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Abstract

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for
studying the semantics of non-monotonic logics. In recent work, AFT was generalized to non-
deterministic operators, that is, operators whose range are sets of elements rather than single
elements. In this paper, we make three further contributions to non-deterministic AFT: (1) we
define and study ultimate approximations of non-deterministic operators, (2) we give an alge-
braic formulation of the semi-equilibrium semantics by Amendola et al., and (3) we generalize
the characterizations of disjunctive logic programs to disjunctive logic programs with aggregates.

KEYWORDS: approximation fixpoint theory, disjunctive logic programming, semi-equilibrium
semantics

1 Introduction

Knowledge representation and reasoning (KRR), by its very nature, is concerned with

the study of a wide variety of languages and formalisms. In view of this, unifying frame-

works that allow for the language-independent study of aspects of KRR is essential.

One framework with strong unifying potential is approximation fixpoint theory (AFT)

(Denecker et al. 2000), a purely algebraic theory which was shown to unify the semantics

of, among others, logic programming default logic and autoepistemic logic. The central

objects of study of AFT are (approximating) operators and their fixpoints. For logic pro-

gramming for instance, it was shown that Fitting’s three-valued immediate consequence

operator is an approximating operator of Van Emden and Kowalski’s two-valued imme-

diate consequence operator, and that all major semantics of (normal) logic programming
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can be derived directly from this approximating operator. Moreover, this observation

does not only hold for logic programming: also for a wide variety of other domains, it

is straightforward how to derive an approximating operator, and the major semantics

can be recovered from that approximator using purely algebraic means (an overview is

given by Heyninck et al. 2022). This has in turn inspired others to define the semantics of

non-monotonic formalisms directly using AFT (Bogaerts 2019), putting AFT forward not

only as a framework to study existing semantics but also as a framework to define them.

The advantage is that AFT-based semantics are guaranteed to follow well-established

principles, such as groundedness (Bogaerts 2015). Moreover, it is often easier to define a

semantic operator than to define the semantics from scratch.

Recently, AFT was generalized to also capture non-deterministic operators (Heyninck

et al. 2022) which allow for different options or choices in their output. A prime example

of the occurrence of non-determinism in KRR is disjunctive logic programming, and it

was indeed shown that many semantics of disjunctive logic programming (specifically the

weakly supported, (partial) stable, and well-founded semantics (Alcântara et al. 2005)

are captured by non-deterministic AFT. In this paper, we make further contributions

to the study of non-deterministic AFT, with a particular emphasis on disjunctive logic

programs. On the one hand, (in Section 3) we deepen the theory of non-deterministics

AFT by investigating so-called ultimate semantics. For standard AFT, Denecker et al.

(2002) have shown that with every two-valued operator, we can uniquely associate a most-

precise approximator called the ultimate approximator. When defining semantics of new

formalisms, this even takes the need of defining an approximator away, since it suffices

to define an exact operator and its ultimate approximator comes for free.1 Our first con-

tribution is to show how ultimate approximations can be obtained for non-deterministic

AFT, which we later illustrate using disjunctive logic programs with aggregates. This

means we give the first constructive method for obtaining non-deterministic approxima-

tion operators. On the other hand, we also apply non-deterministic AFT to two areas

that have thus far been out of reach of AFT. In Section 4, we use it to define an alge-

braic generalization of the semi-equilibrium semantics, a semantics originally formulated

for disjunctive logic programs (Amendola et al. 2016) but now, thanks to our results,

available to any operator-based semantics. In Section 5, we apply the theory of non-

deterministic AFT to disjunctive logic programs with aggregates in the body, giving rise

to a family of semantics for such programs.

2 Background and preliminaries

In this section, we recall disjunctive logic programming (Section 2.1), AFT for determin-

istic operators (Section 2.2), and non-deterministic operators (Section 2.3).

2.1 Disjunctive logic programming

In what follows we consider a propositional2 language L, whose atomic formulas are

denoted by p, q, r (possibly indexed), and that contains the propositional constants T

1 However, ultimate semantics often come at the cost of increased computational complexity compared
to their standard counterparts.

2 For simplicity, we restrict ourselves to the propositional case.
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(representing truth), F (falsity), U (unknown), and C (contradictory information). The

connectives in L include negation ¬, conjunction ∧, disjunction ∨, and implication ←.

Formulas are denoted by φ, ψ, δ (again, possibly indexed). Logic programs in L may be

divided to different kinds as follows: a (propositional) disjunctive logic program P in L (a

dlp in short) is a finite set of rules of the form
∨n

i=1 pi ← ψ, where the head
∨n

i=1 pi is a

non-empty disjunction of atoms, and the body ψ is a formula not containing←. A rule is

called normal (nlp), if its body is a conjunction of literals (i.e., atomic formulas or negated

atoms), and its head is atomic. A rule is disjunctively normal if its body is a conjunction of

literals and its head is a non-empty disjunction of atoms. We will use these denominations

for programs if all rules in the program satisfy the denomination, for example, a program

is normal if all its rules are normal. The set of atoms occurring in P is denoted AP .
The semantics of dlps are given in terms of four-valued interpretations. A four-valued

interpretation of a program P is a pair (x, y), where x ⊆ AP is the set of the atoms that

are assigned a value in {T,C} and y ⊆ AP is the set of atoms assigned a value in {T,U}.
We define −T = F, −F = T and X = −X for X = C,U. Truth assignments to complex

formulas are as follows:

• (x, y)(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T if p ∈ x and p ∈ y,
U if p �∈ x and p ∈ y,
F if p �∈ x and p �∈ y,
C if p ∈ x and p �∈ y.

• (x, y)(¬φ) = −(x, y)(φ),
• (x, y)(ψ∧φ) = lub≤t

{(x, y)(φ), (x, y)(ψ)},
• (x, y)(ψ∨φ) = glb≤t

{(x, y)(φ), (x, y)(ψ)}.

A four-valued interpretation of the form (x, x) may be associated with a two-valued

(or total) interpretation x. (x, y) is a three-valued (or consistent) interpretation, if x ⊆ y.
Interpretations are compared by two-order relations which form a pointwise extension of

the structure FOUR consisting of T,F,C, and U with U <i F,T <i C and F <t C,U <t T.

The pointwise extension of these orders corresponds to the information order , which is

equivalently defined as (x, y) ≤i (w, z) iff x ⊆ w and z ⊆ y, and the truth order , where

(x, y) ≤t (w, z) iff x ⊆ w and y ⊆ z.
The immediate consequence operator for normal programs (van Emden and Kowalski

1976) is extended to dlps as follows:

Definition 1 (Immediate Consquence operator for dlps)

Given a dlp P and a two-valued interpretation x, we define: (1) HDP(x) = {Δ |
∨
Δ←

ψ ∈ P and (x, x)(ψ) = T}; and (2) ICP(x) = {y ⊆ ⋃
HDP(x) | ∀Δ ∈ HDP(x),

y ∩Δ �= ∅}.
Thus, ICP(x) consists of sets of atoms that occur in activated rule heads, each set

contains at least one representative from every disjuncts of a rule in P whose body

is x-satisfied. Denoting by ℘(S), the powerset of S, ICP is an operator on the lattice

〈℘(AP),⊆〉.3
Given a dlp P a consistent interpretation (x, y) is a (three-valued) model of P, if for

every φ← ψ ∈ P, (x, y)(φ) ≥t (x, y)(ψ). The GL-transformation P
(x,y) of a disjunctively

3 The operator ICP is a generalization of the immediate consequence operator from (Fernández and
Minker 1995, Definition 3.3), where the minimal sets of atoms in ICP (x) are considered. However, this
requirement of minimality is neither necessary nor desirable in the consequence operator (Heyninck
et al. 2022).
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normal dlp P with respect to a consistent (x, y) is the positive program obtained by

replacing in every rule in P of the form p1 ∨ . . . ∨ pn ←
∧m

i=1 qi ∧
∧n

j=1 ¬rj a negated

literal ¬ri (1 ≤ i ≤ k) by (x, y)(¬ri). (x, y) is a three-valued stable model of P iff it is a

≤t-minimal model of P
(x,y) .

4

2.2 Approximation fixpoint theory

We now recall basic notions from AFT, as described by Denecker et al. (2000). We restrict

ourselves here to the necessary formal details and refer to more detailed introductions

by Denecker et al. (2000) and Bogaerts (2015) for more informal details. AFT introduces

constructive techniques for approximating the fixpoints of an operator O over a lattice

L = 〈L,≤〉.5 Approximations are pairs of elements (x, y). Thus, given a lattice L =

〈L,≤〉, the induced bilattice is the structure L2 = 〈L2,≤i,≤t〉, in which L2 = L×L, and
for every x1, y1, x2, y2 ∈ L, (x1, y1) ≤i (x2, y2) if x1 ≤ x2 and y1 ≥ y2, and (x1, y1) ≤t

(x2, y2) if x1 ≤ x2 and y1 ≤ y2.6
An approximating operator O : L2 → L2 of an operator O : L → L is an operator

that maps every approximation (x, y) of an element z to an approximation (x′, y′) of

another element O(z), thus approximating the behavior of the approximated operator

O. In more details, an operator O : L2 → L2 is ≤i-monotonic, if when (x1, y1) ≤i (x2, y2),

also O(x1, y1) ≤i O(x2, y2); O is approximating , if it is ≤i-monotonic and for any x ∈ L,
Ol(x, x) = Ou(x, x).

7 O approximates of O : L → L, if it is ≤i-monotonic and O(x, x) =
(O(x), O(x)) (for every x ∈ L). Finally, for a complete lattice L, let O : L2 → L2 be

an approximating operator. We denote Ol(·, y) = λx.Ol(x, y) and similarly for Ou. The

stable operator for O is then defined as S(O)(x, y) = (lfp(Ol(., y)), lfp(Ou(x, .)), where

lfp(O) denotes the least fixpoint of an operator O.

Approximating operators induce a family of fixpoint semantics. Given a complete

lattice L = 〈L,≤〉 and an approximating operator O : L2 → L2, (x, y) is a Kripke–

Kleene fixpoint of O if (x, y) = lfp≤i
(O(x, y)); (x, y) is a three-valued stable fixpoint

of O if (x, y) = S(O)(x, y); (x, y) is a two-valued stable fixpoints of O if x = y and

(x, x) = S(O)(x, x); (x, y) is the well-founded fixpoint of O if it is the ≤i-minimal (three-

valued) stable fixpoint of O.

2.3 Non-deterministic AFT

AFT was generalized to non-deterministic operators, that is, operators which map ele-

ments of a lattice to a set of elements of that lattice (like the operator ICP for dlps) by

4 An overview of other semantics for dlps can be found in previous work on non-deterministic AFT
(Heyninck et al. 2022).

5 Recall that a lattice is a partially ordered set in which every pair of elements has a least upper bound
and greatest lower bound denoted by � and �, respectively. If every set of elements has a least upper
bound and greatest lower bound, we call the lattice complete.

6 Note that we use small letters to denote elements of lattice, capital letters to denote sets of elements,
and capital calligraphic letters to denote sets of sets of elements.

7 In some papers (e.g., Denecker et al. 2000), an approximation operator is defined as a symmet-
ric ≤i-monotonic operator, that is, a ≤i-monotonic operator s.t. for every x, y ∈ L, O(x, y) =
(Ol(x, y),Ol(y, x)) for some Ol : L2 → L. However, the weaker condition we take here (taken from
Denecker et al. 2002) is actually sufficient for most results on AFT.
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Heyninck et al. (2022). We recall the necessary details, referring to the original paper for

more details and explanations.

A non-deterministic operator on L is a function O : L → ℘(L) \ {∅}. For example, the

operator ICP from Definition 1 is a non-deterministic operator on the lattice 〈℘(AP),⊆〉.
As the ranges of non-deterministic operators are sets of lattice elements, one needs a

way to compare them, such as the Smyth order and the Hoare order . Let L = 〈L,≤〉
be a lattice, and let X,Y ∈ ℘(L). Then, X �S

L Y if for every y ∈ Y there is an x ∈ X
such that x ≤ y; and X �H

L Y if for every x ∈ X there is a y ∈ Y such that x ≤ y.

Given some X1, X2, Y1, Y2 ⊆ L, X1 × Y1 �A
i X2 × Y2 iff X1 �S

L X2 and Y2 �H
L Y1. Let

L = 〈L,≤〉 be a lattice. Given an operator O : L2 → L2, we denote by Ol the operator

defined by Ol(x, y) = O(x, y)1, and similarly for Ou(x, y) = O(x, y)2. An operator O :

L2 → ℘(L)\∅ × ℘(L)\∅ is called a non-deterministic approximating operator (ndao, for

short), if it is �A
i -monotonic (i.e., (x1, y1) ≤i (x2, y2) implies O(x1, y1) �A

i O(x2, y2))
and is exact (i.e., for every x ∈ L, O(x, x) = Ol(x, x) × Ol(x, x)). We restrict ourselves

to ndaos ranging over consistent pairs (x, y).

We finally define the stable operator (given an ndao O) as follows. The complete

lower stable operator is defined by (for any y ∈ L) C(Ol)(y) = {x ∈ L | x ∈
Ol(x, y) and ¬∃x′ < x : x′ ∈ Ol(x

′, y)}. The complete upper stable operator is defined

by (for any x ∈ L) C(Ou)(x) = {y ∈ L | y ∈ Ou(x, y) and ¬∃y′ < y : y′ ∈ Ou(x, y
′)}.

The stable operator : S(O)(x, y) = C(Ol)(y) × C(Ou)(x). (x, y) is a stable fixpoint of O
if (x, y) ∈ S(O)(x, y).8
Other semantics, for example, the well-founded state and the Kripke–Kleene fixpoints

and state are defined by Heyninck et al. (2022) and can be immediately obtained once

an ndao is formulated.

Example 1

An example of an ndao approximating ICP (Definition 1) is defined as follows (given a

dlp P and an interpretation (x, y)): HDl
P(x, y) = {Δ | ∨Δ ← φ ∈ P, (x, y)(φ) ≥t C},

HDu
P(x, y) = {Δ | ∨Δ ← φ ∈ P, (x, y)(φ) ≥t U}, IC†P(x, y) = {x1 ⊆

⋃HD†
P(x, y) |

∀Δ ∈ HD†
P(x, y), x1 ∩Δ �= ∅} (for † ∈ {l, u}), and ICP(x, y) = (IClP(x, y), ICuP(x, y)).

Consider the following dlp: P = {p ∨ q ← ¬q}. The operator IClP behaves as follows:

• For any interpretation (x, y) for which q ∈ x,HDl
P(x, y) = ∅ and thus IClP(x, y) = {∅}.

• For any interpretation (x, y) for which q �∈ x, HDl
P(x, y) = {{p, q}} and thus

IClP(x, y) = {{p}, {q}, {p, q}}.
Since IClP(x, y) = ICuP(y, x) (see Heyninck et al. 2022, Lemma 1), ICP behaves as

follows:

• For any (x, y) with q �∈ x and q �∈ y, ICP(x, y) = {{p}, {q}, {p, q}}×{{p}, {q}, {p, q}},
• For any (x, y) with q �∈ x and q ∈ y, ICP(x, y) = {∅} × {{{p}, {q}, {p, q}},
• For any (x, y) with q ∈ x and q �∈ y, ICP(x, y) = {{p}, {q}, {p, q}} × {∅}, and
• For any (x, y) with q ∈ x and q ∈ y, ICP(x, y) = {(∅, ∅)}.

8 Notice that we slightly abuse notation and write (x, y) ∈ S(O)(x, y) to abbreviate x ∈ (S(O)(x, y))1
and y ∈ (S(O)(x, y))2, that is, x is a lower bound generated by S(O)(x, y) and y is an upper bound
generated by S(O)(x, y).
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We see, for example, that C(IClP)({p}) = {{p}, {q}} and thus ({p}, {p}) is a stable

fixpoint of ICP . (∅, {q}) is the second stable fixpoint of ICP . (∅, {p, q}) is a fixpoint of

ICP that is not stable.

In general, (total) stable fixpoints of ICP correspond to (total) stable models of P,
and weakly supported models of ICP correspond to fixpoints of ICP . (Heyninck et al.

2022).

3 Ultimate operators

AFT assumes an approximation operator but does not specify how to construct it. In the

literature, one finds various ways to construct a deterministic approximation operator

O that approximates a deterministic operator O. Of particular interest is the ultimate

operator (Denecker et al. 2002), which is the most precise approximation operator. In

this section, we show that non-deterministic AFT admits an ultimate operator, which is,

however, different from the ultimate operator for deterministic AFT.

We first recall that for a deterministic operator O : L → L, the ultimate approximation

Ou is defined by Denecker et al. (2002) as follows:9

ODMTd

(x, y) = (�O[x, y],�O[x, y])10

Where O[x, y] := {O(z) | x ≤ z ≤ y}. This operator is shown to be the most precise

operator approximating an operator O (Denecker et al. 2002). In more detail, for any

(deterministic) approximation operator O approximating O, and any consistent (x, y),

O(x, y) <i ODMTd

(x, y).

The ultimate approximator for ICP for non-disjunctive logic programs P looks as

follows:

Definition 2

Given a normal logic program P, we let: ICDMTd

P (x, y) = (ICDMTd,l
P (x, y), ICDMd,u

P (x, y))

with: ICDMTd,l
P (x, y) =

⋂
x⊆z⊆y{α | α ← φ ∈ P and z(φ) = T}, and ICDMTd,u

P (x, y) =⋃
x⊆z⊆y{α | α← φ ∈ P and z(φ) = T}.
In this section, we define the ultimate semantics for the non-deterministic operators. In

more detail, we constructively define an approximation operator that is most precise and

has non-empty upper and lower bounds. Its construction is based on the following idea:

we are looking for an operator OU s.t. for any ndao O that approximates O, Ol(x, y) �S
L

OU
l (x, y) (and similarly for the upper bound). As we know that Ol(x, y) �S

L O(z) for any

x ≤ z ≤ y, we can obtain OU
l by simply gathering all applications of O to elements of

the interval [x, y], that is, we define

OU
l (x, y) =

⋃
x≤z≤y

O(z)

9 We use the abbreviation DMTd for deterministic Denecker et al. to denote this operator, as to not
overburden the use of ICU

P . Indeed, we will later see that the ultimate operator for non-disjunctive
logic programs generalizes to an ndao that is different from the ultimate non-deterministic operator
ICU

P .
10 Recall that denotes �X the greatest lower bound of X and �X denotes the least upper bound of X.
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The upper bound can be defined in the same way as the lower bound. Altogether, we

obtain

OU (x, y) = OU
l (x, y)×OU

l (x, y)

The following example illustrates this definition for normal logic programs:

Example 2

Let P = {q ← ¬p; p ← p}. Then ICP(∅) = ICP({q}) = {q} and ICP({p}) =

ICP({p, q}) = {p}. Therefore, ICUP(∅, {p, q}) = {{p}, {q}} × {{p}, {q}} whereas

ICUP(∅, {q}) = {{q}} × {{q}}.
The ultimate approximation is the most precise ndao approximating the operator O:

Proposition 1

Let a non-deterministic operator O over a lattice 〈L,≤〉 be given. Then OU is an ndao

that approximates O. Furthermore, for any ndao O that approximates O and for every

x, y ∈ L s.t. x ≤ y, it holds that O(x, y) �A
i OU (x, y).

In conclusion, non-deterministic AFT admits, just like deterministic AFT, an ultimate

approximation. However, as we will see in the rest of this section, the ultimate non-

deterministic approximation operator OU does not generalize the deterministic ultimate

approximation operator defined by Denecker et al. (2002). In more detail, we compare

the non-deterministic ultimate operator ICUP with the deterministic ultimate ICDMT
P from

Definition 2. Somewhat surprisingly, even when looking at normal logic programs, the

operator ICDMTd

P does not coincide with the ultimate ndao ICUP (and thus ICDMTd

P is not

the most precise ndao, even for non-disjunctive programs). The intuitive reason is that

the additional expressivity of non-deterministic operators, which are not restricted to

single lower and upper bounds in their outputs, allows to more precisely capture what is

derivable in the “input interval” (x, y).

Example 3 (Example 2 continued)

Consider again P = {q ← ¬p; p ← p}. Applying the DMTd-operator gives:

ICDMTd

P (∅, {p, q}) = (∅, {p, q}). Intuitively, the ultimate semantics ICUP(∅, {p, q}) =

{{p}, {q}} × {{p}, {q}} gives us the extra information that we will always either derive

p or q, which is information a deterministic approximator can simply not capture. Such

a “choice” is not expressible within a single interval; hence, the deterministic ultimate

approximation is (∅, {p, q}). This example also illustrates the fact that, when applying

the ultimate ndao-construction to (non-constant) deterministic operators O, OU might

be a non-deterministic approximation operator.

However, one can still generalize the operator ICDMTd

P to disjunctive logic programs. We

first generalize the idea behind ICDMTd,l
P to an operator gathering the heads of rules that

are true in every interpretation z in the interval [x, y]. Similarly, ICDMTd,u
P is generalized

by gathering the heads of rules with bodies that are true in at least one interpretation

in [x, y]:

HDDMT,l
P (x, y) =

⋂
x⊆z⊆y

HDP(z) and HDDMT,u
P (x, y) =

⋃
x⊆z⊆y

HDP(z)}.

The upper and lower immediate consequences operator are then straightforwardly de-

fined, that is, by taking all interpretations that only contain atoms in HDDMT,†
P (x, y) and

contain at least one member of every head Δ ∈ HDDMT,†
P (x, y) (for † ∈ {u, l}):
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ICDMT,†
P (x, y) = {z ⊆

⋃
HDDMT,†

P (x, y) | ∀Δ ∈ HDDMT,†
P (x, y) �= ∅ : z ∩Δ �= ∅}.

Finally, the DMT-ndao is defined as: ICDMT
P (x, y) = ICDMT,l

P (x, y) × ICDMT,u
P (x, y). We

have

Proposition 2 (Heyninck et al. 2022, Proposition 3 )

For any disjunctive logic program P, ICDMT
P is an ndao that approximates ICP .

Notice that for a non-disjunctive program P, ⋃ ICDMT,†
P (x, y) =

⋃HDDMT,†
P (x, y) =

ICDMTd,†
P (x, y) (for † ∈ {u, l}), that is, the non-deterministic version reduces to the de-

terministic version when looking at non-disjunctive programs. Notice furthermore the

operators HDDMT,l
P (x, y) and HDDMT,u

P (x, y) are only defined for consistent interpreta-

tions (x, y). We leave the extension of this operator to inconsistent interpretations for

future work.

Example 4

Consider again the program P = {p ∨ q ← ¬q} from Example 1. ICDMT,l
P behaves as

follows:

• If q ∈ y then HDDMT,l
P (x, y) = ∅ and thus ICDMT,l

P (x, y) = ∅.
• If q �∈ y then HDDMT,l

P (x, y) = {{p, q}} and ICDMT,l
P (x, y) = {{p}, {q}, {p, q}}.

ICDMT,u
P behaves as follows:

• If q ∈ x then HDDMT,u
P (x, y) = ∅ and thus ICDMT,u

P (x, y) = ∅.
• If q �∈ x then HDDMT,u

P (x, y) = {{p, q}} and thus ICDMT,u
P (x, y) = {{p}, {q}, {p, q}}.

Thus, for example, ICDMT
P (∅, {p, q}) = {∅} × {{p}, {q}, {p, q}} and ICDMT

P ({p}, {p}) =

{{p}, {q}, {p, q}} × {{p}, {q}, {p, q}}. We thus see that ({p}, {p}) is a stable fixpoint of

ICDMT
P .

A slightly extended program P = {q ← ¬q; p ∨ q ← q} shows some particular but

unavoidable behavior of this operator. ICDMT,l
P (∅, {q}) = {∅} as HDP(∅) = {{q}} and

HDP({q}) = {{p, q}}. Note that the lower bound for is not the stronger {p}. This would
result in a loss of �A

i -monotonicity, as the lower bound {{q}} for the less informative

(∅, {q}) would be �S
L-incomparable to the lower bound {{p}, {q}, {p, q}} of the more

informative ({q}, {q}).
We have shown in this section that non-deterministic AFT admits an ultimate operator,

thus providing a way to construct an ndao based on a non-deterministic operator. We have

also shown that the ultimate ndao diverges from the ultimate operator for deterministic

AFT, but that this deterministic ultimate operator can be generalized to disjunctive

logic programs. Both operators will be used in Section 5 to define semantics for dlps with

aggregates.

4 Semi-equilibrium semantics

To further extend the reach of non-deterministic AFT, we generalize yet another se-

mantics for dlps, namely the semi-equilibrium semantics (Amendola et al. 2016). The

semi-equilibrium semantics is a semantics for disjunctive logic programs that has been
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studied for disjunctively normal logic programs. This semantics is a three-valued seman-

tics that fulfills the following properties deemed desirable by Amendola et al. (2016): (1)

every (total) answer set of P corresponds to a semi-equilibrium model; (2) if P has a (to-

tal) answer set, then all of its semi-equilibrium models are (total) answer sets; (3) if P has

a classical model, then P has a semi-equilibrium model. We notice that these conditions

can be seen as a view on approximation of the total stable interpretations alternative to

the well-founded semantics. We do not aim to have the last word on which semantics is

the most intuitive or desirable. Instead, we will show here that semi-equilibrium models

can be represented algebraically and thus can be captured within AFT. This leaves the

choice of exact semantics to the user once an ndao has been defined, and allows the use of

the semi-equilibrium semantics for formalisms other than nlps, such as disjunctive logic

programs with aggregates (see below) or conditional ADFs.

Semi-equilibrium models are based on the logic of here-and-there (Pearce 2006). An

HT-interpretation is a pair (x, y) where x ⊆ y (i.e., a consistent pair in AFT-terminology).

Satisfaction of a formula φ, denoted |=HT, is defined recursively as follows:

• (x, y) |=HT α if α ∈ x for any α ∈ AP ,
• (x, y) |=HT ¬φ if (y, y)(φ) �= T, and (x, y) �|=HT ⊥,
• (x, y) |=HT φ ∧ [∨]ψ if (x, y) |=HT φ and [or] (x, y) |=HT ψ,

• (x, y) |=HT φ→ ψ if (a) (x, y) �|=HT φ or (x, y) |=HT ψ, and (b) (y, y)(¬φ∨ψ) = T.

The HT-models of P are defined as HT(P) = {(x, y) | ∀ψ ← φ ∈ P : (x, y) |=HT φ→ ψ}.
Semi-equilibrium models are a special class of HT-models. They are obtained by

performing two minimization steps on the set of HT-models of a program. The first

step is obtained by minimizing w.r.t. ≤t.
11 The second step is obtained by select-

ing the maximal canonical models. For this, the gap of an interpretation is defined as

gap(x, y) = y \ x,12 and, for any set of interpretations X, the maximally canonical in-

terpretations are mc(X) = {(x, y) ∈ X | � ∃(w, z) ∈ X : gap(x, y) ⊃ gap(w, z)}. The
semi-equilibrium models of P are then defined as: SEQ(P) = mc (min≤t

(HT(P)).
Example 5

We illustrate these semantics with the program P = {p ← ¬p, s ∨ q ← ¬s, s ∨ q ← ¬q}.
Then HT(P) = {(x, y) | {p} ⊆ y ⊆ {p, q, s}, x ⊆ y, {q, s} ∩ y �= ∅}. Furthermore,

min≤t
(HT(P)) = {(∅, {p, q, s}), ({q}, {q, p}), ({s}, {s, p})}. As gap(∅, {p, q, s}) = {p, q, s}

and gap({q}, {q, p}) = gap({s}, {s, p}) = {p}, SEQ = {({q}, {q, p}), ({s}, {s, p})}.
Before we capture the ideas behind this semantics algebraically, we look a bit deeper into

the relationship between HT(P)-models and the classical notion of three-valued models

of a program (see Section 2.1). We first observe that HT-models of a program are a proper

superset of the three-valued models of a program:

Proposition 3

Let a disjunctively normal logic program P and a consistent intepretation (x, y) be given.

Then if (x, y) is a model of P, it is an HT-model of P. However, not every HT-model is

a model of P.

11 Amendola et al. (2016) proceeds as follows. First, HTκ(P) = {x ∪ {Kα | α ∈ y}} is constructed, and
then the ⊆-minimal sets in HTκ(P) are selected. It is straightforward to see that this is equivalent to
minimizing the original interpretations w.r.t. ≤t.

12 Again, Amendola et al. (2016) proceeds in a slightly more convoluted way by defining gap(I) = {Kα ∈
I | α 	∈ I} for any I ∈ HTκ(P).
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We now define the concept of a HT-pair algebraically, inspired by Truszczyński (2006):

Definition 3

Given an ndao O approximating a non-determinstic operator O, a pair (x, y) is a HT-pair

(denoted (x, y) ∈ HT(O)) if the following three conditions are satisfied: (1) x ≤ y, (2)

O(y) �S
L y, and (3) Ol(x, y) �S

L x.

This simple definition faithfully transposes the ideas behind HT-models to an algebraic

context. Indeed, applying it to ICP gives use exactly the HT-models of P:

Proposition 4

Let some normal disjunctive logic program P be given. Then, HT(P) = HT(ICP).
We now show that exact ≤t-minimal HT-models of O are stable interpretations of

O in our algebraic setting. The opposite direction holds as well: total stable fixpoints

are ≤t-minimal HT-pairs of O. In fact, every total fixpoint of O is a HT-pair of O. We

assume that O is upward coherent, that is, for every x, y ∈ L, Ol(x, y) �S
L Ou(x, y). In

the appendix of the full version of this article (Heyninck and Bogaerts 2023), we provide

more details on upward coherent operators. Notice that all ndaos in this paper are upward

coherent.

Proposition 5

Given an upward coherent ndao O, (1) if (x, x) ∈ O(x, x) then (x, x) ∈ HT(O); and (2)

(x, x) ∈ min≤t
(HT(O)) iff (x, x) ∈ S(O)(x, x).

The second concept that we have to generalize to an algebraic setting is that of maximal

canonical models. Recall that gap(x, y) consists of the atoms which are neither true nor

false, that is, it can be used as a measure of the informativeness or precision of a pair.

For the algebraic generalization of this idea, it is useful to assume that the lattice under

consideration admits a difference for every pair of elements.13 In more detail, z ∈ L is

the difference of y w.r.t. x if z � x = ⊥ and x � y = x � z. If the difference is unique,

we denote it by x � y. As an example, note that any Boolean lattice admits a unique

difference for every pair of elements. We can then define mc(X) = argmin(x,y)∈X{y�x}.
This allows us to algebraically formulate the semi-equilibrium models of an ndao O as:

SEQ(O) = mc

(
min
≤t

(HT(O))
)

The properties mentioned at the start of this section are preserved, and this definition

generalizes the semi-equilibrium models for disjunctive logic programs by Amendola et al.

(2016):

Proposition 6

Let an upward coherent ndao O over a finite lattice be given s.t. every pair of elements

admits a unique difference. Then, SEQ(O) �= ∅. Furthermore, if there is some (x, x) ∈
mc(min≤t

(HT(O))) then SEQ(O) = {(x, x) ∈ L2 | (x, x) ∈ S(O)(x, x)}.

13 If a lattice does not admit a difference for some elements, one cannot characterize the semi-equilibrium
semantics exactly but can still obtain an approximate characterization. We detail this in the appendix
of the full version of this article (Heyninck and Bogaerts 2023).
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Corollary 1

Let a disjunctively normal logic program P be given. Then, SEQ(ICP) = SEQ(P).
In this section, we have shown that semi-equilibrium models can be characterized

algebraically. This means semi-equilibrium models can now be obtained for other ndaos

(e.g., those from Section 5, as illustrated in the appendix of the full version of this paper

(Heyninck and Bogaerts 2023)), thus greatly enlarging the reach of these semantics.

We end this section by making a short, informal comparison between the semi-

equilibrium models and the well-founded state for ndaos (Heyninck et al. 2022). Both

constructions have a similar goal: namely, approximate the (potentially non-existent)

total stable interpretations. In the case of the semi-equilibrium models, the set of semi-

equilibrium models coincides with the total stable interpretations if they exist, whereas

the well-founded state approximates any stable interpretation (and thus in particular

the total stable interpretations) but might not coincide with them. When it comes to

existence, we have shown here that the semi-equilibrium models exist for any ndao, just

like the well-founded state. Thus, the well-founded state and semi-equilibrium models

seem to formalize two different notions of approximation. Which notion is most suitable

is hard to decide in abstracto but will depend on the exact application context.

5 Application to dlps with aggregates

We apply non-deterministic AFT to disjunctive logic programs with aggregates by study-

ing three ndaos: the ultimate, DMT, and the trivial operators. We show the latter two

generalize the ultimate semantics (Pelov et al. 2007), respectively, the semantics by

Gelfond and Zhang (2019).

5.1 Preliminaries on aggregates

We survey the necessary preliminaries on aggregates and the corresponding programs,

restricting ourselves to propositional aggregates and leaving aggregates with variables for

future work.

A set term S is a set of pairs of the form [t : Conj ] with t a list of constants and

Conj a ground conjunction of standard atoms For example, [1 : p; 2 : q;−1 : r] intuitively

assigns 1 to p, 2 to q and −1 to r. An aggregate function is of the form f(S) where S

is a set term, and f is an aggregate function symbol (e.g., #Sum, #Count or #Max). An

aggregate atom is an expression of the form f(S)∗w where f(S) is an aggregate function,

∗ ∈ {<,≤,≥, >,=} and w is a numerical constant. We denote by At(f(S)∗w) the atoms

occuring in S.

A disjunctively normal aggregate program consists of rules of the form (where Δ is

a set of propositional atoms, and α1, . . . , αn, β1, . . . , βm are aggregate or propositional

atoms): ∨
Δ← α1, . . . , αn,¬β1, . . . ,¬βm

An aggregate symbol is evaluated w.r.t. a set of atoms as follows. First, let x(S)

denote the multiset [t1 | 〈t1, . . . , tn : Conj〉 ∈ S and Conj is true w.r.t. x]. x(f(S)) is

then simply the result of the application of f on x(S). If the multiset x(S) is not in the

domain of f , x(f(s)) = � where � is a fixed symbol not occuring in P. An aggregate
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atom f(S) ∗ w is true w.r.t. x (in symbols, x(f ∗ w) = T) if: (1) x(f(S)) �= � and (2)

x(f(S)) ∗ w holds; otherwise, f(S) ∗ w is false (in symbols, x(f ∗ w) = F). ¬f(S) ∗ w
is true if: (1) x(f(S)) �= � and (2) x(f(S)) ∗ w does not hold; otherwise, ¬f(S) ∗ w
is false. Evaluating a conjunction of aggregate atoms is done as usual. We can now

straightforwardly generalize the immediate consequence operator for disjunctive logic

programs to disjunctive aggregate programs by generalizing HDP to take into account

aggregate formulas as described above: HDP(x) = {Δ |
∨
Δ ← φ ∈ P, x(φ) = T}. ICP

from Definition 1 is then generalized straightforwardly by simply using the generalized

HDP . Thus, the only difference with the immediate consequence operator for dlps is that

the set of activated heads HDP now takes into account the truth of aggregates as well.

The first semantics we consider is the one formulated by Gelfond and Zhang (2019)

(defined there only for logic programs with aggregates occurring positively in the body

of a rule):

Definition 4

Let a disjunctively normal aggregate logic program P s.t. for every
∨
Δ ← ∧n

i=1 αi ∧∧m
j=1 ¬βj ∈ P, βj is a normal (i.e., non-aggregate) atom. Then the GZ-reduct of P w.r.t.

x is defined by doing, for every r =
∨
Δ← ∧n

i=1 αi ∧
∧m

j=1 ¬βj ∈ P, the following: (1) if

an aggregate atom αi is false or undefined for some i = 1, . . . , n, delete r; (2) otherwise,

replace every aggregate atom αi = f(S) ∗ w by
⋃{Conj occurs in S | x(Conj) = T}.

We denote the GZ-reduct of P by Px
GZ. Notice that this is a disjunctively normal logic

program. A set of atoms x ⊆ AP is a GZ-answer set of P if (x, x) is an answer set of

Px
GZ.

Example 6

Consider the program P = {p ← #Sum[1 : p, q] > 0; p ← #Sum[1 : q] > 0; q ← #Sum[1 :

s] < 1}. We check whether {p, q} is a GZ-answer set as follows:

1. The GZ-reduct is P{p,q}
GZ = {p ← p, q; p ← q; q ←}. In more detail, as

{p, q}(#Sum[1 : p, q] > 0) = T, we replace #Sum[1 : p, q] > 0 in the first rule by

the atoms in the condition of this aggregate atom verified by {p, q}, namely p and q.

Similarly for the other rules.

2. As {p, q} (or, to be formally more precise, ({p, q}, {p, q})) is a minimal model of
P{p,q}

GZ

({p,q},{p,q}) , we see {p, q} is a GZ-answer set of P.
We now move to the semantics by Denecker et al. (2002). They are defined only for

non-disjunctive aggregate programs. They are defined on the basis of the ultimate (de-

terministic) approximator ICDMT
P (Definition 2). In more detail, an interpretation (x, y)

is DMTd-stable if and only if (x, y) ∈ S(ICDMTd

P )(x, y), that is, x ∈ lfp(ICDMTd

P (., y)) and

y ∈ lfp(ICDMTd

P (x, .)).

Example 7

Consider the program P = {p ← #Sum[1 : p] > 0; p ← #Sum[1 : p] < 1}. ({p}, {p}) is

an DMTd-stable model of P, but the program has no GZ-stable models.

We first explain why {p} is not a GZ-stable model. First, we construct P{p}
GZ = {p← p}.

Since {p} is not a stable model of P{p}
GZ , we see that {p} is not a GZ-stable model. Likewise,
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since P∅
GZ = {p ← ∅}, we see that ∅ is not a stable model of P∅

GZ and therefore not GZ-

stable.

To see {p} is a DMTd-stable model, observe that ICDMTd,l
P (∅, {p}) =

ICDMTd,l
P ({p}, {p}) = {p}. Thus, lfp(ICDMTd,l

P (., {p}) = {p}, that is, ({p}, {p}) =

S(ICDMTd

P )({p}, {p}).

5.2 Non-deterministic approximation operators for disjunctive

aggregate programs

We now proceed to define ndaos for disjunctive aggregate programs. The first ndao

we consider generalizes the trivial operator (Pelov et al. 2007), which maps two-valued

interpretations to their immediate consequences, whereas three-valued interpretations are

mapped to the least precise pair (∅,AP) (or, in the non-deterministic case, {∅}×{AP}).
We also study the ndao ICDMT

P based on the deterministic ultimate approximation, and

the ultimate ndao ICUP .
Definition 5

Given a disjunctively normal aggregate program P and a (consistent) interpretation

(x, y), let

ICGZP (x, y) =

{
ICP(x)× ICP(x) if x = y

{∅} × {AP} otherwise

The ndaos ICDMT
P and ICUP are defined exactly the same as in Section 3 (recall that

ICP(x) was generalized for aggregates in Section 5.1). We illustrate these semantics with

an example:

Example 8

Let P = {r ∨ q ← #Sum[1 : s] > 0; s← #Sum[1 : r, 1 : q] > 0} be given.

We first look at ICGZP . As an example of a fixpoint, consider ({r, s}, {r, s}). Notice first

that #Sum[1 : r, 1 : q] > 0 and #Sum[1 : r, 1 : q] > 0 are true in {r, s}. Thus, HDP =

{{r, q}, {s}} and ICGZP ({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} × {{r, s}, {q, s}, {r, q, s}}.
We now look at the DMT-semantics. For this, we first calculate HDP and ICP for all

members of ℘({r, q, s}) (with Δ1 = {{r}, {q}, {r, q}} and Δ2 = {{s, r}, {s, q}, {s, r, q}}):

x ∅ {s} {q} {r} {r, q} {r, s} {q, s} {s, q, r}
HDP(x) ∅ {{r, q}} {{s}} {{s}} {{s}} {{r, q}, {s}} {{r, q}, {s}} {{r, q}, {s}}
ICP(x) {∅} Δ1 {{s}} {{s}} Δ2 Δ2 Δ2 Δ2

We then see that, for example, ICDMT
P ({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} ×

{{r, s}, {q, s}, {r, q, s}}, whereas ICDMT
P (∅, {r, s}) = {∅} × {{r, s}, {q, s}, {r, q, s}}.

We see that ICUP({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} × {{r, s}, {q, s}, {r, q, s}},
whereas ICUP(∅, {r, s}) = ℘({r, s, q})× ℘({r, s, q}).
We now show that these operators are approximation operators with increasing orders

of precision: ICGZP is the least precise, ICDMT
P holds a middle ground, and ICU is the most

precise:
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Proposition 7

Let some ξ ∈ {DMT,GZ,U} and a disjunctively normal aggregate logic program P be

given. Then ICξP(x, y) is an ndao approximating ICP . For any (x, y), ICGZP (x, y) �A
i

ICDMT
P (x, y) �A

i ICUP(x, y).
The following properties follow from the general properties shown by Heyninck et al.

(2022):

Proposition 8

Let some ξ ∈ {DMT,GZ,U} and a disjunctively normal aggregate logic program P be

given. Then: (1) S(ICεP)(x, y) exists for any x, y ⊆ AP , and (2) every stable fixpoint of

ICεP is a ≤t-minimal fixpoint of ICεP .
The ndao ICGZP only admits two-valued stable fixpoints, and these two-valued stable

fixpoints generalize the GZ-semantics (Gelfond and Zhang 2019):

Proposition 9

If (x, y) ∈ min≤t
(ICGZP (x, y)) then x = y. Let a disjunctively normal aggregate aggregate

logic program P s.t. for every
∨
Δ ← ∧n

i=1 αi ∧
∧m

j=1 ¬βj ∈ P, βi is a normal atom be

given. (x, x) ∈ S(ICGZP )(x, x) iff x is a GZ-answer set of P.
We finally show that stable semantics based on ICDMT

P generalize those for non-

disjunctive logic programs with aggregates by Denecker et al. (2002).

Proposition 10

Let a non-disjunctive logic program P be given. Then, (x, y) is a stable model according

to Denecker et al. (2002) iff (x, y) ∈ S(ICDMT
P )(x, y).

We have shown how semantics for disjunctive aggregate logic programs can be

obtained using the framework of non-deterministic AFT, solving the open question

(Alviano et al. 2023) of how operator-based semantics for aggregate programs can

be generalized to disjunctive programs. This means AFT can be unleashed upon

disjunctive aggregate programs, as demonstrated in this paper, as demonstrated in this

section. Other semantics, such as the weakly supported semantics, the well-founded

state semantics (Heyninck et al. 2022) and semi-equilibrium semantics (Section 4, as

in the appendix of the full version of this article Heyninck and Bogaerts 2023) are

obtained without any additional effort and while preserving desirable properties shown

algebraically for ndaos. None of these semantics have, to the best of our knowledge,

been investigated for dlps with aggregates. Other ndaos, left for future work, can likely

be obtained straightforwardly on the basis of deterministic approximation operators for

aggregate programs that we did not consider in this paper (e.g., the operator defined

by Vanbesien et al. (2021) to characterize the semantics of Marek and Remmel (2004)

or the bounded ultimate operator introduced by Pelov and Truszczynski (2004).

6 Conclusion, in view of related work

In this paper, we have made three contributions to the theory of non-deterministic

AFT: (1) definition of the ultimate operator, (2) an algebraic generalization of the semi-

equilibrium semantics, and (3) an application of non-deterministic AFT to dlps with ag-
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gregates in the body. To the best of our knowledge, there are only a few other semantics

that allow for disjunctive rules with aggregates. Among the best-studied is the semantics

by Faber et al. (2004) (so-called FLP-semantics). As the semantics we propose generalize

the operator-based semantics for aggregate programs without disjunction, the differences

between the FLP-semantics and the semantics proposed here essentially generalize from

the non-disjunctive case (see e.g., Alviano et al. 2023).

Among the avenues for future work are an in-depth analysis of the computational

complexity of the semantics proposed here, the generalization of the constructions in

Section 5 to other semantics (Vanbesien et al. 2021; Alviano et al. 2023), and defining

ndaos for rules with choice constructs in the head (Marek et al. 2008), which can be seen

as aggregates in the head.
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