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ABSTRACT

Excess claims lead to an unsatisfactory behavior of standard linear credibility
estimators. We suggest in this paper to use robust methods in order to obtain
better estimators. Our first proposal is the linear credibility estimator with the
claims replaced by a robust M-estimator of scale calculed from the claims. This
corresponds to a truncation of the claims with a truncation point depending on
the data and different for each contract. We discuss the properties of the robust
M-estimator and present several examples. In order to improve the perfor-
mance for a very small number of years, we propose a second estimator, which
incorporates information from other claims into the M-estimator.
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1. INTRODUCTION

This paper attempts to introduce robust methods into the area of credibility. In
many actuarial applications excess claims (outliers) which are much bigger than
ordinary claims do occur. Excess claims inflate the variance of the claims
within a contract and thus lead to a small credibility factor. This means that
linear credibility charges almost the same premium to contracts which did not
incur an excess claim even when their individual experience is quite different
otherwise. On the other hand, despite the small credibility factor, those
contracts which incurred by bad luck an excess claim have to pay a high
premium. This unsatisfactory behavior of linear credibility is illustrated in
Example 5.3 below. It is taken from GISLER (1980a, b) where he proposed the
following solution to this problem: He truncates all claims above a certain level
which is determined from the whole portfolio so as to minimize mean square
error. It seems however that this method is difficult to use in more complex
situations, e.g. for hierarchical credibility or when only claim rates with
different volume measures are available. As a theoretician I also wondered if a
single truncation level for all contracts is always appropriate. For further
discussion of excess claims in credibility we refer the reader also to the paper by
GISLER and REINHARD (1990).

Robust statistics has had an enormous development during the past 25 years.
According to HAMPEL et al. (1986) "In a broad informal sense, robust statistics
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34 HANS R. KUNSCH

is a body of knowledge, partly formalized into 'theories of robustness', relating
to deviations from idealized assumptions in statistics". In particular this body
of knowledge contains some clever estimation methods which are much less
affected by outliers than their classical counterparts. They were developed
when studying heavy tailed deviations from distributional assumptions. These
robust estimators are thus good candidates for dealing with the excess claims in
credibility. In several respects the situation in credibility theory is, however,
different from the one usually considered in robustness: For instance in
credibility nonparametric methods prevail whereas robustness studies a neigh-
borhood of a specific parametric model; credibility is interested in all the data,
not only in the majority, because premiums have to cover all claims; the
parameters one is estimating in credibility theory are random and not fixed like
in the framework of robust statistics. Maybe for these reasons the two fields
have been largely separated until now. Because of these differences we were not
able to derive our estimators from a general principle or an optimality
criterion. We just propose some simple estimators which are based on heuristic
considerations and seem to work reasonably well. In our first proposal we
calculate a robust estimator from the claims of each contract and use then
linear credibility based on these estimators instead of the original claims. In the
second proposal we incorporate an a priori premium into a robust estimator
based on the claim sizes in a nonlinear way. Here we are inspired by some
Bayesian estimator. The resulting estimator is, however, free from any distri-
butional assumptions.

With these proposals I hope to convince actuaries that robustness can make
a contribution to the problem of excess claims and that further research is
worthwhile. In particular I am convinced that the methods proposed here can
be adapted to hierarchical credibility and models with different volumes. Some
preliminary work is in GISLER and REINHARD (1990), but this is a topic for a
future paper.

2. MODELS AND ESTIMATORS

We consider the basic credibility model with J contracts and n years of
experience. It contains unobservable risk parameters 0j and claims sizes Xtj > 0
(1 < / < n, 1 <j < J). We make the following distributional assumptions:

(2.1) (6j ,Xlj,..., Xnj) are i.i.d. (1 < j < J),

(2.2) 6j is distributed according to U(dO),

(2.3) Given 8j, X{j, ..., Xnj are i.i.d. with distribution Fg(dx).

It will be convenient to distinguish between the following two situations:

Case I : U and Fg are known. In this case a single contract is sufficient, and

we drop the index j .

Case II: U and Fe are unknown.

Although Case I is not realistic, it is useful for explainig our ideas.

https://doi.org/10.2143/AST.22.1.2005125 Published online by Cambridge University Press

https://doi.org/10.2143/AST.22.1.2005125


ROBUST METHODS FOR CREDIBILITY 35

Our goal is to estimate fij = //(#,) = Eg.[Xjj], the pure risk premium. In
Case I we propose

(2.4) 1Z())~= n + *(T(Xu...,Xn)-E[T})
where n = E[fi(6)] = J//(#) U(dd) is the overall mean and a is the credibility
factor. With a chosen to minimize the mean square error, this is the linear
credibility estimator based on T instead of Xx, ..., Xn. As our pure experience
based estimator T we take a robust estimator defined implicity as the solution
of

n

(2-5) X XiXflT) = 0

with %(z) = max ( - c , , min ( z - 1, c2)) and 0 < c, < 1, 0 < c2. In Case II we
replace means by averages:

(2.6) ft=X.. + a(Tj-T.)
where X = (nJ)~l E, S, Xo, T = J'"' Iy 7} and 7} is defined as the solution
of

(2.7)

with x as above.
We list here some simple properties of our proposal which serve as a first

justification:

a) It is scale equivariant: If all Xt {Xy) are multiplied by a constant c, then
/x(oj(fi]) is multiplied by the same constant.

b) It includes the linear credibility estimator: If c, = 1, c2 = oo, then
T = X_ = n~l I , Xi and 7} = Xj = «"' 2,Xy.

c) It is unbiased: E[fi(d)} = fi and J [ 'L'pJ = Xm%. In order to achieve this,
we had to use the nonrobust mean Z . in (2.6). From a pure robustness
point of view, it would be preferable to take / ^ = (1 — a) 71. + <x7}. However
for insurance, unbiasedness is indispensable. Note that we arrive at ^ b y
adding the excess X_—J~x 2 y / ^ = X - T to all contracts.

d) It is related to the truncation estimator by GISLER (1980a, b): (2.5) can be
written as

(2.8) T = «"' X m a x (0 -c i ) T, min (X,, (1 +c
; = i

i.e. claims on both ends are truncated if c, < 1. The main difference to
GISLER (1980a, b) is that the truncation point depends on the contracts
experience and is given implicitly.

The estimator (2.5) belongs to the class of so-called M-estimators of scale.
These are standard estimators in robust statistics, see HAMPEL et al. (1986,
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36 HANS R. KUNSCH

Chap. 2). Their most important property is that the change due to an
additional observation at x is approximately proportional to x(x/T). Hence by
truncating claims on both ends we bound the influence not only from large
claims but also from small ones. In most applications truncation from above
alone will be sufficient. However as will be shown in Section 3.2, the estimator
may become zero easily if c2 is very small and C\ = 1. From the discussion
there the role of the constants cx,c2 will become clearer. It will be seen that
their choice is not very crucial and can be done beforehand without having
much information about the claims. The credibility factor a on the other hand
must depend on the distributions U and Fo in Case I and on all the data in
Case II. How this can be done is the content of Section 4.

We use a scale estimator instead of the more common location estimator
because we think that in insurance applications it is more realistic to choose
Fe(dx) as a scale than a location family. This takes into account that claims are
necessarily nonnegative and that larger mean values entail also larger vari-
ances. The scale equivariance (a) above is a direct consequence of using a scale
estimator.

3. DISCUSSION OF THE ROBUST ESTIMATOR

We consider only a single contract.

3.1. Existence, uniqueness and calculation of the estimator

Denote by x(1) < x(2) < ... < x(n) the ordered sample and by k0 the number of
zero values in the sample. Furthermore we introduce the set of solutions for the
equation defining T:

L = L{xx,...,xn) =

Existence and uniqueness of T is covered in the following:

Lemma 3.1: If k0 < nc2/(cl + c2), then L is a closed, finite, non-empty interval.
lfk0 = nc2l{cx+c2) then L = (0, x(to+1)/(l +c2)]. If k0 > /ic2/(c, + c2), then L
is empty.

Proof: For any x > 0, t -* x(x/t) is continuous and monotone decreasing.

For t > *(„), Z/iXj/t) < 0. For t < x(k(t+l)/(\ +c2) we have

From this the lemma follows easily. q.e.d.
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ROBUST METHODS FOR CREDIBILITY 37

The case where L contains more than one point does occur, e.g. n = 4,
c, = c2 = 0.5, x, = x2 = 0.4, x3 = x4 = 1.8 gives L = [0.8, 1.2]. If a unique
definition of T is needed, we will take the midpoint of L. In case where L is
empty, we take T = 0.

The defining equation for T can also be written in the following equivalent
form with x(0) = 0, x(n+1) = oo, compare (2.8):

(3.1) T =

(3.2)

(3.3)

For given /, and l2, T can be computed from (3.1) and then (3.2) and (3.3)
can be checked. Because l{, l2 can take only a finite number of values, T can be
found by trial and error, at least for n not too big. In a more systematic
iterative procedure one determines new values lx and l2 such that (3.2) and (3.3)
are satisfied and then computes a new Tfrom (3.1) etc. In our experience this
worked very well, but we didn't try to prove the convergence of the algorithm.
Note that if it converges, it does so in a finite number of steps. An alternative
algorithm can be obtained by rewriting (2.5) as

n

«~' Z x(x,m = i
1=1

with x(z) = max (1 —cx, min (z, 1 + c2)). This suggests the iterative algorithm

I
= i - i x(Xi/T

(m))\ T(m).
1/2

Its convergence follows from HUBER (1981) Section 8.6.

3.2. The breakdown point

In Lemma 3.1 we have already seen that with less than nc2/(cl + c2) zero claims
the estimator stays away from zero. Here we consider the opposite case: What
is the maximal number of claims tending to infinity for which the estimator
remains bounded? In robustness this is called the finite sample breakdown
point, c.f. HAMPEL et al. (1986, Sec. 2.2a). The breakdown point plus one is
then the minimal number of outlying claims needed to take the estimator to
infinity.

Lemma 3.2: Let k = min {i e IN; / > n c{ /(ct + c2)}. Then T remains bounded if
less than k observations tend to infinity, but it tends to infinity if k or more
observations tend to infinity.
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38 HANS R. KUNSCH

Proof: By definition of k

(3.4) k{

and

(3.5) (* - l

First we assume that jc(B_i+1) is fixed and derive an upper bound for T: If
ci < 1 we put t = x(n_fc+i)/(l-Ci). Then by (3.5)

1=1

Hence by monotonicity T < t.
If C] = 1, we put

n-k+l

By (3.4) we obtain (1 + c2)t > x(n_t+1), hence
n n-k+l

x(xi/t) ^ /-i x(i)lt~(n — k+ \) + (k — \)c2 = 0.

Moreover for t'> t we have x(x(n-k+i)/t')< X(x(n-k+])lt)- Therefore
2,jX(Xj/t') < 0. This implies T < t and thus completes the proof of the first
part.

For the second part we put t = Jc(n__A:+1)A;/(«c1 + k(l — c,)). By (3.4)
(l + c2)t>x{n-k+l). Hence

Hence the right endpoint of L = {t'; Z,/(x,// ') = 0} is > /, and / -» oo if

Lemmas 3.1 and 3.2 show that the tolerance towards zero values and outliers
are in conflict. This is not difficult to show in general for scale equivariant
continuous estimators. A reasonable compromise might be to take c, = c2, but
if a priori knowledge about the claims is available other choices are possible.

3.3. Linearization of the estimator

For the credibility factor a in (2.4) and (2.5) we need the variance of Tand 7}.
Because of the implicit definition, this seems hopeless. There is, however, a
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ROBUST METHODS FOR CREDIBILITY 39

simple asymptotic approximation. With the help of the so-called influence
function we can linearize T (see HAMPEL et al., 1986, Chap. 2):

(3.6) T(Xl,...,Xn)= T(6) + n-[YJ IF {Xl,
/ = i

Here T(d) is defined implicitly by

(3.7) f x(x/T(0)) Fo(dx) = 0

and the influence function IF is given by

(3.8) IF(x, 6) = X(x/T(d)) T{6f

where

» (.(l + c2) T(0)

(3.9) M(0)= \ X'(x/T(d))xF0(dx)= \ xFg(dx).
J J(l-e,)r(0)

In particular we have £9[/F(,r , , 0)] = 0, hence Ee[T(Xu ..., Xn)] x T(8),
and

(3.10) Var,[T(X{, . . . , Xn)} =* n ~' Eo[IF(Xh df]

= « - ' E0[X
2(Xt/T (9))]-T(9)4M(6)-2.

One can define optimal constants c,, c2 as those values which minimize the
asymptotic variance of the bias corrected estimator T/u(6)/T(6), i.e.
E[IF2(XJT(0))] n{6)2 T{0)~2. This depends on FO, but fortunately a choice of
C| = 1, c2 between 1 and 2 is typically not much worse than the optimum but
often much better than c, = 1, c2 = oo (which gives T = X), cf. the example
in Section 5.1 and the results for the closely related robust location estimator.
In view of this and the tolerance to zero's and outliers investigated in the
previous sections, we recommend as a standard choice q = c2 = 1 for small
samples and c{ = 1, c2 = 1.5 or 2 for moderate samples.

One might also object that for samples sizes n < 10 typical in insurance, the
approximation (3.6) might be rather crude. However, we use (3.6) and its
consequences only to determine a. We conjecture that a suboptimal choice of a
does not have a great effect. For more accurate approximations of
E0[T(Xl,...,Xn)] and N&ro[T{Xx, . . . , Xn)] the bootstrap (EFRON, 1982)
might be useful.

4. THE CREDIBILITY FACTOR

In Case I we obtain by a straightforward calculation for the estimator (2.4)

(4.1)

+ Var {Eg (T)]} - 2 a Cov [Eo (T), n (0)].
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40 HANS R. K.ONSCH

Hence the a minimizing mean square error is given by

..„ Cov [E0(T),
(4.2) a0 =

An unbiased estimator of the denominator in Case II is
j

(4.3) ( / -I)"1 X (TJ~T,)2

Because

we need an estimator of E[Covg (7}, XJ)]. The linearization (3.6) suggests to
use

J n

(4.4) n~lJ-l(n-iyl £ ]T
7 = 1 1=1

where

(4.5) lfi(x, Tj) =

We thus take the estimator (2.6) with a = a0 where

(4.6) ao = L_^

In the case Tj = Z-y (i.e. cx = 1, c2 = oo), one usually modifies the unbiased
estimators for the numerator and the denominator of (4.2) so that all estimated
variances are > 0 and all estimated correlations are between — 1 and + 1. If we
want to do this here too, we have to estimate E[Varo(T)] e.g. by

(n-l) ~l

Since this creates additional complexity and we have no evidence that one
really gains by doing so, we use the version with a0 given by (4.6).

In the Introduction we have mentioned that excess claims lead to a small
credibility factor in the case of linear credibility. Let us look at what happens
to a0 in (4.6) when a single excess claim is present. Without loss of generality
assume that Xn is being replaced by an outlier. Then Tx and thus also T will
change only a little bit. For implicity let us assume that they do not change at
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ROBUST METHODS FOR CREDIBILITY 41

all. Then only the numerator in (4.6) changes. The terms containing Xn in this
numerator are

n\J-\)-x{T{-T)Xn -n']J-1 («- \)x^{Xn , Tx)Xn

Hence we see that also here a0 decreases if the outlier occurs in a contract with
otherwise smaller than average claims. We conjecture that this decrease is
usually smaller than in the case of linear credibility because there the outlier
appears quadratically in the denominator. The example in Section 5.3 seems to
confirm this. Still it might be worthwhile to find a more robust a0 than (4.6).
An obvious alternative is to replace the averages in the numerator and
denominator by robust location and covariance estimators. The possible gains
and losses of doing so would have to be investigated.

5. EXAMPLES

The examples in this section are chosen for computational simplicity and for
their ability to illustrate the advantages and disadvantages of our robust
credibility estimator. We restrict ourselves to the Case I.

5.1. Scale families

Here we assume that

(5.1) F0(x) = F(x/0)

for a fixed cumulative distribution function F. This implies

Ho = md with m = I xF(dx),"I
= v2d2 with v2 = (x-m)2F(dx),

E0[T] = dn6 for some dneU,

r ] = old1 for some crK
2eR.

Moreover the results from Section 3.3 show that as n -* oo dn ~ d,
al ~ n~[a2 where

J X(x/d)F(dx) =

a2 = f X(x/d)2 F(dx)dA I I" xx1 (xjd) F {dx)
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42 HANS R. KUNSCH

Inserting these results into (4.2) gives the optimal credibility factor

mdn Var (0)
a0 = -

As a side remark we note that as n -* oo, a0 -» w/rf. Because T ^ d6 for
n -» oo, we see that /T(#y-> m#, i.e. //($}" is consistent. The bias due to the
truncation is compensated by the credibility factor. With the credibility factor
a0 we can also calculate the mean square error (MSE) E[(fi(dj—fi(0))2]. We
obtain

MSE (robust) =

On the other hand the mean square error of the linear credibility estimator is
known to be

MSE (linear) =
nm2 Var (9) + o2E[82]

Defining the relative efficiency [RE] as the ratio of the mean square errors we
thus have shown that

p p . K • r ^ °2 d" V a r <® + °l E[B2]RE (robust: linear) = — • .

a2 nm" Var (0) + v2 E [02]

Letting n tend to infinity we obtain the asymptotic relative efficiency (ARE)

v2d2

ARE (robust: linear) =
a2 m2

This is nothing else than the usual asymptotic relative efficiency of m d ' T
versus the arithmetic mean. We illustrate this result numerically in the
following situation

(5.2) F(x) = (l-e-x)(l-e)+l[x>a]-e

This means that given 6 with probability 1 - e a claim is exponential with mean
6 (an ordinary claim) and with probability e it is equal to a • 8 (an outlier
claim). Asymptotic relative efficiences are given in Table 1 for selected values
of £ and a. We see that the loss of efficiency in the case e = 0 is more than
compensated by cases where large outlier claims are possible. Note that the
truncation method of GISLER (1980a, b) cannot handle this situation if Var (0)
is not close to zero because the size of the outlying claims is also proportional
to d.
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ROBUST METHODS FOR CREDIBILITY 43

TABLE 1

ASYMPTOTIC RELATIVE

ll 
II

EFFICIENCY OF THE ROBUST VERSUS THE LINEAR CREDIBILITY ESTIMATOR
IN THE MIXTURE MODEL (5.1)-(5.2)

C2 =

l , c 2

1
= 2

£ - 0

0.72
0.90

£

a = 10

1.40
1.01

= 0.1

a = 100

4.60
3.31

5.2. An example with two radically different claim size distributions

In this example the risk parameter and the claim size take only two values:

P[8 = 1] = P[0 = 2] = 0.5,
P[X = 1|0 = 1] = 0.9, P[X = 1O|0 = 1] = 0.1,
P[X = 1|0 = 2] = 0, P[X = 1O|0 = 2] = 1.

This means that one group of contracts produces only large claims whereas the
first group produces usually small claims with occasional outliers. In this case
calculations can be made in closed form without any approximations. The
results for n = 10, and c, = c2 = 1 are given in Table 2. We see that the
robust credibility estimator is quite close to the posterior mean which is
optimal for square loss — at least in those cases which do occur in practice.
The linear credibility estimator is obviously bad. It can be shown easily that the
truncation estimator of GISLER (1980a, b) coincides with the linear credibility
estimator. It is also instructive to see who pays for the outliers which occur in
the first group. It is the lucky person in the same group who has not yet
incurred a large claim.

TABLE 2

CREDIBILITY ESTIMATORS IN THE EXAMPLE 5.2 FOR n = 10

Number of claims
= 10

0
1
2
3
4
5

10

Probability

0= 1

0.3487
0.3874
0.1937
0.0574
0.0112
0.0015

0

given

e = 2

0
0
0
0
0
0
1

1.12
2.00
2.88
3.76
4.64
5.52
9.92

Robust
c, = c2 = 1

1.74
1.85
2.04
2.43
3.57
5.86
9.99

Posterior
mean

1.9
1.9
1.9
1.9
1.9
1.9

10.0
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5.3. An example by GISLER (1980a)

This is again a case where both 0 and X are discrete: 0e{l,2,3,4},
Xe {0, 2, 4, 6, 40}. We have P[6 = i] = 0.25 for all /. The conditional proba-
bilities for X given 6 are given in Table 3. We take n = 3 so that exact
calculations can be made without too much work. We compare here four
estimators. The first one is the classical linear credibility estimator

/if1 = 3.912 + 0.158 (Xj- 3.912)

The second one is our robust credibility estimator with c, = c2 = 1 and a = a0

given by (4.2):

/ifb = 3.912 + 0.351(7}- 3.089).

The third one is the semilinear credibility estimator with optimal truncation
point of GISLER (1980a, b).

/ 1 ^
.794 - £ G(X0)- 2.767

where G(x) = min (x, 4.89).

Finally we consider the optimal estimator

g

1
2
3
4

TABLE
CONDITIONAL PROBABILITIES

JC = 0

0.5445
0.2940
0.0970
0.0480

i

x = 2

0.2475
0.2940
0.2910
0.1440

3
; IN THE EXAMPLE

pe[Xi = x]

x = 4

0.0990
0.2450
0.3395
0.2880

5.3

JC = 6

0.0990
0.1470
0.2425
0.4800

JC = 40

0.0100
0.0200
0.0300
0.0400

The mean square errors for these estimators are 1.90, 1.47, 1.12 and 1.09. The
values of estimators for some realizations of (X^, X2j, X3J) are given in
Table 4. We see that typically the robust estimator is between the linear and
Gisler's estimator. The most striking exception occurs for contracts with two or
three claims of 40. They are heavily charged by our robust estimator. This
difference will become irrelevant for somewhat larges «'s because then the
probability for a contract to produce a majority of outlier claims is practically
zero. Moreover, if we change the model slightly and introduce an additional
risk class with Pg [Xtj = 40] >̂ 0, then the above bad performance of our
estimator turns into an advantage: Whenever there is a majority of outlier
claims, we should charge the corresponding contract heavily.
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TABLE 4

CREDIBILITY ESTIMATORS IN THE EXAMPLE 5.3 WITH n = 3 AND SELECTED CLAIMS

(X,, X2, X})

(0, 0, 0)
(0, 0, 6)
(0, 2, 2)
(0, 2, 6)
(0, 6, 6)
(2, 4, 6)
(6, 6, 6)
(0, 0, 40)
(0, 6, 40)
(2, 4, 40)
(6, 6, 40)
(6, 40, 40)

Linear

3.29
3.61
3.50
3.72
3.93
3.93
4.24
5.41
5.72
5.72
6.04
7.84

Robust

c, = c2 = 1

2.83
2.83
3.30
3.53
4.23
4.23
4.93
2.83
4.93
4.93
7.03

12.86

Gisler

1.72
3.01
2.78
3.54
4.31
4.60
5.60
3.01
4.31
4.60
5.60
5.60

Posterior

mean

2.09
2.50
2.78
3.25
4.30
4.69
5.68
2.58
4.13
4.53
5.46
5.58

5.4. Discussion

Our estimator performs well if there are outlying claims and the number of
years available is not very small. In other situations it seems to be at least
acceptable in its performance. It can deal also well with situations where the
outlying claims vary considerably with the risk parameter. The reason for this
is that our estimator determines a truncation point separately for each
contract, based only on the experience of the contract under consideration. If
the number of years is small, one might want to use also the experience from
other contracts to some extent. How this can be done in a robust way is the
topic of the next section.

6. A MORE SOPHISTICATED APPROACH

We consider first Case I with known distributions and fix a measure z for the
average claim size. It could be isfA'], but it is preferable to choose z robust so
that it is not affected by single outliers and atypical contracts. A concrete
proposal is given below. We then suggest the following estimator

(6.1)

where // = E[Xj] and T is defined implicitly as the solution of

(6.2)

Here / (x) = m a x ( - c , , min (x - l , c2)) as before. In order to explain the
character of this estimator, consider first the case cx = 1, c2 = oo. Then by a
simple calculation T = y (n + y) ~' t + n (« + y) ~' X_ and /T(r?)~ = y (n + y) ~' n +
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n (n + y) ~' X . We thus recover the usual linear credibility estimator with
credibility factor n(n + y)~\ In the general case we introduce the truncated
claims

Xr = max ((1 - c,) T, min {X,, (1 + c2) T)).

One then finds by the same argument that

(6.3) T=n(n + yyln-1 £ *,* + y (n + y) ~' r,

i.e. 7" is a convex combination of the a priori value z and the mean of the
truncated claims. The truncation point depends however on T (and thus on z
and Xx, ..., Xn) so that (6.3) is not an explicit solution. The estimator T
incorporates already the a priori value z with the weight y(n + y)~'. The
passage from T to /f(9j serves only to achieve unbiasedness; there is no need to
introduce an additional credibility factor there.

The main advantage of this proposal is that the a priori value z is used to
find the truncation points (1 -c , ) T and (1 + c2) T. This improves the ability of
the estimator to detect and truncate outlying claims. It is most visible when we
study the breakdown points of T. With similar arguments as in Section 3.1-2
we can prove the following result.

Lemma 6.1:

i) Equation (6.2) has always a unique solution in the interval
[y{ncx + y)~lx, oo).

ii) The breakdown point, i.e. the maximal number of claims tending to infinity
the estimator can tolerate without going to infinity, is given by min {ie IN,

Again a choice cx = 1, c2 between 1 and 2 is expected to work well in most
cases.

A different justification of our estimator T can be obtained from the
Bayesian viewpoint. It is easily checked that (6.2) is the normal equation for
the estimator maximizing the a posteriori density if we choose F0{dx) =
6~lf(xd~l)dx with

(e~x, x < \+c2

f(x) = const. {

and

U{d6) = const. xy-l8~rexp(-yT/ff)d6

provided cx = 1, c2 > 0, y > 1. We thus see that our proposal corresponds to
heavy tails in both the distribution of claims and the distribution of the risk
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parameter. Note that the above prior U means that 9~l ~ Gamma (y — 1, yr).
The assumption of scale families for both F and U leads to an estimator which
is scale equivariant: If X{,..., Xn and x are multiplied by a constant, then T is
multiplied by the same constant.

Next we discuss the choice of the a priori value x. We propose to use the
solution of the following equation

\
X(T(0)/T) U{d9) = 0

where x{0) is determined by

' X(x/z(9))F0(dx) =I

n

and x is the by now well known truncated linear function. From what has been
said before, it is clear that T is a robust measure of the average claim size. The
example of the linear credibility estimator at the beginning showed that the
choice of x is irrelevant if c, = 1 and c2 = oo. Presumably in other cases too
the value of x will not be crucial.

In Case II which is relevant for applications our proposal is as follows

(6.4)

(6.5)

(6.6)

(6.7)

This is a straightforward modification of the previous definitions replacing
expectations by averages. Note that T, is nothing else than our proposal 7} from
Section 2. Arguing like for (2.8), we see that t is the mean of the truncated T/S.

In order to complete our discussion we have to determine y by an objective
procedure from the data. We do this by minimizing an estimate of mean square
error. In Case I it follows from (6.1) that

1=1

J

(6.8)
= E

+ Var(fi(0))-2Oov(Eg[T],fi(e))-
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Because T is nonlinear, Ee[T] and Varw |T] are difficult to evaluate. An
approximation can be obtained like in Section 3.3 by linearizing. If y is fixed
and n tends to infinity, the influence of z disappears as is easily seen in the
example of linear credibility. Hence in order to obtain a nontrivial asymptotics,
we take y = y(n) = ny^. Then we obtain by a Taylor expansion (cf. HAMPEL

et al., 1986, Chap. 2):

(6.9) T{Xl,...,Xn;x) = T(6,x) + n-[ £ IF(X,, 6, T) + O > ~ ' / 2 )

where T{6,x) is defined implicitly by

(6.10) f x(x/T(e,z))Fg(dx) = yx(l-T/r(0,T))

and the influence function IF is now

(6.11) IF(x, 9, r) = {X(x/T(9, T))-ya>{\-Tin0, T))} T(6, r)2 M(8,

(6.12) with M(9,z)= [ X'(x/T(j9,T))xF0(dx) + ya,T.

Note that E0[IF(Xi,0,T)] = 0. Hence Eo[T] w T(0, T) and Varw(7) «
«~' J /F(x, 5, T)2 F0(dx). This can be plugged into the formula for the mean
square error which then can be minimized with respect to y. Details are left to
the reader.

In Case II we need estimates for the different terms on the rightjiand side of
(6.8): An unbiased estimator for Var(7) is ( J - l ) " 1 S/=1 (Tj-f)2. Because

(TJ-T.)(XJ-XJ_ J

j

= (J- 1) {Cov (Eg[T], n(0)) + E [Covff/ (Tj, XJ]}

we must estimate also E[Cov0 (Tj, X_t)]. The linearization (6.9)-(6.12) suggests
to do this by

J n

7 = 1 1=1

where

(6.13) fPix, Tj, T) = {x(x/Tj)-yn-l(l-TlTj)}T?M(Tj,

and

(6.14) M(Tj,x) = «"
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Taking all this together we minimize the following expression with respect to y
j

(6.15) (J-\yl X {(TJ-T.)2-2(TJ~T,)(X_J-XJ} +
7 = 1

j = 1 <•= 1

A lengthy but straightforward calculation shows that in the case cx = 1,
c2 = oo IF(x, Tj,x) = n(n + 7)~' (x -Z 7 ) . Thus (6.15) becomes

J J n
x X (X-X)2 (oc2-2a) + 2n-[rl(n-\y' £ £ (X-X)2

{J-\)x X (X.j-X.)2 (oc2-2a) + 2n-[rl(n-\y' £ £ (Xg-Xj)2a
7 = 1 7 = 1 ' = 1

where a = n(n + y) '. So in this case the minimization can be done in closed
form and gives the classical result. In general we will have to find the optimal y
numerically by evaluation of (6.15) for some values of y. Since the exact value
of y will not matter too much, a coarse search ought to be sufficient. This
completes the presentation of our second proposal.
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