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Introduction

1. In the theory of ordinary linear differential equations with three
regular singularities and in the theory of their special and limiting
cases, integral representations of the solutions are known to be very
important. It seems that there is no corresponding simple integral
representation of the solutions of ordinary linear differential equations
with four regular singularities (Heun’s equation) or of particular
(e.g. Lamé’s equation) or limiting (e.g. Mathieu’s equation) cases of
such equations. It has been suggested (Whittaker 1915 ¢) that the
theorems corresponding in these latter cases to integral representations
of the hypergeometric functions involve integral equations of the
second kind. Such integral equations have been discovered for
Mathieu functions (Whittaker 1912, ¢f. also Whittaker and Watson
1927 pp. 407-409 and 426) as well as for Lamé functions (Whittaker
1915 a and b, ¢f. also Whittaker and Watson 1927 pp. 564-567) and
polynomial or ‘‘ quasi-algebraic ”’ solutions of Heun’s equation (Lambe
and Ward 1934). Ince (1921-22) investigated general integral
equations connected with periodic solutions of linear differential
equations.

In the present paper I restrict myself in the first instance to
Lamé’s differential equation. It appears that the theory of integral
equations connected with periodic solutions of Lamé’s equation is
not as complete as the corresponding theory of integral representa-
tions of, say, Legendre functions. Professor Whittaker published
(1915 @ and b) two essentially different integral equations which are
satisfied by Lamé polynomials, and recently Sharma (1937) added
another, seemingly different, integral equation. The connections
between these integral equations, however, are by no means obvious,
and the question has not yet been dealt with whether the known
integral equations exhaust all possible types of integral equations
connected with Lamé polynomials. In fact it is very plausible that
they do not. For denoting by E4(x) (s= 0,1, ...., 2n) the 2rn 41
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linearly independent mutually orthogonal and normalised Lamé
polynomials of degree =,

2n
(1.1) K(z,y) = Eo AT B (2) B (y),

-
with arbitrary (not vanishing) characteristic numbers A,, is & nucleus
for Lamé polynomials. The most general nucleus thus depends on
2n 4+ 1 arbitrary constants, whereas Whittaker’s two integral
equations depend on two and three arbitrary constants respectively.
Sharma’s integral equation contains only one (multiplicative) arbitrary
constant.

It is comparatively simple to show that Sharma’s integral

equation is a particular case of the first of Whittaker’s equations
(1915a). The connection between Whittaker’s two integral equations
is, however, far less obvious. After some unsuccessful attempts to
establish some relation between these two integral equations, I
realised that the most profitable way of doing this is to find the most
general kernel (containing 2n 4 1 parameters) all the characteristic
functions of which are Lamé polynomials of a fixed degree n, and to
see how Whittaker’s two kernels fit into the general scheme.
2. In the following section I first establish the most general nucleus,
K (z, y), all characteristic functions of which are Lamé polynomials
of a fixed degree n [though not necessarily all Lamé polynomials of
degree n will be eigen-functions of the nucleus K (z, y)]. The result
is very simple indeed: Interpreting x and y as ellipsoidal coordinates
on an ellipsoid, transform the latter by means of an affine transformation
into the unit sphere. Then any surface harmonic of degree n on the unit
sphere is a nucleus K (z, y). It is easily seen that, there being 2n 4 1
linearly independent surface harmonics, this nucleus depends on
2n + 1 arbitrary constants and hence it is the most general nucleus.
Whittaker’s two nuclei correspond to the two extreme cases of zonal
and sectorial harmonics respectively. There are some special nuclei,
however, which are understood to originate from tesseral surface
harmonics of order one and two.

The general theorem could be inferred from some developments
of Heine. For the sake of completeness, however, and because it is
so brief, I give the complete proof. V

1[Added in proof]. Since this paper was written, Professor E. T. Whittaker has
pointed out that my proof of Heine's results is identical with that of Professor
Copson (these Proceedings (2), 1 (1927-28), 62-64). Since this paper was submitted I
have also come across a thesis by E. O. Stanaitis (Mém. Fac. Sci. Univ. Lithuanie 13
(1939), fasc. 1) which contains some results of my pager.
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There are also transcendental periodic Lamé functions, integral
equations for which have been investigated by Ince (1940 a@). 1
discuss briefly the application of the general nuclei to these trans-
cendental Lamé functions.

Ellipsoidal surface harmonics can be expressed in terms of
products of Lamé polynomiuls. Integral equations for these products
are again most easily expressed by means of an affine transformation
of the ellipsoid into the unit sphere. Ellipsoidal surface harmonics
are the eigen-functions of an arbitrary nucleus depending only on the
spherical distance on the unit sphere.

The last part of the paper contains the corresponding results on
Mathieu functions, obtained by a limiting process.

Lamé polynomials

3. The ¢“ Jacobian” form of Lamé’s differential equation (sometimes
called Hermite’s equation) reads

. d*E
(3.1) EEZ—-{-{h—n(n-}-l)kzsnzx}E:O,

where =n is supposed to be a non-negative integer. There are 2n + 1
particular values of % corresponding to solutions of (3.1) which are
polynomials of degree n in snz, ¢cnz and dnz. These solutions will
be called Lamé polynomials and denoted by E? (z) (s =0, 1,...., 2n).
We may take them in such an order that £? (z) has exactly s zeros in
the interval 0 < 2 =< 2K; » will be kept fixed throughout, unless the
contrary is stated.
The nucleus of an integral equation

(3.2) B () =A, jmK (@ y) BL(y) dy,  (s=0,1, ...., 2n),
-2K

in which some of the A, may be infinite, and which is supposed to

have no solutions except Lamé polynomials (and, possibly, linear

combinations of Lamé polynomials) is bound to be a mod 4K periodic

function of z as well as of y, satisfying the partial differential equation

[Ince 1921-22 (2), (2')]

e2K  &*K

(3-3) T T aE

—n(n+ 1)k (sn®?x —sn?y) K =0.

Now let us introduce spherical polar coordinates 8, ¢, by means of the
substitution
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(3.4) cosf=ksnzsny, sinBcos¢>=%dnxdny, sin 6 sin <;l>=i—l]:—,cnxcny.

(3.3) changes by this substitution into (Heine 1878 p. 354 ; Ilobson
1931 pp. 456, 457)

2K oK 1 &2K
3.5 — t0 — + = 1) K =
(3:5) a7 TV gg T g TR vt 0,
the equation of spherical surface harmonics of degree n. Hence there
are integral equations of the form (3.2) with nuclei K (x, y) = Y, (8, ¢)

where Y, is any surface harmonic of degreen. It is well to note that
(3.6) Y, (6, ) = = Pj(cos 0) {a, e + b, e=ire}
r=0

is a polynomial of degree n in cos 6, sin 6 cos ¢ and sin 8 sin ¢ and
hence a polynomial of degree » in sn z sn y, ¢n 2 ¢n y and dn z dn .
On the other hand Y, contains 2n + 1 arbitrary constants, namely
ag+ by, 4y, ..., a,, by, ..., b,. Hence it is the most general nucleus
the complete system of eigen-functions of which consists of (some or
all) Lamé polynomials of degree n.

Instead of Y, (6, ) we may equally well take Y, (8, ¢’) where
§’, ¢’ are polar coordinates on the unit sphere with an arbitrary pole,
so that

cos & = cos y cos 0 4 sin y sin § cos (¢ — a),

(3.7) sinf cos (¢’ — a’) =siny cos§ — cos y sin fcos (¢ — a)
sin 6 sin (¢’ — ') = —sin Osin (¢ — a)

where a, o', y are three arbitrary angles. Putting

. 1 . . .k
cos y==ksnpsng, sinycosa =Fdnpdnq, sinysina = v enpeng,
we have

2
Zl,—zdnp dngdnzdny —{Tzcnpcnqcnzcny,

cos ' =k®snpsngsnasny+
(3.8) sinf .e*@¥ - = ksinysnazsny ~—7l”7(COSyCOSa¢7;Sin a)dnzdny
—-@T(COS)/SIHaj:’&COSa)CnxOIly.

The most general integral equation of the form (3.2) reads

(3.9 B = [ 1.0.4) 5 0

https://doi.org/10.1017/5001309150002424X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150002424X

IXTEGRATL EQUATIONS FOR LAME FUNCTIONS 7

Instead of from — 2K to 2K, the integration may be extended over
any common period of E? (y) and Y, (6, ¢’) (qua function of y).

4. The nucleus of the integral equation reduces to an elementary
function when Y, is a sectorial harmonic

(4'1) Y,={sinf". e:i—-i(‘t-'—a')}n.
By (3.8), this reduces essentially to Whittaker’s nucleus (1915 a)
(4.2) (dnz dny + kcoshnenzceny+ kk' sinhy snasny)
where

—siny  cosh 7 _ ; cosysin aiz‘c?s a
cOS y coSa -F ¢ SIn a cos y cos a -F 1 sin a

The other important particular case arises when Y, is a zonal

harmonic

(4.4) Y, =P, (cos §).

(4.3) sinh 5=

By (3.8), in this case we have Whittaker’s second nucleus (1915 &)

kllz dnpdngdnzdny — Z,izcnpcnq cn x cn y).
Several simpler nuclei [Whittaker and Watson 1927 § 23.6; Lambe

and Ward 1934, equation (4.15)]} are particular cases of (4.5).
Nuclei of the type given by Whittaker and Watson (1927 § 23.61)

and Lambe and Ward [1934, equations (4.16)-(4.18)] originate from

tesseral harmonics of lowest order

(4.5) P,(E’snpsngsnzxsny +

Y, = P} (cos 8') Zlons (¢’ — o’y and Y, = P2 (cos §') sin 2(¢’ — o').

Taking a =y = 0, we obtain the nuclei

(4.6) cnzeny P, (ksnzsny), dnxdnyP, (ksnzsny),
cnxdnazcenydny P, (ksnxsny).

Similarly a great number of other special nuclei may be deduced.

5. The main result of section 3 immediately follows from Heine's

theorem that any Y, (8, #') is expressible as a (finite) series of

products of Lamé functions (Heine 1878, p. 376 Schema A) which in

our notations may be written

2n

(5']) Yn (6,, QS') = E (ﬂ Efz (x) Efl (y)‘

From this (3.9) immediately follows by the orthogonality property of
Lamé functions. I preferred, however, to prove (3.9) independently
not only because both the orthogonal property and (5.1) (the bilinear
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development of the nucleus) follow from (3.9) but mainly because the
proof given in section 3 covers also the case of transcendental Lamé
functions (cf. infra sections 7 and 8).

The nucleus (4.4) has the remarkable property that

A =2 B (p) B, (9)

is in this case independent of p and ¢ [Whittaker 1915 b, equation
(4)]. This is easily inferred from the way in which p, ¢, z, y are
coupled in (3.8), but follows also from Heine’s expansion [1878, p. 432
equation (73)]

2n
(5.2) P, (cos 0") = X b, E; (p) K} (q) &, (x) B}, (y),

8=0

which is completely equivalent to Whittaker’s integral equation.
6. A few words may be said in connection with the ‘“ Weierstrassian ”’
form of Lamé’s equation,

dzA

(6.1) W%—{H—n(n—}—l)gou}A:O,

the doubly-periodic solutions of which will be denoted by A% (u).
The substitution corresponding to (3.4) is

o — [(Pr —es) (v —ea))}
(6.2) oo8 Lz —e5) (er—es) |

. | (pu —ey) (pv — ey) ) _. . _ (pu — e,) (3911—62)]*_
sin fcos ¢ = { o —e) (6 — ) }, gin 0 sin ¢ z{ (6 —en) (1 —22) f’

and the integral equation

(6.3) Ay =x |V, 0, ¢) A ) av

can be proved like (3.9).
Sharma’s nucleus (1937)

/

(6.4) <Sg’_g'_ sgl%)_” {(el — 62) (83— 32) — (

’ 25
S”%"ez) (S’%—‘fz)} l

may be shown to be a special nucleus of the sectorial type, i.e.

N

(6.5) Y, (6, ¢') = {sin 6. @ —on,
where
e, — eg\v . e, — es\}
6.6 cos y = (2—=2), sin =—<1 2 = 0.
(6.6) 0s y <e1-—e3> Y 91_83),a e

The transformation of (6.5) into (6.4) is based on the duplication
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formula of Weierstrass’s p-function and is easily effected by means
of the formula

u L u u

’ b3 2 2

0 (pu —e)t = 9" 5 — 26,9 — —ej — ooty
- -

and the corresponding formulae for (pu — e,)* and (pu — e3)'. The
necessary calculations are, however, somewhat lengthy and are there-
fore omitted. :

Transcendental Lamé functions

7. Besides Lamé polynomials, there are transcendental (simply-
periodic) Lamé functions. This and the following section contain a
brief discussion of integral equations for these functions. In the
present’section n will be supposed to be a non-negative integer.

Suppose that y and a are chosen so that the closed contour
described by cos 6, when y describes the interval — 2K < y < 2K
and z has any real value, does not enclose either of the two points
cos 8 = + 1. Obviously such values of a and y exist; for instance
sufficiently small values of a and y have this property.

In this case @ (cos ') e+ #'~9), which is a solution of (3.5), is a
periodic function of x and y and hence the integral equation (3.9) still
holds if Y, contains associated Legendre functions of the second kind.
Now, Q" (cos §') ex»®—9 i3 not a polynomial in snzsny, cnzcny
and dn z dn y, and hence it is clear that this nucleus must have other
eigen-functions beside Lamé polynomials. These other eigen-functions
are transcendental Lamé functions, belonging to integral values of n, of
which there is an infinity. Hence the integral equation

2K
(1) By@ = |

-2

Q™ (cos 0') exiW—a F3 (y) dy,
K

in which o and y are supposed to have such values that both cos §'=1
and cos ' = — 1 are outside the simply connected domain of the
cos @'-plane containing all points corresponding to real values of =
and y, and » and m are any non-negative integers, is valid for any
non-negative integer s.

At first it would seem that this conclusion is not entirely justified
and that the fact (Ince 1940 b p. 88) that E%~! and E* belong to the
same value of A if s=n4+1, n+ 2, .... would cause additional
difficulties (Ince 1921-22 p. 46). This is, however, not so in the
present case. The nucleus having the property that it does not
change when both z and y change their signs, it is clear that multiplied
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by an even function, E% (y), and integrated with respect to y, it will
yield an even function, proportional to E2¢(z), and not a linear com-
bination of E% (z) and E2~! (x), which could not be an even function
of z, unless the term with E?*~! (r) vanishes identically.

Plainly nuclei may be constructed the eigen-functions of which

consist only of transcendental Lamé functions (for integral n). I do
not propose, however, to go into further details concerning these
nuclei. I believe that (7.1) is the first integral equation to be
published which is satisfied by transcendental Lamé functions of
integral degree n.
8. In this section n may be any real or complex number. Then
there are still Lamé functions E:(x) of period 4K, all of which are
transcendental unless n is an integer. A brief indication of the
results concerning these functions will be sufficient.

Equation (3.9) will still hold (for s =0, 1, 2, .. ..) with a kernel

(8.1) Y, = P? (cos ') e*im#

provided that « and y are suitably chosen, i.e. so that cos 8’ moves
inside a simply-connected domain of the complex cos 6’-plane not

enclosing cos 8’ = — 1. Instead of this we shall say shortly ¢ provided
that cos 6’ does not reach — 1.”” Also the nucleus
(8.2) Y, = PP (—cos @) e*im¢

will be permissible if cos §' does not reach 1. If a and vy are chosen
so that cos 8’ reaches neither 4+ 1 nor — 1, then any linear combina-
tion of (8.1) and (8.2) can be used in connection with (3.9). In the
latter case the nucleus will be expressible alternatively as a linear
combination of

(8.3) QZ‘ (cos 6') e=imé gnd Q7{L_n_1 (cos §') ptimd

Clearly sums of such nuclei are again permissible nuclei. Non-integral
values of m, real or complex, may be used provided that, in addition
to the conditions stated above, e*** does not reach zero.

Simple nuclei of the type (8.2), namely P, (ksnzsny) and the
nuclei (4.6) for non-integral values of n have been discussed by Ince
(1940 a, section 10). Obviously the nucleus (4.5) will still be valid
for general values of n, and the same remark applies to (4.2), both
with suitable restrictions imposed upon the parameters involved.

Only Lamé functions of period 4K (or 2K) have been considered.
The same method applies obviously to Lamé functions (transcendental
or algebraical) whose fundamental period is any multiple of 4K. The
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difficulty caused by the coexistence of two periodic solutions in this
case (Ince 1940 b, section 7) can be overcome in precisely the same
manner as in section 7.

Products of Lamé polynomials

9. Returning now to Lamé polynomials, i.e. to integral values n = 0
and 0 < s < 2n, let us consider an ellipsoidal surface harmonic
E: (B) E*(y). In order to cover the whole surface of the ellipsoid, y
has to take all real values between — 2K and 2K, and B all values
between K and K + 2¢K’ (Whittaker and Watson 1927 § 23.5).
Introducing polar coordinates

(9.1) cos@=ksnBsny,sinfcosd= -]:; dnBdny,sinfsin¢ = i%cnﬁcn ¥s

it is easily proved that
(9.2) B, (B) By (y) = Y, (0, ).

For Y, contains 2n -+ 1 arbitrary constants and (there being 2n 4 1
linearly independent spherical harmonics of degree n) it is always
possible to determine their 2» ratios so that all but one of the g, in
(5.1) vanish. (9.2) was given by Heine (1878 p. 376 Schema B).

Now, according to Funk (1916 ; cf. also Hecke 1918 and Erdélyi
1938) the spherical harmonics are eigen-functions of any integral
equation

(9.3) Y0, 4) =X, | £ () Y (0, ) do,

the nucleus of which depends only on the spherical distance
(9.4) = cos 0 cos 6’ 4 sin 0 sin &’ cos (¢ — ¢'),

f (n) is an arbitrary function of u the modulus of which is Lebesgue-
integrable in (—1, 1), and de’ is the element of the surface of the unit
sphere over which the integration has to be extended.

Introducing
cos 8 = ksnf'sny’, sin 6 cos ¢’ _Fdnﬂ dnvy’,’sin §’' sin ¢’ = szcnﬁ’ eny’,
we have
dw' = tk*(sn% B’ — sny’) dB’ dy’
and

k2
—cnBenfenyeny'.

(9.5) /.L=k28nﬁsn,3'sn'y3nY’+k:zdnﬂdnﬂ' dny dn vy’ — =
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Thus the integral equation becomes

f () B, (') B, (y) (sn® 8" — sny') dB" dy'.
K

K+2iK' (2K
0.6 BB Bm=x[ |
K -2
Since A, depends on = only (and not on s) this integral equation is
equally satisfied by any (composite) ellipsoidal surface harmonic

2

B, (B y) = z:';ge B2 (B) B (v).

8=

Again the above integral equation is implicitly contained in
Heine’s Handbuch comprising so many unnoticed details which had to
be re-discovered by subsequent workers. Assuming an expansion of
f(u) in a series of Legendre polynomials and using Heine’s develop-
ment (5.2), we have

o

2n
(9'7) f(f"') =X Zocm E;(B)E:z (B,) E:L (Y) E:; (Y’),

n=0 g=
from which (9.6) follows by the well-known orthogonal property of
ellipsoidal surface harmonics. Conversely, from (9.6) the orthogonal
property of ellipsoidal surface harmonics and (9.7), the bilinear
development of the nucleus, immediately follow.

Mathieu functions

10. When k approaches zero and at the same time » tends to infinity
so that lim »?%*> = — 40, Lamé polynomials, E? (z), degenerate into
the functions of the elliptic cylinder which will be denoted here
shortly by e,(z), being, in Ince’s notation,

eZm(x) = CEy, (x: 0) and €om—1 (x) - 8€,, (CL‘, 0)-
For small values of k we have
snx ~sinz, cnx ~cosz, dnz ~ 1 — 4k?sin? z, El’_2~ 14 k2,

and hence from (3.8),
22

(10.1) cos@ ~1— 55 e—i¥~a) ~ g
n

where

(10.2) 2% = 40 {oos (z + y) — cos (p + g)}{cos (z — y) — cos (p — @)},

w? = {cos (¥ + y) — cos (p + ¢)}/{cos (x — y) — cos (p — ¢)}.
Now (see e.g. Whittaker and Watson 1927 § 17.4) for large values of n

22
P;:I <1 i ﬁ)“’ﬂm Jm (z),
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where J,, denotes the Bessel function of the first kind, and hence
P (cos @) exim@—a) ~ pu J, (2) w*™

Thus (3.9) yields, by the above-mentioned limiting process, the
integral equation for the functions of the elliptic cylinder,

(10.3) e, (x) = Asrﬂ Ju (2) w™ e, (y) dy.

-

Here m is quite arbitrary. If m is an integer, (10.3) is valid without
any restrictions on p and ¢. If m is not an integer, then (in order
that neither z nor w™! shall reach zero) p +¢9 and p — ¢ must be
supposed not real.

Either by performing the same limiting process with Legendre
functions of the second kind, or else by combining (10.3) with the
corresponding equation with J_,, the more general integral equation

-
(10.9 cl@) =X | @) wm e, () dy

is obtained in which (@, denotes any solution of Bessel’s differential
equation. It is supposed that p 4+ ¢ and p — ¢ are not real.

The general form of the integral equation with exponential
nucleus of the elliptic cylinder functions [¢f. e.g. Whittaker 1915 «a,
equation (10)] is

41
(105) e, (x) = /\8 j @i/ (86) (cosz cosy cosp —isinx siny sing) e, (y) d_lj ;

and this can be deduced from (10.4) either by making the imaginary
part of p (or q) tend to infinity and using the asymptotic formulae of
Bessel functions, or by the superposition of an infinity of kernels of
the type (10.4).

The first method is quite obvious and may be left to the reader.
In the second case use is made of the fact that since J,, (z) w*" is a
suitable nucleus for any m, so is any linear combination of such
nuclei. Hence (8 being any constant) we have the nucleus

E S (2) (wel)™ = exp {§z (twe'f + dw~! e~ )},

using the generating function of Bessel coefficients (Whittaker and
Watson 1927 § 17.1); and this is

exp {(—860)" (cos z cos ycosf—isinzsinysin B—cos pcosg cos B+ isin psin gsinB)},

that is, apart from a constant factor the nucleus of (10.5).
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11. There is a close connection between the integral equations of the
preceding section and wave problems. This connection becomes
clearer if we replace y by iy and take z and (the new) y to be elliptic
coordinates in the plane, suitably altering the conditions imposed
upon p and g. (10.5) is then a relation equivalent to the representa-
tion of plane waves in elliptic coordinates or, in other words,
equivalent to the expansion of a plane wave in an infinite series of
elliptic waves. Similarly (10.4) is equivalent to analysing a cylindrical
wave into a series of elliptic-cylindrical waves. The twofold transition
from (10.4) to (10.5) in the preceding section corresponds to the two
possibilities of transition from (ordinary) cylindrical waves to plane
waves, either by taking the source of the cylindrical waves to be very
far away so that the wave-front becomes practically plane, or else by
building up a plane wave, according to the expansion of Jacobi, by
the superposition of cylindrical waves.

It would be interesting and perhaps not unprofitable to follow up
these ideas, to develop the nuclei of our integral equations qua
functions of z, y, p, ¢ and to interpret the results in terms of wave
functions. The developments obtained thus could be utilised for the
investigation of the diffraction of a cylindrical wave on an elliptic
cylinder, or on a slit (the limiting case of a hyperbolic cylinder).
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