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Abstract. This communication is devoted to data processing of images obtained using an
extreme adaptive optics (AO) system and a coronagraph. Specific attention is given to the
following degrading factors: the residuals of atmospheric turbulence after AO correction and the
“side” effects of the coronagraph. Relying on a statistical modeling of the measurements a test
based on short exposure images is proposed. This processing, which generalizes the dark-speckle
technique, takes into account the “local” variance of the complex amplitude residuals and the
deterministic response of the system (i.e. without atmospheric turbulence).
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1. Assumptions and data model
Let us start considering a high-flux regime. We adopt in the sequel the model derived

in Aime & Soummer (2004). The complex amplitude resulting from the propagation of
light through the atmosphere, to the telescope, and then through an adaptive optics
(AO) system and a coronagraph can be decomposed into two terms in the focal plane.
The first term is the deterministic response of the coronagraph, we denote it c(�x) where �x
represents the position in the focal plane. The second term comes from the atmospheric
turbulence residuals not entirely corrected by the AO system and propagated through
the coronagraph, Ψs(�x). The complex value Ψs(�x) is assumed to be circular Gaussian
distributed: Ψs(�x) ∼ Nc(0, σ2(|�x|)). As a consequence, the instantaneous intensity i(�x) is
written |Ψs(�x)+c(|�x|)|2. Moreover, a planet in �x will basically shift i(�x) by a deterministic
quantity m(�x).

The Gaussian distribution assumption for the complex amplitude is well established
in a single position �x. However, the extension of this hypothesis to a vector containing
the complex amplitudes at different positions of the focal plane is not natural, mostly
due to the complexity of the transformations operated in the AO system. For this reason
we will limit the study to a monodimensional statistical model. Note that, besides the
fact that a multidimensional model will introduce extra unknown parameters (the spatial
correlation of the complex amplitude), it leads to results which are not analytical (Ferrari
et al. (2004), Tourneret et al. (2005)). To simplify the notations the position �x will be
omitted.

According to the previous assumptions, when m = 0 i is proportional to a random
variable distributed as a noncentral χ2

2 distribution (Johnson et al. (1995)), also denoted
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as a Rice distribution in statistical optics. Hence, the probability distribution of i is:

p(i;m, c, σ) =
1
σ2

exp
(
− i − m + c2

σ2

)
I0

(
2c
√

i − m

σ2

)
H(i − m) (1.1)

where I0 is the order 0 first type modified Bessel function. We recall the first two moments
of this distribution:

E[i] = σ2 + c2 + m, var[i] = σ4 + 2c2σ2. (1.2)

Let us now consider the low-flux regime, and in particular the processing of M short
exposure images. The number of detected photons in a pixel is distributed as:

Pr(N = n;m, c, σ) =
∫ +∞

0

in

n!
exp(−i)p(i;m, c, σ)di. (1.3)

When m = 0, this writes:

Pr(N = n; 0, c, σ) =
exp

(
− c2

σ2

)
1 + σ2

(
σ2
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)n

1F1
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, (1.4)

where 1F1(a; b; z) is a Kummer function which reduces here to a polynomial:

1F1(n + 1; 1; z) = exp(z)
n∑

k=0

n!
k!k!(n − k)!

zk . (1.5)

Instead, when m �= 0, Eq. (1.3) directly leads to:

Pr(N = n;m, c, σ) = exp(−m)
n∑

k=0

mn−k

(n − k)!
Pr(N = k; 0, c, σ) (1.6)

2. Test derivation
When all the parameters (here c, σ and m) are known, the optimal test is the Neyman

Pearson Detector (NPD) which consists in comparing the Likelihood Ratio (LR) of the
data under both hypothesis (here m = 0 vs. m �= 0) to a threshold. This detector
maximizes the probability detection for a fixed Probability of False Alarm (PFA), which
can be tuned by the threshold value. When the parameters are unknown a suboptimal
technique is the Generalized Likelihood Ratio detector where the unknown parameters
are replaced by their maximum likelihood estimators under both hypothesis (see for
example Bickel & Doksum (2001)).

The estimation of m(�x) from Pr(N = n;m, c, σ) is complex. However m being assumed
small we retain the Locally Most Powerful (LMP) test. This one relying on a Taylor
expansion of the LR is optimal for m close to 0. The test decides: m(�x) �= 0 if TLM P (�x) >
ξ where:

TLM P (�x) =
M∑

k=1

∂ log (Pr(N = nk ;m, c, σ))
∂m

∣∣∣∣
m=0

(2.1)

=
∞∑

k=0

∂ log (Pr(N = k;m, c, σ))
∂m

∣∣∣∣
m=0

Nk = −M +
∞∑

k=1

β(k; c, σ)Nk (2.2)
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Figure 1. Comparison between the SNR of the long exposure image and the LMP test.

where Nk is the number of times where k photons are detected in �x and:

β(n; c, σ) =
(

1 +
1
σ2

)
1F1

(
n; 1; c2

σ2+σ4

)

1F1

(
n + 1; 1; c2

σ2+σ4

) (2.3)

Let us note that the well-known Dark Speckle (DS) technique, Boccaletti et al. (2000),
is equivalent to the test statistic (2.2) were ∀k > 0, β(k; c, σ2) = 1.

3. Test performances
Once the test statistic as been defined, an important point is the derivation of its

distribution in order to relate the threshold to the PFA. The Nk follows a joint multi-
nomial distribution with index M and cell probability given by Eq. (1.4) or (1.6). This
distribution was used by Ferrari et al. (2005) to prove that SNRNPD − SNRDS = O(c2)
for the model under scope.

However, due to the complexity of the exact distribution, we will focus on the standard
asymptotic (M large) distribution of the LMP test statistic (see for example Bickel &
Doksum (2001)). When M is large we have:

S
def
=

TLM P

MI(0)
a∼

{
H0 : N (0, 1)
H1 : N (m

√
MI(0), 1)

(3.1)

where I(0) is the Fisher information for m when m → 0. A straightforward calculus
shows that:

I(0) = − lim
m→0

E

[
∂2Pr(N = n − 1; 0, c, σ)

∂2m

]
=

∞∑
n=1

Pr(N = n − 1; 0, c, σ)2

Pr(N = n; 0, c, σ)
− 1 (3.2)

Using (3.1) the test simplifies to:

decide m = 0 if S <
√

MI(0)z1−PFA (3.3)

where zα is the α quantile of the standard normal distribution.
At this point, let us note that the SNR of the LMP can be compared to the SNR of

the long exposure image, computed using Eqs. (1.2), thanks to the ratio:

η =
SNRLMP

SNR of long exposure image
∝ I(0)(σ4 + 2c2σ2), (3.4)
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exoplanet
intensity ratio wrt star 5 10−5

separation angle wrt star 0.5 arcsec

atmosphere+telescope
Fried parameter r0 (at 500 nm) 16 cm
number of turbulent layers 5
layers velocities 8—24 m/s
wave-front outer-scale L0 20 m
telescope diameter 8.22 m

AO system
sensor type Shack-Hartmann
sensor configuration 40×40
number of modes 744
time-filter type pure integration

coronagraph
coronagraph type Lyot
mask diameter 2λ/D
Lyot stop diameter 0.78 D

imaging device
wavelength band K (2.2 µm)
nb. of planet phot./ms ≈1
short exposure 1 ms
decorellation interval 5 ms
long exposure 800 ms, M = 800

Table 1. Main parameters of the data simulation.

Figure 2. Long exposure masked image. Figure 3. Estimated c2(|�x|) and σ2(|�x|).

A plot of η as a function of c and σ2 is given in Fig. 1. It shows that the benefit of the
proposed detection procedure increases principally with the variance of the turbulence
residual. Note that this gain is relevant only in the photon noise limited case, in particular
the read-out noise is not considered.

4. Simulations
Table 1 contains the main physical parameters of the performed numerical simulation,

made with the Software Package CAOS (Carbillet et al. (2005)), while Fig. 2 shows the
resulting long-exposure image, obtained integrating the data cube short exposures.

Computation of the test statistic S(�x) requires the knowledge of c2(|�x|) and σ2(|�x|).
The first could be obtained by a calibration procedure. Analytical expressions of the
second have been recently proposed by Fusco & Conan (2004) and Chelli (2005). However,
the solution retained here was to estimate c2(|�x|) and σ2(|�x|) directly from the data. These
quantities are computed solving Eq. (1.2) where the first and second order moments of
i(�x) are estimated by sample averaging on rings of radius |�x|.
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Figure 4. Test statistic S(�x) of the LMP test. Figure 5. Result of the LMP test.

The result is given in Fig. 3. Figure 4 shows the test statistic S(�x) and Fig. 5 the result
of the test for different values of the PFA. The lens is at the location of the simulated
planet. In this simulation the planet is the unique event detected with the lower PFA.

5. Conclusions
We have derived a test based on short exposure images for the direct detection of faint

unresolved objects in post-AO imaging data. A detailed simulation of the atmospheric
and instrumental effects (8-m class telescope, 40 × 40 elements AO, Lyot coronagraph,
K-band imaging) was performed. Our test was applied to a faint companion (5 10−5

relative intensity) at 0.5 arcsec from the main bright star, leading to promising results.
Further developments include modeling of additional noise contributions and estimation
procedure of the variance of the AO residual.
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