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ABSTRACT

Flow avalanches may be regarded as being composed of
a granular fluid. When dislodged, the snow masses accelerate
down a slope until the inclination of its bed tends towards
the horizontal, at which stage bed friction eventually brings
the snow to rest. We present a completely new analysis of
the motion of a finite mass of granular material along an
inclined base.

We regard a granular snow mass as an incompressible
continuum to which a Coulomb-like basal friction law can
be applied. Depth-averaged equations of motion are
formulated in terms of a curvilinear coordinate system along
a curved bed, and incorporate an averaged longitudinal
velocity and a height distribution. A numerical finite-
difference technique is employed to integrate these
equations. We present numerical results obtained for motion
along a curved bed and compare this with the solutions of
the equations with results from laboratory observations. The
experiments have been performed in order to monitor the
motion of a finite mass of granules, either plastic particles
or glass beads, along a chute consisting of both an inclined
and a horizontal zone, the two zones being connected by a
curved element, The particle spread along the chute and the
mass distribution of the granules in the run-out zone, as
obtained from these experiments, are compared with those
derived from theoretical computations. The results show that
the model used predicts the motion of a granular avalanche
reasonably well.

Finally, it is indicated how the basal friction law may
be extended or altered in order to reproduce the dynamic
processes involved in causing the abrupt cessation of the
snow mass-motion characteristic in the run-out zone.

INTRODUCTION

The classic computational concepts for the prediction of
catastrophic motion of an avalanche or landslide are
incorporated in the point-mass or hydraulic models of
Voellmy (1958), Salm (1968), and Perla and others (1980).
They involve one phenomenological relationship, namely the
postulate for the force that resists the motion which
otherwise is accelerated by gravity. The frictional force
consists of two components: the first component essentially
obeys a solid, Coulomb-type friction law and is used to
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model basal drag;, the second component accounts for
turbulent hydrodynamic resistance and shows a classical
aerodynamic drag which is proportional to the square of the
velocity of the system. The corresponding drag coefficient is
adjusted according to whether powder or flow avalanches
are being considered.

It is probably fair to say that a proper avalanche
model ought to describe the dispersal of the snow mass as
it moves down the mountainside, the instantaneous velocity
field, and the deposition area of the run-out zone. Our
model assumes a continuum for a cohesionless granular
material released from rest on a rough curved bed. By
integrating the balance laws of mass and momentum across
the depth of the snow mass, referred to a curvilinear
coordinate system adjusted to the basal surface, a system of
equations for the distribution of snow height, and for the
averaged longitudinal wvelocity, is obtained. The only
phenomenological relationship entering into these equations is
a basal friction law which we assume to be of a dry
Coulomb-type. Thus, our model is conceptually simpler to
the Voellmy—Salm—Perla models; we include consideration of
the geometry of the mountainside as our equations contain
its curvature function, and we explicitly solve for the evol-
ution of snow-mass spread as the avalanche moves down
the mountainside. The peculiarities of the dynamic
behaviour of the avalanche when it comes to rest in the
run-out zone can be, and are being, incorporated in the
spirit of the Voellmy—Salm—Perla approach by the inclusion
of additional dependencies of the basal friction law into our
model. Our solution techniques do not become more
complicated because of this.

The equations are solved numerically for a prescribed
initial distribution of the mass of the avalanche. Their
solutions yield at each instant the distribution of the height,
and the averaged longitudinal velocity. Thus, the motion of
the spreading mass can be followed in the course of time
until it comes to rest within the run-out distance.

It is an obvious fact that direct observation of the
dynamics of avalanches is extremely difficult to make, and
probably only possible by remote-sensing techniques. Gubler
(1987), using radar Doppler techniques, has been successful
in following a few artificially released flow avalanches, but
we know of no measurements of the dynamics of large
masses with rocks or soil. This indicates that Ilaboratory
simulations are important, especially if theoretical models are
to be tested against observations.

Until very recently, the experiments of Huber (1980)
were probably the only systematic laboratory tests performed
to monitor the motion of a finite mass of large-particle,
solid material down an inclined chute. Huber used gravel of
approximately 25 mm mean diameter and an inclined
plywood board along which the spreading mass was caused
to move. Hutter and co-workers (Pliss, 1987; Hutter and
others, 1988) performed further experiments using plastic
particles and glass beads moving in a curved chute. These
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Fig. 1. A finite mass of gravel moving down a curved bed.
Definitions of curvilinear coordinates (&,n), angle of
inclination, §, and depth distribution, h(g,n).

experiments were used to check and calibrate the theoretical
models. It is recognized that laboratory experiments
construct artificial situations not likely to occur in Nature;
they are performed with materials exhibiting considerable
elasticity in collisional encounters, and lacking cohesion, and
the masses of the materials with which they are performed
are small. However, despite this, reliable inferences can be
drawn from such situations which help in establishing the
confidence which is necessary if theories are to be applied
for larger masses and especially when the conclusions
reached from theory are then put into practice.

MODEL EQUATIONS

Consider free surface flow of a granular fluid along a
slowly varying bottom profile (Fig. 1). Assume that the
granular material can be treated as a continuum; this
requires that the thickness of the sliding and deforming
body extends over several particle diameters. Ignore
variations in density due to changes in void ratio, this
being justified because fluidization has been seen to occur
primarily in a thin basal boundary layer. It may then be
shown that there is a one-to-one correspondence between
our Equations (2) and (3) and corresponding ones that may
be  deduced without imposing  an incompressibility
assumption. We shall also integrate the longitudinal
momentum equation over depth, and only work with the
mean velocity as an independent field. This implies that the
exact distribution of the velocity field remains undetermined
in our model, although we do not restrict our considerations
to plug flow. We present our equations in the curvilinear
coordinate system (&,n) shown in Figure 1, and all
quantities are made dimensionless. The corresponding scales
are: L for &, L/\ for the radius of curvature, / for depth,
(gL)? for time, and gH cos §, for the stresses where [, is a
representative slope angle for the bed. The
parameter = H/L is a typical aspect ratio of the moving
gravel mass and is assumed to be small. We have chosen to
introduce %\, a curvature-ordering parameter, in order to
generate various sets of the equations of motion
corresponding to different characteristic scales for the radius
of curvature. For the present paper, we choose » = 57,
0 < v < = corresponding to a radius of curvature scale
larger than the length scale, L, for &, and in this way we
recover a set of equations which includes the lowest order
effects of bed curvature.

The physical laws on which our mathematical model is
based are the balance laws of mass and momentum. In
addition, the upper avalanche surface is assumed to be
stress free and a sliding law is applied at the avalanche
base. One may postulate a functional relationship in which
the basal shear stress, Tp, depends in a general way on
local variables such as a local bed-friction angle, sliding
velocity, pressure, and curvature. We assume the shear stress
acting at the base to result from two contributions: Ty =

T; + Tp. Of these, the first contribution, T, is due to
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Coulomb friction, and the second, Tg, is a viscous contri-
bution. The following representation is popular

T, = ttandpy, |Tg| = peu? (1

in which & is the basal angle of friction; p, is the pressure
exerted normal to the base; ¢ is a fluidization drag
coefficient; and ug is the slip velocity at the base. The signs
in Equation (1) indicate the direction of movement of the
snow mass. We have set Tp = 0 for our initial analysis.

Governing equations

Integrating the mass and momentum balances over
depth in the n-direction (Fig. 1), and incorporating both
the stress-free boundary conditions of the free surface and
the sliding condition at the bed, yields the following
evolution equations for the dimensionless height, h, and
depth averaged velocity, u, in the stream-wise direction:

o o O

du Bu Ou . W P -
TR = et = " —
% B + —u‘,:,l‘E sin § sgn(u) (cos § u“)tan

dh
— 3
cos l;aE (3)

- & Kactpua

Here, sgn(u) = 1, the sign depending upon whether u is
positive or negative; { is the local inclination angle (Fig. 1);
x is the dimensionless curvature of the base; » is the
curvature-ordering parameter; € is the aspect ratio; | So—
is the earth-pressure coefficient, such that the normal stress
components pgg and ppp are related by

Pt = XactpassPnm (4)
K
T ol T [1 #(1 = (1 + tan® 8)cos? ¢]]—1,
K cos? ¢
pass
sl
for aiE 2 0, (5)

where ¢ is the internal angle of friction.

This assumed constitutive behaviour is shown in terms
of the standard Mohr diagram in Figure 2. We assume that
an active or a passive state of stress is developed by noting
whether an element of granular material is being elongated
or compressed in the direction parallel to the bed. Thus,

1<

)passwe

E g‘ bed
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e Active (au >o)

m Passive (au o) du
Stress state'dg

Stress state'dE

Fig. 2. Mohr's circle in the coordinate system (normal
stress, shear stress). Shown are internal angle of friction,
¢, basal friction angle, &, and two possible states of
stress — active and passive.
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normal and longitudinal stresses may be related through an
earth-pressure coefficient, « defined by Equations (4)
and (5).

Equation (2) is the integrated mass-balance equation,
and has the familiar form of the kinematic wave equation.
Equation (3) is the integrated longitudinal momentum
equation. The first term on the right of the equation is the
driving stress, which is due to gravity, and the second term
is composed of two contributions, of which one is the
ordinary Coulomb bed resistance and also arises on a flat
bed, and the other quantifies the increase in bed pressure
due to the centrifugal forces induced by bed curvature.
Such centrifugal forces lead to a corresponding increase in
drag force. The third term in Equation (3) is an averaged
longitudinal stress gradient. For extensional flow, stress must
occur in its active form; for contraction flow, a passive
state of stress is established. Equation (2) is accurate to all
orders of €, Equation (3) is accurate to order £ (recall € is
the aspect ratio H/L) if tan 5 ~ O(g) and X < O(1). These
or stronger assumptions will be imposed in the sequel.

Boundary and initial conditions are

actpass®

h = hg(=0), at & = Eg(1), 0 €1 <=,
h = hp{= 0), at § = EF“)‘ 0 €1 e,
h = hy&), atEtp<t<tand =0

where R and F designate the rear and front ends of a pile.
A detailed derivation of these equations is given by Savage
and Hutter (in press), and a justification for the adequacy
of the simple model represented in Equation (1) is given by
Hutter and others in a forthcoming paper.

Procedure for obtaining numerical solutions

The governing depth-averaged Equations, (2) and (3),
for the conservation of mass and momentum were solved
numerically by means of a Lagrangian finite-difference
method. Computation of the temporal development of an
avalanche involves the determination of the position of the
air—gravel interface, this giving a value for the depth of
the granular material. A Lagrangian scheme is the natural
choice for such a problem because it follows the motion of
the deforming gravel mass.

We divide the granular mass of an avalanche into a
number of cells, as shown in the depth profile of Figure 3.
The mesh cell boundaries are advected with the particles.
The cell boundary points are defined at times, ( = n — 1,
and are designated as (&7 " !); the velocities of the cell
boundary points are defined at half time-step points, and

are  written as w7 1% After some manipulation,
integration of the” depth-averaged mass conservation
Equation (2) between ¥ and Ej + 1 Yields
AL;h; = constant = ALh; (6)
where
AL; = 8;yq — &) (7)
_ z_j'i- 1
AL hy = [ hd. (8)
B
J
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Fig. 3. The finite-difference net: granular pile is divided
into cells whose boundaries are denoted by
(j = 0,1,.., n). Velocities are made discrete both at cell
boundaries and at heights midway between these
boundaries, point i being to the right of j.
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Let us assume that we know u;(7-12) and p-1 At
t = 0, we identify these with the 1initial values, and thus
obtain the new positions for the cell boundaries, &, after a
time interval Ar. Thus, '

g = gty (- 02y, 9)

We then determine the depth at the cell centres, i, using
Equations (6) and (7), so that

g-1 _ -1
B h:_r-l [L’] (10)

’ (4., - &)

Finally, we solve the depth-averaged momentum Equation
(3), for the velocities at the cell boundaries

(n+1)/2 _ (n-1)/2
ul’, HJ, +

+ [sing; = [cos b 4 Lk,,-[u[” : 1/2)]2]15”1 B sgn [u(” - 1"2}] ™

[”3! - 1]
— £ COS gf[tf?_—gﬂ} | — At (11)
A 1-1

where
o =40+ 2L (2

and

Itacl; Bu
Mg = 1, 1 Tor 0 (13)

pass

This numerical scheme is only conditionally stable. It
is, however, a considerable improvement upon the other
Eulerian scheme which we have already tried. For the
calculation of points other than the leading and trailing
edge end points we have added an artificial viscosity term,
w(8%u/8E2), to the right-hand side in Equation (11) and this
will dampen the numerical ripples which some conditions
have a tendency to generate. Values for the artificial
viscosity, , of between 0.01 and 0.03 proved to be
adequate for our purposes, and using these values for pu is
a standard procedure for manipulating parabolic equations
involving advection and diffusion.

COMPUTATIONAL RESULTS

We now present a comparison between the experimental
results for a selection of our experiments and the numerical
predictions for these experiments, and then discuss some
interesting features of the spreading of a pile of granular
material along the curved bed of an avalanche path.

Inclined curved-chute experiments

The experiments were performed using a 100 mm wide
chute which consisted of two straight sections, one inclined
and the other horizontal, which had been connected by a
curved, replaceable segment which allowed us to adjust the
angle of inclination of the chute between 45° and 60°, as
shown in Figure 4 (Pliss, 1987; Hutter and others, 1988). A
known mass of granular material was placed in the filling
area at the upper end of the chute and was released by
opening a shutter. The released material started to move,
and while moving along the chute it was video-filmed and
photographed. Usually six photographs were taken every
second, and by proper setting of the time of initiation of
motion, the photographs made possible our goal of
determining the evolution of the geometry of the moving
gravel mass through time, with particular reference to its
form and to its degree of extension into the run-out zone.

Two types of materials were used in our experiments.
The first type was a collection of lens-shaped plastic
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Fig. 4. Series of snapshots of a finite mass of 2000 g Vestolen particles moving down a chute. Inclired

and horizontal parts are each 1.70 m long,

radius of curvature of curved section is 0.245m and

generates an angle of inclination of a = 50°. Black lines on frontal Plexiglass wall mark increments
of 50 mm, and long hand of the clock performs one revolution s'! (experiment No. 88, Pliiss, 1987).

particles, Vestolen, with a mean diameter of 3.5 mm, bulk
density of 540 kg m™®, and solid density of 950 kg m3, The
second type was composed of glass beads of 3 mm diameter,
1730 kg m™® bulk density, and 2860 kg m® solid density. A
detailed description of more than 20 of the experiments
performed, and including a comparison of experimental
results with those predicted from theory is given in Hutter
and others (in press).

The pattern of evolution of the motion of an avalanche
in one specific experiment is shown in Figure 5. For this
experiment the inclined part of the chute was set at an
angle of 50°. The distribution of the height of avalanche
and, in particular, the front and rear ends of the avalanche
body were photographed at a predetermined sequence of
times. At ( = 0, the avalanche front is observed to
accelerate quickly whereas the rear end remains almost at
rest for about half a second. The front travels a significant
distance into the horizontal part of the chute before
substantial deceleration is observed to set in. In contrast, the
rear end comes quickly to rest once it has entered the
horizontal part of the chute; the duration of the entire
experiment is 1.4s. Such data permit the determination of
the development of avalanche spreading; for example, the
positions of the leading and the trailing edges can be
monitored over time, and the differences at various times
will give the pattern of development of the length of the
avalanche.
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COMPARISON OF EXPERIMENTAL RESULTS WITH
COMPUTATIONS

In an experiment prior to the release of granular
material, the gate retaining the granules was positioned
perpendicular to the bed of the chute channel. During the
opening operation the material often remained in contact
with the gate, so that formation of initial conditions were
somewhat variable. We chose an initial profile that was close
to the form of the mass at rest and avoided kinks and the
generation of an overhang region. For our computations the
parameters listed in Table 1 were selected. Comparison
between experimental results and those predicted by
computation are shown in Figure 5a—d. In these the changes
in the positions of the leading and the trailing edges
(Fig. 5a and ¢) and the corresponding changes in the
simulated avalanche length (Fig. 5b and d) can be seen. At
t = 0, the avalanche front accelerates quickly whereas the
rear end remains nearly at rest for almost half a second.
The front region travels a considerable distance into the
horizontal part of the chute before substantial deceleration
sets in; the rear end, however, comes quickly to rest once
it has entered the horizontal part of the chute. Interestingly,
the avalanche length goes through a maximum and then
decreases again until it reaches its final value in the
run-out zone.

Velocities of the avalanche front, d&g/dr, and rear,
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Fig. 5.a,c. Front and rear end position (dimensionless coordinates) for experiments No. 87 and 28
plotted against dimensionless time. Circles show experimental results with error bars, solid lines are
for computational results. b, d. Corresponding dimensionless avalanche length plotted against a scaled

time for the same experiments.

TABLE 1.

CONDITIONS AND CHARACTERISTIC CONSTANTS FOR TWO EXPERIMENTS

DESCRIBED IN FIGURE 5

Experiment Material Total mass 4
number simulating
gravel
(basal surface)
()
87 Vestolen 1500 50
(drawing paper)
28 Vestolen 500 40
(PVC)

dg, /de, can also be calculated from our photographs, but in
this case our deductions are less accurate, although
agreement between experiment and theory is convincing to
the same extent as that for the data used in Figure 5.

SIMILARITY SOLUTIONS

For small bed friction angles and small values of the
curvature parameter, it turns out that similarity solutions to
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K H £ 5 ¢
(mm) (mm)

300 150 0.5 25" 29°

210 81.25 0.387 19.5° 29°

the governing equations are possible (Savage and Nohguchi,
1988; Savage and Hutter, 1989; Hutter and Nohguchi, in
press; Nohguchi and others, in press). In such cases the
avalanche-depth profiles have the form of a parabolic cap
and the difference  velocity, obtained from the
depth-averaged velocity minus the centre-of-mass of the
moving pile varies linearly with distance from the centre of
mass of the moving pile. The half-spread of the parabolic
pile, g(t), the centre-of-mass position, & = Xo, and the
horizontal and vertical (downward) coordinates, X and VY,
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Fig. 6. Definition sketch for construction of similarity
solutions.

whose origin corresponds to the initial centre-of-mass of the
pile at time, ¢ =0 (Fig. 6), obey the following six
first-order ordinary differential equations:

dxg
- = o (14)
dug
& e sin { (x,) — tan & cos L(x,), (15)
dg
= H 16
& / (16)
d*¢ df 2 a
o Ll st]kactp“s cos L(xy) + a:(xﬂ)gcos Llxp), (17)
ax
T g €0s§(Xg), (18)
dY A
- = Hosin §(xp)s (19)

in which u, is the longitudinal velocity of the centre-of-
mass of the pile, and curvatures have been assumed to be
small (Savage and Nohguchi, 1988).

The six differential Equations (14)—(19) were integrated
in a straightforward manner using a fourth-order
Runge—Kutta technique. It is found that:

For cases in which the bed inclination angle monotonically
decreases with distance down-stream, the pile of granular
material starts from rest, initially accelerates, and then
decelerates, finally coming to rest as a result of bed friction
and of the gradually decreasing bed slope. It is found that
the variation of the total length with time can exhibit
differing patterns, depending upon frictional parameters, the
shape of the bed, and the initial depth to length ratio of
the pile. Amongst the possibilities are that the pile can
grow monotonically, that it can asymptote to a constant
length, that it can grow to a maximum and then decrease,
or that it can decrease to a minimum and thereafter
increase with time. Furthermore, there are regions in
parameter space for which the pile moves as a rigid body
either for the whole time of travel or for parts of it
Figure 7 shows some typical results for the half-spread of
the pile, g(¢), plotted against the centre-of-mass position,
£ = x; and time, t, for a bed having the form of a
circular arc. The bed inclination angle is given by
§ = gl — ai), where E, is the initial bed slope, and a is
a constant. Results shown in the figure are for various
initial values of ¢, and for ;= 40°, a = 0.1, a bed
frictionD angle, 5 = 107, and an internal friction angle,
g =25,
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Fig. 7. Evolution behaviour of g(s) for a circular arc bed
profile; &, = 40°, a = 0.1, 8 = 10°, ¢ = 25°. Effect of
varying initial depth to length ratio, e, is shown. Rigid
regions are cross-hatched.

VARIATION IN BASAL FRICTION

The above results were obtained by application of the
simple Coulomb-type sliding law. Several more realistic
forms can be introduced and surprising results sometimes
emerge when this is done. We are presently studying various
extensions (Hutter and Nohguchi, in press; Nohguchi and
others, in press); here some of the results are briefly
discussed.

Consider the case that the friction angle, tan & = pu,
varies along the avalanche bed, is largest at the front, and
is smallest at the rear end. For a linear variation of u, such
a dependence may be expressed as

(L= Xg)

T + (Lp + g) (20)

FI:*(N-F_“R)

where the subscripts, ¥ and R, refer to the front and rear
ends of the avalanche, respectively. Such a basal friction
law accounts for the fact that an avalanche may deposit
snow along its track and thus smooth it. Alternatively, the
law expressed in Equation (20) may be interpreted to make
it possible to account for some of the observed ploughing
effects.

We have already analysed equations corresponding to
Equations (14)=(19) in an earlier paper (Nohguchi and
others, in press), with the sliding law, Equation (20),
incorporated. Here we discuss results for the case of a
planar surface. Figure 8 displays phase space orbits g
against £, in panel (a) for & = constant, and in panel (b),
when Equation (20) was used. To obtain these plots, we
integrate Equations (14)—(19) for specified initial conditions,
2(0) = g, 8(0) = 0, and thus compute g(t) and g£(1). For
each initial condition a particular curve in phase space is
obtaineda Data chosen for our treatment are as follows:
t, = 40°, € = 0.1, 6, = 150, 8y = 10°, ¢ = 25"

To interpret the plots which are presented, consider a
granular avalanche starting from rest, that is at point C in
Figure 8a. As the avalanche moves down the chute the
corresponding point in phase space moves along an orbit to
the right (point D). It can be seen that the granular pile is
always monotonically extending for all choices of points C,
so that g is growing to the right.
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-0.2 -01 0 0l 02

Fig. 8. Phase space orbits g against g, for an avalanche sliding down an inclined plane: (a) with

constant basal friction, (b) with variable friction

according to Equation (20). C represents the

avalanche at rest, D are points generated when it is moving. AB represents the segment of states for

rigid-body motion.

In Figure 8b the qualitative behaviour represented is
quite different. If the starting point C is below A, then the
avalanche will be extending with time, until its orbit in
phase space again coincides with the g-axis. If this point of
the orbital trajectory is above point B in Figure 8b, then
the motion will continue along the trajectory to the left,
with g <0; thus g will now decrease until the position of
the axis ¢ = 0 is again reached. If the intersection between
the orbital trajectory and the axis ¢ = 0 lies between A
and B, then the avalanche length remains constant for all
time, that is g = 0. This can be shown by a careful
analysis of Equations (14)—19), and it is seen that for all
initial conditions for the choice of point C on the axis
r = 0 the trajectory of the motion will eventually lie
between A and B.

The physical interpretation of the nature of the
segment AB is important in this description; it represents all
those states, (g, £) = (g, 0), for which the avalanche moves
as a rigid body. The existence of this rigid-body state for
the motion along an inclined plane is due both to the
variability of the basal friction coefficient and to the fact
tha'L um/x i 1.. As «x,., becomes closer to | —-— the
points A and B will coalesce, but as g tends towards Ky
the distance AB will move to infinity along the g-axis. In
this latter case the situation shown in Figure 8a is
re-established.

In closing, we should mention that even though the
motion of a granular pile along an inclined plane terminates
as a rigid-body motion the centre of mass motion of the
pile is still accelerating. Hutter and Nohguchi (in press)
show that in order for a granular pile to be able to reach
both a rigid-body state and a finite steady wvelocity, a
viscous sliding term of the form shown in Equation (1)
must be included in the theoretical model.

CONCLUDING REMARKS

The present paper has made use of the depth-averaged
equations of motion of Savage and Hutter (1989, in press)
and has obtained numerical solutions to describe the motion
of a finite mass of gravel down an inclined chute. In view
of the simplicity of the physical model, which treated the
granular material as an incompressible continuum with
uniform density and applied depth-averaging to the velocity
field, the correlation between predictions and the laboratory
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experiments is surprisingly good. Incorporation of more
complex basal friction laws has demonstrated that a
significant influence on the gravel motion is exerted by
specific resistance properties of the basal surface. Many
more experimental results have been obtained, and will be
reported by Hutter and others (in press). Further analytical
work is in hand, in which effects of density changes as a
result of fluidization, and higher-order effects of bed
curvature are considered, as well as possible extensions to
the three-dimensional processes to be incorporated (Lang
and others, 1989).
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