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Fermionic and Bosonic Representations of

the Extended Affine Lie Algebra g̃lN(Cq)

Dedicated to Professor Robert Moody on the occasion of his 60th birthday

Yun Gao

Abstract. We construct a class of fermions (or bosons) by using a Clifford (or Weyl) algebra to get two

families of irreducible representations for the extended affine Lie algebra g̃lN (Cq) of level (1, 0) (or

(−1, 0)).

0 Introduction

Spinor representations for the affine Kac-Moody Lie algebras were first developed by

Frenkel [F1] and Kac-Peterson [KP] independently. As one interesting application,
Frenkel [F1] obtained addition formulas for elliptic θ-functions. Their ideas were to
use an Clifford algebra with infinitely many generators to construct certain quadratic
elements. It turns out that these quadratic elements plus the identity element span

an orthogonal affine Kac-Moody Lie algebra. Thereafter, Feingold-Frenkel [FF] con-
structed representations for all classical affine Kac-Moody Lie algebras by using Clif-
ford or Weyl algebras with infinitely many generators. Following [FF] we call these
corresponding representations fermionic or bosonic.

The Clifford (or Weyl) algebras have natural representations on the exterior (or
symmetric) algebras of polynomials over half of generators. Those representations
are also important in quantum and statistical mechanics where the generators are
interpreted as operators which create or annihilate particles and satisfy Fermi (or

Bose) statistics.
Motivated by [F1], [KP] and [FF], we start from the Clifford (or Weyl) algebras

with generators ai(n), a∗i (n), 1 ≤ i ≤ N , n ∈ Z, subject to relations

{ai(n), a j(m)}ρ = {a
∗
i (n), a∗j (m)}ρ = 0,

{ai(n), a∗j (m)}ρ = ρδi jδn+m,0,

where {a, b}ρ = ab + ρba is the Jordan (or Lie) bracket depending on ρ = ±1. We
then go on to construct a class of fermions (or bosons) and obtain representations

for the newly developed extended affine Lie algebra (or double affine Lie algebra)
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624 Yun Gao

g̃lN (Cq) by enlarging the underlying module of the Clifford (or Weyl) algebra, where
Cq = Cq[x±1, y±1] is a quantum torus of two variables. More precisely, let cx and

cy denote the two central elements corresponding to the variables x and y respec-

tively, the pair (λ, µ) is called the level for g̃lN (Cq) if cx and cy act as the scalars λ and
µ respectively. The modules we obtained are completely reducible and we thus got

two families of irreducible representations for the extended affine Lie algebra g̃lN (Cq)

of level (1, 0) and (−1, 0) respectively. Extended affine Lie algebras are a high di-
mensional generalization of affine Kac-Moody Lie algebras which were introduced in
[H-KT] and further studied in [BGK] and [AABGP]. A representation for the ex-

tended affine Lie algebra g̃lN (Cq) of level (1, 0) has been obtained in [G1] and [BS]
by using the principal vertex operator construction and in [G2] by using the ho-
mogeneous vertex operator construction. These vertex operator representations for

g̃lN (Cq) were constructed only when q is not a root of unity. Our fermionic and

bosonic representations are carried out for any non-zero q. A notion of highest
weight modules was also proposed in [G2]. Some unitary representations which are
related to our algebra have been given by Jakobsen-Kac [JK] and Wakimoto [W].

Throughout this paper, we denote the field of complex numbers and the ring of
integers by C and Z respectively.

1 Extended Affine Lie Algebras

In this section, we will recall some basics on construction of the extended affine Lie

algebra g̃lN (Cq), which is of type AN−1 with nullity 2. For more information on
extended affine Lie algebras, see [AABGP], [BGK] and [H-KT].

Let q be a non-zero complex number. A quantum torus associated to q (see

[M]) is the unital associative C-algebra Cq[x±1, y±1] (or, simply Cq) with generators
x±1, y±1 and relations

xx−1
= x−1x = yy−1

= y−1 y = 1 and yx = qxy.(1.1)

Then

xm1 yn1 xm2 yn2 = qn1m2 xm1+m2 yn1+n2(1.2)

and

Cq =

∑

m,n∈Z

⊕Cxm yn.(1.3)

Set Λ(q) = {n ∈ Z : qn
= 1}. q is said to be generic if Λ(q) = {0}.

Define κ, χ : Cq → C to be C-linear functions given by

κ(xm yn) =

{
1, if m = 0 and n ∈ Λ(q),

0, otherwise;
(1.4)

χ(xm yn) =

{
1, if m = 0 and n = 0,

0, otherwise.
(1.5)
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Let dx, dy be the degree operators on Cq defined by

dx(xm yn) = mxm yn, dy(xm yn) = nxm yn(1.6)

for m, n ∈ Z. Moreover, for any n ∈ Λ(q), we define the operator

d(n) = yndx.(1.7)

We shall identify dx with d(0). Then the operators dy and d(n), n ∈ Λ(q), form a

derivation subalgebra of Cq. They satisfy

[d(n), d(n ′)] = 0, [dy , d(n)] = nd(n),(1.8)

for n, n ′ ∈ Λ(q). Note that yndx is not a derivation if n ∈ Z \ Λ(q).
For the associative algebra Cq over C, we have the matrix algebra MN(Cq) with en-

tries from Cq. We will write A(x) ∈ MN(Cq) for A ∈ MN(C) and x ∈ Cq. Let glN(Cq)
be the Lie algebra MN (Cq)− as usual. The Lie algebra glN (Cq) has a nondegenerate
invariant form given by

(
A(a),B(b)

)
= tr(AB)χ(ab), for A,B ∈ MN (C), a, b ∈ Cq.(1.9)

Note that χ(ab) = χ(ba) for a, b ∈ Cq.
Let c(n) be symbols indexed by n ∈ Λ(q). We sometimes denote c(0) by cx. Now

we form a central extension of glN (Cq),

ĝlN (Cq) = glN (Cq)⊕
( ∑

n∈Λ(q)

⊕ Cc(n)
)
⊕ Ccy(1.10)

with Lie bracket

[A(xm1 yn1 ),B(xm2 yn2 )] = A(xm1 yn1 )B(xm2 yn2 )− B(xm2 yn2 )A(xm1 yn1 )

+ tr(AB)κ
(

(dxxm1 yn1 )xm2 yn2
)

c(n1 + n2)

+ tr(AB)χ
(

(dyxm1 yn1 )xm2 yn2
)

cy

(1.11)

for m1,m2, n1, n2 ∈ Z, A,B ∈ MN (C), where c(n), for n ∈ Λ(q) and cy are central

elements of ĝlN (Cq). Note that

κ(xm1+m2 yn1+n2 ) = 0 if n1 + n2 ∈ Z \ Λ(q).(1.12)

The derivations dy and d(n) for n ∈ Λ(q) can be extended to derivations on

glN (Cq). Now we can define the semi-direct product of the Lie algebra ĝlN (Cq) and
those derivations:

g̃lN (Cq) = ĝlN (Cq)⊕
( ∑

n∈Λ(q)

⊕ Cd(n)
)
⊕ Cdy ,(1.13)
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with Lie bracket

[d(n ′),A(xm yn)] = mA(xm yn+n ′), [dy ,A(xm yn)] = nA(xm yn),

[d(n ′), c(n ′ ′)] = [d(n ′), cy] = [dy , cy] = 0, [dy , c(n ′)] = n ′c(n ′),
(1.14)

for m, n ∈ Z, A ∈ MN(C), n ′, n ′′ ∈ Λ(q).

Next we extend the nondegenerate form on glN (Cq) to a symmetric bilinear form

on g̃lN(Cq) as follows:

(
A(a),B(b)

)
= tr(AB)χ(ab), (cy , dy) =

(
c(n), d(−n)

)
= 1,(1.15)

all others are zero, for A,B ∈ MN (C), a, b ∈ Cq, n ∈ Λ(q). Then:

Lemma 1.16 The form defined as in (1.15) is nondegenerate and invariant.

Proof It is enough to show the form is invariant in the following case.

(
d(n ′′), [A(xm1 yn),B(xm2 yn ′)]

)
=
(

[d(n ′′),A(xm1tn)],B(xm2 yn ′)
)
,(1.17)

for m1,m2, n, n
′ ∈ Z, n ′ ′ ∈ Λ(q), A,B ∈ MN(C). Indeed, the left hand side of (1.17)

is

(
d(n ′′),m1qm2n tr(AB)κ(xm1+m2 yn+n ′)c(n + n ′)

)

= m1qm2n tr(AB)δm1+m2,0

(
d(n ′′), κ(yn+n ′)c(n + n ′)

)
.

The right hand side of (1.17) is

(
m1A(xm1 yn+n ′′),B(xm2 yn ′)

)
= m1qm2(n+n ′′) tr(AB)χ(xm1+m2 yn+n ′′+n ′)

= m1qm2n tr(AB)δm1+m2,0χ(yn+n ′′+n ′).

Since n ′′ ∈ Λ(q), we have

(
d(n ′′), κ(yn+n ′)c(n + n ′)

)
= χ(yn+n ′′+n ′)

and the proof is completed.

If q is generic, ĝl1(Cq) is the so-called q-analog for two-dimensional Virasoro al-

gebra [KPS]. Its vertex operator representation was given in [G-KL].

If N ≥ 2, g̃lN (Cq) is an extended affine Lie algebra of type AN−1 with nullity 2.

(See [AABGP] and [BGK] for definitions.) Some representations for those Lie alge-
bras with generic q have been obtained in [BS], [G1] and [G2].

If q = 1, then

g̃lN(Cq) ∼= (g̃lN ⊗ C[y, y−1])⊕ Ccy ⊕ Cdy ,
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where
g̃lN = glN (C[x, x−1])⊕ Ccx ⊕ Cdx

is the affinization of the general linear Lie algebra glN .

Let Ei j be the matrix whose (i, j)-entry is 1 and 0 elsewhere. Then, in ĝlN (Cq),

[Ei j(xm1 yn1 ), Ekl(xm2 yn2 )] = δ jkqn1m2 Eil(xm1+m2 yn1+n2 )− δilq
n2m1 Ek j(xm1+m2 yn1+n2 )

+ m1qn1m2δ jkδilδm1+m2,0κ(yn1+n2 )c(n1 + n2)

+ qn1m2δ jkδilδm1+m2,0δn1+n2,0n1cy

(1.18)

for m1,m2, n1, n2 ∈ Z.

2 Construction of Fermions and Bosons

In this section, we will give a unified treatment for both fermionic and bosonic con-
structions as were done in [FF]. However, for simplicity, we use a slightly different
normal ordering from [FF] (see also [F2]).

Let R be an associative algebra. Let ρ = ±1. We define a ρ-bracket on R as follows:

{r1, r2}ρ = r1r2 + ρr2r1, r1, r2 ∈ R.(2.1)

Then, one can easily see that

{r1, r2}ρ = ρ{r2, r1}ρ and [r1r2, r3] = r1{r2, r3}ρ − ρ{r1, r3}ρr2(2.2)

for r1, r2, r3, r4 ∈ R, where [r1, r2] = {r1, r2}−1 is the Lie bracket.
Define a(N, ρ) to be the unital associative algebra with infinitely many generators

ai(n), a∗i (n), n ∈ Z, 1 ≤ i ≤ N , subject to relations

{ai(n), a j(m)}ρ = {a
∗
i (n), a∗j (m)}ρ = 0,

{ai(n), a∗j (m)}ρ = ρδi jδn+m,0.
(2.3)

We now define the normal ordering as follows.

: ai(n)a∗j (m) : =

{
ai(n)a∗j (m) if n ≤ m,

−ρa∗j (m)ai(n) if n > m,
(2.4)

for n,m ∈ Z, 1 ≤ i, j ≤ N . Set

θ(n) =

{
1, for n > 0,

0, for n ≤ 0.
(2.5)

Then

ai(n)a∗j (m) = : ai(n)a∗j (m) : + ρδi jδn+m,0θ(n−m).(2.6)
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It follows from (2.2) that

[ai(m)a∗j (n), ak(p)] = δ jkδn+p,0ai(m),

[ai(m)a∗j (n), a∗k (p)] = −δikδm+p,0a∗j (n),
(2.7)

for m, n, p ∈ Z, 1 ≤ i, j, k ≤ N .

Let a(N, ρ)+ be the subalgebra generated by ai(n), a∗j (m), a∗k (0), for n,m > 0, and

1 ≤ i, j, k ≤ N . Let a(N, ρ)− be the subalgebra generated by ai(n), a∗j (m), ak(0),

for n,m < 0, and 1 ≤ i, j, k ≤ N . Those generators in a(N, ρ)+ are called annihi-
lation operators while those in a(N, ρ)− are called creation operators. Let V (N, ρ)
be a simple a(N, ρ)-module containing an element v0, called a “vacuum vector”, and
satisfying

a(N, ρ)+v0 = 0.(2.8)

So all annihilation operators kill v0 and

V (N, ρ) = a(N, ρ)−v0.(2.9)

Now we may construct a class of fermions (if ρ = 1) or bosons (if ρ = −1) on
V (N, ρ). For any m, n ∈ Z, 1 ≤ i, j ≤ N , set

fi j(m, n) =
∑

s∈Z

q−ns: ai(m− s)a∗j (s) :.(2.10)

We also set

D =

N∑

i=1

∑

s∈Z

s: ai(s)a∗i (−s) :.(2.11)

Although fi j(m, n) and D are infinite sums, they are well-defined as operators on

V (N, ρ). Indeed, for any vector v ∈ V (N, ρ) = a(N, ρ)−v0, only finitely many terms
in (2.10) and (2.11) can make a non-zero contribution to fi j(m, n)v and Dv.

Lemma 2.12 We have

[ fi j (m, n), ak(p)] = δ jkqnpai(m + p),(2.13)

[ fi j(m, n), a∗k (p)] = −δikq−n(m+p)a∗j (m + p),(2.14)

[ fi j (m, n), ak(p)a∗l (s)] = δ jkqnpai(m + p)a∗l (s)− δilq
−n(m+s)ak(p)a∗j (m + s).(2.15)

for m, n, p, s ∈ Z and 1 ≤ i, j, k, l ≤ N.
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Proof

[ fi j (m, n), ak(p)] =
∑

s∈Z

q−ns[: ai(m− s)a∗j (s) :, ak(p)]

=

∑

s∈Z

q−ns[ai(m− s)a∗j (s), ak(p)]

=

∑

s∈Z

q−nsδ jkδs+p,0ai(m− s) = qnpδ jkai(m + p).

So (2.13) holds true. The proof of (2.14) is similar, and (2.15) follows from (2.13)

and (2.14).

In what follows we shall mean qmn
−1

qn−1
= m if qn

= 1. This will make our formula
more concise.

Proposition 2.16

[ fi j (m1, n1), fkl(m2, n2)] = δ jkqn1m2 fil(m1 + m2, n1 + n2)

− δilq
n2m1 fk j(m1 + m2, n1 + n2)

+ ρδ jkδilq
n1m2δm1+m2,0

qm1(n1+n2) − 1

qn1+n2 − 1
qn1+n2

for all m1,m2, n1, n2 ∈ Z and 1 ≤ i, j, k, l ≤ N.

Proof It follows from (2.15) and (2.6) that

[ fi j (m1, n1), q−n2t : ak(m2 − t)a∗l (t) :]

= δ jkqn1m2−(n1+n2)t ai(m1 + m2 − t)a∗l (t)

− δilq
n2m1−(n1+n2)(m1+t)ak(m2 − t)a∗j (m1 + t)

= δ jkqn1m2−(n1+n2)t
(

: ai(m1 + m2 − t)a∗l (t) : + ρδilδm1+m2,0θ(m1 + m2 − 2t)
)

− δilq
n2m1−(n1+n2)(m1+t)

(
: ak(m2 − t)a∗j (m1 + t) :

+ ρδ jkδm1+m2,0θ(m2 − t −m1 − t)
)

= δ jkqn1m2 q−(n1+n2)t : ai(m1 + m2 − t)a∗l (t) :

− δilq
n2m1 q−(n1+n2)(m1+t): ak(m2 − t)a∗j (m1 + t) :

+ ρδ jkδilδm1+m2,0qn1m2 q−(n1+n2)t
(
θ(−2t)− θ(−2m1 − 2t)

)
.
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Since
∑

t∈Z

q−(n1+n2)t
(
θ(−2t)− θ(−2m1 − 2t)

)

=





0, if m1 = 0,∑−1
t=−m1

q−(n1+n2)t , if m1 > 0,∑−m1−1
t=0 q−(n1+n2)t , if m1 < 0,

=
qm1(n1+n2) − 1

qn1+n2 − 1
qn1+n2 ,

we see that (2.16) holds true and the proof is completed.

Lemma 2.17

[D, ak(p)] = pak(p),(2.18)

[D, a∗k (p)] = pa∗k (p),(2.19)

[D, fi j (m, n)] = m fi j(m, n),(2.20)

for p,m, n ∈ Z, 1 ≤ k, i, j ≤ N.

Proof Let Di =
∑

s∈Z
s: ai(s)a∗i (−s) :, for 1 ≤ i ≤ N . As in (2.13), we may obtain

that [Di , ak(p)] = δik pak(p) and hence (2.18) follows. (2.19) can be proved similarly.
Now it follows from (2.18) and (2.19) that

[D, q−ns: ak(m− s)a∗l (s) :] = mq−nsak(m− s)a∗l (s)

= mq−ns
(

: ak(m− s)a∗l (s) : + ρδklδm,0θ(m− 2s)
)

= mq−ns: ak(m− s)a∗l (s) :

which clearly yields (2.20).

Now we see that the operators fi j(m, n) for m, n ∈ Z, 1 ≤ i, j ≤ N , together with
1 and D, form a Lie algebra L. Next we will consider two subalgebras Lv and Lh of

L. To this end, we first let

I =

N∑

i=1

fii(0, 0),(2.21)

then one can easily show that

[I, a j(n)] = a j(n) and [I, a∗j (n)] = −a∗j (n),(2.22)

for n ∈ Z, 1 ≤ j ≤ N . For any

v = ai1
(n1) · · · ais

(ns)a∗j1
(m1) · · · a∗jt

(mt )v0(2.23)
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from V (N, ρ), one has

Iv = (s− t)v.(2.24)

Let Lv be the subalgebra spanned by operators fi j(m, 0) for m ∈ Z, 1 ≤ i, j ≤
N . Then Lv is isomorphic to the affinization of the general linear Lie algebra glN .
Moreover, as (5.56) in [FF], we have:

Proposition 2.25 As Lv-module, V (N, ρ) is completely reducible. Moreover,

V (N, ρ) =
∑

k∈Z

⊕Vk,

where Vk is the k-eigenspace of the operator I, and each Vk is an irreducible Lv-module.

Remark 2.26 Let Lh be the subalgebra spanned by operators fi j (0, n) for n ∈ Z,

1 ≤ i, j ≤ N . Then Lh is isomorphic to the Lie algebra glN

(
C[Z/Λ(0)]

)
, where

C[Z/Λ(0)] is the group algebra. In particular, if q is generic, then Lh is isomorphic

to the loop algebra glN (C[Z]). Namely, each Lv-module Vk allows Lh-action. This
shows that the level-ρmodule for the affine Lie algebra ĝlN allows a level-0 action for
ĝlN .

3 Lifting to g̃lN(Cq)

In this section, we shall obtain the g̃lN(Cq)-module action by enlarging the Fock space

V (N, ρ).
From (2.16), we see that, if n1 + n2 ∈ Λ(q),

[ fi j(m1, n1), fkl(m2, n2)] = δ jkqn1m2 fil(m1 + m2, n1 + n2)

− δilq
n2m1 fk j(m1 + m2, n1 + n2)

+ ρδ jkδilq
n1m2δm1+m2,0m1,

(3.1)

for m1,m2, n1, n2 ∈ Z, 1 ≤ i, j, k, l ≤ N .

If n1 + n2 ∈ Z \ Λ(q), then

[ fi j(m1, n1), fkl(m2, n2)]

= δ jkqn1m2 fil(m1 + m2, n1 + n2)− δilq
n2m1 fk j (m1 + m2, n1 + n2)

+ ρδ jkδilδm1+m2,0
q(n1+n2)

qn1+n2 − 1
(qn2m1 − qn1m2 )

= δ jkqn1m2

(
fil(m1 + m2, n1 + n2)− ρδilδm1+m2,0

qn1+n2

qn1+n2 − 1

)

− δilq
n2m1

(
fk j(m1 + m2, n1 + n2)− ρδk jδm1+m2,0

qn1+n2

qn1+n2 − 1

)
,

(3.2)
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for m1,m2, n1, n2 ∈ Z, 1 ≤ i, j, k, l ≤ N . Therefore, if we define

Fi j(m, n) =

{
fi j (m, n), for n ∈ Λ(q)

fi j (m, n)− ρδi jδm,0
qn

qn−1
, for n ∈ Z \ Λ(q).

(3.3)

Then we have

[Fi j(xm1 yn1 ), Fkl(xm2 yn2 )] = δ jkqn1m2 Fil(xm1+m2 yn1+n2 )− δilq
n2m1 Fk j (xm1+m2 yn1+n2 )

+ m1qn1m2δ jkδilδm1+m2,0κ(yn1+n2 )ρ

(3.4)

for m1,m2, n1, n2 ∈ Z.

Set

W (N, ρ) = V (N, ρ)⊗ C[y, y−1],(3.5)

and define operators

ei j(m, n) = Fi j(m, n)⊗ yn(3.6)

which act on W (N, ρ) as follows

ei j(m, n)(v ⊗ yk) = Fi j(m, n)v ⊗ yn+k,(3.7)

for m, n, k ∈ Z, 1 ≤ i, j ≤ N and v ∈ V (N, ρ). Then following from (1.18), (3.4)
and Proposition 2.25 one can easily prove that:

Theorem 3.8 W (N, ρ) is a module for the Lie algebra g̃lN (Cq) under the action given

by

π
(

Ei j(xm yn)
)
= ei j(m, n), for 1 ≤ i, j ≤ N,m, n ∈ Z;

π
(

c(n)
)
= ρ1⊗ yn, π

(
d(n)
)
= D⊗ yn, for n ∈ Λ(q),

π(cy) = 0, π(dy) = 1⊗ dy .

Moreover, W (N, ρ) is completely reducible and each component Vk ⊗ C[y, y−1] is irre-

ducible.

Remark 3.9 The above theorem gives us two families of irreducible representations

for the extended affine Lie algebra g̃lN (Cq) of level (ρ, 0), for N ≥ 2. In particular,
if q is not a root of unity (equivalently Λ(q) = {0}), then the center of the central
extension in (1.10) is two dimensional. In this case, an irreducible vertex operator
representation has been constructed in [BS], [G1] and [G2].
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