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Abstract. Extending a result of Boyle and Goodearl in [1] on K-rings it was shown
in Yousif [11] that a generalized V-module (GV-module) has Krull dimension if and only
if it is noetherian. Our note is based on the observation that every GV-module has a
maximal submodule (Lemma 1). Applying a theorem of Shock [6] we immediately obtain
that a GV-module has ace on essential submodules if and only if for every essential
submodule K <= M the factor module M/K has finitely generated socle. Yousif's result is
obtained as a corollary.

Let R be an associative ring with unity and R-Mod the category of unital left
/?-modules. Soc M denotes the socle of an R-module M. If K c M is an essential
submodule we write K^M.

An R-module M is called co-semisimple or a V-module, if every simple module is
A/-injective ([2], [7], [9], [10]). According to Hirano [3] M is a generalized V-module or
GV-module, if every singular simple ft-module is M-injective. This extends the notion of
a left GV-ring in Ramamurthi-Rangaswamy [5].

It is easy to see that submodules, factor modules and direct sums of co-semisimple
modules (GV-modules) are again co-semisimple (GV-modules) (e.g. [10, § 23]).

1. LEMMA. Every GV-module has a maximal submodule.

Proof. If M is semisimple it has a maximal submodule. If M is not semisimple there
is an m e M with Rm not semisimple. Then Rm contains an essential maximal submodule
K. Since M is a GV-module the factor module Rm/K is M-injective and hence a direct
summand in M/K. It follows that M/K, and hence M, has a maximal submodule.

With this result we can easily prove the following theorem.

2. THEOREM. For a GV-module M the following conditions are equivalent:
(a) M has ace on essential submodules;
(b) M/K has finitely generated socle for every K <M;
(c) M/K has finite uniform dimension for every K^M;
(d) M/SocM has Krull dimension;
(e) M/SocM is noetherian.

Proof. (a)O(e) This is shown for arbitrary modules in [8, Lemma 2] and [4,
Corollary 2.6].

(e) => (d) ̂  (c) =$> (b) are obvious.
(b)^(a) We have to show that for every K^M the factor module M = M/K is

noetherian: Since submodules of factor modules of M are again GK-modules they all
have maximal submodules by Lemma 1. By (b) all factor modules of M have finitely
generated socle and hence M is noetherian by Theorem 3.8 of Shock [6].

The modules considered above are obviously noetherian if their socles are finitely
generated and we get the following result.

3. COROLLARY. For a GV-module M the following assertions are equivalent:
(a) M is noetherian;
(b) M has Krull dimension;
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(c) every factor module of M has finite uniform dimension;
(d) every factor module of M has finitely generated socle.
The equivalence of (a) and (b) for GK-modules was proved in Yousif [11, Theorem

3]. Setting M = R the Corollary yields characterizations of left GV-rings with Krull
dimension including Proposition 13 in [1] on left V-rings with Krull dimension.
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