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ABSTRACT

In the present paper we discuss error bounds for approximations to aggregate
claims distributions. We consider approximations to convolutions by approx-
imating each of the distributions and taking the convolution of these
approximations. For compound distributions we consider two classes of
approximations. In the first class we approximate the counting distribution, but
keep the severity distribution unchanged, whereas in the second class we
approximate the severity distribution, but keep the counting distribution
unchanged. We finally look at some examples.

1. INTRODUCTION

During the last two decades there has developed a large literature on
approximations to aggregate claims distributions and related functions, in
particular their stop loss transforms. In the present paper we give bounds for
some measures of errors caused by such approximations. These measures can also
be applied as measures for the distance between two distributions.

In Section 2 we introduce some notation and conventions, and in a short
Section 3 we present some simple inequalities for error bounds.

Approximations to convolutions of distributions is the topic of Section 4. We
approximate a convolution by approximating each of the distributions in the
convolution and then taking the convolution of the approximations.

Approximations to compound distributions is the topic of Section 5. We
consider two classes of approximations. In the first class we approximate the
counting distribution, but keep the severity distribution unchanged, whereas in
the second class we approximate the severity distribution, but keep the counting
distribution unchanged. Error bounds for approximations where both the
counting distribution and the severity distribution are approximated, can be
found by application of triangle inequalities.

In Section 6 we finally consider some applications. Further applications of
results from the present paper are given in Dhaene & Sundt (1996).
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The main topic of the present paper is approximations to probability
distributions. These approximations are not necessarily distributions themselves.
Sometimes one would apply an approximation that could be naturally split into
more than one step, e.g. approximating a compound distribution by first
approximating its counting distribution and then its severity distribution. In this
situation one could first give bounds for the approximation error of the
approximation with correct severity distribution and approximated counting
distribution, then for the final approximation considered as an approximation to
this intermediary approximation, and finally use triangle inequalities to assess the
approximation error of the aggregate approximation. In such a procedure, the
intermediary approximation would not necessarily be a distribution, and thus in
our frame-work it is also of interest to discuss approximations to functions. On
this background we have sometimes in our results assumed that the quantity to be
approximated is a more general function than a probability distribution. Such
generalisations are also possible in some of the other results where we for
simplicity have made more restrictive assumptions.

2. NOTATION AND CONVENTIONS

In the present paper we shall be concerned with probability distributions on the
non-negative integers. We shall approximate such distributions by approximating
their discrete densities. Thus we identify a distribution by its discrete density, and
for convenience we shall usually mean its discrete density when we talk about a
distribution.

Let V denote the class of (discrete densities of) probability distributions on the
non-negative integers. When discussing approximations to compound distribu-
tions, we shall restrict the severity distribution to the positive integers, and we
therefore also introduce V+ as the class of distributions on the positive integers.
As we shall approximate distributions in V and V+ by functions which are not
necessarily distributions themselves, we shall also need the classes T and J-+,
being respectively the class of functions on the non-negative integers and the class
of functions on the positive integers. We see that V+ C V C T and V+ C T ( C T.

For a function / e T we introduce

A=0

>'=0 1-A-+1

When the quantities no(f) and fi\(f) appear, it will always be silently assumed
that they exist and are finite. When 11/ (x) appears, it is assumed that //«(/) and
fi\(f) converge so that Uf(.x) is well defined and has a finite value.

If/ £ V, then iy is the corresponding cumulative distribution, fl/ the stop
loss transform, /*i(/) the mean, and fio(f) = 1.
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As the main purpose of this paper is to study the approximation error for
approximations to a distribution, we introduce the following measures for the
distance between two functions f,g e J-:

A=0

,v>0

For evaluating the quality of an approximation only considered as an
approximation to the discrete density, eoif, g) is a natural measure for the
approximation error. If we want to evaluate the corresponding approximation to
the stop loss transform, then rj{f,g) is a natural measure. We see that eoif, g),
£•](/", g), and 'ijij\g) are equal to zero if and only i f / = g

By the notation x+ we shall mean the maximum of x and zero.
We denote by / the indicator function defined by I (A) = 1 if the condition A

is true and I (A) = 0 if it is false.
We shall interpret E*=uv,- = 0 and n£=uv,- = 1 when b < a.

3. SOME USEFUL INEQUALITIES

The following lemma gives some useful inequalities that we shall need later.

Lemma 3.1 Forf, g, he T' andj-0, 1, we have

ej(f,g)<ej(f,h)+ej(h,g)

Vif, g) < Vtf, h) + r,(h, g)

and forf, g £ V

\f(0)-g{0)\ < l-eo(f, g) < £i(f, g).

(3.1)

(3.2)

(3-3)

(3.4)

Proof. The inequalities (3.1)-(3.3) are obvious.
For (3.4) we have

<•„(/, g) - 2|/(0) - g(0)\ = f^ I/W " g{x)\ - ](f(x)-g(x))
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which proves the first inequality. Furthermore,

, g) =
. V = l

Z /
,v=l

\f(x)-g(x)\<

= 2e,(f, g),
.v=l

which proves the second inequality.
This completes the proof of Lemma 3.1. Q.E.D.

4. CONVOLUTIONS

4A. When for / = 1, ..., m approximating /• e V by g, e J7, which is not
necessarily in V itself, it is also natural to approximate the convolution *"Lxf by
*'h=\gi- ^ n e convolution h\ *h^ of two functions h\ and h2 on the non-negative
integers is defined by

v=0

we also define h°*(x) = I(x = 0) for a function h on the non-negative integers.
The following well-known properties of convolutions of distributions in Palso

hold for convolutions of functions in T:

h\ = hi * h\

(hi * hi) * h-i = h\ * (hi * hi)

h\ * h~>, + hi * hj = (h\ + hi) * h

Furthermore, we easily see that

\h\ *h2\ < \tn\ * \h2

(hi <h2;j = 0,

Lemma 4.1 If hi, h2 £ T such that /xo(|^/|) < oo for \ = 1, 2, then

*h2)=
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Proof. We have

X> ]T Yx - y) =

247

*h2) = X > i *h2)(x) =
.v=0 A=0 y=Q

v=0

{x - y) =

Q.E.D.

4B. We shall first consider bounds for £o(*"L\ fh *T=\ Si)- F ° r t n e proof of our
main result we shall need the following lemma.

Lemma4.2For)', g, h e T'wehave

eoy*h, g*f

Proof. We have

o(f, g).

f* h)(x) - (g * h)(x)| =
.v=0

E
A=0

\x - y) - g{x - y))
.v=0 v=0

TO OG

, g).

Q.E.D.

Theorem 4.1 Forj), g, s J7 (7 = 1, . . ., mj, we have

ft

Proof. If /io(|//|) = oo or /io(|g"/|) = °o for some /, then the theorem obviously
holds. Let us therefore assume that /xo(//) and /io(g/) are finite for all i. Under this
assumption we shall prove (4.1) by induction on m. For m = 1 it trivially holds.
We now assume that it holds for m = 1, ..., n. By using successively (3.1), Lemma
4.2, Lemma 4.1, and (4.1), we obtain
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\, gn+\)

n+[ \ «+l .
* ./j *£„+!, *tgi <

(=1 / i = l

*,fh *,gi <

gn+i) +

'=1

/=/+!

V='+i

that is, (4.1) also holds for m =n + 1. By induction it holds for all m. Q.E.D.

One somewhat disappointing aspect of Theorem 4.1 is that the upper bound in
(4.1) is not in general invariant against permutations of the pairs (j),gi) (i = 1, ...,
m). However, in the special case when//, g, e V, (4.1) reduces to

Ai/h i\gi) - 5
which is invariant.

4C. For ?7(*'li fi,*"L\gi) w e have the following result.

T h e o r e m 4:2 Forfh g, eV(i= 1, .... m), we have

x = o, 1 , 2 , . . . ) (4.2)

. / . , (4.3)

Proof. Formula (4.2) follows from Lemma 6 in De Pril & Dhaene (1992), and
(4.3) follows immediately from (4.2). Q.E.D.

In (4.2) we gave an upper bound for the difference between the two stop loss
transforms. By symmetry we can immediately obtain an analogous lower bound.
Similarly, we shall also in the following often present our results only with upper
bounds when the analogous lower bounds follow immediately by symmetry.
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5. COMPOUND DISTRIBUTIONS

5A. In this section we shall discuss approximations to compound distributions.
For simplicity we assume that the severity distribution is in V+.

We denote the compound distribution with counting distribution p £ V and
severity distribution h £ V+ by p V h, that is,

(p V h)(x) = J2p(n)h"*(x), ( x = 0 , 1 , 2 , . . . )

and we extend this definition of the function p V h to the case when p £ T and
/l6f+.

5B. We first consider the case when we approximate a compound distribution
by approximating the counting distribution and keeping the severity distribution
unchanged.

Theorem 5.1 Forp, q £ J- andh £ J-+ with no{\h\) < 1, we have

so(p\/h, qVh) <£oO, <?)• (5-1)

Proof. We have

,v=0

E
.v=0 =0 x=0 «=0

53 W) - q(n)\ J2 \h"*\ W =
n=0 ,v=0 n=0

W) ~ qW\ = eo(p, q).
«=0 «=0

Q.E.D.

To deduce bounds for the approximation error for approximations to stop loss
premiums, we shall need the following lemma, which is proved as formula (38) in
De Pril & Dhaene (1992).

Lemma 5.1 Forf e V we have

nUjix) <Ufl,,(x) < ( « - 1) / ! , ( / )+ n ; (x) . (* = <), 1, ...; n = 1, 2, ...)

Theorem 5.2 For heV+,p,qe!F with H\(\p\) < oo, Â iCÎ I) < °°> ana<

B(p, q)=ei(p, q)~eo(j>, q)+ 2(p(0) -
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we have

n,v*(*) = n,v/,(x) <-(m(h) - uh{x))B(p, q) + n^x)

(x = 0, 1, 2, ...) (5.2)

•q(p\/h, q\Zh)<-fii(h)(ei(p, q) + \nl(p)-lM(q)\)<m{h)e]{p, q). (5.3)

Proof. For x = 0, 1, 2, . . ., we have

Upvh(x) - Uqvh(x) = J ( j - x ) ( ( ^ V h)(y) - ( q

y=x+\ n—\ n=\

from which we obtain

00

UpVh(x) - n,v/,(x) = Y, (P(") ~ </(«))(IV(-*) - nUh{x))+

(5-4)

Two applications of Lemma 5.1 give

- g (p{n) - q(n))(lJh,,,(x) - nUh(x)) <

(p{n) - q(n))+(nh,,(x) - nU,,(x)) <

(p(») - q(n))+(n -

- Uh(x)) £ (|p(«) " ?(«)| +P(n) ~ ?(«))(« - 1) =

which together with (5.4) proves (5.2).
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As

B{p, q) = e\[p, q)+li\(p)-lM(<t)-2'^2(p(n)-q(n))+<e\(p, q) + m (p) -

(5.2) gives

Ilpvh{x) - IV,,(x) < - (in (h) - nA(x))(e, (p, q) + m (p) - Mi (q))+

Together with the analogous inequality with interchanging of p and q, this gives
the first inequality in (5.3); the last inequality in (5.3) follows by (3.3).

This completes the proof of Theorem 5.2. Q.E.D.

The following theorem is a special case of Theorem 1 in Sundt & Dhaene
(1996).

Theorem 5.3 Forp, q 6 Vandh s V+, we have

rW*)-iV,,(x) < (m(h)- nh(x))np(i) + nh(x)(^(P) -miq)).

(x= 0, 1, 2, ...) (5.5)

The bounds in (5.1), (5.2), and (5.3) become equal to zero when p — q.
Unfortunately, this is not the case with the bound in (5.5) unless n p ( l ) = 0, that
is, p is a Bernoulli distribution. On the other hand, we see that the bound in (5.5)
is sharper than the bound in (5.2) when 11 (̂1) = 0 and/? ^ q. We shall discuss this
case in more detail in subsection 6.2.

5C. Let us now consider the special case with h G V+ and p, q s V with
fi\(p) = p.\{q). In that case (5.2), (5.5), and (5.3) reduce to respectively

l- (m (h) - n,,(x)) (e, (p, q) - £0(p, q) + 2(p{0) - q(0)) + ) (x = 0, 1,2, ...)

(5.6)

Upyh{x) - n,vA(x) < (in(h) - nh(x))Up(\) (x = 0, 1, 2, ...) (5.7)

^ , q). (5.8)

https://doi.org/10.2143/AST.27.2.542050 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.2.542050


252 JAN DHAENE, B.10RN SUNDT

From (5.6) we obtain

, q) - eo(p, q) + 2\p(0) - q(0)\). (5.9)

From (3.4) we see that this is sharper than or equal to the bound in (5.8).
We see that the bounds in (5.6) and (5.7) are non-decreasing in x. For x = 0

these bounds become equal to zero.

5D. In subsections 5B-C we discussed approximating a compound distribution
by approximating the counting distribution and keeping the severity distribution
unchanged. Let us now instead consider approximating the severity distribution
and keeping the counting distribution unchanged. For such approximations we
have the following theorem:

Theorem 5.4 Forp s Tandh, k e JF+ with fio(\h\) < 1 and fio(\k\) < 1, we have

£o(/> V h, /> V k) < ni(\p\)eo(h, k). (5.10)

If in addition h, k e V+, then

rj{p\/ h, /> V k) < /i\(\p\)r](h, k). (5-11)

Proof. By application of Theorem 4.1 we obtain

eo(p V h, p V k) = J2 \(P V h){x) -(j>V k)(x)\ =
x=0

E
.v=! . Y = l 11=1

; \p(n)\ ^ \h"*(x) - k"*(x)\ = ^ \p(n)\en(h"*,k"*) <
«—1 x=\ n= 1

, k) = , k),
n=\

which proves (5.10).
We now assume that h, k <E V+. For x = 0, 1, 2, ... we obtain

\npVh{x)-nM(x)\ = E;

E | p(n)\\nh,,,(x) - <2^\p(n)\r,{H"',k"*).
n=\
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Application of (4.3) gives

oc

E )\nrl(h, k) = fn(\p\)v(h, k),

from which we obtain (5.11).
This completes the proof of Theorem 5.3. Q.E.D.

5E. We shall now discuss two classes of approximations that can be convenient
both for the counting distribution and the severity distribution in a compound
distribution.

F o r / e P w e define the approximation f{r) for a positive integer r by

f(r\x)=f(x)I(x<r). (x = 0, 1, 2, ...)

As

• I }\ \.—"^ ' / I -\ \ \ — ^

/ Z_-> J \ J Jy ">•' J Z__j J V / ' v ' /

we obtain

= Hj(f) (y' = 0, 1) (5.12)

(5.13)

As/(x) >/ ( r ) (x) for x = 0, 1, 2, ..., 11/(x) -Il/(,)(x) is non-negative and non-
increasing in x, and we obtain

(0) (/) (/w) = £lf,f{r)) = %

We see that unless T/{r) = 1, the approximation /* ' ' will not be a proper
distribution as /io(/(r)) < Mo(/) = 1- To obtain a proper distribution, we can apply
the modified approximation / ( / ) defined by

f{x)
1 -

(0 . (x = r + l , r + 2, ...)

For j = 0, 1 we get
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It is easily shown that

Uf{x) - U]v)(x) = n/(max(x, ;-)), (x = 0, 1, 2, ...)

from which we obtain

({))nf(r). (5-14)

If X is a random variable with distribution / , then p'^ is the distribution of
S'^ = min(X,r). As jftr'> < X, we immediately obtain inequalities like

! > , ( * ) > r f ( x ) U ] v i ( x ) < Uf(x). (x = 0 , 1 , 2 , . . . )

Theorem 5.5 Ifp, h s V andr and x are positive integers, then

0 < nps/h(x) - IV-)v/,(x) < Mi(A)nP(r) (5.15)

o < npv,,(x) - npvi(r)(jc) < nA(r)/i,(/>). (5.16)

Proof. Sundt (1991) proved (5.15). The last inequality in (5.16) follows from
Theorem 5.4 and (5.14), and the first inequality is immediately seen by
interpreting n/,v/,(x) - II v^(r, (x) as the mean of a non-negative random variable.

This completes the proof of Theorem 5.5. Q.E.D.

We notice that

v(fJir))<v(fJ{r])-

5F. By combining the results from Section 5 with the results from Section 4, we
can obtain error bounds for approximations to convolutions of compound
distributions. For a simple illustration, let/?, e V and hj € V+ (i = 1,..., m). From
Theorem 4.1, (5.1), (5.12), and (5.13), we obtain

1=1 ;=1
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6. APPLICATIONS

6.1. Introduction

In this section we shall under various assumptions discuss approximations to
compound distributions by approximating the counting distribution with another
distribution with the same mean and keeping the severity distribution fixed, that
is, we want to approximate p V h with q V h when p, q eV, h £ V+ and

6.2. Bernoulli distribution

Lemma 6.1 Ifp is a Bernoulli distribution and q g V with n\(q) = n\(p), then

q(0)>p(0) 9(1) </>0) (6-1)

(6.2)

iyi)=0 (6.3)

(6.4)

Proof. We have

oc oc

1 - p ( 0 ) = p(l) = AM(/>)=A*I(?) = 53w?(/i) > J 2 ^ = l ~ * ( ° ) - ^ 0 ) ,
n=l «=1

which proves (6.1).
We have

oc oo

eo(p,q) = E IP (« ) -q(n)\ = ?(0) - ^ ( 0 ) + / ' ( 1 ) - ? ( i ) +
«=0 n=2

2(p ( l ) - ? ( ! ) )

n=I n=2

which prove (6.2).
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Formula (6.3) is obvious.
We have

n,(l) = f > - l)q(n) = M<1) - (1 - ?(0)) =P(\) - 1
«=1

which proves (6.4).
This completes the proof of Lemma 6.1. Q.E.D.

By application of (6.2) to respectively (5.1) and (5.9), we obtain

eo(pVh,qVh)<2(p(l)-q(\)) (6.5)

(6.6)

and insertion of (6.3) and (6.4) in (5.7) gives

-(AH(A) - nh(x))(q(p) ~p{0)) < nPM - n,vA(jc) < o (x = o, 1, 2, ...)

(6.7)

the second inequality was proved by Biihlmann et al. (1977).

6.3. Binomial distribution

W e n o w a s s u m e t h a t

p[n)= f ' V ( l - T ) ' " " - (« = 0, 1, ...,t;t= 1, 2, ...; 0 < T T < 1) (6.8)

The Bernoulli distribution discussed in subsection 6.2 occurs as a special case with
t = 1. However, unfortunately the situation becomes more complicated when
t > 1.

In the general case we have

H\{p) = tir

11,(1) = * 7 r + ( l - i r ) ' - l n , ( l ) = f7r + ? ( 0 ) - l , (6.9)

and insertion in (5.7) gives

-(fii(h) - Uh(x)){tir + q(0) - 1) <

= 0, 1, 2, ...) (6.10)
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Unfortunately, when t > I, the upper bound does not become equal to zero like
in the case t = \. However, as the present binomial distribution is the /-fold
convolution of the Bernoulli distribution p, given by

it is tempting to apply the results of Theorems 4.1 and 4.2. To be able to do that,
we have to assume that there exists a distribution q, e V such that q = q'*. Under
this assumption we have

p\/h = (p,\Jh)'* qVh = (q, \J h)'*.

From Theorem 4.1 and (6.5) we obtain

eo(p\/h,qVh) < teo{p,V h,q,V h) < 2t(n - q,(\)). (6.11)

We obviously have

q,(0y (6.12)

= tq,(Q)'-Xqt{\).

Thus

and insertion in (6.11) gives

(6.13)

From Theorem 4.2, (6.7), and (6.10) we obtain

< o,

(x = 0, 1, 2, ...) (6.14)

which implies

•q(pVh,qVh) <

However, from Theorem 4.2, (6.6), and (6.12) we obtain

\ (6.15)

which gives a sharper bound when / > 1. This implies that the lower bound in
(6.14) is sharper than the bound in (6.15) only for high values for 11/,(x), that is,
low values of x.
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The distribution q is called infinitely divisible if there for each positive integer
m exists a distribution qm such that q = g™* (cf. e.g. Feller (1968)). In particular,
this condition should hold for m = t, and thus (6.13)-(6.15) hold when q is
infinitely divisible.

The condition that there has to exist a distribution q, such that q = q'*\ may
seem intuitively unnatural. However, the following example shows that the
inequality n?v/i < n^v/i does not necessarily hold when this condition is not
fulfilled.

Example. Let t = 2, IT — \, and

Then (i\(p) = H\(q) = 1, and application of (6.9) gives 1 ,̂(1) - 11 (̂1) = | > 0.

6.4. Two infinitely divisible distributions

We shall now assume that both p and q are infinitely divisible. From Theorem
4.2, (5.7), and (6.12) we obtain that for each positive integer m

IW(x) - UqVh(x) <

and by letting m go to infinity we obtain

x = 0, 1, 2, ...) (6.16)

6.5. Poisson vs. infinitelv divisible distribution

We now assume that

p(n)=~e~\ (« = 0, 1, 2, . . . ;A>0) (6.17)

and that q is infinitely divisible. Then p is also infinitely divisible, and we have
m(p) = A.
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Let

Then

p(n) = limP,(n). (n = 0, 1, 2, ...)

From (6.13) we obtain

e0 (^, V A, 9 V

and as this bound is decreasing in t, we obtain

^ j ) • (6.18)

by letting t go to infinity. A similar limiting argument for (6.14) gives

-(M*)-nA(*))(A + ? ( 0 ) - l ) < n , v * ( j t ) - n ^ ( j c ) < 0 . (x = 0, I, 2, ...)

(6.19)

From (6.16) and (6.19) we obtain

ri{p\/h,qVh)< nx{h){\ + ln?(0)), (6.20)

which could also have been found by a limiting argument in (6.15). As
In q(0) < q(0) - 1, the lower bound in (6.19) in weaker than (6.20) for large
values of x.

6.6. Binomial vs. negative binomial distribution

We now assume that p is the binomial distribution given by (6.8), and that q is
given by

q{n)= ( a + " ~ 1 ) ( 1 - P ) V - (« = 0, 1, ...; a > 0 ; 0 < p < 1) (6.21)

Then q is infinitely divisible with

W(<?) = aT^-

and from (6.13)-(6.15) we obtain
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eo(pVh,q\/h)<2tir(l-(l -p)'+1) (6.22)

(x = 0, 1, 2, ...) (6.23)

h,q\Jh) < t^(h)(K + {\ - Pf-\). (6.24)

6.7. Binomial vs. Poisson distribution

We now assume that p is the binomial distribution given by (6.8) and q the
Poisson distribution given by (6.17). Then (6.13)-(6.15) give

eo{p\/h,qVh) <2tw{l - e"71) (6.25)

-(/ii(A) ~Uh{x))(tn + e ^ - 1) < Iipyh{x) - n,v*M < 0

(x = 0, 1, 2, ...) (6.26)

ri(p\/h,qVh) < t^{h)(-K + e'7' - 1), (6.27)

which can also be deduced from (6.22)-(6.24) by a limiting argument.

6.8. Poisson vs. negative binomial distribution

We now assume that p is the Poisson distribution given by (6.17) and q the
negative binomial distribution given by (6.21). Then (6.18)-(6.20) give

2

? (6.28)
1 - p

-pf-\\ < npvh(x) - n,v*M < o

(x = 0, 1, 2, ...) (6.29)

ri(pVh,qVh)< am (A) (j^— + ln(l - p)) , (6.30)

which can also be deduced from (6.22)-(6.24) by a limiting argument.
The bound in (6.28) was deduced by Gerber (1984) and the bound in (6.30) by

Dhaene (1991).
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6.9. Collective approximation to individual model

For / = 1, . . . , AM, let A,- 6 V+ and p, be the Bernoulli distribution given by

pi(l) = l-p,(0)=ni.

We approximate pi V h-, with the compound Poisson distribution q, V ht with

qi(n)=^e-". (« = 0, 1, 2, ...)

It is well known that then *f=x (qt V fit) = qW h with

q(n) = ^e~x (» = 0, 1, 2, ...)

By a trivial generalisation of (6.25) and (6.27) we obtain

£o(*>/Vn;),tfV«) < 2 y ^ 717(1 -e'1") (6.31)

-e^'-l). (6.32)

Unfortunately we have not been able to generalise the first inequality in (6.26),
but the second inequality is easily generalised to

n,?.1(A,1v*()W<n,vA(x). (x = 0, 1, 2, ...) (6.33)

The inequalities in (6.31)-(6.33) have been deduced by respectively Gerber
(1984), De Pril & Dhaene (1992), and Biihlmann et al. (1977).

When 7T,- and //, are the same for all /, we are back in the situation of sub-
section 6.7.
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