROLLARY 1.8(a). Each topological space with a o-interior-preserving base and a
o-locally finite network is transitive.

(b) Each topological space with a o-locally finite base is transitive.
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Proof, (a) Let X be a topological space with a cr-interior-preserving base and with a
CT-locally finite network 3t. Thus dK — [_} {dKn:n &H) where we can assume that 3%n is
locally finite for each n e N. Let V be a neighbornet of X. For each H e VC set
H' = {xeH:xeHc V(x)} and for each neN, set Wn = {H':He Xn}. Then each %'„ is
closure preserving, because each %£„ is locally finite. Let x e X. There are an m(x) e N and
a P e 3ifm(x) such that « P c V(*), because dK is a network for X Then P ' X P ' c F and
j t e P ' c V~1(x). Set 2 =*. Hence the sequence (ffl'n)neN satisfies the second part of the
condition of Lemma 1.4. Since X has a a-interior preserving base, we conclude by
Lemma 1.4 that V3 contains a transitive neighbornet of X. Hence X is transitive.

(b) The assertion follows immediately from part (a).
REMARK 1.9. It does not seem to be known whether a topological space with a

a-interior-preserving base is transitive (compare [2, Problem P, p. 155]).
Finally we will now use Lemma 1.4 to prove that hereditarily compact spaces are

transitive.

PROPOSITION 1.10. Each topological space with a a-interior-preserving topology is
transitive.

Proof. Let X be a topological space with a cr-interior-preserving topology. Obviously
A'has a cr-interior-preserving base. Furthermore, of course, {{x}:xeX} is a cr-closure-
preserving collection in X. Let x eX and let V be a neighbornet of X. Note that
V~\x) 3 {*}• Set z=x. Then we see that the conditions of Lemma 1.4 can be satisfied.
We conclude that X is transitive.

PROPOSITION 1.11. Each hereditarily compact space is transitive.

Proof. (The idea of the proof was outlined in Remark 1.3. Because of Proposition
1.10 a further simplification is now possible.) Let (X, SP) be a hereditarily compact space
and let V be an entourage belonging to the fine quasi-uniformity of (X, ST). Then there is
a sequence (Vn)neN of neighbornets of (X, ST) such that V\+\<=.Vn for each n e N and such
that Vx c V. Let Sf be the quasi-pseudo-metrizable topology induced by the quasi-
uniformity generated by {Vn :n e Î J} on X. Since 5̂  is coarser than 3~, the space (X, Sf) is
hereditarily compact. Hence the Pervin quasi-uniformity ^{SF) is the coarsest compatible
quasi-uniformity for (X, if). Since (X, &") admits a quasi-uniformity with a countable
base, the space (X, Sf) has a cr-interior preserving topology by Lemma 1.1 and, thus, is
transitive by Proposition 1.10. Hence V contains a transitive y-neighbornet of X. Since if
is coarser than ST, we conclude that (X, 3~) is transitive.

Let us remark that the only known example of a nontransitive compact Hausdorff
space depends on the set-theoretic axiom b = c [7].

It seems interesting to note that with some additional work one can strengthen
Proposition 1.10 considerably.

Each topological space X such that {{x}:x eX} is a o-closure-preserving collection
is transitive.

Proof. By our assumption there is an increasing sequence (Hn)neN of subsets of X
such that U {Hn :n e N} = X and such that for each n e N, STn = {X\Jx):x e Hn} U {X} is
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interior preserving. For each xeX choose an n(x)eN such that x e Hn(x). Set
Tn(x) = n { G : J t e G e J B } whenever n e N and x e X; set 7; = U {{*} * Tn{x):x e X}
whenever n eN. Consider an arbitrary entourage V of the fine quasi-uniformity of X.
Let (Vn)neNbe a sequence of neighbornets of X such that VicV and such that ^ t , c y ,
for each n eN. Set Sn = Vn+1 fl Tn whenever neN. Note that for each x eX and each
keN we have that S^x)(x) = S^x)(x), because $-&)(*) c T ^ x ) c 7 ^ 0 ) = {*} c
S~lx)(x) by the definition of Tn{x). Set if = U {S~(x)(x) X S«(X)(JC): x e * } and T =
\^}{Hn:n eH). Observe that T is a transitive neighbornet of X. We wish to show that
TcV. Assume the contrary. Then there is a minimal s e N such that Hs ^ V. Clearly
s ¥= 1. Let (x0, .x,) € Hs \ V. There are points x, (i = 1, . . . , s — 1) and a,- (/ = 0, . . . , s — 1)
of X such that (*,, xi+1) e S j ^ a , ) x 5n(a/)(a,-) whenever i e {0, . . . , s - 1}. Note that if
x,yeX, (a,b)eS^x)(x)xS<x)(x), (b,'c) eS^y)(y)x Sn(y)(y) and n(jc)&n(^), then
(a, c) e 5-(^(y) x SnM(y), since 5-(

3
y)(>;) = 5~(

1,)(y). Thus if there is a / e {0, . . . , s - 2}
such that n(aj)^n(aj+i), then (x0, xs)eHs 1\V—a contradiction to the minimality of s.
Therefore we conclude that n(at) < n{ai+1) for each i e {0, . . . , s — 2}. However since

we have reached another contradiction. We deduce that T c.V and that X is transitive.

As an application of our results we want to characterize the topological spaces that
have the property that their fine quasi-uniformity is quasi-metrizable.

PROPOSITION 1.12. The fine quasi-uniformity of a Tt space X has a countable base if
and only if X is a quasi-metrizable space with only finitely many nonisolated points.

In order to prove this proposition we need some auxiliary results.

PROPOSITION 1.13. If the fine quasi-uniformity of a topological space X has a countable
base, then X is transitive.

Proof. Since the fine quasi-uniformity of a topological space induces its Pervin
quasi-proximity, we conclude by Lemma 1.1 that X has a cr-interior-preserving topology.
Hence X is transitive by Proposition 1.10.

REMARK 1.14. The fine quasi-uniformity of each first-countable space (X, ST) in
which all but finitely many points have a smallest neighborhood has a countable base.

Proof. Assume that *,, . . . , xk are the finitely many points of X without a smallest
neighborhood. For each i e {1, . . . , k] let {g(n, *,):« e N} be an open decreasing
neighborhood base at xt. For each n e N set ?Tn = {G e ST-.x, e G and i e {1, . . . , k} imply
that g(n, x,) c G } U {g(n, x,): i = 1, . . . , k} U {X}. Clearly ST = U {&„ • n e M} and STn is
an interior-preserving open cover of X whenever n e N. In particular X has a
cr-interior-preserving topology. For each x eX and n eN set Sn(x) = f) {G: x e G e 3~n).
Let C be an arbitrary transitive neighbornet of X. There is an n eN such that for
each i e {1, . . . , k} we have that g(n, xt) c. C(JC,). Let y eX. If x, € C(y) for some
/ £ { ! , . . . , k}, then g(n, xt) E C(XJ) C C(y). Thus C(y) e 5Tn. Hence we have shown that
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Sn(y) c C(y) whenever y eX. We conclude that the fine transitive quasi-uniformity for X
has a countable base. Since X has a cr-interior-preserving topology, X is transitive by
Proposition 1.10. Hence the fine quasi-uniformity for X has a countable base.

LEMMA 1.15. Let X be a topological space, the fine quasi-uniformity of which has a
countable base. Let Y be the subspace of X consisting of the points of X without a smallest
neighborhood in X. Then each strictly decreasing sequence (Gn)neN of Y-open subsets of Y
has a nonempty intersection.

Proof. Assume the contrary. Let (Gn)neN be a strictly decreasing sequence of
y-open subsets of Y that has an empty intersection. Since X is transitive by Proposition
1.13, we can assume that the fine quasi-uniformity for X has a countable decreasing base
{rn:neN} consisting of transitive neighbornets. Inductively we define a sequence (*,,)„ eN

of points of Y and a strictly increasing sequence of positive integers (k(n))neN such that
Tk(n)+i(xn) <= Tk(n)(xn) and (Tk{n)(xn) n y ) c C B whenever n e N. Note that <g = {X} U
{Tk(n)+i(xn):n eN} is an interior-preserving open cover of X, as C^\{Gn:n eN} =0
and each point of X\Y has a smallest neighborhood in X. Since {T^ine^J} is a
base of the fine quasi-uniformity for X, there is an n e N such that Tn(x) c f | {D :x e D e <€}
whenever xeX. Choose an s e N such that k(s)>n. Then Tk(S)+i(xs) a Tk(S)(xs) c
Tn(xs) c. Tk(s)+l(xs), because Tkis)+i(xs) e <€—a contradiction. This completes the proof of
the lemma.

Proof of Proposition 1.12. Let X be a 7j space the fine quasi-uniformity of which has
a countable (decreasing) base {Un :n e N}. Then X is quasi-metrizable (see e.g. [2, p. 4]).
Let x be a nonisolated point of X. Consider the sequence ([int f/n(x)]\{;c})neN of open
sets in X. Since X is a Tx space, this sequence has an empty intersection. We conclude by
Lemma 1.15 that x is an isolated point in the subspace Y of the nonisolated points of X.
Furthermore, by the same lemma, each collection of pairwise disjoint nonempty Y-open
subsets of Y must be finite. We deduce that X is a quasi-metrizable Tx space containing
only finitely many nonisolated points. The converse follows from Remark 1.14.

We conclude this section with the promised construction of a nontransitive space.

EXAMPLE. Let X=C6[—1, 1] be the set of the continuous real-valued functions
defined on the compact interval [—1,1] of real numbers equipped with the well-known
norm defined by

= max{|/(jt) | :*e[-l , 1]}, for each / e l .

For each neN and each feX set //„(/) = {g eX: \\f -g\\ <2'"}. &> will denote the
topology induced on Xby the norm || ||. As usual, by id we will denote the element of X
defined by id(*) = x for each x e [—1, 1]. For each n e N set

First we want to check that {Vn :n e (\l} is a countable base for a quasi-uniformity °U on X.
Clearly by definition Vn is reflexive for each neN. It is also easy to show that the
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sequence (Vn)neN is decreasing. (To this end the inequality

id id
•8

id

can be used.) Let n eN and (/, g) e Vn+X, (g, h) e Vn+U where f, g, heX such that
and g =£ h. Then

Hence (/, A) e Vn. Thus F^+ 1 c Vn for each n e IU
Next we want to show that (X, 3'(<3U)) is not transitive. It will suffice to prove that V3

does not contain a transitive 5"(%)-neighbornet.
Assume the contrary. Let T denote a transitive 5"(%)-neighbornet contained in V3.

For each m, n e M set Am<n = {feX:Hm(f) n W ) c T(/) and / / , ( / ) n VB_,(/•) <£ T(/)
whenever £ e Î J}. We want to show that LJ {Am „ : f f l ,neN}=X Let f eX. Then there
exists an n € Py such that K ( / ) ^ T(f), because T is a 5'(%)-neighbornet of X. Hence
there is a minimal neN such that Hm{f)CiVn(f)<^T{f) for some meN. Note that
n ¥= 1, because Hm(f) D V^(/) c T(/) for some m e N i s impossible. Assume the contrary.
Then we have that Hm(f) n V^f) c V3(/). Consider now the function g defined by

•ym + 4 '
if —1

A straightforward calculation shows that geX, g e Hm(f) and geVx(f). However for
x = - 1 + l/2m+1 we have that |/(x) + ^/8 - g(x)\ = i Hence g $ V3(f)—a contradiction.
Thus n ¥= 1. We conclude that \J {Amn:m, n eN} = X. By Baire's Category Theorem
there are a nonempty y-open set G and m, n e M such that G c cly ^4m,«.

Let / e G r\Amn. There is a ^ e N such that A: > m and such that Hk(f) c G. Set
B = ̂ OTM nHk(f) D Vn(/). We want to argue that Hk(f) D Vn(f) s c l y B: Note that/ eB.
Let geHk(f)r\Vn(f) and g =£/. Then g e H t ( / ) c G c c l y / l m , n and, thus, for an
arbitrary ^-neighborhood V of g we have that [V C\Hk{f) D VM'(/)] n^ m , n ^ 0 , since
/4 ( / ) n K( / ) is an 5^-neighborhood of g. Hence g e cly B.

We observe next that it will suffice to show that

nk(f)nvn^(f).
Since in this case we get that Hk(f) D Vn^(f) c{J •

e B). ( * )

T[Hk(f) n E TT(f) E r(/), because B c
fl Vn(s) :s e B} c T(B) c

>ff l , / ei4m>B and 7 is transitive.
However this contradicts our assumption tha t /e^4 m n . We will conclude that V3 cannot
contain a transitive 5"(^)-neighbornet of X as soon as we know that inequality (*) is
correct.

Let h eHk{f) fl Vn^(f). If h =/, then heB. Thus he\J {Hk(s)D Vn(s):s e B} in
this case. Hence we assume that h^f. Then for p = (h + / ) /2 one easily checks that
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h e Hk(p) n Vn(p) and p e Hk(f) n Vn(f). For instance p e Vn(f), because

id
+

 2"~p
11/

— — -2

id
—
2"

h

2

1

~2

id
f _l fa2n~1

In particular, since, as we have shown above, Hk(f)nVn(f)cc\<fB, we get that
p e cly B. Clearly there is r e N such that \\h -p\\ + 2~r <2~k and \\p + (id/2") -h\\ + 2~r

< 2~n. Let t € //r(p) n B. Note that

and
i d

<2~

Hence h e Hk(t) ("1 Vn(f). We have shown that inequality (*) is satisfied.

2. «</u and uqp spaces. It is known that a topological space is a uqu space if and
only if it is a hereditarily compact space in which there is no strictly decreasing sequence
(Gn)neN of open sets with an open intersection (see [8, Remark on p. 41] and [1]). Let us
begin this section with another characterization of uqu spaces in the class of hereditarily
compact spaces. Clearly it is motivated by Proposition 2.2 of [4]. Recall that a topological
space X is a Baire space if the intersection of countably many open dense subsets of X is
dense in X.

PROPOSITION 2.1. A hereditarily compact space is a uqu space if and only if each of its
closed subspaces is a Baire space.

Proof. Using the characterization of uqu spaces given above it is immediately clear
that each closed subspace of a uqu space is a uqu space. Hence each closed subspace of a
uqu space is a Baire space by Lemma 2.1 of [4].

In order to prove the converse let X be a hereditarily compact space, each closed
subspace of which is a Baire space. Assume that there exists a strictly decreasing sequence
(Gn)neN of open sets in X with an open intersection. Since X is hereditarily compact, the
closed set X\f^\ {Gn:n e Î J} is the union of finitely many irreducible closed sets Fj
(/ = 1, . . . , k and keN) [12, p. 903]. Hence there exists an i e{l, . . . , k} such that
GnC\Fj¥=0 whenever n e N. Since F( is irreducible, Gn n F{ is dense in Ft for each neN.
Since by our assumption Ft is a Baire space, we deduce that p) {Gn :n e N} D Ft¥=0—a
contradiction. Hence Pi {Gn :n e f̂ J} is not open. We conclude that X is a uqu space.

Next we want to prove the result about finite products of uqu spaces mentioned in
the introduction.

PROPOSITION 2.2. The product of finitely many uqu spaces is a uqu space.

Proof. Let X and Y be uqu spaces. It suffices to show that X x Y is a uqu space.
Since X and V are hereditarily compact and the property of hereditary compactness is
finitely multiplicative [12, Theorem 9], it suffices to show that Pi {Gn :n e M} is not open
whenever (Gn)neN is a strictly decreasing sequence of open sets in X x Y.

Assume the contrary. Let (Gn)neN be a strictly decreasing sequence of open sets in
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XxY with an open intersection. Since X X Y is hereditarily compact and the set of open
rectangles in X x Y is a base for X x Y, each open set in X x Y is the union of finitely
many open rectangles. Hence by our assumption P | {Gn:n eN} = U {Bj'.j = 1, . . . , m}
where meN, Bj = prx Bfx prY Bj and Bt is open in XxY (j = l,...,m). Then

(X X Y)\n {Gn : n e N) = f] {[(*\pr* B,) xY]l)[Xx (Y\piY Bj)] :j = \, . . . ,m)

where we can assume that each Fp (p = 1, . . . , 2m) is a closed rectangle in X x Y. Since
the sequence (Gn)neN is strictly decreasing, there is an i e {1, . . . , 2m} such that
Gnf~\Fj¥=0 for each neN. By induction we wish to define a sequence of open
rectangles (Ak)ke^ in XxY such that 4̂* c G> whenever A: e f̂J and such that
Gnnn{Ar.l = l,...,k}n Ft =£0 whenever n e N and k e N.

Assume now that k eN and that A, is defined for each / e N such that / < A:. Since G*
is the union of finitely many open rectangles, say Gk = {J{Kj:i = l, . . . ,f} where / e N
and each Kt is a nonempty open rectangle in X x Y, and since by our hypothesis we have
that

Gn n n {A,-.i = l, • • •, k -1} nFi = Gn n U {K, -A = l , . . . , / }

whenever n > A: (for A: = 1 the expression H {̂ 4/: / = 1, . . . , A: — 1} means X x y), there is
an s e{ l , . . . , / } such that Gn n ^ n p l M/:/ = 1, • • • , * - 1} D /v ̂  0 whenever ne N.
Set >1̂  = Ks. This completes the construction of the sequence (Ak)keN.

F o r e a c h n e N s e t H n = C } { p r x A k U ( X \ p t x F i ) : k = l , . . . , n } a n d P n =
P) {pryAk U (y\pry/^):A: = 1, . . . , «}. Then (Hn)neN is a decreasing sequence of open
sets in X and (/>«)neN is a decreasing sequence of open sets in Y. Furthermore by the
construction of the sequence (Ak)keN we have that Hnr\prx Ft¥=0 and Pnr\prYFj^0
whenever n sN. Since X and Y are uqu spaces and since pr^ Ft is closed in X and pry Ft is
closed in Y, we conclude by the characterization of uqu spaces given in the beginning of
this section that there are an x e p) {//„ D prx F^.n eN} and a y e H {̂ « H pry ^ : n e N } .
Hence (*, y) ep) {Ak:k e f^} n i .̂ On the other hand (fl {Ak:k e N}) r\Ft c
(Pi {Gn:n eN}) C\ Fi = 0—a contradiction. We have shown that p | {Gn :n e N} cannot be
open. Hence X X Y is a uqu space.

COROLLARY 2.3. If X and Y are uqu spaces, then the fine quasi-uniformity for XxY
is the product quasi-uniformity of the fine quasi-uniformities for X and Y.

Proof. Since X x Y is a uqu space, the (compatible) product quasi-uniformity on
XxY of the fine quasi-uniformities for X and Y is the unique compatible quasi-
uniformity for XxY.

We finish this paper with a result on uqp spaces. We recall that by a result of [6] a
topological space X is a uqp space if and only if its topology is the unique base of open
sets that is closed under finite unions and finite intersections. (In this result it is assumed
that Pi 0 = X). Although there are simple examples of first-countable uqp spaces that are
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not hereditarily compact [6, p. 561], we are going to show now that such examples cannot
be Tj spaces.

PROPOSITION 2.4. A uqp Tt space with countable pseudo-character is hereditarily
compact (and, thus, countable).

Proof. Let X be a uqp 71 space with countable pseudo-character. First let us note
that X is compact, because if x is any point in an arbitrary uqp space Z, then Z\{x} is
compact [6, p. 561]. Consider the set 3€={GcX:G is open in X and not compact}
ordered by set-theoretic inclusion. We want to show that SJf is empty. Of course this will
mean that X is hereditarily compact [12, Theorem 1]. Assume that 3€¥=0. Since for any
nonempty chain f c f we have that U JC e X, we conclude by Zorn's lemma that there
exists a maximal element Y e "X. Let ^ be a collection of open subsets of Y covering Y
such that no finite subcollection of <& covers Y. We observe that since X is compact, there
is an x e(X\Y). Since X is a space with countable pseudo-character, there is a sequence
(Gn)neN of open sets of X such that H {Gn :neN} = {x}. By the maximality of Y the set
Y U Gn is compact whenever n eN. Hence for each n e N there exists a finite
subcollection %n of ^ covering Y\Gn. Since H {Gn :n e N} = {x} and x $ Y, the
collection 3) = [J {%!„ :n e N} is a countable subcollection of % covering Y. Since no finite
subcollection of <£ covers Y, it is clear by induction we can define an open cover
{Dn:neN} of Y and a sequence (xn)n£N of points of Y such that Dne3s and
xn e Dn\([J{Dk :k<n, k eN}) whenever n e N. Let H1 = Y\{x2n:n eN} and H2 = Y\
{x2n-i'.n eN}. Note that Hx and H2 are open in X, because X is a T, space and
{/)„ :rc e Py} is a cover of y. Moreover, of course, HX\JH2= Y. Let °\l be an ultrafilter on
.T that contains the collection {Y\C:Ce <€}. Since Ye %, there is a / e { l , 2} such that
//, e %. Since X is a uqp space, there is a (nonempty) finite collection M of open sets in X
such that f~)McH, and such that for each M eM the set M contains a limit point of °IL [6,
Proposition]. Since Y does not contain any limit points of °lt, we conclude that Y <= Y U M
whenever M eM. Therefore by the maximality of Y we see that for each M eM the set
YUM is compact. Hence for each M eM there is a finite subcollection of {Dn :n e N}
covering Y\M. Since f^\Mc.H,cY and M is finite, it follows that there exists a finite
subcollection 9 of {Dn :n e N} such that (Y\Ht) c \J ®. Hence xne\J<3> for infinitely
many n e N—a contradiction to the construction of the sequence (xn)neN. We conclude
that dK is empty. Thus X is hereditarily compact. The last assertion of the proposition
follows from the fact that a hereditarily compact space with countable pseudo-character is
countable [12, Proof of Theorem 11].
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