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ON DARBOUX AND MEAN VALUE PROPERTIES 

BY 
P. S. BULLEN AND D. N. SARKHEL 

ABSTRACT. In this paper we extend and greatly generalize, with some 
new information, the well known results that an approximately continuous 
function is Darboux, and that a finite approximate derivative has the mean 
value property and is Darboux. Our theorems on Darboux and mean value 
properties of derivatives include also those of selective derivatives and 
/-approximate derivatives. 

1. Introduction. Denjoy [2] showed that an approximately continuous function 
on a linear interval is Darboux (that is, has the intermediate value property). Later 
Khintchine [5] showed that a finite approximate derivative has the mean value property 
and is Darboux. Goffman and Neugebauer [3] obtained the same results with new 
methods of proofs. Recently Sinharoy [12] has obtained some generalizations of these 
results, which cover also the notions of proximal continuity and derivative introduced 
in [10]. The purpose of this paper is to prove more extensive results, with some 
additional information, using very simple proofs. Our theorems on Darboux and mean 
value properties of derivatives include also those of selective derivatives (O'Malley [7]) 
and /-approximate derivatives (Wilczynski [14]). 

For the sake of wider coverage, we shall consider derivations and approximations 
relative to a given strictly increasing function GO: /? —» R and relative to the Lebesgue-
Stieltjes outer measure co* induced by GO on R, respectively, where R denotes the 
real line. 

2. Definitions and lemmas. 

DEFINITION 2.1. Let E C R, and let 7V v denote any closed interval on R with end 
points x and y. We define 

d(E,x,y) = d(E,y,x) = a>*(£ H /v,v)/a)*(/v,v), 

d+(E, x) = lim sup d(E, x, y), 
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d (E, x) = lim sup d(E, x, y), 
v —* .r 

d«(£, JC) = mm{d+(E, x), d~(E, x)}. 

If \imv->x d(E, x, y) exists, then this limit is called the (^-density, d(E, x), of E at x. 

NOTE. The above definition of co-density appears in [9], Definition 2.1, p. 130. The 
to*-Vitali covering theorems ([9], Theorems 1.1, 1.2, pp. 129—130) imply in the usual 
way the to-density theorem, namely that, if to*(£) > 0, then there is at least one point 
x E E such that d(E, x) = 1. 

DEFINITION 2.2. A subset E C R is said to be bilaterally to*-dense in itself 
if for every open interval I with 0 =£ E D I (bar denoting closure), we have 
to*(£ H /) > 0. 

In the sequel we shall need the following lemma relating to the above notion of 
co*-denseness, which implies a strong connectivity property of intervals. It is worth 
comparing this result with Lemma 2.3 in [10]. 

LEMMA 2.1. Let an open interval I be the union of two nonempty disjoint sets A and 
B, each of which is bilaterally to*-dense in itself. Then there is at least one point 
c EL I such that dx(A, c) = 1 = dx(B, c). 

PROOF. We first note that, by to*-denseness, each of the sets A and B is obviously 
bilaterally dense in itself. Therefore, if an open interval J C / intersects both A and B, 
then inf(A PI J) < sup(£ D J) and M(B D J) < sup(A Pi 7). 

Now we assert that, given any e > 0 and any open interval J C I intersecting both 
A and B, there are tetrads of points ax < px < p2 < a2 and b\ < q\ < q2 < b2 with 
a^ p2, a2, qi E A D J and b\, q2, b2, px E B Pi J, such that 

(1) a2 — ax < €, d(A, x, aj) > 1 — e if i 6 ( p h p2), j = 1,2, 

and 

(2) b2- b]<e,d(B,x,bj)> \ - e if x E {q{, q2), j = 1, 2. 

Because of symmetry, it is enough to show the existence of a tetrad of the first kind. 
To this end, we will first find points ax < a3 < a4 < ax + e with ax, a4 E A D J and 
a3 E B fl J, such that d(A, x, ax) > 1 — e for all x E (a3, a4). 

Let B ~ and B + denote the sets of points of / which are limit points of B on the left 
and on the right, respectively. Since inf(A D J ) < sup(Z? Pi J), there are points a0 E 
A H J and b0 E B Pi J such that a0 < b0. We note that [a0, b0] C J C A U B and, 
by denseness of B at b0, B Pi (a0, b0) ± 0. Let now x0 = inf(B D (a0, b0)). Since 
A H f i = 0 and a0 E A, the condition x0 E B would mean that a0 < x0 and that B Pi 
(a0, x0) = 0, contrary to the denseness of B at JC0. So x0 E A, a0 < x0 < b0 and x0 E 
B + ; in particular, therefore, we can find a point x\ E B D (x0, x0 + e) Pi (JC0, ^o)-

Now, first suppose A Pi (JC0, *i) has nonvoid interior, having a component (p, q), 
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say. Then, since A (IB = 0, denseness of B implies that/? E A C\ B~ and q E A D 

Z? + ; also x0 < p < q < Xi, since x0 E B+ and x} E B. Take ax = p and note that 

[a , , g] C A. Clearly then, by denseness of A at q, there exist points a4 E A D (g, JCI ) 

and a3 E B D (q, a4) such that the triple (^i, a3, a4) fulfils the required conditions. 

Next suppose A f! (JC0, JCJ) has void interior. Then each point of A 0 (JC0, *i) is a 

bilateral limit point of both A and B. Now, since x0 E A, by w*-denseness of A we have 

w*(A f! (JC0, JCI)) > 0. So by co-density theorem, there is ax E A D (JC0, JCJ) such that 

d(A, a\) = 1. Clearly then we can find a4 E A P\ (a}, *,) and a3 E 5 fl tei, a4) such 

that the triple (<?,, #3 , a4) fulfils the required conditions. 

Thus we always have a triple (ax, a3 , a4) as desired. Let now j 0
 = sup(# H (a3 , 

«4)). Then, since a3 E B and a4 E A, arguing analogously as before we get that a3 < 

y0 < a4 and y0 E A fl B ~. Repeating the preceding arguments in this analogous fashion, 

with A D (a3, y0) in place of A Pi (JC0, * i ) , we now find points p2, a2E A C\ (a3, y0) 

and/?i E B fl (a3, Jo), Pi <Pi< &i, such that d(A, x, a2) > \ - e for all x E (/?,, 

/?2). Then the tetrad (ai9 p\, p2, a2) thus obtained evidently fulfils all the required 

conditions. 

We note further that, by denseness of A and B, each of the open intervals (px, p2) 

and (q\,q2) intersects both A and B, and, hence, the above process can be repeated with 

either of them in place of J. 

Now, starting with the fact that / intersects both A and B, and applying (1) and (2) 

alternately, we can find a contracting sequence of intervals (au, a2]) D [p\\,PiA ^ 

(ft,,, b2\) 3 [flu, q2\] 3 («i2, «22) 3 lP\2,Pi2] 3 (&12, £22) 3 tei2, 422] D ••" such 

that, for each positive integer n, we have 

(3) b2n - b\„ < a2n - aXn < - , 
n 

(4) d(A, x, ajn) > 1 if x E (/?,„, p 2 J , 7 = 1, 2, 

and 

(5) </(£, x, bjn) > 1 - - if x E te,„, ^ 2 J , 7 = 1, 2. 

Evidently, there is a unique point c belonging to all the intervals (p]n, p2n) and 

(qin» <?2n), such that lim„_̂ oo fly„ = c = lim„_^x b / / ; for7 = 1 , 2 . Then for* = c, (4) and 

(5) both hold for all n. Hence d^{A, c) = 1 = dx(B, c), which completes the proof. 

DEFINITION 2.3. Given f: I = [a, b] -> /?, /ef Er = {y E l\f(y) < r} anrf £ r = 

{y G / | / ( j ) > r } , r E i ? . For x E (a, b), we define 

Lxf(x) = sup{r\dx(Er,x)< 1} 

and 

Llf(x) = M{r\dx(E
r, x) < 1}. 
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IfL]f(x) = L\f{x), then this common equal value is called the (\M)-limit, L(1OJ)/(JC), 

of fat x. IfL]f(x) ^ f(x) < L}f(x), then the function f is said to be (1 ^-continuous 
at the point x. 

REMARK. The function/is said to be to-approximately continuous at the point x, if 
d(Er, x) = 0 = d(E\ x) whenever r <f(x) < s ([9], Definition 2.2, p. 131). Clearly 
then the notion of (lw)-continuity is more general then co-approximate continuity. 
For CO(JC) = x, the reader can easily verify that (lw)-continuity is even more general 
than proximal continuity ([10], Definition 4.1; cf. Corollary 3.1.1, p. 32). The 
(lw)-continuity off at a point x does not necessarily imply the existence of L(\M)f(x). 

DEFINITION 2.4. Let f: [a, b] —» R and x G [a, b]. Defining the ordinary Dini 
iù-derivates D+fll)(x) and etc. off at x in the usual way, by considering the ordinary 
extreme unilateral limits of(f(y) — f(x))/(u>(y) — to(x)) as y —> x, we further define 

D»Mx) = min{D*Mx), D~fM{x)} 

and 

D"Mx) = max{D+/w(x), D-/u(*)}, 

ignoring the upper and lower (^-derivatives on the left when x is the left end point a, 
and those on the right when x is the right end point b. 

If Dxfu(x) = D^fuix), then this common equal value is called the (°c)-o)-derivative, 
£K°°)/u>0O, of / at x. If £>X0O - Drzfvix), then the function / is said to be 
(oo)-co-derivable at the point x. 

REMARK. The meaning of (°o)-oj-derivability is simply that the upper co-derivate on 
either side is not less than the lower co-derivate on the opposite side. From the obvious 
co-analogs of the relations between Dini derivatives ([4], section 292, p. 392), it follows 
that every function is (œ)-o)-derivable n.e. (except for a countable set of points). The 
(oo)-co-derivability of / at a point x does not necessarily imply the existence of 
DMMx). 

DEFINITION 2.5. Givenf: [a, b] 

and 

L*f(x) = max {/(* + ),/(*_)}, 

ignoring the upper and lower limits on the left when x is the left end point a, and those 
on the right when x is the right end point b. 

If Lxf(x) = Lxf(x), then this common equal value is called the (oj)-limit, L(^)f(x), 
off at x. If Lxf(x) ^f(x) < Lxf(x), then the function/is said to be (oo)-continuous 
at the point x. 

R and x E [a, b], we define 

= min {/(* + ),/(*-)} 

https://doi.org/10.4153/CMB-1987-032-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-032-8


1987] ON DARBOUX AND MEAN VALUE PROPERTIES 227 

REMARK. The meaning of (o°)-continuity is simply that / l ies between its unilateral 
lower and upper limits on either side. Every Darboux function is obviously 
(oo)-continuous. By Young's theorem on the relations between a function and its 
extreme unilateral limits ([4], section 228, p. 304), every function is (o°)-continuous 
n.e. The (o°)-continuity of / a t a point x does not necessarily imply the existence of 
L(OO) / ( JC) . 

Sargent [8] calls a function/: [a,b] -» R continuous in the generalized sense, (CG), 
if [a, b] is the union of a sequence of closed sets En, such that/| En is continuous for 
each n. Generalizing this notion, we shall say that the function/is semi-continuous in 
the generalized sense, (SCG), if [ay b] is the union of a sequence of closed sets En, 
such that / | En is either lower semi-continuous or upper semi-continuous (depending 
on n) for each n. A point c E [a, b] will be called a point of semi-continuity of/, if 
there is a neighborhood / of c such that/ | / is either lower semi-continuous or upper 
semi-continuous. 

The following lemma relating to the above notion of (SCG) will be crucial in our 
proofs of Darboux and mean value properties of derivatives. 

LEMMA 2.2 Letf: [a, b]—> R be (^)-continuous and (SCG) on [a, b]. Then, either 
fis strictly monotone and continuous on[a,b], or f has a local extremum at some point 
of semi-continuity off in (a, b). 

PROOF. Let E denote the set of points of [a, b] having no neighborhood in [a, b] on 
which/is strictly monotone. Obviously E is closed. Routine arguments show that/is 
strictly monotone on every component of (a, b)\E, and then (°°)-continuity of/implies 
that / i s strictly monotone and continuous on the closure of each such component. It 
follows at once that, if E has an isolated point, c say, then / is continuous in a 
neighborhood of c, c E (a, b) and/has a local extremum at c; but, if E — 0, then/ 
is strictly monotone and continuous on [a, b]. 

Suppose, on the other hand, that E is nonempty and perfect. Then, since/is (SCG) 
on [a,b], using Baire's category theorem we can find pointsp, q E E, withp < q and 
E D (/?, q) =£ 0, such that/| E f! [/?, q] is semi-continuous (in a fixed sense). Since, 
as shown above,/is monotone and continuous on each closed interval contiguous to 
E H [/?, q] in [p, q], it readily follows that in fact y| [/?, q] is semi-continuous. In 
particular, therefore, / is Baire 1 on [/?, q]. Since, further, by hypothesis / is 
(oo)-continuous on [/?, q], it follows by a result of Sen ([11], Theorem III, p. 21) that 
/ i s Darboux on [/?, q]. But, since E 0 (/?, q) ^ 0, / is not strictly monotone on 
[/?, q\. Hence, recalling that a one-to-one Darboux function is necessarily strictly 
monotone ([1], Theorem 5.2, sqq., p. 101), we must have/(r) — f(s) for some [r, s] 
C [/?, q]. Then, if/| [r, ̂ ] is continuous,/must have a local extremum at some point 
c E (r, s), and we are finished. 

Suppose now that/| [r, s] is not continuous. Then, recalling that/is (o°)-continuous, 
either there is a point t E (r, s] such that/(^_) < / ( /_ ) , or there is a point t E [r, s) 
such that/(^+) <f(t+). Since/is Darboux on [r, s], it follows that in the first case 
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we can find successively points w, t\, t2, v E (r, t), u < t] < t2< v, such that/(/_) 
< / ( " ) <f(t-)J(t\) <f(u),f(t2) >f(u) and/(v) = /(«)• Similarly, in the second 
case we can find successively points v, t2, t\, u E (r, s), v > t2 > t\ > u, such that 
/(*+) < / ( v ) <fïû),f(t2) > / (v ) , / ( r , ) < / ( v ) and/(II) = / (v ) . Thus, in any case 
we can find an interval [u, v] C (r, s) such that 

(*) /Ci) < / ( « ) = / (v ) < / ( r 2 ) for some r , , r 2 E (11, v). 

But/| [w, v] being either lower semi-continuous or upper semi-continuous, it must have 
either a least value or a greatest value. Hence it follows from (*) that/has a local 
extremum at some point c E (u, v) which completes the proof. 

3. Main results. 

THEOREM 3.1. Letf: [a, 6] —» R be (^-continuous on [a, b] and (1 ^-continuous 
on (a, b). Then f is Darboux on [a, b]. 

More critically, if L*f(p) < r < Lxf(q) for some r E R and/?, q E [a, b] (possibly 
p = q), then, for every open interval / E (a, b) with p, q E / , there is at least one 
point c E / such that, either (i) L(°o)/(c) = /(c) = r or (ii) L ( l J / ( c ) = / (c) = r. 

PROOF. Suppose (i) is false for all c E I. Then, setting 

A0 = {x E / | / (x) < r}, *o = {x E / | / (x) > r}, 

A = A0U {X El\LJ(x) <f(x) = r < L „/(*)} 

and 

£ = £ 0 U {* E / | L X / W = /(*) = r < Lx/(*)}, 

we have A Ufi = / ,A 0 5 = 0 and, by (oo)-continuity of/at /? and g, both A and 5 
are nonempty. 

Again, since Vef < r n A , each point of A is a limit point of A0 on both sides; also, 
since L ' / < / < r on A0, for every x E A0 we have ÛL(Z?, JC) < 1. These imply that 
A is bilaterally co*-dense in itself. Similarly, B is bilaterally co*-dense in itself. 

Hence, by Lemma 2.1, there is a point c G I such that dx(A, c) = 1 = d*(B, c). 
Clearly then L,/(c) < r < Lxf(c), which in conjunction with the hypothesis L'/(c) < 
/(c) < Lxf{c) gives (ii), completing the proof. 

THEOREM 3.2. Suppose co| [a, /?] /s continuous, andf: [a, b]—> R is (^-continuous 
and (SCG) on [a, b] and is (o°)-u>-derivable at the points of semi-continuity of f in 
(a, b). Then we have: 

(i) ifD^f^p) < r < Dxflû(q)for some r E R and p, q E [a, b] (possibly p = q), 
then, for every open interval I E (a, b) withp, q E / , fhas a point of semi-continuity 
c E / such that D(oo)/œ(c) exists and equals r; 

(ii) if E is the cocountable subset of [a, b] where f is (°°)-ui-derivable, then every 
extended real valued function u, satisfying Dx/W(x) < u(x) < D^fi0(x)for all x E E, 
/s Darboux on E\ in particular, the functions D7u> and ^x / w arc Darboux on E; 
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(iii) the function D(o°)/œ is Darboux on the subset E0 of [a, b] where it exists, and 
also n the subset of E0 consisting of the points of semi-continuity off. 

PROOF. Clearly, (i) implies both (ii) and (iii). 

Now, to prove (i), we define 

g(x) = f(x) - r-oo(x) for all x E [a, b]. 

Then we have 

D"ga(p) = DxUp) - r < 0 

and 

D»ga(q) = D„Mq) - r > 0, 

which together imply that g is not monotone on / . But, g is evidently (o°)-continuous 
and (SCG) on / . Hence, by Lemma 2.2, there is a c E / , a point of semi-continuity 
of g (and, hence, also off), such that g (c ) is a local extremum of g, wherefore D °°g w (c ) 
> 0 and D^gu{c) ^ 0. Then, since/is (o°)-co-derivable at c, we have 

0 < D~g„(c) = D7»(c) - r < D„Mc) - r = D»g„(c) < 0, 

whence D(^)fw(c) = r. This completes the proof of (i). 

THEOREM 3.3. Under the hypotheses of Theorem 3 2, fhas a point of semi-continuity 
c E (a, /?), such that D(^)/W(c) exists and equals the mean value 

r = (f(b) - f(a))/(a(b) ~ co(fl)). 
PROOF. Let us define 

g(x) = f(x) - r-co(x) for all x E [a, b]. 

Evidently, g is (oo)-continuous and (SCG) on [a, b] and, further, g (a) = g(b). So, 
by Lemma 2.2, there is a c E (a, b), a point of semi-continuity of g (and, hence, also 
of/), such that g(c) is a local extremum of g. Then the proof ends by arguing exactly 
as in the last part of the proof of the preceding theorem. 

CONCLUDING REMARKS. AS simple consequences of the various definitions, con­
tinuity in the ordinary or approximate or proximal or Cesaro (C\) [8] or /-approximate 
([14], Definition 3, p. 248) sense implies (o°)-continuity; also, a function having a finite 
selective derivative ([7], p. 77) is necessarily (o°)-continuous. 

Kulbacka [6] showed that an approximate derivative (finite or infinite) of an ap­
proximately continuous function / is Darboux. Here, by a result of Tolstoff ([13], 
pp. 499—500), then function / i s necessarily (CG). A proximally continuous function 
having proximal derivative can also be shown to be (CG). Again, Sargent [8] proved 
the mean value property for Cx-derivatives of Cx-continuous functions / , by first 
showing that such an/ is necessarily (CG). Also, O'Malley ([7], Theorem 11, p. 87) 
showed that a function having a finite selective derivative is (CG), and the derivative 
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has the Darboux property, suggesting also the mean value property (p. 88, supra). As 
reported by Wilczynski ([14], Theorems 35, 41, pp. 260, 261), a function having a 
finite /-approximate derivative is also (CG), and the derivative has the mean value 
property. 

Thus, the hypotheses of (o°)-continuity and (SCG) in our Theorem 3.2, 3.3 are quite 
general. 

The extent of Theorems 3.2, 3.3 can be surmised further from the facts that, if the 
function / has an ordinary or approximate or proximal or CK or selective or /-
approximate derivative at a point c, then, for co(x) = x , / i s trivially (°°)-a)-derivable 
at c and, further, this derivative off equals D(w)fM(c), whenever the latter exists. 

Finally, Bruckner and Cedar ([1], section 3, p. 96, infra) asked if the hypothesis of 
approximate continuity in the result of Kulbacka mentioned above can be relaxed. 
Theorem 3.2 certainly gives a respectable affirmative answer to this query. 
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