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Representations of metabelian groups

satisfying the minimal condition

for normal subgroups

Howard L. Silcock

A question of John S. Wi I son concerning indecomposable

representations of metabelian groups satisfying the minimal

condition for normal subgroups is answered negatively, by means

of an example. It is shown that such representations need not be

irreducible, even when the group being represented is an

extension of an elementary abelian p-group by a quasicyclic

q-group of the type first described by V.S. Carin, and the

characteristic of the field is a prime distinct from both p and

q . This implies that certain techniques used in the study of

metabelian groups satisfying the minimal condition for normal

subgroups are not available for the corresponding class of soluble

groups of derived length 3 .

1 .

In this paper we answer a question raised by Wi Ison in his talk [/2]

at the Mini-Conference on Group Theory at the Australian National

University in November 19T5-

Wi I son's question arises in the context of a more general question,

whether a soluble group that satisfies min-w (the minimal condition for

normal subgroups) is necessarily countable. The latter question remains

open [see note added in proof], though McDougalI [6] has dealt with an

important case by proving that all metabelian groups satisfying min-n are
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countable (see also [9]). By a result of Wilson [ / / ] , i t is sufficient for

the countability question to consider.soluble groups satisfying min-n

that are also F-per/eet: that i s , have no proper subgroups of finite

index. Further, i t is easy to see that every group satisfying min-n is a

subdirect product of a finite number of monolithic groups satisfying

min-n . (A group is monolithic if i t s non-trivial normal subgroups have

non-trivial intersection.) Therefore, when i t is convenient, we may

restr ic t our attention further by considering only monolithic groups.

Detailed information about the structure of metabelian groups

satisfying min-n has been obtained by Hartley and McDougall [2]. Indeed

these authors have completely classified the ^-perfect metabelian groups

satisfying min-n . Their results imply, in particular, that a metabelian

group which satisfies min-n and is in addition both Z-perfeet and

monolithic is very like one of the "standard" examples of metabelian groups

satisfying min-n constructed by 5arin [ /] . For each pair of distinct

primes p and q , Carin's construction gives a group satisfying min-n

which is an extension of an infinite elementary abelian p-group by an
GO

abelian group of type q . Following Wi I son, we denote th i s group by

Now suppose G is a soluble group of derived length 3 which

satisfies min-n and is both ^F-perfect and monolithic, and write

A = G" . Then G/A is an ^-perfect metabelian group satisfying min-n .

In attempting to prove that G is countable it is natural, in view of the

remarks made above, to consider first the special case where G/A is
CO

actually isomorphic to C(p, q ) , for some p and q . Now A is

periodic (see Theorem 5.25 of [8]) and i ts non-trivial ff-invariant

subgroups intersect non-trivially because G is monolithic. Therefore A

has only one primary component, and so is an r-group, for some prime r .

Further, each of the subgroups

Alrn] ={a € A s / * = l } ,

for n = 0, 1, 2, . . . , i s (7-invariant, and G wi l l be countable if and

only i f a l l the factors .d[rW]//4[r ~ ] are countable. Thus we may further

suppose that A has exponent r .

After making the simplifications just indicated, we may view A as a
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representation module for Cip, q ) over the field of ? elements Z • The

problem of describing G thus leads naturally to the problem of describing
CO

representations of C(p, q ) over Z . This is the subject of Wilson's

question, which is part of Problem k of his talk [see note added in proof]:

"Study irreducible and indecomposable modules over the fields of

r elements for Carin's group C{p, q ) . If r is distinct

from p and q , are monolithic modules necessarily irreducible?"

In the analogous situation for metabelian groups, all the monolithic

modules which occur are irreducible, by a result of Kovacs and Newman [4].

Nevertheless we shall show, by means of an example based on Neumann's

example in [4], that Wi I son's question has a negative answer. In fact, we

shall prove:

THEOREM. Let p and q be distinct primes. If r is a prime such

that r - 1 is divisible by p , then the Carin groxtp C(p, q ) has a

monolithic representation module over Zp that is artinian but not

irreducible.

2.

In our proof of the theorem we shall need to refer to a property of

the Car in group C(p, q ) that does not seem to have been noted in the

literature. To explain this property we first introduce some notation.

We assume that distinct primes p and q have been chosen once and

for all, and we let F be the field associated with C(p, q ) . Thus F

is the field obtained from Z (the field with p elements) by adjoining

a primitive q -th root of unity, a) say, for each positiv integer n .

This field is the union of a tower of finite subfields

where F = Z (u> ) , for each n . We write fi for the subgroup of the

multiplicative group of F generated by a) , u> , ... ; and we set

nn = < W M > , for n = 1, 2, 3, . . . .

LEMMA 1. There is a positive integer d such that, for each integer
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n 2: d j the elements of any transversal to Q, in Q. form a basis for F

as a vector space over F

Proof. Let n be a positive integer and let T be a transversal to
£1 in tt . Since F is generated as a field by ft , i t is clear that the

elements of T span F as a vector space over F . As a set is linearly

independent if and only if every finite subset is linearly independent, i t
is sufficient to prove that , if n is sufficiently large, the set T n fi

i s linearly independent over F for every m > n .

Wow F n Q.+ is a transversal to fi in Q. , so i t containsm n m

\ti /Q | = q elements. These elements span F as a vector space over

F , so to show they are linearly independent i t will be enough to prove

that \Fm : FJ - a™ .

By its definition, F contains a primitive q -th root of unity and

is the smallest field of characteristic p with this property. So if

F = GFlp m\ , then the order of the multiplicative group of F , namely
m \ j m

f
p m - 1 , must be divisible by q ; and f must be the least positive

integer with this property. Thus f is the order of p modulo q , in

the sense of number theory. Similarly / is the order of p modulo

qn . As f = |F : Z I and f = \F : Z I , we have
^ Jm ' m p1 Jn ' n p

\F : F I = f If .' m n' Jm Jn

The result is therefore a consequence of the following simple number-
theoretic lemma.

LEMMA 2. Let p and q be distinct primes, and let f be the

order of p modulo qn , for n = 1, 2, 3 Let d be the positive
integer determined by the following conditions:
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(i) if q is odds or if q = 2 and p = 1 (mod h) , then q

f±
is the largest power of q dividing p - 1 ;

(ii) if q = 2 and p = 3 (mod k) , then 2 is the largest
2

power of 2 dividing p - 1 .

Then, for all integers m, n with m > n > d , we have

V7e omit the proof of th i s lemma, as the resu l t may be deduced easily

from Theorem k-6 of [5] (p. 52).

We now consider the significance of Lemma 1 for the structure of
CO OO

C(p, q ) . By definition, C(p, q ) is a split extension of the additive

group of F by the multiplicative group fl defined above. To avoid the

confusion caused by the simultaneous use of additive and multiplicative

notations, we shall think of the elements of C(p, q ) as ordered pairs

4-») •
where i, k are positive integers, and a € F . These pairs multiply

according to the rule

,., { k If I o) [ k I I

Let us now write b{a.) = (l, a) and c. = (OJ., o) , for all a € F and

all £ > 0 . Then, from (l), we have

(2) b(a)b{&) = 2?(a+3) ,

for all a, 3 € F and all i > 0 . The elements £>(a) , for a t F , form

a normal subgroup, B say, of C(p, q ) , and the mapping b(a) i—>• a is

an isomorphism from B onto the additive group of F . The subgroup C

generated by o , a , ... is a complement to B , and the mapping

a. i—*• u. evidently extends to an isomorphism between C and fi .

CO

Further, B is a minimal normal subgroup of BC = C(p, q ) (see, for

example, §5.2 of [«]).
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The following property of BC turns out to be crucial for the

construction to be described later.

LEMMA 3. There is a homomorphism -n from B onto a finite direct

factor B. of B such that, for every b € B , the set

{a € C : b°v # l}

is finite.

Proof. Choose a positive integer d satisfying the conditions of .

Lemma 1, and let T be a transversal to ft, in ft containing the

identity element. Then Lemma 1 shows that T is a basis for F as a

vector space over F , , so f is the direct sum of the subspaces yF, , as

Y ranges over T .

Now the mapping a 1—>• b(a) is an isomorphism from the additive group

of F onto B , so this direct sum decomposition of F determines a

direct product decomposition of B , in which the summand yF, of F

corresponds to the factor

{b(ya) : a € F^

of B . Since V contains the identity element, the subgroup

BQ = {b(a) : a € Fd]

occurs among these direct factors. Furthermore, if we set t = {y, 0)

for each y € F , then using equation (3) above we see that

t
BQ

y = {b(ya) : a ZFd} .

Consequently we can express B as a direct product

t
(k) B = dr B y .

°
Also, as the generators e. = (w., o) of C transform B according to

the mapping b(a) t—+ fcfw.ot) , the normalizer ^(B-,1 is the finite

subgroup C = (e.) of C . But C is the image of ft, under the
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isomorphism w i—*• (u), 0) between C and Q , and this isomorphism maps F

onto the set

T = [ty : Y € T} .

Therefore T is a transversal to C in C .

Now define IT to be the canonical projection of B onto B_

associated with the direct decomposition (k). We claim that tr satisfies

the conditions of the lemma. To see this, let b € B . Then the

projection of b in the direct factor B is trivial for all except a

finite number of elements t € T . Write T for the finite subset of

exceptional elements. Then, for any a i. C , the direct factors in which

C ~tsG
b has non-trivial projection are precisely the factors B , for t

c o
ranging over T . In particular, the projection b IT of b in B is

to
non-trivial if and only if 5 = B , for some t € T . This will be the

case if and only if tc € NC{BQ) = C , for some t 6 T However, both

T and C are finite, so there are only finitely many a (. C such that

—1 c

c^tC for some t € T . Therefore b Tf = 1 for all but a finite

number of c (. C , and the result follows.

3.

We now come to the construction required to prove the theorem. We

start by defining the unrestricted treble product, a variant of the treble

product defined in [3].

Let A, B, C be three groups and let

a : B ->• aut A ,

T : C -*• aut B

be homomorphisms (where we write aut X for the automorphism group of a

group X ). Using the homomorphism T , we first form the semi-direct

product H - BC . Now write P for the set of all functions from C into

A . Under the usual pointwise operations, P is a group. We make H act
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as a group of operators on P as follows. I f f (. P and h = be € H ,

where b € B and c € C , then we define j by

(5) /(c) = /[cc"1

for all e£C. It is a routine matter to check that the mapping / i—• f

is an automorphism of P for each h € H , and that the mapping which

takes h to the automorphism ft—*• j is a homomorphism from H into

aut P . We define the unrestricted treble product of A, B, C (with

associated homomorphi sms a, T ) to be the semi-direct product K = PH ,

formed according to the action just described.

If Q denotes the subgroup of P consisting of all functions from C

into A with finite support, then Q is easily seen to be invariant under

the action of H . The subgroup T = QH of K is just the treble product

trU, B, C; a, T )

defined in [3]. As usual, we may regard A as a subgroup of K by

identifying each element a f A with the function a : C •* A defined by

a(c) = 1 , if c * 1 ,

a(l) = a .

When this identification is made, it follows from (5) that A is invariant

under the action of B , and that AB is isomorphic to the semi-direct

product of A and B formed using a .

In the terminology of Neumann [7], K is an unrestricted twisted

wreath product of A and E , while T is the corresponding restricted

twisted wreath product.

We now consider the subgroup M = < Q, D) of P obtained by adjoining

to Q the subgroup D of all constant functions from C into A . If C

is infinite, the elements of D have infinite support, so that D n Q = 1

and hence M = D x Q . In general, M need not be invariant under the

action of H . However, we now show that if the homomorphisms a and T

are subject to certain conditions M will be invariant.

LEMMA. 4. If a and T are chosen so that, for each b € B , the
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set {c € C : baa # l} is finite, then M is invariant tender the action

of H . Furthermore, we have

[M, H] 5 Q

in this case.

Proof. As we knov that Q is ff-invariant, it will be sufficient to

prove that the conditions on a and T imply that [D, H] — Q .

Let / £ D ; then / is a constant function, say f(c) = a , for all

c(.C. If / i f f , then we can write h = be for suitable b € B And

c. € C , and then

b° a .c'1

-1
for all c i. C . By hypothesis, & cr = l for all but a finite number of

c , so / and / agree except on a finite subset of C . Therefore

[/, h] = f l has finite support. Hence [V, H] £ Q , and the result

follows.

Now let p, q, r be primes satisfying the conditions of the theorem.

We specialize the construction just described, taking B and C to have

the meanings ascribed to them in §2, and choosing T : C -*• aut B so that

the associated semi-direct product H = BC is the Carin group C(p, q ) .

For the group A we take a cyclic group of order r . Then aut A has

order r - 1 , which by hypothesis is divisible by p ; hence aut A has

a subgroup of order p .

Now let 77 : B -*• B be the homomorphism described in Lemma 3. As B

is a non-trivial p-group, we can choose a non-trivial homomorphism

a : B -»• aut A . We take o to be the homomorphism from B into aut A

obtained by composing IT and O .

With this choice of a and T , the treble product

T = tr{A, B, C; a, T)

is of the type constructed in §k of [101. Therefore, by Lemma 6 of [70],
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the normal subgroups of T are well-ordered by inclusion; and, as A has

prime order, its normal closure Q is contained in each non-trivial normal

subgroup of T .

We now observe that the conditions of Lemma k are satisfied. For by

our choice of a we have ker TT £ ker a ; hence the set

{e € C : b°a + l} is contained in {a £ C : b°v f l} . But the latter is

finite .by Lemma 3. Hence Lemma k is applicable, and we conclude that

M = Q x D is invariant under the action of H .

Now M is isomorphic to a direct power of A , so it is an elementary

abelian r-group. Hence M may be viewed in a natural way as a

representation module for H over Z . From this point of view, the

ff-invariant subgroups of M are just the submodules of M ; and, as Q

is a minimal normal subgroup in T = QB , it follows that Q is an

irreducible submodule of M . Further, M/Q has order r and is

centralized by H , so it is a one-dimensional factor-module of M . Thus

M has composition length 2 , and so is certainly artinian. To complete

the proof of the theorem, we need one more fact concerning M .

LEMMA 5. Q has no H-admissible complement in M .

Proof. Suppose on the contrary that Q has an admissible complement

L . Then L is operator-isomorphic to M/Q , so it is a cyclic group of

order r and is centralized by H .

Suppose f is a generator of L . Then for some c € C we have

/(c) # 1 . Write f{c) = a . Then, as f commutes with c , we have

fie) = fi°) = /CD »
so that f{l) = a . As A has prime order, we have A = <a) . Now choose

b £ B such that b j: ker a . Then a t a . However, / commutes with

b , so

a = /(I) = / ( I ) = f(l)b = ab .

This contradiction completes the proof.

From this lemma it follows at once that Q is contained in every non-

trivial submodule of M . Consequently M is a monolithic representation

module for H ; further M is artinian and has a proper submodule Q .
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Hence the theorem is established.

Note added in proof, 5 March 1976. After this paper was accepted for

publication the author learnt that Dr B. Hartley has independently obtained

much more general results on the problems discussed here, in a forthcoming

paper. In particular he has shown that soluble groups satisfying min-n

can be uncountable.

The problem of WiI son's quoted in §1 was taken from a draft version of

[72]: however, the author understands that this version is now to be

modified to take account of Hartley's results, and that the published

version of [J2] may no longer include this problem in the form stated here.
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