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This study investigates the effect of structural damping on vortex-induced vibration (VIV)
of a circular cylinder when the mass ratio is below its critical value. It is confirmed
by water-channel experiments and a reduced-order model (ROM) that the previously
identified phenomenon of VIV forever, i.e. resonance oscillations at any reduced velocity,
persists even with high structural damping. Of interest, the ROM results reveal that the
wake mode for VIV forever is unstable with a constant positive growth rate with increasing
reduced velocity, while the experimental results suggest that VIV forever is associated
with a synchronisation between the non-stationary cylinder vibration frequency and the
vortex-shedding frequency.
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1. Introduction

When an elastic or elastically mounted bluff body is subjected to a fluid flow, it may
react to the vortex shedding and experience a phenomenon typical of fluid–structure
interaction: vortex-induced vibration (VIV). One of the most profound characteristics
of VIV is synchronisation (or ‘lock-in’), where both the vortex shedding frequency
and the body vibration frequency are locked and close to the natural frequency of the
fluid–structure system (Williamson & Govardhan 2004; Païdoussis, Price & De Langre
2010). Generally, for cross-flow VIV of a circular cylinder with low mass and damping,
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the lock-in phenomenon occurs over a discrete finite range of reduced velocity. The lock-in
starts from the beginning of an upper branch, when the vortex-shedding frequency locks
onto the body vibration frequency of the system in quiescent fluid, and extends through a
lower branch, where the body vibration as well as the locked frequencies remain consistent.
For a cylinder with a mass ratio above some value, desynchronisation may eventually occur
at higher reduced velocity (e.g. Khalak & Williamson 1996; Williamson & Govardhan
2004). The reduced velocity is defined by Ur = U/( fnwD), where U is the free-stream
velocity, D is the cylinder diameter and fnw is the natural frequency of the system in
quiescent fluid. It has been well established that the mass ratio (denoted by m∗, as the
ratio of the total oscillating mass to the mass displaced by fluid) is an important parameter
affecting the lock-in region as well as the body vibration amplitude response (Williamson
& Govardhan 2004; Han & de Langre 2022). In a sequence of experiments, Govardhan
& Williamson (2000) predicted and confirmed the existence of a critical mass ratio
m∗

c = 0.54, below which resonant large-amplitude oscillations occurred at an infinite Ur
for the Reynolds number range 4000 < Re < 22 000, where Re = UD/ν, with ν being the
kinematic viscosity of the fluid. This situation is referred to as ‘VIV resonance forever’ or
briefly ‘VIV forever’. It should especially be noted that, in the experiments of Govardhan
& Williamson (2002), infinite reduced velocity (U∞

r ) is achieved by removing the physical
restoring springs to realise fnw = 0 and thus Ur = ∞. In the present study, we follow this
concept first introduced by Govardhan & Williamson (2002) to perform VIV experiments
at infinite reduced velocity.

Moreover, it has been demonstrated by both experimental and numerical studies that the
critical mass ratio for VIV forever is dependent on the Reynolds number. For example, a
critical mass ratio of m∗

c = 0.25 was found in a numerical study at Re = 100 of Shiels,
Leonard & Roshko (2001). Later, Ryan, Thompson & Hourigan (2005) showed the
existence of m∗

c in two low-Re regions in numerical simulations: the value of m∗
c decreased

from approximately 0.5 to 0.1 for 40 ≤ Re ≤ 95, and it remained approximately at 0.1 for
180 ≤ Re ≤ 200, while no critical mass ratio was observed for the Re range in between
these two regions. In their experimental study, Morse & Williamson (2009) reported that
m∗

c increased with Re in the range from 4000 to 16 000, and then remained almost constant
at m∗

c = 0.54 for 16 000 < Re < 30 000. Recently, Navrose & Mittal (2017) investigated
the effect of Reynolds number on the value of critical mass ratio. They confirmed the
decreasing trend of m∗

c with Re increasing from 40 to 95 as reported by Ryan et al. (2005),
and also showed that m∗

c increased from approximately 0.1 to 0.3 as Re was increased
from 1000 to 4000, in line with the trend seen in the high-Re regime in the experiments of
Morse & Williamson (2009).

On the other hand, the structural damping ratio is another parameter as important as the
mass ratio and Reynolds number that can affect the characteristics of VIV such as the body
vibration amplitude response and lock-in region. Generally, increasing the damping will
reduce and even suppress the body vibration and the VIV lock-in region, as demonstrated
by Blevins & Coughran (2009), Soti et al. (2018) and Zhao, Thompson & Hourigan
(2022a). Research on the effect of structural damping on VIV is of great interest due
to its implied influence on energy harvesting from VIV (see Soti et al. 2018; Zhao et al.
2022a).

Therefore, the following important open questions remain: (i) Will VIV be suppressed
by high structural damping for a cylinder with a mass ratio below the critical value? (ii)
Will the phenomenon of VIV forever disappear at high damping ratio? And, importantly,
(iii) what is the mechanism underlying the phenomenon of VIV forever? Thus, in this
study, by combining experiments and reduced-order modelling (ROM) in both nonlinear
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Figure 1. (a) A schematic of the problem studied, with the key parameters illustrated: free-stream velocity
U, structural damping factor cs, spring constant k and wake oscillator variable q(t). (b) A photograph of the
experimental set-up.

and linear forms, we aim to provide answers to the above questions. Indeed, VIV forever
does persist even with high structural damping.

2. Methodologies

2.1. Experimental details
The fluid–structure system was modelled based on a low-friction air-bearing rig in
conjunction with a free-surface recirculating water channel of the Fluids Laboratory for
Aeronautical and Industrial Research (FLAIR) at Monash University. Figure 1 shows a
schematic of VIV of a circular cylinder and a photograph of the experimental set-up.

The test cylinder used was made from a lightweight and rigid carbon fibre tube, and
it was precision manufactured using a grinding machine to have an outer diameter of
D = 71.34 ± 0.01 mm. The immersed length of the cylinder was L = 614 mm. The total
oscillating mass was ms = 1003.8 g, and the displaced fluid mass by the cylinder was
md = 2450.3 g, giving a mass ratio of m∗ = ms/md = 0.41. In addition, for a better
understanding of VIV below the critical mass ratio (m∗

c ≈ 0.54), additional three mass
ratios, m∗ = 0.50 (close to the critical value), 6.07 and 25 (well above the critical value),
were also included for comparison. An eddy-current-based damping mechanism was
employed to control the structural damping by adjusting the gap between a magnetic
element and a copper plate via a micro-drive stage with a resolution of 0.01 mm
(see figure 1b). More details of this damper device can be found in the article of
Soti et al. (2018). The structural damping ratio used in the present work is given
by ζ = cs/(2

√
k(ms + ma)) = ζafnw/fna, where ma is the (potential-flow) added mass

given by ma = ( f 2
na/f 2

nw − 1)ms, ζa ∼= cs/(2
√

kms) is the damping ratio measured from
free-decay tests in air and fna = 0.377 ± 0.01 Hz and fnw = 0.197 ± 0.01 Hz are the
natural frequencies measured in quiescent air and water, respectively. Accordingly, an
added mass coefficient was given by CM = m∗( f 2

na/f 2
nw − 1) ≈ 1.05 from the free-decay

tests. The topic of added mass has been discussed by Lighthill (1986), Govardhan &
Williamson (2000), Limacher (2021) and Zhao, Thompson & Hourigan (2022b).

In the present cases of m∗ = 0.41 with extension springs used, the VIV response was
examined over a reduced velocity range of 3.0 ≤ Ur ≤ 15; beyond this, an infinite Ur was
tested in the absence of springs. The turbulence level of the free stream was less than 1 %.
The corresponding Reynolds number range was 2870 ≤ Re ≤ 14 330, with an uncertainty
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of ±10. The cylinder displacement was measured using a non-contact digital optical linear
encoder (model RGH24; Renishaw, UK) that had a resolution of 1 μm. For each reduced
velocity, the measurement data were acquired at a sampling rate of 100 Hz for 300 s. More
details of the experimental facility used can be found in the studies of Soti et al. (2018),
Zhao, Hourigan & Thompson (2018) and Zhao et al. (2022a).

2.2. Reduced-order modelling

2.2.1. Model description
Along with the experiments, a numerical reduced-order model proposed by Facchinetti, de
Langre & Biolley (2004) was also adopted to investigate the VIV problem. As shown in
figure 1(a), the dynamics of a circular cylinder undergoing cross-flow VIV is considered
simply as that of a linear oscillator governed by

mŸ + (cs + cf )Ẏ + kY = Fv, m = ms + ma, (2.1)

where Y is the cylinder displacement, with the overdots representing time derivatives; and
ma, cs and k represent the added mass, structural damping and stiffness, respectively. The
added mass ma is given by ma = CMρD2π/4, where ρ is the fluid density and CM = 1.05
is obtained for the present experiments. It should be noted that the measurement of CA is
5 % above the theoretical value CA = 1 (in potential flow), which has a negligible effect
on both the experimental and ROM results. (The previous study of Zhao et al. (2022b)
also showed that a CA value with 8 % above the theoretical value had a negligible effect
on the fluid force decomposition for inline VIV of a circular cylinder.)

In the second term of (2.1), cf represents the fluid-added damping, and it is given
by cf = CD/(2ρUD) to describe the fluid loading, where CD represents the ‘amplified
drag coefficient’ (Facchinetti et al. 2004), noting that, herein, CD is not the traditional
drag coefficient (e.g. for flow past a fixed cylinder). The effect of fluid damping has
been demonstrated in the recent study of Konstantinidis et al. (2020) showing that the
drag acting in the direction opposite to the instantaneous relative velocity between the
free-stream flow and the moving cylinder can induce a pure damping force (one that is 180◦
out of phase with respect to the cylinder movement velocity). In fact, the amplified drag
coefficient CD is a (nonlinear) function of the vibration characteristics and the traditional
drag coefficient of flow over a fixed cylinder CD0. However, for the sake of simplicity, it is
often assumed to be constant (Facchinetti et al. 2004), typically CD ≈ 2.0 (e.g. Facchinetti
et al. 2004; Violette, de Langre & Szydlowski 2007; Grouthier et al. 2013). In the present
study, CD was set to be constant at 1.9. The forcing term in (2.1), namely the transverse lift
due to the unsteady vortex shedding Fv , can be obtained by

Fv = ρU2DCv
L/2 = ρU2DqCL0/4, (2.2)

where Cv
L represents the unsteady vortex-induced lift coefficient of a vibrating cylinder,

while CL0 represents the magnitude of lift coefficient of the fixed cylinder and the
parameter q/2, as the ratio of Cv

L to CL0, can be interpreted as a reduced vortex
(or ‘fluctuating’) lift coefficient. A van der Pol nonlinear wake oscillator equation is
introduced here to model the dimensionless wake variable q, coupled to the displacement Y

q̈ + εωf (q2 − 1)q̇ + ω2
f q = (A/D)Ÿ, (2.3)

where ωf is the vortex-shedding angular frequency defined as ωf = 2πStU/D,
with St being the Strouhal number for flow over a stationary cylinder. In (2.3),
ε = 0.3 and A = 12 are constant coefficients derived from experimental correlations
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Figure 2. A comparison of the dimensionless amplitude response y10 as a function of reduced velocity Ur
between the present experiments and ROM, with four mass ratios: m∗ = 0.41 (well below m∗

c ), 0.50 (close to
m∗

c ), as well as 6.07 and 25 (well above m∗
c ). Note that the shaded areas represent the standard deviations of the

experimental measurements of y10.

(see Facchinetti et al. 2004; de Langre 2006). We now introduce the dimensionless
drag-related parameter γ , time t, amplitude y, mass ratio m∗, structural angular frequency
ωs and damping ratio ζ , as follows:

γ = CD

4πSt
, t = Tωs, y = Y/D, m∗ = 4ms

πρD2 , ωs =
√

k/m,

ζ = cs

2
√

km
= cs

2mωs
. (2.4)

Substituting the dimensionless parameters into (2.1)–(2.3) yields coupled equations
governing the displacement y(t) and the wake variable q(t)

ÿ +
(

2ζ + 4γ UrSt
πm∗ + πCM

)
ẏ + y = U2

r CL0

4π3(m∗ + CM)
q, (2.5)

q̈ + εUrSt(q2 − 1)q̇ + (UrSt)2q = Aÿ. (2.6)

2.2.2. Validation
Numerically solving (2.5) and (2.6) with a second-order finite difference scheme in time
subject to an initial perturbation to the cylinder displacement results in a limit cycle of
y(t) and q(t). The simplicity of this set of equations allows modelling of the dynamics for
an extremely low computational cost, yet well reproducing the effect of varying parameter
values on the system response (see Facchinetti et al. 2004; de Langre 2006; Grouthier et al.
2013; Han & de Langre 2022). An additional validation is presented here as the ROM is
applied to VIV for mass ratios below and well above the critical value. Figure 2 shows the
dimensionless amplitude response, y10, for different mass ratios obtained from the present
experiments and the ROM. Note that y10 represents the mean of the top 10 % of the highest
vibration amplitudes at each Ur. The model parameters for the ROM were set the same as
for the experiments, except values for St ≈ 0.2 and CL0 ≈ √

2/2 for flow over a fixed
cylinder taken from Norberg (2003) in the same Re range as the present experiments. As
can be seen in figure 2, the ROM results agree qualitatively and semi-quantitatively with
the experiments, even though the mass ratio m∗ = 0.41 is well below the critical value
(m∗

c ≈ 0.54). Additional comparisons with m∗ = 0.50, 6.07 and 25 are also included in
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figure 2, showing that the ROM can capture the approximate VIV magnitude and the
extent of the resonant region for cases from close to m∗

c to well above m∗
c .

Moreover, at an infinite reduced velocity U∞
r (i.e. by removing the restoring springs in

experiments or by setting zero spring stiffness in the ROM), both experiments and ROM
show substantially large vibration amplitudes for m∗ = 0.41 in figure 2, confirming that
the occurrence of VIV forever in the present study, and that the ROM is an effective tool
to investigate the problem of VIV forever.

We acknowledge that there are some discrepancies between the ROM predictions and
experimental results, particularly in its failure to predict the lower branch for cases well
above the critical mass ratio. This is mainly because the form of the proposed ROM,
which is coupled only with the body acceleration ÿ (see the right-hand term in (2.6)),
cannot capture the classical upper–lower-branch transition in VIV (Facchinetti et al. 2004).
Possibly, introducing an out-of-phase term (i.e. the velocity ẏ) coupled together with
the acceleration (Han et al. 2021), or adding a frequency-dependent term (e.g. Ogink &
Metrikine 2010) may improve the accuracy of ROM; however, this would make the ROM
implementation become more complicated, noting that the focus of this study is modelling
of the effect of structural damping on VIV forever. The discrepancies between the ROM
and experimental results may also be improved by optimising the input coefficients used
in our ROM. For instance, the lift coefficient CL0 and the Strouhal number St of flow over
a stationary cylinder in (2.5) and (2.6) have been found to scatter over certain Reynolds
number ranges, depending on the authors (see Moeller 1982; Szepessy & Bearman 1992;
Norberg 2003). A sensitive analysis of the parameters CL0 and St on ROM has been
reported recently by Han & de Langre (2022). However, note that a different set of
input coefficients for ROM will not change the mechanisms for the VIV phenomenon.
In summary, through comparisons with the present experiments, the low-cost simplified
ROM can qualitatively and to some extent quantitatively predict VIV and importantly
the VIV forever phenomenon, despite its failure to capture the VIV upper–lower-branch
transition.

2.3. Linear stability analysis of the reduced-order model
On the basis of a nonlinear ROM, de Langre (2006) developed a simplified linear stability
analysis (LSA), which was successfully applied to predict the phenomenon of VIV forever
for an undamped system (i.e. with zero damping). Inspired by this, we performed a
similar LSA of the ROM (ROM-LSA) but including the structural damping to address
the questions raised in § 1. In this ROM-LSA, eliminating all nonlinear terms in (2.5) and
(2.6) gives

ÿ +
(

2ζ + 4γ UrSt
πm∗ + πCM

)
ẏ + y = U2

r CL0

4π3(m∗ + CM)
q, (2.7)

q̈ − εUrStq̇ + (UrSt)2q = Aÿ. (2.8)

Further, assuming exponential time dependence ( y, q) = ( y0 eλt, q0 eλt) yields the
frequency equation for the roots λ

D(λ; R) = λ4 + (R − εUrSt)λ3 + (U2
r St2 − AHUrSt − εUrStR + 1)λ2

+ (U2
r St2R − εUrSt)λ+ U2

r St2, (2.9)

R = 2ζ + 4γ UrSt
πm∗ + πCM

, H = CL0

4π3St2(m∗ + CM)
. (2.10a,b)
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Expanding the root λ about its undamped value to include the influence of damping
represented by R, we can obtain λ = λ0 + RλR. Here, λ0 satisfies the frequency equation
without the damping parameter R, i.e. D(λ0; 0) = 0. Similarly, expanding (2.9) gives

D(λ0 + RλR; R) = D(λ0; 0) + RλR
∂D
∂λ

∣∣∣∣
(λ0;0)

+ R
∂D
∂R

∣∣∣∣
(λ0;0)

= 0. (2.11)

After some elementary algebra, the effect of structural damping ratio ζ on the root λ can
be obtained resulting in the following expression:

λ = λ0 − R
∂D/∂R
∂D/∂λ

= λ0 −
(

2ζ + 4γ UrSt
πm∗ + πCM

)
λ4

0 − εUrStλ3
0 + (UrSt)2λ2

0

2λ4
0 − 3εUrStλ3

0 − 2(UrSt)2 − εUrStλ0
.

(2.12)

Solving the above equations gives the solution for λ, noting that its imaginary part,
denoted by λi, is the angular frequency, while the ratio of its real part to its imaginary part
yields the normalised growth rate, namely G = λr/λi. It should also be noted that there
are two pairs of conjugate solutions, of which only the root with a positive imaginary part
is of interest.

Following Han & de Langre (2022), for a given root, the ratio of the structural vibration
amplitude y0 to the magnitude of the wake variable q0 can be obtained from (2.7) and (2.8)

y0

q0
= λ

2 − λεUrSt + U2
r St2

λ2A
= U2

r CL0

4π3(m∗ + CM)

(
λ2 + λ

[
2ζ + 4γ UrSt

π(m∗ + CM)

]
+ 1

) .

(2.13)

By setting the numerator equal to zero, i.e. q0 	 y0, we can derive the root for the case
where the cylinder is fixed (y ≡ 0), corresponding to a pure wake mode (PW)

λPW = ε ± √
ε2 − 4
2

UrSt, GPW = ε√
4 − ε2

. (2.14a,b)

The pure wake mode growth, GPW , will be used to identify the mode in the roots obtained
from (2.9) and (2.12), where the dynamics is mainly in the wake variable q. Conversely,
the pure solid mode is defined by setting the denominator in (2.13) equal to zero. More
specifically, via (2.12), when the solved growth rate G is close to the GPW , it will be
considered as a wake mode; on the other hand, if the mode shape is dominant in y, we label
it as a solid mode (de Langre 2006; Violette, de Langre & Szydlowski 2010; Grouthier
et al. 2013; Han & de Langre 2022). The ROM-LSA will give two modes – each can be
stable or unstable with two degrees of freedom. For the wake mode, we define that it is
unstable when the mode growth rate is higher than GPW , while for the solid mode it is
unstable when the mode growth rate is positive, following Han & de Langre (2022).

3. Results and discussion

3.1. Effect of structural damping on VIV forever
In the present study, the phenomenon of VIV forever indeed persists across a wide range
of structural damping ratios. This can clearly be seen from the normalised amplitude
y10 at m∗ = 0.41 in figure 3. As shown in figure 3(a), the damping ratio range tested
covers a wide range from 3.7 × 10−3 to 2.3 × 10−1, with the highest value more than 62
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Present ROM,
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0
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6 8 10
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Figure 3. (a) The normalised amplitude response (y10) as a function of reduced velocity (Ur) for various
damping ratios at m∗ = 0.41 in the present experiments. (b) The y10 response as a function of ζ∞ at an infinite
reduced velocity U∞

r of the present experiments in comparison with the present ROM and the experiments of
Govardhan & Williamson (2002).

times of the lowest. Even with the highest damping ratio ζ = 2.3 × 10−1, at which VIV
suppression could result for a cylinder with a mass ratio above the critical value (e.g. Soti
et al. (2018), m∗ = 3.0), the cylinder can still oscillate with large amplitudes of ∼ O(1D)

at high reduced or even infinite reduced velocities. Here, we define the ‘large-amplitude’
region as the region where, for a given damping ratio, y10 is higher than the half of the
maximum value observed in the present study. It should be noted that for a cylinder with
m∗ above its critical value, e.g. m∗ = 3.0 in Soti et al. (2018), and m∗ = 21.8 in Blevins
& Coughran (2009), VIV forever does not exist and the large-amplitude region tends to
shrink with increasing ζ . It even leads to VIV suppression at a certain high damping ratio.
Interestingly, the present result indicates that the effect of structural damping on VIV with
a mass ratio under the critical value is distinctly different from the effect in those cases
above the critical mass ratio.

To further confirm the above finding, we experimentally and numerically tested the
vibration response at an infinite reduced velocity, by removing the restoring springs but
keeping the same structural damping factor (cs) settings as in figure 3(a). It should be
noted that the structural damping ratio ζ is defined based on the natural frequency ωs in
(2.4); however, ζ will become infinite, when ωs becomes zero in the absence of spring
stiffness. To describe the damping effect in the absence of ωs, we refer to the parameter
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Figure 4. Effect of ζ on the y10 amplitude response for (a) m∗ = 25 and (b) m∗ = 0.4 obtained by ROM,
together with the variations of growth rate G of the modes obtained by ROM-LSA, as a function of Ur. Note
that in (c) and (d) the solid lines denote the results for low damping ratios, while the open circles denote the
results for high damping ratios.

ζ∞ = cs/(2mωf ), which is based on the angular vortex-shedding frequency (ωf ) of a
stationary cylinder (see Govardhan & Williamson 2002). For the infinite reduced velocity
tested at Re = 13 500 in the study, the resultant damping ratio range is ζ∞ = 1.2 ×
10−3–8.0 × 10−2 corresponding to its finite counterpart ζ = 3.7 × 10−3–2.3 × 10−1. For
a VIV system in the absence of a ‘natural’ frequency (i.e. without restoring springs),
one may consider using another dimensionless form of damping ratio that is based on
the advective time scale: c∗ = csD/(mU) (see Leontini et al. 2018). In figure 3(b), the
corresponding range of c∗ is from 0.003 to 0.210.

As shown in figure 3(b), the phenomenon of VIV forever is confirmed by both the
experimental and ROM results for m∗ = 0.41, which are in excellent agreement, evidenced
by the consistent amplitude responses of y10 � 0.8 through the ζ∞ range tested. The
present results are also in excellent agreement with the experiments with m∗ = 0.45
and ζ ≈ 0 by Govardhan & Williamson (2002). Additional cases are also included to
compare with the experimental and ROM cases at m∗ = 6.07 and 25 well above m∗

c , where
negligible vibration is observed. Nevertheless, these results clearly show that VIV forever
persists for an underdamped cylinder (i.e. ζ < 1) despite high damping ratio values.

To gain a better understanding of the damping effect on the VIV response of a cylinder
at m∗ = 0.4 and 25, a full nonlinear ROM based on (2.5) and (2.6) is adopted to evaluate
the y10 response for different damping ratios, while a ROM-LSA based on (2.9), (2.12)
and (2.14a,b) is used to assess the normalised instability growth rate G. As shown in
figure 4(a,c), the amplitude response for the case of m∗ = 25 is consistent with previous
studies, confirming that increasing ζ reduces the VIV response. As expected, at Ur ≈
1/St ≈ 5, where VIV resonance generally occurs, the G values of the wake mode clearly
depart from the horizontal line of Gpw that represents the pure wake mode for a fixed
cylinder (see (2.14a,b)). This means that the wake mode becomes much more unstable
than the pure wake Gpw. Note that the departure range of the wake mode growth rate
from GPW is found to be 4 � Ur � 9.5, which is consistent with the ROM in figure 4(a)
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and experiments in figure 2, where significant vibration occurs. Moreover, the growth rate
of the solid mode is always negative, indicating that the cylinder vibration is induced
only by the wake mode (see Han & de Langre 2022). On the other hand, for the case of
m∗ = 0.4, the growth rate is always much greater than that of the pure wake after Ur � 1,
and tends to increase with increasing reduced velocity. This means that obvious structural
vibration starts at a low Ur value and it will persist in the tested Ur range, due to the
consistent unstable wake mode. Again, the above ROM-LSA results are consistent with
the ROM results in figure 4(b) and the experiments at m∗ = 0.41 in figure 2. Thus, it can
be concluded that the primary cause for VIV forever is the highly unstable wake mode.
Note that G increases linearly with a positive slope KW for Ur > 1/St, and this slope is
found to be almost independent of ζ . This is distinctly different from the case of m∗ = 25,
where the unstable wake mode occurs over a limited resonance region around Ur ≈ 1/St.
Since the ROM-LSA is a linear approximation, the slope KW may be used as a simple tool
to assess the occurrence of VIV forever. However, it should be noted that the LSA itself
cannot predict the limit cycle but, as has been shown, it can to some extent predict where
and why limit cycles of oscillations occur.

The effect of damping ratio on VIV forever can be further explained by deriving a
relation of the vibration amplitude at U∞

r from the nonlinear ROM. We assume that the
fluid–structure system is governed by (2.5) and (2.6) and that the cylinder vibration and
the wake variable are y(t) = y0 cos(ωt) and q(t) = q0 cos(ωt + φ), respectively, where
y0 is the cylinder vibration amplitude, q0 is the magnitude of the wake variable, ω is
the dimensionless angular vibration frequency and φ is the relative phase angle between
the driving fluid force and the body displacement. Substituting them into (2.5) (i.e. the
structural oscillator) yields

y0 − y0ω
2 − U2

r CL0

4π3(m∗ + CM)
q0 cos φ = 0, (3.1)

U2
r CL0

4π3(m∗ + CM)
q0 sin φ − 2ωy0ζ − 4γωUrSt

π(m∗ + CM)
y0 = 0. (3.2)

Hereby, we can obtain a relationship between y(t) and q(t)

y0 = U2
r CL0/[4π3(m∗ + CM)](

(ω2 − 1)2 +
[

2ζ + 4γ UrSt
π(m∗ + CM)

]2

ω2

)0.5 q0. (3.3)

Similarly, by substituting y(t) = y0 cos(ωt) and q(t) = q0 cos(ωt + φ) into (2.6) (i.e. the
wake oscillator), and considering only the main harmonic contribution in the nonlinear
dynamics, we can obtain the following set of equations:

U2
r St2q0 − ω2q0 + Aω2y0 cos φ = 0, (3.4)

εUrStωq0(1 − 1
4 q2

0) + Aω2y0 sin φ = 0. (3.5)

Now, the magnitude of the wake variable can be computed by

q0 = 2

⎛
⎜⎜⎜⎜⎝1 + Aω2

U2
r CL0

4π3(m∗ + CM)

[
2ζ + 4γ UrSt

π(m∗ + CM)

]

εUrSt

(
(ω2 − 1)2 +

[
2ζ + 4γ UrSt

π(m∗ + CM)

]2

ω2

)
⎞
⎟⎟⎟⎟⎠

0.5

. (3.6)
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In addition, the angular vibration frequency ω and reduced velocity Ur should satisfy

U2
r St2 + Aω2

(1 − ω2)U2
r CL0

4π3(m∗ + CM)

(ω2 − 1)2 +
[

2ζ + 4γ UrSt
π(m∗ + CM)

]2

ω2

− ω2 = 0. (3.7)

Combining equations (3.3) and (3.6), after some elementary algebra, we can finally
describe the vibration amplitude y0 with the previously defined dimensionless parameters.

From an order-of-magnitude analysis on (3.7), we can find that ω goes to infinity at U∞
r .

Then, importantly, considering the structural damping ratio ζ is a finite value (particularly
0 ≤ ζ < 1 for an underdamped system), the damping-related terms in (3.3) and (3.6) can
therefore be simplified as follows:[

2ζ + 4γ U∞
r St

π(m∗ + CM)

]
≈ 4γ U∞

r St
π(m∗ + CM)

= CDU∞
r

π2(m∗ + CM)
. (3.8)

The above expression indicates that the structural damping ratio (underdamped) has a
negligible effect on the body vibration amplitude at an infinity reduced velocity. This is in
agreement with the experimental results in figure 3, where the vibration amplitudes appear
to be almost constant at an infinite reduced velocity for the damping ratio range tested. The
damping effects can also be examined by solving (3.3) and (3.6). For instance, by using the
same parameters as in figure 4(a,b) and setting the reduced velocity to infinity, we obtain
y0 ≈ 0.66 and 0.01 for m∗ = 0.4 and 25, respectively, in the tested range of 0 ≤ ζ ≤ 0.5.
These estimates of y0 at U∞

r are consistent with the findings from experiments and the
nonlinear ROM in figure 3(b), where y10 values appear to be independent of damping
(ζ∞) for m∗ cases below or above m∗

c . Note that the presence of significant vibration at
U∞

r is the criterion for determining the occurrence of VIV forever. In other words, (3.3)
and (3.6) clearly indicate that for an underdamped system, the structural damping will have
a negligible effect on the vibration amplitude in VIV forever, which is consistent with the
results from both the present ROM-LSA and experiments.

By neglecting all damping terms in his ROM-LSA, de Langre (2006) derived the upper
limit of lock-in for VIV of a circular cylinder

Umax
r =

[
St −

√
ACL0

4π3(m∗ + CM)

]−1

. (3.9)

By letting Umax
r go to infinity, de Langre (2006) further derived the critical mass ratio that

allows infinite resonance

m∗
c = ACL0/(4π3St2) − CM. (3.10)

The above (3.10) indicates that the parameters CL0, St, and CM can affect m∗
c . Recently, in

their numerical study of FIV of an elliptical section (of 1.5 in the cross-sectional aspect
ratio) with m∗ = 1 at Re = 200, Leontini et al. (2018) have shown that the critical mass
is the mass which results in an inertial force that can be balanced by the magnitude of
the lift force – in other words, m∗

c is set by the magnitude of the lift force. They have also
demonstrated that the bluffer geometry of an ellipse (compared with a circular section)
could potentially generate a larger magnitude of lift force, and thus should have a higher
m∗

c value than the circular counterpart – they observed that the ellipse at a 90◦ angle of
attack exhibited an infinite resonance at m∗ = 1, a much higher value than the critical mass
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ratio expected for the circular cylinder in that Re regime. The above results from Leontini
et al. (2018) could potentially be extended to account for the damping resistance force in
the sense that the effect of damping (ratio) would reduce the magnitude of lift force (as
reflected by reduced body vibration), thus resulting in a lower m∗

c value; in other words,
an increase in the structural damping would require a decrease in the cylinder mass (i.e. a
lighter cylinder) to exhibit VIV forever. Thus, we hypothesise that the structural damping
is another factor that can potentially affect the critical mass ratio. However, to test this
hypothesis would require accurate measurements of the critical mass ratio values under
various damping ratios (i.e. via a parametric study with fine increments in both mass and
damping ratios), which is beyond the focus of the present study.

3.2. Frequency analysis
To provide insight into the dynamics of cylinder vibration in VIV forever, this subsection
presents a frequency analysis of the cylinder vibration and fluid forcing in experiments.

Figure 5 shows the normalised logarithmic-scale power spectrum density (PSD)
contours of the cylinder vibration frequency response for m∗ = 0.41 with various
damping ratios (ζ = 3.7 × 10−3–2.3 × 10−1) from the present experiments and ROM.
The construction method for this figure can be found in the previous studies of Leontini,
Lo Jacono & Thompson (2011, 2013) and Zhao et al. (2014, 2018). As can be seen, the
dominant frequencies (denoted by open circles) are in good agreement with the results
of Govardhan & Williamson (2002) (denoted by solid diamonds); however, considerable
broadband frequency components appear in the upper branch region (i.e. Ur > 4), which
are distinctly different from those of the conventional upper branch with m∗ well above
critical value, where the cylinder vibration clearly displays a single frequency (e.g. Zhao
et al. 2018). Overall, the body vibration frequency increases linearly with Ur after y10
becomes relatively stable (e.g. Ur > 6). The slope of the linear frequency variation is
observed to increase slightly from a = 0.148 to 0.154 across a damping ratio increase
of the order of 2 from ζ = 3.7 × 10−3 to 2.3 × 10−1. It can also be seen that in the
upper-branch region, in all cases the body vibration frequency departs significantly from
the Strouhal number trend (i.e. St � 0.215 measured for the fixed cylinder), which is
similar to the conventional upper-branch response with m∗ of the order of O(1) above m∗

c .
On the other hand, the present ROM also quantitatively captures linear frequency-response
variations with their slope values increasing from 0.114 to 0.128 across the damping
ratios tested. Nevertheless, the above results imply that the large-amplitude vibration seen
for sub-critical mass ratio (i.e. m∗ < m∗

c ) is strongly associated with a synchronisation
between the cylinder vibration frequency and the vortex-shedding frequency, rather
than the natural frequency (i.e. fnw) of the system. Due to the coupled fluid–structure
interaction, the vortex-shedding frequency from a vibrating body in synchronisation
appears to be significantly lower than that of the fixed body counterpart, and the
vortex-shedding frequency tends to increase as the body vibration is reduced by the
damping effect; however, the fluid–structure (frequency) synchronisation remains strong
for a sub-critical mass ratio within the underdamped damping ratio range (i.e. ζ < 1).

To provide a further insight into frequency synchronisation, figure 6 shows a
time–frequency analysis based on continuous wavelet transform (CWT) for the cylinder
vibration and fluid forcing. Details of the CWT used can be found in Zhao et al.
(2022b). For the upper branch (Ur = 5.6) of m∗ = 25 shown in figure 6(a), the normalised
vibration frequency ( f ∗

y ) clearly locks onto the natural frequency of the system ( fnw),
and remains stationary (not varying) over time, while the fluid forcing frequency ( f ∗

CL
)
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Figure 5. Logarithmic-scale power spectrum density contours of normalised frequency response as a function
of reduced velocity for the present experiments of m∗ = 0.41 with various damping ratios in (b) – ( f ). Note that
(a) revisits their normalised amplitude responses. The cylinder vibration frequency is normalised by the natural
frequency, namely f ∗

y = fy/fnw. The open circles represent the local dominant frequency component in the
present experiments, while the solid diamonds in (b) represent the measurements with m∗ = 0.52 (ζ unknown)
by Govardhan & Williamson (2002). The dashed-dotted lines represent the Strouhal number frequency (St �
0.215), the dashed lines (green) represent the trend slope of the dominant frequency for Ur ≥ 6, where y10
appears to be relatively stable with increasing Ur, and the solid lines (blue) represent the normalised frequency
response obtained from the corresponding ROM. 962 A13-13
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Figure 6. Continuous-wavelet-transform-based time–frequency analysis for the cylinder vibration and
transverse lift force: the case of m∗ = 25 and ζ = 8.55 × 10−4 at Ur = 5.6 in (a); and the case of m∗ = 0.41
and ζ = 3.70 × 10−3 at Ur = 5.6 in (b), U∞

r and Re = 10 000 in (c) and U∞
r and Re = 13 500 in (d). Note that

the frequency PSD contours are logarithmic scaled; in (c) and (d) the frequency components in the absence of
springs are normalised by fvs.

also locks onto fnw but exhibits noticeable discontinuities in power over time. On the
other hand, for the case at Ur = 5.6 of m∗ = 0.41, f ∗

y is clearly synchronised with f ∗
CL

,
and interestingly they become non-stationary, varying around a value slightly above fnw
over time. Moreover, the non-stationary frequency synchronisation can also be seen in
VIV forever at two different Reynolds numbers (Re = 10 000 and 13 500) in figure 6(c,d).
However, it should be noted that, without restoring springs, the equilibrium position of
the cylinder vibration in VIV forever appears to the unstable. Perhaps this is unsurprising,
since the magnitude of lift force generated by the vortex shedding is naturally unstable.
Nevertheless, the irregular non-stationary behaviour of both f ∗

y and f ∗
CL

for the m∗ = 0.41
case may suggest a frequency synchronisation of chaos, where the cylinder vibration
frequency is synchronised with the fluid forcing frequency but the dynamics appears to
be chaotic.

4. Conclusions

Vortex-induced vibration of a circular cylinder with a low mass ratio below the critical
value has been investigated over a wide range of structural damping in water-channel
experiments and also using a reduced-order model in both nonlinear and linear forms.

Both the experimental and ROM results confirmed that the phenomenon of VIV forever
persists even with very high structural damping for an underdamped cylinder (i.e. ζ <

1). Of interest, a simplified linear stability analysis of the ROM (or ROM-LSA) showed
that the wake mode in VIV forever was unstable with a constant positive growth rate
with increasing reduced velocity. This was distinctly different from the conventional VIV
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response of a cylinder with a mass ratio well above the critical value, where the growth
rate of the wake mode was negative, leading to vibration amplitude reduction beyond the
upper branch.

A further ROM-based analysis of the effect of damping ratio showed that, for an
underdamped cylinder (i.e. ζ < 1), the damping ratio has a negligible effect on the
vibration amplitude in VIV forever, which is consistent with the experimental results.

On the other hand, both the experimental and ROM results showed that for a
sub-critical mass ratio (i.e. m∗ < m∗

c ), the body vibration frequency in the fluid–structure
synchronisation region (i.e. the upper branch for m∗ < m∗

c ) tends to increase with damping
ratio. Of note, a wavelet-transform-based time–frequency analysis showed that for a
cylinder under the critical mass ratio, the vibration frequency is synchronised with the
fluid forcing frequency; however, both frequencies appear to be non-stationary over time,
suggesting that the frequency synchronisation in VIV forever is associated with chaotic
dynamics.

The effect of structural damping on the precise value of the critical mass ratio is to
be investigated in future work. It would be of further interest to investigate the nonlinear
dynamics (i.e. irregular behaviour with non-stationary frequency components, and chaos)
in VIV forever. As implied by the large-amplitude vibration at high structural damping
at present, investigation into the energy-harvesting performance from large-amplitude
vibration in VIV forever is also warranted.
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