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Abstract We deal with the restriction phenomenon for the Fourier transform. We prove that each of
the restriction conjectures for the sphere, the paraboloid and the elliptic hyperboloid in Rn implies that
for the cone in Rn+1. We also prove a new restriction estimate for any surface in R3 locally isometric to
the plane and of finite type.
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1. Introduction and discussion of the results

Let S be a smooth hypersurface with (possibly empty) boundary in R
n, n � 2, or a

compact subset (with non-empty interior) of such a hypersurface and let dσ be the
surface measure on S. Denote by f̂ the Fourier transform of the function f . We deal with
the so-called restriction estimate

‖f̂ |S‖Lq(S,dσ) � Cp,q,S‖f‖Lp(Rn)

for all Schwartz functions f , or equivalently with the extension estimate

‖(u dσ)∨‖Lp′ (Rn) � Cp,q,S‖u‖Lq′ (S,dσ),

for all smooth functions u with compact support in S. We denote these estimates by
RS(p → q) and R∗

S(q′ → p′), respectively. Here (u dσ)∨ is the inverse Fourier transform
of the measure u dσ.

We will mostly be interested in the case in which S is the sphere, or the elliptic
paraboloid, or the elliptic hyperboloid in R

n and also the light cone in R
n+1. Precisely,

we define

Ssphere = {ξ ∈ R
n : |ξ| = 1},

Sparab = {(ξ′, ξn) ∈ R
n : ξn = 1

2 |ξ′|2},

Shyperb = {(ξ′, ξn) ∈ R
n : ξn =

√
1 + |ξ′|2},

Scone = {(ξ, τ) ∈ R
n+1 : τ = |ξ|, ξ �= 0}.
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On the sphere we take the usual surface measure, whereas the measure on the paraboloid
and on the hyperboloid are defined as the pull-back under the projection (ξ′, ξn) �→ ξ′

of the measures dξ′ and dξ′/
√

1 + |ξ′|2, respectively. Also, on the cone we consider the
Lorentz invariant measure dσcone defined as the pull-back under the projection (ξ, τ) �→ ξ

of the measure dξ/|ξ|. Of course for the cone we mean that, in the estimates RS(p → q)
and R∗(q′ → p′), n must be replaced by n + 1. The restriction estimate is conjectured to
hold in the following cases (see [13,15,23,28] and especially [21]).

Conjecture 1.1 (restriction conjecture).

(i) Suppose that
p′

n + 1
� q

n − 1
, p′ >

2n

n − 1
. (1.1)

Then RS(p → q) holds when S is any compact subset of a hypersurface in R
n with

non-vanishing Gaussian curvature or of the cone in R
n+1.

(ii) Suppose that
p′

n + 1
=

q

n − 1
, p′ >

2n

n − 1
, (1.2)

i.e. the pair p, q is scale invariant. Then RS(p → q) holds when S the whole
paraboloid in R

n, or the whole hyperboloid in R
n, or the whole cone in R

n+1.

The conditions (1.1) and (1.2) are known to be necessary.
This fascinating conjecture was proved for curves in the plane by Zygmund [29] and

Fefferman [5], for the cone in R
3 by Barceló [1] and for the cone in R

4 by Wolff [27].
Partial results in higher dimensions have been obtained by many authors, culminating
in the work of Wolff [27], who proved (i) for the cone under the additional condition
p′ > 2(n + 3)/(n + 1), and Tao [19], who proved (i) for the sphere and the paraboloid
under the additional condition p′ > 2(n + 2)/n.

For the paraboloid, any scale-invariant result for compact subsets extends automat-
ically to the whole paraboloid, whereas, for the cone, this is not so immediate. The
above-mentioned results by Wolff should, however, extend (in the scale-invariant case)
to the whole cone (possibly after conceding an epsilon in the exponents) by using the
techniques in [16,17] (T. Tao, personal communication). Moreover, it is well known (see,
for example, [17] and [21, Problem 1.1]) that the restriction conjecture for the sphere
(or any other hypersurface with n positive principal curvatures) implies the restriction
conjecture for the paraboloid. (See [21] for a detailed survey.)

As one sees, the numerology for the sphere, the paraboloid and the hyperboloid in
R

n agrees with that of the cone in R
n+1. Heuristically, this is explained by observing

that the cone has one extra dimension, which, nevertheless, being flat, is not expected to
produce any contribution in the restriction estimate. A deeper investigation of this link,
in the case of the paraboloid and the cone, has been also exploited in [18, Proposition
17.5] (see also the discussion in [21, pp. 7–8]). However, to our knowledge, proofs of
formal implications have not appeared in the literature and do not seem to be known
(see [22, p. 12]).
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The first result of this paper shows that each of the restriction conjectures for the
sphere, the paraboloid and the hyperboloid in R

n implies the restriction conjecture for
the cone in R

n+1. More precisely, we have the following result.

Theorem 1.2.

(a) Assume (for some p, q satisfying (1.1)) one of the following hypotheses:

(i) RS(p → q) holds for the sphere S in R
n;

(ii) RS(p → q) holds for every compact subset S of the paraboloid in R
n;

(iii) RS(p → q) holds for every compact subset S of the hyperboloid in R
n.

Then RS(p → q) holds for every compact subset S of the cone in R
n+1.

(b) Assume one of the following hypotheses:

(i′) RS(p → q) holds, for some p, q satisfying (1.2), for the sphere S in R
n;

(ii′) RS(p → q) holds, for some p, q satisfying (1.2), for the whole paraboloid S in
R

n;

(iii′) RS(p → q)holds, for some p, q satisfying (1.2), for the whole hyperboloid S in
R

n.

Then RS(p → q) holds for the whole cone S in R
n+1.

Notice that, even in the case of the whole cone, there is no loss in the exponents. Also,
by combining Theorem 1.2 with the sharp restriction theorem for the circle in the plane,
we obtain another proof of the sharp restriction theorem for the cone in R

3.
As might be expected, the proof exploits the fact that the sphere, the paraboloid and

the hyperboloid are sections of the light cone. We observe that a similar trick goes back
to [6], and has been used, in different contexts, by Vega [26], Carbery [3], Mockenhaupt et
al . [8], Tataru [7, Appendix B], Tao [20, Proposition 4.1] and Burq et al . [2, Theorem 2].
Also, this trick works for more general surfaces of revolution than the cone, e.g. the
paraboloid, but one no longer obtains sharp estimates. The second result of this paper
consists in a restriction theorem for surfaces in R

3 with Gaussian curvature vanishing
everywhere. Here we say that a point P0 of a hypersurface S is of type k if k is the order
of contact of S0 with its tangent plane at P0.∗

Theorem 1.3. Let S be a surface in R
3 and let P0 ∈ S be a point of type k. Suppose

that S has Gaussian curvature vanishing identically near P0. Then there exists a compact
neighbourhood S0 ⊂ S of P0 and a constant C such that

‖(u dσ)∨‖Lp′ (R3) � C‖u‖Lq′ (S,dσ) (1.3)

for every p′ > 4, p′ � k + 2, p′ � (k + 1)q and every smooth u supported in S0.
∗ In general, if S is a smooth m-dimensional submanifold of Rn, 1 � m � n−1, and φ : U ⊂ Rm → Rn

is a local parametrization of S, with φ(x0) = P0, then P0 is called of type k if k is the smallest integer such
that, for each unit vector η, there exists an α with |α| � k for which ∂α[φ(x) · η]|x=x0 �= 0 (see [13, p. 350]
for more details).
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Notice that the numerology agrees with the sharp restriction theorem by Sogge [11]
for curves of finite type in the plane, according to the fact that S has one principal
curvature identically zero near P0. We also recall that the hypothesis of the vanishing of
the Gaussian curvature near P0 is equivalent to saying that a convenient neighbourhood
of P0 is isometric to the plane. Classical examples of surfaces with such a property are
given by the developable surfaces (hence cones, cylinders, tangent developables); see
Spivak [12] for details. We point out that, when instead the Gaussian curvature vanishes
on a one-dimensional submanifold and there are no umbilic points, decay estimates for
(dσ)∨ have recently been obtained by Erdős and Salmhofer [4].

The proof of Theorem 1.3 uses the simple idea, as above, of transferring restriction
estimates from slices of a surface (given here by Sogge’s result mentioned above) to the
surface itself. However, to this end we need to prove a new normal form for S near P0

(see Proposition 3.2), defined in terms of an orthogonal transformation in R
3 and hence

particularly convenient for the restriction problem. We refer the reader to Remark 3.3
for a comparison with the normal forms in [10].

The next two sections are devoted to the proof of Theorems 1.2 and 1.3, respectively.

2. Proof of Theorem 1.2

We first fix the notation and recall some preliminary results which are needed in the proof
of Theorem 1.2. Given a measure space X = (X, BX , µX), we denote by Lα,β = Lα,β(X),
0 < α < ∞, 0 < q � ∞, the Lorentz spaces on X. Hence,

‖f‖Lα,β = ‖λµ({|f | � λ})1/α‖Lβ(R+,dλ/λ).

We recall (see, for example, [14]) that Lα,α = Lα, and Lα,β1 ↪→ Lα,β2 if β1 � β2. More-
over, Hölder’s inequality for Lorentz spaces reads as follows: if 0 < α1, α2, α < ∞ and
0 < β1, β2, β � ∞ obey

1
α

=
1
α1

+
1
α2

and
1
β

=
1
β1

+
1
β2

,

then
‖fg‖Lα,β � ‖f‖Lα1,β1 ‖f‖Lα2,β2 . (2.1)

We also recall that there is a sharp version of the Hausdorff–Young inequality in terms
of Lorentz spaces in R

n, with the Lebesgue measure [14, Corollary 3.16, p. 200]. Namely,
if 1 < p � 2, we have∗

‖û‖Lp′ � ‖u‖Lp,p′ . (2.2)

We will need the following lemma on the interchange of norms. Consider two measure
spaces X = (X, BX , µX) and Y = (Y,BY , µY ) and a function f(x, y) on the product space
(X × Y ) = (X × Y,BX × BY , µX × µY ). We define the mixed norms Lα,β

x Lγ,δ
y (X × Y ) of

f as
‖f‖Lα,β

x Lγ,δ
y (X×Y ) = ‖‖f(x, ·)‖Lγ,δ(Y )‖Lα,β(X).

∗ We write A � B if A � CB for some constant C > 0 which may depend on parameters like Lebesgue
exponents or the dimension n.
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Lemma 2.1. If 1 < p � 2, we have

‖u‖
Lp′

x Lp,p′
y

� ‖u‖
Lp,p′

y Lp′
x

. (2.3)

Proof. By Minkowski’s inequality we have

‖u‖
Lp′

x L1
y

� ‖u‖
L1

yLp′
x

. (2.4)

Therefore, the desired estimate follows by real interpolation from (2.4) and the trivial
estimate ‖u‖

Lp′
x Lp′

y
= ‖u‖

Lp′
y Lp′

x
. Indeed, if

1
p

=
1 − θ

1
+

θ

p′ ,

we have

[Lp′

x L1
y, Lp′

x Lp′

y ]θ,p′ = Lp′

x Lp,p′

y

by [25, (3), p. 128] and [25, (16), p. 134], whereas

[L1
yLp′

x , Lp′

y Lp′

x ]θ,p′ = Lp,p′

y Lp′

x ,

again by [25, (16), p. 134].
This concludes the proof. �

We now prove Theorem 1.2 separately in the three cases, namely for the sphere, the
paraboloid and the hyperboloid. Although the three proofs follow a similar pattern, and,
in fact, the part for the sphere and the hyperboloid (part (b)) follows from that for the
paraboloid combined with results in [17], for the convenience of the reader we present
each proof in a self-contained form. With abuse of notation we always identify functions
on the cone with functions in R

n
ξ′ . Moreover, we will make use, both in the hypotheses and

in the conclusion, of the formulation R∗
S(q′ → p′), which is easily seen to be equivalent

to RS(p → q). We also suppose that p > 1, since the case when p = 1 is trivial.

Proof that spherical restriction ⇒ conical restriction. Here we prove the con-
clusions of Theorem 1.2, under (i) or (i′). We use polar coordinates (r, ω) in R

n
ξ , and we

denote by dω the measure on the sphere and by Lα,β the Lorentz spaces on R
+ with

respect to Lebesgue measure.

Assume (i′). We have

(u dσcone)∨(x, t) =
∫

e2πi(xξ+t|ξ|)u(ξ)
dξ

|ξ|

=
∫ +∞

0
e2πitrrn−2

∫
Sn−1

e2πirxωu(rω) dω dr. (2.5)
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Hence, by the Hausdorff–Young inequality (2.2) and (2.3) we have

‖(u dσcone)∨‖Lp′ = ‖(u dσcone)∨‖
Lp′

x Lp′
t

�
∥∥∥∥rn−2

∫
Sn−1

e2πirxωu(rω) dω

∥∥∥∥
Lp′

x Lp,p′
r

�
∥∥∥∥rn−2

∫
Sn−1

e2πirxωu(rω) dω

∥∥∥∥
Lp,p′

r Lp′
x

.

Now, a change of variables and the hypothesis give∥∥∥∥
∫

Sn−1
e2πirxωu(rω) dω

∥∥∥∥
Lp′

x

= r−n/p′
∥∥∥∥

∫
Sn−1

e2πixωu(rω) dω

∥∥∥∥
Lp′

x

� r−n/p′‖u(r·)‖Lq′ (Sn−1).

Hence, we obtain

‖(u dσcone)∨‖Lp′ � ‖rn−2−(n/p′)‖u(r·)‖Lq′ (Sn−1)‖Lp,p′

= ‖r(n−2)/q−(n/p′) · r(n−2)/q′‖u(r·)‖Lq′ (Sn−1)‖Lp,p′

�
∥∥∥∥∥ r(n−2)/q−(n/p′)︸ ︷︷ ︸

F (r)

· r(n−2)/q′‖u(r·)‖Lq′ (Sn−1)︸ ︷︷ ︸
G(r)

∥∥∥∥∥
Lp,q′

, (2.6)

where the last inequality follows because p′ > q′. Now, let α be defined by 1/α + 1/q′ =
1/p. A direct computation shows that F ∈ Lα,∞ (since the pair p, q is scale invariant).
Hence, by Hölder’s inequality for Lorentz spaces (2.1), we see that the last expression is
not greater than

‖F‖Lα,∞‖G‖Lq′,q′ = C‖G‖Lq′ = C‖u‖Lq′ (Rn,dξ/|ξ|).

This concludes the proof of the restriction estimates for the whole cone.

The proof of the restriction estimate for compact subsets of the cone, under assump-
tion (i), is even easier, since this amounts to proving the extension estimate for u sup-
ported where r ≈ 1, so that one concludes using (2.6), the embedding Lp ↪→ Lp,p′

and
Hölder’s inequality for Lp spaces (since p < q′). �

Proof that parabolic restriction ⇒ conical restriction. Here we prove the con-
clusions in Theorem 1.2, assuming (ii) or (ii′).

We introduce orthogonal coordinates

(a1, . . . , an−1, an, b) =
(

ξ1, . . . , ξn−1,
τ + ξn√

2
,
τ − ξn√

2

)
,

and we use the notation a = (a′, an), a′ = (a1, . . . , an−1). With such coordinates the cone
τ = |ξ| has the equation

b =
|a′|2
2an

, an > 0,
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and the Lorentz invariant measure becomes the pull-back under the projection (a, b) �→ a

of the measure da/
√

2an. Again we denote by Lα,β the Lorentz spaces on the real semi-
axis R

+ with respect to the Lebesgue measure. Moreover, set x = (x′, xn).

Suppose (ii′). We have

(u dσcone)∨(x, t) =
1√
2

∫
exp

{
2πi

(
x · a +

|a′|2
2an

t

)}
u(a)

da

an

=
1√
2

∫
e2πixnan

∫
exp

{
2πi

(
x′ · a′ +

|a′|2
2an

t

)}
u(a)

da′

an
dan.

Hence, by (2.2) and (2.3),

‖(u dσcone)∨‖Lp′ = ‖(u dσcone)∨‖
Lp′

x′,t
Lp′

xn

�
∥∥∥∥

∫
exp

{
2πi

(
x′ · a′ +

|a′|2
2an

t

)}
u(a)

da′

an

∥∥∥∥
Lp′

x′,t
Lp,p′

an

�
∥∥∥∥

∫
exp

{
2πi

(
x′ · a′ +

|a′|2
2an

t

)}
u(a)

da′

an

∥∥∥∥
Lp,p′

an Lp′
x′,t

.

Now, changing variables and the hypothesis gives∥∥∥∥
∫

exp
{

2πi
(

x′ · a′ +
|a′|2
2an

t

)}
u(a)

da′

an

∥∥∥∥
Lp′

x′,t

= a1/p′

n

∥∥∥∥
∫

exp
{

2πi
(

x′ · a′ +
|a′|2
2

t

)}
u(a)

da′

an

∥∥∥∥
Lp′

x′,t

� a(1/p′)−1
n ‖u(·, an)‖Lq′ .

We deduce that

‖(u dσcone)∨‖Lp′ � ‖a(1/p′)−1
n ‖u(·, an)‖Lq′ ‖Lp,p′

= ‖a1/q′−1/p
n a1/q′

n ‖u(·, an)‖Lq′ ‖Lp,p′

� ‖a1/q′−1/p
n · a1/q′

n ‖u(·, an)‖Lq′ ‖Lp,q′ (2.7)

for p′ > q′. Then one concludes by applying Hölder’s inequality (2.1), since Lqp′/(p′−q),∞ ·
Lq′,q′

↪→ Lp,q′
.

Let us now assume (ii). By symmetry and the triangle inequality we can take u sup-
ported in the sector 1 � |a′| � an � 1. Then one can obtain the desired estimate by
using (2.7), the embedding Lp ↪→ Lp,p′

and Hölder’s inequality for Lp spaces (since
p < q′). �

Proof that hyperbolic restriction ⇒ conical restriction. Now we prove the
conclusions of Theorem 1.2 when (iii) or (iii′) are satisfied. Denote by Lα,β the Lorentz
spaces on R with the Lebesgue measure, and set x = (x′, xn).
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First assume (iii′). We write the Fourier extension operator as

(u dσcone)∨(x, t) =
∫

e2πi(x·ξ+t|ξ|)u(ξ)
dξ

|ξ|

=
∫

e2πixnξn

∫
e2πi(x′·ξ′+t|ξ|)u(ξ)

dξ′

|ξ| dξn.

By applying (2.2) and (2.3),

‖(u dσcone)∨‖Lp′ = ‖(u dσcone)∨‖
Lp′

x′,t
Lp′

xn

�
∥∥∥∥

∫
e2πi(x′·ξ′+t|ξ|)u(ξ)

dξ′

|ξ|

∥∥∥∥
Lp′

x′,t
Lp,p′

ξn

�
∥∥∥∥

∫
e2πi(x′·ξ′+t|ξ|)u(ξ)

dξ′

|ξ|

∥∥∥∥
Lp,p′

ξn
Lp′

x′,t

.

Now, a change of variables and the hypothesis gives
∥∥∥∥

∫
e2πi(x′·ξ′+t|ξ|)u(ξ)

dξ′

|ξ| ‖
Lp′

x′,t

= |ξn|n−2−(n/p′)
∥∥∥∥

∫
exp{2πi(x′ · ξ′ + t

√
1 + |ξ′|2)}u(ξnξ′, ξn)

dξ′√
1 + |ξ′|2

∥∥∥∥
Lp′

x′,t

� |ξn|n−2−(n/p′)‖u(ξnξ′, ξn)(1 + |ξ′|2)−1/2q′‖
Lq′

ξ′
. (2.8)

It follows that

‖(u dσcone)∨‖Lp′ � ‖ |ξn|n−2−(n/p′)‖u(ξnξ′, ξn)(1 + |ξ′|2)−1/2q′‖
Lq′

ξ′
‖

Lp,p′
ξn

= ‖ |ξn|(n−2)/q−(n/p′)‖u(ξ)|ξ|1/q′‖
Lq′

ξ′
‖

Lp,p′
ξn

. (2.9)

Again one concludes by using the embedding Lp,q′

ξn
↪→ Lp,p′

ξn
and Hölder’s inequality (2.1)

(for the pair p, q is scale invariant).

Assume now (iii). By symmetry and the triangle inequality we can take u supported
where |ξ′| � 1 and ξn ≈ 1. Hence, the desired conclusion follows from (2.9), the embedding
Lp ↪→ Lp,p′

and Hölder’s inequality for Lp spaces (since p < q′). �

3. Proof of Theorem 1.3

We need the following result on the normal form of a hypersurface S in R
n, which is

proved in [9, Proposition 2.2].
For P ∈ S, denote by ν(P ) the number of principal curvatures which vanish at P

(i.e. the dimension of the kernel of the second fundamental form at P ).
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Proposition 3.1. Let S be a hypersurface in R
n, let P0 ∈ S and define

ν
¯

:= lim inf
P→P0

ν(P ) �= 0, n − 1.

There is an orthogonal system of coordinates (ξ′, ξ′′, ξn), ξ′ = (ξ1, . . . , ξn−1−ν
¯
), ξ′′ =

(ξn−ν
¯
, . . . , ξn−1) with the origin at P0 such that, in a neighbourhood of P0, S is the

graph of a function ξn = φ(ξ′, ξ′′) of the type

φ(ξ′, ξ′′) = 〈M(ξ′, ξ′′)ξ′, ξ′〉, (3.1)

where M is a square matrix of size n − 1 − ν
¯

with smooth entries.

We now prove a finer result for a surface in R
3 with Gaussian curvature identically

zero near a point of type greater than or equal to k.

Proposition 3.2. Let S be a surface in R
3 and let P0 ∈ S be a point of type greater

than or equal to k. Suppose that the Gaussian curvature of S vanishes identically near
P0. Then there is an orthogonal system of coordinates (ξ1, ξ2, ξ3) with the origin at P0

such that, in a neighbourhood of P0, S is the graph of a function ξ3 = f(ξ1, ξ2) of the
type

f(ξ1, ξ2) = a(ξ1, ξ2)ξk
1 (3.2)

for some smooth function a defined in an open neighbourhood of 0.

We emphasize that the transformation which brings S into the desired form is an
orthogonal one, and not merely smooth. This will be essential for applications to the
restriction problem. Incidentally, we also see that the notion of ‘point of type k’ propa-
gates along a segment containing P0 as interior point (in particular, the set of points of
type k does not have isolated points).

Proof of Proposition 3.2. The proof uses induction on k. The statement is true
for k = 2. This follows from Proposition 3.1 with n = 3, if ν

¯
= 1, whereas if ν

¯
= 2,

then a neighbourhood of P0 lies on a plane, and the result is trivial. One could also
obtain the result for k = 2 as a consequence of [12, Corollary 6, p. 359] if P0 is of type 2
and [12, Corollary 7, p. 361] if P0 is of type greater than 2. Suppose then that the
statement is true with k − 1 in place of k and let P0 be a point of type greater than or
equal to k � 3. By the inductive hypothesis there are orthogonal coordinates (ξ1, ξ2, ξ3)
for which S coincides, near the origin, with the graph of a function

f(ξ1, ξ2) = a(ξ1, ξ2)ξk−1
1 . (3.3)

Observe that the hypothesis on the Gaussian curvature can be expressed by the equation

fξ1ξ1fξ2ξ2 = f2
ξ1ξ2

. (3.4)

After substituting in (3.4) the expression for f given in (3.3), we divide by ξ2k−4
1 and let

ξ1 → 0. Upon setting φ(t) = a(0, t) we find the following (singular) Cauchy problem

φφ′′ =
k − 1
k − 2

(φ′)2, φ(0) = 0. (3.5)
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The initial condition in (3.5) comes from the fact that P0 is of type greater than or equal
to k and ∇f(0) = 0, so that ∂αf(0) = 0 for every α ∈ Z

2
+, |α| � k − 1. To finish the

proof it suffices to verify that the only solution to (3.5) is the trivial one: φ(t) = 0 for
every t. In fact, a Taylor expansion of a(ξ1, ξ2) at ξ1 = 0 then gives a(ξ1, ξ2) = b(ξ1, ξ2)ξ1

for some smooth b, and therefore f(ξ1, ξ2) = b(ξ1, ξ2)ξk
1 .

To this end we observe that the maximal non-constant solutions to the equation in (3.5)
(in the region where the Cauchy well-posedness theorem applies) are of the form

φ(t) = ±(At + B)1/(1−α), α =
k − 1
k − 2

, A �= 0,

defined on (−B/A,+∞) if A > 0, or (−∞,−B/A) if A < 0. At any rate, since α > 1,
they blow up at t = −B/A and an elementary continuity argument then shows that there
is no solution φ �≡ 0 with φ(0) = 0. �

Remark 3.3. We point out that useful normal forms were obtained by Schulz [10]
for convex hypersurfaces S of finite type, in the sense (different from that in the present
paper) that S has no tangents of infinite order. In particular, we see that this condition
is never satisfied here, because in (3.2) we have f(0, ξ2) ≡ 0. Moreover, it is worth noting
that the normal forms in [10] are expressed in terms of a Taylor expansion at a given
point P0, whereas here we deal with the geometry of S in a whole neighbourhood of P0.

We also recall the following result by Sogge [11] (see also [13, p. 418]).

Theorem 3.4. Let ψ be a smooth function on an interval [−a, a], with ψ(j)(0) = 0
for 1 � j � k − 1 and ψ(k)(0) �= 0. Then there exist constants 0 < δ < a and C > 0 such
that ∥∥∥∥

∫ δ

−δ

e2πi(tx1+ψ(t)x2)g(t) dt

∥∥∥∥
Lp′ (R2)

� C‖g‖Lq′ (−δ,δ)

for every p′ > 4, p′ � k + 2, p′ � (k + 1)q and g ∈ Lq′
(−δ, δ). Moreover, the constants δ

and C depend only on a, p, q, k, on upper bounds for finitely many derivatives of ψ on
[−a, a] and a lower bound for ψ(k)(0).

The remark on the uniformity of the constants δ and C did not appear in the statement
of [11], but it easily follows from the proof of that result. Also, the case k = 2 was not
explicitly considered there (because it had already been treated in [5,29]), but in any
case it also follows from the same proof, under the additional (and necessary) condition
p′ > 4.

Proof of Theorem 1.3. We consider the orthogonal system of coordinates given in
Proposition 3.2. Hence, near the point P0 (which now coincides with the origin), S is the
graph of a function ξ3 = f(ξ1, ξ2) of the form (3.2). Let S0 = {(ξ1, ξ2, f(ξ1, ξ2)) ∈ R

3 :
|ξ1| � δ, |ξ2| � δ}, where δ > 0 is a small constant that will be chosen later on. Let u be
any smooth function on S supported in S0. As usual we will think of u as a function of
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the variables ξ1, ξ2. Then we have

(u dσ)∨(x1, x2, x3) =
∫

e2πix2ξ2

( ∫
e2πi(x1ξ1+x3f(ξ1,ξ2))u(ξ1, ξ2)φ(ξ1, ξ2) dξ1

)
dξ2, (3.6)

where φ(ξ1, ξ2) = (1 + |∇f(ξ1, ξ2)|2)1/2.
Since p′ > 2, by the Hausdorff–Young inequality we have

‖(u dσ)∨‖Lp′ (R3) �
∥∥∥∥

∫
e2πi(x1ξ1+x3f(ξ1,ξ2))u(ξ1, ξ2)φ(ξ1, ξ2) dξ1

∥∥∥∥
Lp′

x1,x3Lp
ξ2

�
∥∥∥∥

∫
e2πi(x1ξ1+x3f(ξ1,ξ2))u(ξ1, ξ2)φ(ξ1, ξ2) dξ1

∥∥∥∥
Lp

ξ2
Lp′

x1,x3

. (3.7)

Now we apply Theorem 3.4 with ψ(t) = f(t, ξ2) = a(t, ξ2)tk. We see that, if δ is small
enough, the hypothesis in Theorem 3.4 is satisfied uniformly with respect to the parame-
ter ξ2. Hence, we deduce that, if δ is small enough, the norm in Lp′

with respect to x1, x3

of the integral on the right-hand side of (3.7) is not greater than

C‖u(·, ξ2)φ(·, ξ2)‖Lq′ ,

uniformly with respect to ξ2. It follows that

‖(u dσ)∨‖Lp′ (R3) � ‖u‖
Lp

ξ2
Lq′

ξ1

,

which gives the desired estimate, since Lq′
(−δ, δ) ↪→ Lp(−δ, δ) because q′ > p. �

Remark 3.5. By combining the normal form (3.2) for the function f which defines S

near P0 with Knapp-type scaling arguments (see, for example, [24,28]), one can see that
the condition p′ � (k + 1)q is always necessary for (1.3) to hold under the hypotheses of
Theorem 1.3.

Indeed, (1.3) implies that∥∥∥∥
∫

e2πi(x1ξ1+x2ξ2+x3f(ξ1,ξ2))u(λξ1, λ
εξ2)φ(ξ1, ξ2) dξ1 dξ2

∥∥∥∥
Lp′ (R3)

� ‖u(λ·, λε·)‖Lq′ (R2),

where u �≡ 0 is a fixed test function, λ is a large parameter and ε > 0. As above,
φ(ξ1, ξ2) = (1 + |∇f(ξ1, ξ2)|2)1/2.

Changing variables gives

∥∥∥∥
∫

e2πi(x1ξ1+x2ξ2+λkx3f(ξ1/λ,ξ2/λε))u(ξ1, ξ2)φ(ξ1/λ, ξ2/λε) dξ1 dξ2

∥∥∥∥
Lp′ (R3)

� λ(1+ε)/q−(1+k+ε)/p′‖u‖Lq′ (R2). (3.8)

If one assumes, by contradiction, that p′ < (k + 1)q, then there is ε > 0 such that the
exponent of λ on the right-hand side of (3.8) is negative. Hence, since λkf(ξ1/λ, ξ2/λε) →
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a(0, 0)ξk
1 as λ → ∞, by applying dominated convergence to the integral in ξ and the Fatou

lemma to the integral in x, we obtain∥∥∥∥
∫

e2πi(x1ξ1+x2ξ2+x3a(0,0)ξk
1 )u(ξ1, ξ2) dξ1 dξ2

∥∥∥∥
Lp′ (R3)

= 0,

which is a contradiction because of the uniqueness of the Fourier transform.
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