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Abstract

Microbial O, production via oxygenic photosynthesis was vital in oxygenating the Earth’s surface environment during the Great Oxygenation
Event (GOE) ca. 2.5 to 2.3 billion years ago. However, geochemical, paleontological and genomic data suggest the emergence of oxygenic
photosynthesis precedes the GOE by at least 500 million years. This demonstrates that the first appearance of microbial O, in the environment
cannot explain the timing of atmospheric oxygenation. Instead, the GOE was facilitated by Earth’s geodynamic evolution, expanding
cyanobacterial habitats and the changing redox state of the mantle, decreasing the abundance of reduced surface rocks, volcanic gases and
aqueous solutes. These trends ultimately resulted in magnified O, production rates and diminished O, consumption rates. Thus, the GOE can
be understood as a misbalance between O, sources and sinks. One of the most critical O, sinks on modern Earth is microbial O, consumption
via aerobic respiration, and accumulating evidence suggests its emergence well before the GOE. However, the role of aerobic microorganisms as
an O, sink delaying the GOE remains poorly explored. Here, we review the redox evolution of Earth’s mantle and surface environments, as well
as the Archean evolution of aerobic microbial metabolisms. Oxygenic photosynthesis released O, to the environment, but the secular oxidation
of the solid Earth was critical in allowing O, accumulation. Aerobic respiration expanded in response to the GOE, but our survey suggests it
could have been a critical O, sink even earlier. Hence, aerobic respiration can be seen as geobiological feedback to changes in the Earth system
from deep in the mantle up to the surface. However, the timing and rate of O, consumption by aerobic respiration before the GOE remain
poorly constrained. We conclude by highlighting open questions and future research directions to understand the role of the aerobic O, sink in
delaying the GOE.
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(Meadows et al, 2018; Schwieterman et al., 2018). For these
reasons, understanding the driving mechanisms of the GOE is
important across various disciplines within the Earth and life
sciences.

Much attention has been given to dating the emergence of
oxygenic photosynthesis. Attempts at doing so included various
putative biosignatures, like stromatolites in photic paleoenviron-
ments, microfossils of cyanobacteria, carbon isotope signatures of
photoautotrophic carbon fixation, lipid biomarkers in Archean
rocks, as well as biogeochemical models (e.g. Buick, 1992; Schopf,
1993; Mojzsis et al., 1996; Hofmann et al., 1999; Brocks, 1999;
Schidlowski, 2001; Kopp et al, 2005). Many of these approaches
are regarded as controversial (Brasier et al., 2005; Rasmussen et al.,
2008; French et al., 2015). These controversies have yielded a broad
timespan for the possible emergence of oxygenic photosynthesis
(ca.3.5to ca. 2.4 Ga). Molecular clock studies add a relatively recent
approach to the problem. Using calibration points from the rock

Introduction

The Great Oxygenation Event (GOE) occurred 2.5 to 2.3 billion
years ago (Ga) and was one of the most significant revolutions in the
Earth system. It was marked by an increase in atmospheric O, by
several orders of magnitude sourced from oxygenic photosynthesis
(Lyons et al., 2021) (Table 1). The accumulation of atmospheric O,
changed the redox state of Earth’s surface environment (Lyons
et al., 2014; Ostrander et al., 2021), the mineralogical composition
of the Earth (Hazen et al., 2008) and allowed for major biological
innovations, including the much later evolution of eukaryotic
organisms and the Cambrian explosion (David and Alm, 2011;
Zhang et al., 2014; Mills et al., 2022). This also has astrobiological
implications because high O, concentrations in an exoplanet’s
atmosphere could point to the existence of an oxygenic biosphere,
although alternative abiotic explanations for O, production exist
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record, these studies point to an emergence of oxygenic photosyn-
thesis at ca. 3.0 Ga, i.e. several hundred million years (m.y.) before
the GOE (Schirrmeister et al., 2015; Sanchez-Baracaldo, 2015;
Cardona et al., 2019; Garcia-Pichel et al, 2019; Jabtonska and
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Table 1. Net reactions of microbial metabolism discussed in this paper (Konhauser,

2007).

Metabolism Net reaction

Oxygenic photosynthesis CO; +H,0 — CH,0+ 0,
Aerobic respiration CH,0+ 0, — CO; +H,0
Methanogenesis (hydrogenotrophic) 4H; + CO, — CH4 +2H,0
Methanogenesis (acetoclastic) CH3COOH — CH4 + CO,
Aerobic methanotrophy CH4+0; — CO, +H,y

Aerobic NH," oxidation (nitrification)

NH4* +1.50, — NO, ™ +H,0 +2H*
N027 + 0.502 — NO37

Anaerobic NH," oxidation (anammox)

NO, ™ +NHs* — Ny +2H,0

Microaerophilic Fe oxidation

4Fe?* +0.50, +2H* — 2Fe3* +H,0

Microbial Mn oxidation

Mn2* +0.50; + H,0 — Mn(IV)O, +2H*

Microaerophilic S oxidation

H,S+0.50, — S° + H,0

S%+1.50, + H,0 — H,S04

Tawfik, 2021; Fournier et al., 2021; Boden et al., 2024; but see Soo
et al., 2017). This timing is compatible with geochemical proxies
indicating oxidative weathering in situ benthic microbial mats, local
0O, levels of few to few tens of uM, or transient “whiffs” of O,
(reviewed in Ostrander et al., 2021). Apparently, Earth’s atmos-
phere remained anoxic for at least 500 m.y. while oxygenic photo-
synthesis was already occurring. This delay of the GOE is one of its
central conundrums.

Suggested ideas to solve this problem involve either an increas-
ing rate of biological O, production or a decreasing O, consump-
tion rate during the 500 m.y. preceding the GOE (e.g. Konhauser
et al., 2017; Catling and Zahnle, 2020; Lyons et al., 2024). Thus, the
GOE can be understood as the tipping point reached when O,
production rates by oxygenic photosynthesis exceeded the O,
consumption rates of all sinks. These sinks include reduced species
such as volcanic gases in the atmosphere (e.g. H,, CH,), aqueous
solutes (e.g. Fe**, Mn**), minerals in surface rocks (e.g. pyrite,
uraninite) or sedimentary organic matter. The capacities of these
sinks are, to a large degree, constrained by the redox evolution of the
solid Earth. However, microorganisms have modulated the balance
of Earth’s redox buffers by catalysing otherwise inhibited chemical
reactions since life emerged more than 3.5 Ga (e.g. Falkowski et al.,
2008; Knoll et al., 2016; Ostrander et al., 2021; Runge et al., 2023).
Thus, the Earth’s buffering capacity against oxygenation can only
be understood by integrating abiotic and biotic processes from deep
in the mantle to the surface. Notably, advances in experimental
microbiology and microbial ecology showed that microorganisms
in diverse environments consume O, below the canonical lower
limit for aerobic respiration (i.e. the ‘Pasteur point’, 2.2 uM O, at
25°C in seawater, e.g. Stolper et al., 2010; Berg et al., 2019; Ruff et al.,
2023) (Table 1). Given the emergence of oxygenic photosynthesis at
ca. 3.0 Ga, it seems plausible that the early production of biological
O, created aerobic niches since the mid-Archean. Nevertheless, the
role of aerobic microorganisms as an O, sink delaying the GOE
remains poorly understood.

Here, we review the redox evolution of the solid Earth and its
surface environments from planetary accretion to the GOE, aiming
to explore the role of microbial O, sinks in the Archean Earth. First,
we reconstruct the solid Earth’s redox evolution, which constrains
the capacity of its abiotic redox buffers and sets the stage on which
microbial life proliferates. Then, we address the oxygenation of
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Earth’s surface environments, including the atmosphere and
hydrosphere. Finally, we review evidence for the role of microbial
O, sources and sinks in the Archean. We highlight the complex
interplay of abiotic and biotic processes in the substantial delay
from the first biological O, production to the onset of atmospheric
oxygenation. Our survey suggests that the Earth’s aerobic biosphere
is a crucial yet poorly understood Archean O, sink that must be
better quantified to unravel the delay of the GOE.

The delayed GOE: asynchronous solid Earth and surface
oxidation

The Earth’s atmosphere and hydrosphere evolved from outgassing
and condensation of volatiles from the mantle, therefore the solid
Earth sets the stage for the evolution of the surface reservoir. It
represents the reservoir from which the lithosphere, atmosphere,
hydrosphere and biosphere evolved, thereby defining the Earth’s
overall buffering capacity against oxygenation. However, the sub-
sequent evolution of Earth’s redox state is also closely coupled to the
evolution of life in its surface environments. This section reviews
the deep-time redox evolution of Earth’s interior and surface
reservoirs.

The evolving redox state of the solid Earth in deep time

The O, of Earth’s present-day upper mantle is QFM + 2 (Fig. 1, see
Box 1), but it decreases with depth (e.g. Haggerty, 1978; Christie
et al., 1986; O’'Neill and Wall, 1987; Wood and Virgo, 1989; Wood
et al., 1990; Ballhaus et al., 1991; O’'Neill, 1991; Holloway et al.,
1992; Kasting, 1993; McCammon, 2005; Frost and McCammon,
2008; Cottrell and Kelley, 2011; Trail et al., 2011; Ardia et al., 2013;
Gaillard et al., 2021; Yang et al., 2022) (Fig. 2). The transition zone is
assumed to have an fO, of about QFM — 4 (McCammon, 2005;
Frost and McCammon, 2008; Ardia et al., 2013; Yang et al., 2022)
and the lower mantle is supposed to have an fO, below QFM —
5 (Frost et al., 2004; McCammon, 2005; Ardia et al, 2013; Yang
et al., 2022).

In contrast to the present day, it is commonly thought that the
Earth was initially reduced, with an fO, of IW -2 (ca. QFM —5.7) as
a maximum value during core formation (before that, the fO, could
have been even as low as IW — 5 or about QFM — 8.7; Wade and
Wood, 2001, 2005; Rubie et al., 2011, 2015; Scaillet and Gaillard,
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Figure 1. Commonly used mineral redox buffers and their relationship to fO, plotted
over temperature. Quartz-fayalite-magnetite QFM) and nickel-nickel-oxide (NiNiO)
depict oxidised conditions, while iron-wustite (IW) and quartz-iron-fayalite (QIF)
represent reduced conditions.
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Box 1: Definition of the redox state and related terms

The term ‘redox state’ describes the oxidation potential of a system. In the
context of this study, the system is the Earth mantle, crust, hydrosphere and
atmosphere. ‘Oxidising conditions’ mean that elements, which occur in
different oxidation states (e.g. Fe, Mn, Cr, S, C) predominantly occur in the
oxidised state, e.g. Fe** or Mn*", whereas under ‘reducing conditions’, Fe
predominantly occurs as Fe** and Mn as Mn*". The oxidation state can
quantitatively be expressed in form of the oxygen fugacity fO,, which is
approximately equal to the equilibrium oxygen partial pressure pO,. In
reducing systems, fO, is low; in oxidising systems, fO, is high. Because the
absolute numbers for fO, are very low (e.g. 107°), one expresses fO, as
log10(fO,). An important buffer for the O, fugacity within planets is the Fe—
FeO (‘iron-wistite’, IW) buffer with:

Fe + %Oz =FeO

Metallic iron (Fe) occurs in Fe-Ni alloys and FeO as a component in many
silicate minerals. As long as Fe and FeO are present, fO, is fixed. For the
reaction shown, the fO, would be fixed by the IW buffer. The absolute fO,
varies with temperature and pressure. Oxygen fugacities that deviate from
the fO, buffered by the IW buffer are conventionally expressed as fO,
deviating in log;, units from fO, buffered by the IW buffer. An O, that is
two orders of magnitude lower (factor of 0.01) than buffered by the IW
buffer at a given temperature would be termed log;4(fO,) = IW - 2. Other O,
buffers exist, such as the quartz-fayalite-magnetite (QFM) buffer. However,
the redox state is conventionally expressed in log;, units relative to fO,
buffered by the IW buffer. The most reduced system known is the
H,-dominated solar nebula, where the fO, was buffered by the H,-H,0
equilibrium to IW-7. Modern rocks have a redox state in the range buffered
by the QFM buffer, which is at about IW + 3.7.

The fO, determines the speciation of volatiles. If the fO, is low, the system
is reducing, meaning that reduced species such as H,, CO, CHy, H,S and NH3
prevail. In contrast, if the fO, is high, the system is oxidising and oxidised
species like H,0, CO,, SO, and N, are dominant (Kasting, 1993; Kasting et al.,
1993; Ballhaus and Frost, 1994; Holloway and Blank, 1994; Delano, 2001;
Burgisser and Scaillet, 2007; Trail et al., 2011; Gaillard et al., 2015, 2021,
Ortenzi et al., 2020; Yang et al., 2022). This demonstrates that the redox state
is a fundamentally important parameter for the evolution of the Earth
interior and surface system.

2011; Cartier et al., 2014; Fischer et al., 2015; Schaefer and Elkins-
Tanton, 2018; Gaillard et al., 2021) (Fig. 2). One argument for a
reducing start of the Earth is the assumption that it initially accreted
from highly reduced, volatile-depleted material (like enstatite chon-
drites). Another argument is that the metal-silicate equilibrium
required for core formation suggests a considerably low fO,. A low

Accretion
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fO, enhances the siderophile behaviour of certain elements like
nickel, cobalt, manganese, chromium, vanadium and silicon (Gess-
mann et al., 1999; Wade and Wood, 2001, 2005; Rubie et al., 2011,
2015; Scaillet and Gaillard, 2011; Siebert et al., 2013; Cartier et al.,
2014; Fischer et al., 2015; Schaefer and Elkins-Tanton, 2018; Gail-
lard et al, 2021; but see Badro et al. (2015) for an alternative
viewpoint).

Assuming reduced conditions early in Earth’s history, its rela-
tively oxidised state today requires oxidation over time (e.g. Wade
and Wood, 2005; Cartier et al., 2014; Schaefer and Elkins-Tanton,
2018; Gaillard et al., 2021). Pahlevan et al. (2019) found that if the
magma ocean was initially reduced, it must have evolved to a higher
fO, (>IW + 1 or ~QFM - 2.7) during its final stages based on the
D/H ratio. Moreover, Deng et al. (2020) suggested that the magma
ocean had a vertical gradient in fO,, with the upper layer reaching
IW + 2 (~QFM - 1.7). However, it was also proposed that more
oxidised, volatile-rich material (e.g. CI chondrites) was delivered
during the last stages of accretion and core formation (e.g. Winke
et al., 1984; Javoy, 1995; Wade and Wood, 2005; Schonbéchler et al.,
2010; Rubie et al., 2011; Scaillet and Gaillard, 2011; Marty, 2012;
Cartier et al., 2014; Fischer et al, 2015; Dauphas, 2017; Fischer-
Go6dde and Kleine, 2017; Lammer et al., 2018; Grewal et al., 2019;
Budde et al., 2019; Fischer-Godde et al., 2020; Gaillard et al., 2021).
Rubie et al. (2011) concluded that 30-40% of the final mass accreted
was rather oxidised, therefore the evolution towards a more oxi-
dised planet probably occurred already during the formation of the
Earth.

Besides the variation in the delivered material, the change in the
Earth’s redox state during accretion can also be explained by the
increasing size of the Earth (Wade and Wood, 2005). It was
proposed that due to the higher pressures associated with the
growth of the Earth, perovskite (Mg,Fe,Al)(ALSi)O3) becomes the
dominant phase of the lower mantle (stable below 660 km depth in
present-day Earth). Perovskite formation drives Fe(II) dispropor-
tionation to Fe(III) and Fe(0) via Eq. (1):

3Fe?* O + AL, O3 = 2Fe** AlO; + Fe’ (1)

Because Fe(0) has been sequestered into the core, the lower
mantle became relatively enriched in Fe(III). It was suggested that
the upper mantle became enriched over time due to convection
(Mao and Bell, 1977; Frost et al., 2004, 2008; Wade and Wood,

Figure 2. Evolution of the Earth’s redox state for
different formation stages. The changing fO, is
indicated by the deviation in log units from the
quartz-fayalite-magnetite (QFM) buffer and is
explained in the text. The colours range from
blue (reduced) to red (oxidised). The Earth is
assumed to become more oxidised with time,
with the most reduced values during the
accretion period before core formation. It is
thought that during the magma ocean period,
fO, evolved towards more oxidised values. The
modern Earth is comparatively oxidised, with a
decreasing redox state with depth (after
McCammon, 2005). See the text for references on

the redox state of the early Earth.
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2005). This transfer of Fe(III) from the lower to the upper mantle is
also known as the ‘oxygen pump’ (Frost et al., 2004, 2008; Wade and
Wood, 2005). This process would also explain why the Martian
mantle is more reduced than Earth (Righter and Drake, 1996; Herd
et al., 2001, 2002; Wadhwa, 2001, 2008; Wade and Wood, 2005;
Righter et al., 2008), even though Mars is enriched in volatiles and
FeO. Perovskite is unstable in the Martian mantle due to its smaller
size, resulting in lower lithostatic pressures, thus the self-oxidation
of the mantle via perovskite formation could not occur on Mars
(Wade and Wood, 2005). It was proposed that the preferential
partitioning of Fe(III) into the liquid phase enhances the equilibra-
tion of the redox state between the lower and upper mantle by
mixing processes (Carmichael, 1991; Scaillet and Gaillard, 2011). In
addition, FeO and FeO, 5 have different molar volumes and dens-
ities, further favouring a more oxidised upper mantle and a more
reduced lower mantle (Deng et al., 2020).

Alternatively, it was suggested that the oxidation of the mantle
occurred directly during the magma ocean state (Schaefer and
Elkins-Tanton, 2018; Pahlevan et al, 2019). Accordingly, the sink
and sequestration of iron metal into the core would leave behind an
oxidised mantle without requiring crystallisation and whole-scale
mantle mixing (Schaefer and Elkins-Tanton, 2018; Pahlevan et al.,
2019). In particular, the crystallising magma ocean would become
progressively oxidised over time (Scaillet and Gaillard, 2011). Similar
arguments have been brought forward for a carbon pump leading to
the formation of diamonds in the lower mantle (causing oxidation) in
case of a deep (potentially giant-impact-induced) magma ocean,
which may explain the thick CO, atmosphere of Venus in the
absence of a late giant impact (Armstrong et al., 2019). Moreover,
H, loss from the mantle by outgassing is also discussed as a mech-
anism for oxidising the upper mantle (Sharp et al., 2013).

It has also been suggested that recycling of surface material could
have oxidised the upper part of the mantle (Arculus, 1985; Kasting,
1993; Kasting et al., 1993; Kump et al., 2001; Smart et al., 2016;
Nicklas et al., 2019; Stagno and Aulbach, 2021). At least today, the
material transported with the subducting slab is more oxidised than
the surrounding mantle (e.g. Wood et al., 1990; Ballhaus et al., 1991;
Blundy et al., 1991). Mikhail and Sverjensky (2014) found that
under oxidising conditions, N, is the dominant nitrogen species
over NH,". They argue that, during subduction, the increased fO,
of the mantle wedges, compared to the surrounding upper mantle,
results in N,-rich fluids. The ascent and outgassing of such fluids
allow an enhanced N, outgassing. Plate tectonics would, therefore,
not only favour oxidised mantles and atmospheres but would also
be needed for nitrogen-rich atmospheres like the Earth’s.

Duncan and Dasgupta (2017) turned the argument around: if
reduced material (like organic carbon) was subducted, then this
may have led to a transient increase of biological O, in the atmos-
phere by removing reducing power from the surface reservoir. At
the same time, it would lead to a reducing effect on the mantle
(unless permanently sequestered into a hidden reservoir) and result
in releasing reducing gases into the atmosphere on melting.

The estimates on when the upper mantle was oxidised to near-
modern values range from 4.4 to 2.7 Ga (e.g. Canil, 1997; Delano,
2001; Lee et al., 2003; Li and Lee, 2004; Foley, 2011; Scaillet and
Gaillard, 2011; Trail et al., 2011; Aulbach and Stagno, 2016; Roll-
inson et al., 2017; Nicklas et al., 2018, 2019) (Figs 3, 4a). An
important archive for understanding the redox state of the early
Earth’s mantle is the cerium concentration in zircons (ZrSiO,)
(Loucks et al., 2020). Cerium exists in both tri- and quadrivalent
states in silicate melts. Zircons crystallising from these melts pref-
erentially incorporate Ce** over Ce’”, substituting for Zr*" in the
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Figure 3. Literature estimates regarding the fO, of the upper mantle on early Earth
(after Aulbach and Stagno, 2016; Schaefer and Elkins-Tanton, 2018; Stagno and
Aulbach, 2021). The shaded rectangles represent the results of the fO, estimated
from individual studies (normalised to the QFM buffer) over the respective ages of
the samples examined. The references for the horizontal rectangles are Canil (1997),
Delano (2001), Li and Lee (2004), Nicklas et al. (2018, 2019), Aulbach and Stagno (2016)
(AS), Aulbach et al. (2017). The crosses are data points from Nicklas et al. (2018) and
Nicklas et al. (2019) that represent an estimated fO, based on the redox-dependent
partitioning of vanadium between liquidus olivine and melt. The squares are orogenic
eclogites, the circles are mantle eclogites and the diamond is a mid-ocean ridge
ophiolite from Aulbach and Stagno (2016). The symbols display the fO, (corrected to
1 GPa) calculated from V/Sc ratios. The vertical error bars are predicted 1o errors of the
V/Scratios (representing 1o of the mean per sample suite) and the horizontal error bars
show age ranges or 1o errors for isochron ages from the literature. The red star shows
the calculated fO, of the modern MORB and the arrow points toward the estimated fO,
of the uppermost mantle according to Trail et al. (2011) of samples from 4.4 Ga. QFM,
quartz-fayalite-magnetite.

zircon crystal structure. The ratio of Ce** to Ce’ is influenced by
the fO, of the melt. As a result, the cerium concentration in
magmatic zircons can indicate the oxygen content in the magma
(Trail et al, 2011). Trail et al. (2011) calibrated the relationship
between the zircon/melt partitioning coefficient of cerium and the
fO, of the melt. Using their different oxygen isotopic compositions,
Trail et al. (2011) distinguished zircons derived from the mantle
(8"80 = +5.3%o) and those from the crust. The cerium concentra-
tion data of both populations indicated that the host magmas had
similar fO, to the modern mantle, which has QFM + 2 (Yang et al.,
2022). It was observed that the primary mantle melts were not
saturated in zircon, but rather, the ‘mantle’ zircons crystallised in
melt residues. The §'°0 values of these residues would still closely
resemble the composition of the host mantle. At such fO, values,
the outgassing of CO,, N,, H,0, and SO, would dominate over
more reduced species like CO, H,, NH; and H,O (Frost and
McCammon, 2008).

The oxygen isotope ratios in these up to 4.4 Ga zircons have
provided valuable insights into the history of early Earth’s water
cycle. Studies by Peck et al. (2001), Valley et al. (2002) and Cavosie
et al. (2005) also examined oxygen isotope ratios in Hadean zircon,
some of which yield elevated §'*0 values consistent with the
assimilation of sediments or crustal material derived from low-
temperature water—rock interactions. The isotopic signatures found
in these zircons thus suggest the presence of liquid water on the
Earth’s surface during the Hadean as early as 4.4 Ga. These findings
support the presence of a hydrosphere on Earth at that time. If
correct, the 8'%0 of the hydrosphere needs to be considered because
the 5'®0 of the early oceans may have been lower than the present
oceans (Wallmann, 2001; Sengupta and Pack, 2018; Herwartz et al.,
2021; Tatzel et al., 2022; Isson and Rauzi, 2024) and meteoric water
generally comprises lower 3' %0 than seawater. Due to the variability
of %0 in the hydrosphere, water—rock interaction at high and low
temperatures can result in a large range of silicate 8'°0, and
assimilation of such altered material is also known to generate
low 820 magmas (Bindeman et al., 2010; Herwartz et al., 2015;
Zakharov et al., 2019). In general, assimilation of the altered mafic
crust may not lead to elevated §'®0 of magmas from which the
zircons crystallised, therefore a mantle-like 5'*O of Hadean zircons
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Figure 4. Oxidation and oxygenation of the upper mantle and the surface
environment over time. (a) Calculated fO, of samples derived from the
upper mantle after Aulbach and Stagno (2016) and Stagno and Aulbach
(2021) (see Fig. 3 for the legend). The rectangles at the top of the figure
display some important geodynamic events: extensive formation of
continental crust ca. 3.5-2.4 Ga (Collerson and Kamber, 1999; Huston
and Logan, 2004), onset of modern style plate tectonics (PT) ca. 3.2-
3.0 Ga (Smithies et al, 2005; Van Kranendonk et al, 2007; Van

Kranendonk, 2011; Duncan and Dasgupta, 2017; Kuang et al., 2023),
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igneous provinces (LIPs) 2.5-2.4 Ga (Ernst and Bleeker, 2010; Gumsley
et al., 2017), first glaciations (Ice) ca. 2.4 Ga (Kirschvink et al., 2000;
Gumsley et al., 2017). (b) Partial pressure of specific gas species over
time after Catling and Zahnle (2020). The two grey dashed lines indicate
the partial pressure of CO,. The upper line (K) is after Kasting (1987) and
Herwartz et al. (2021), and the lower line (CZ) is after Catling and Zahnle
(2020). (c) Geological evidence for oxygenation of the surface
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oxygen; BS, black shales; Red, red beds (see the main text for
references). Mass-independent sulfur isotope fractionation (MIF-S)
marks the positive and negative excursions of A*S in %o (after Ono,
2017; see also the main text). The data for banded iron formations (BIFs)
(S, = superior-type; A, algoma-type) and sulfate deposits (barite) is from
Huston and Logan (2004). Reddish colours display evidence of
oxygenation, while blueish colours indicate reduced conditions. The
boxes without colours are deposits discussed in the literature as
possible hints for redox conditions, even though the general opinion is
that they cannot be used as redox proxies. (d) Timetable for the
emergence of the microbial metabolic processes discussed in this
review. Solid lines represent well-established timeframes. Dashed lines
represent tentative timeframes. Question marks signify highly uncertain
periods. Adapted from Lepot (2020) and modified based on references in
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may be taken cautiously as an argument for the mantle origin of the
zircons. An origin from the crust, however, would not allow any
conclusions to be drawn about the redox state of the mantle.
Indeed, Hopkins et al. (2008) suggested that the Hadean zircons
they studied (which contained mineral inclusions) formed in a
crustal setting. Based on the derived formation pressure and tem-
perature (700°C, 7 kbar), they concluded that the surface heat flow
from 4.2 to 4.0 Ga was only 75 mW/m?. Additionally, they proposed
that the crustal zircon host melts may have formed above a
subduction-like setting, where the subducting slab cools the under-
lying lithosphere. A similar conclusion was reached by Harrison
et al. (2008), who suggested that Hadean zircons formed through
crystallisation from crustal magmas. The negative e(Hf,T) values
observed in the set of zircons studied by Harrison et al. (2008) imply
formation in a reservoir with sub-chondritic Lu/Hf (i.e. felsic crust),
which may have formed as early as 4.5 Ga. Zircons that crystallise
from a residual mantle melt should have positive e(Hf,T) values.
Others used redox-sensitive elements like vanadium and chro-
mium (e.g. Canil, 1997; Delano, 2001; Lee et al., 2003; Li and Lee,
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2004; Aulbach and Viljoen, 2015; Nicklas et al., 2016, 2018, 2019;
Aulbach and Stagno, 2016) or the Fe’*/(Fe’* + Fe’*) ratio
(Rollinson et al., 2017; Aulbach et al., 2017) to determine the redox
state of early Earth’s mantle. Applying these methods, it was
claimed that oxidation occurred early because since 3.9 to 3.5 Ga
samples exhibit fO, similar to modern mid-ocean ridge basalts
(MORBSs; Canil, 1997; Delano, 2001; Li and Lee, 2004; Rollinson
etal.,,2017).In contrast, more recent studies observed that Archean
samples are still relatively reduced (QFM — 1.19 + 0.33) compared
to the post-Archean samples (including MORB: QFM - 0.26 +
0.44). This observation hints at a transition from a relatively
reduced towards an oxidised upper mantle during the mid or late
Archean (Lee et al., 2003; Aulbach and Viljoen, 2015; Aulbach and
Stagno, 2016; Aulbach et al., 2017; Stagno and Fei, 2020) (Figs 3, 4a),
which would have direct consequences on the volcanic outgassing
efficiency and atmospheric evolution (Guimond et al., 2021).

The data shown in Fig. 3 suggest a gradual increase in the fO, of
the upper mantle observed from 3.0 to 2.0 Ga, which contrasts with
a sudden increase proposed by previous studies (Canil, 1997;
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Delano, 2001; Li and Lee, 2004; Scaillet and Gaillard, 2011; Roll-
inson et al., 2017). This discrepancy between a gradual and sudden
increase in the redox sate is explained by heterogeneity of the early
upper mantle due to incomplete mixing with the lower mantle, the
addition of reduced meteoritic material or inherited from magma
ocean processes (Ringwood, 1979; Arculus, 1985; Nicklas et al.,
2019; Stagno and Fei, 2020; Stagno and Aulbach, 2021). Gu et al.
(2016) experimentally demonstrated that oxidised lower mantle
material is less dense than reduced lower mantle material. This
enhances the ascent probability, leading to an efficient mixing
between the lower and upper mantle. According to Gu et al.
(2016), the upper mantle could have been oxidised within 800
m.y. via this mixing process. However, the process was probably
prolonged due to the effect of the strength of bridgmanite (which is
about three orders of magnitude higher compared to ferropericlase)
on the mantle viscosity and, thus, on the mixing behaviour (Girard
et al, 2016; Ballmer et al, 2017; O’'Neill and Aulbach, 2022).
Another reason for a delayed mantle mixing could have been a
larger grain size resulting from hotter early Earth conditions. This
larger grain size could have led to stronger plate boundaries,
decreasing convective motion (Foley and Rizo, 2017). An inefficient
mixing of the material from the lower mantle with the upper mantle
would explain the preservation of primordial reservoirs suggested
to explain observed isotope anomalies (e.g. Mukhopadhyay, 2012;
Debaille et al., 2013; Rizo et al., 2013, 2016b, 2016a; Girard et al,
2016; Ballmer et al, 2017; Mundl et al, 2017; Horan et al, 2018;
Tusch et al., 2021, 2022).

Furthermore, Aulbach and Stagno (2016) propose that, in con-
trast to their suite of samples, the rocks measured by previous
studies were not derived from the convective mantle. They argue
that the latter intruded into a cratonic setting and thus experienced
mixing with the sublithospheric mantle. An oxidised mantle at the
end of the Archean has also been suggested due to an increase of
mantle mixing gradually over time (O’Neill and Aulbach, 2022), by
a change in interior convection patterns from two-layered to one-
layered mantle convection (Breuer and Spohn, 1995) or by the onset
of plate tectonics (Debaille et al., 2013; Andrault et al., 2018). The
main argument for mantle mixing due to plate tectonics is to allow
the more oxidised, bridgmanite-rich lower mantle (Mao and Bell,
1977; Frost et al., 2004, 2008; Wade and Wood, 2005) to efficiently
mix with the more reducing upper mantle material due to slabs
penetrating and stirring up the lower mantle. The mechanisms
resulting in mantle mixing could explain the observed rise in upper
mantle fO, between 3.0 and 2.0 Ga (Figs 3, 4a; Aulbach and Viljoen,
2015; Aulbach and Stagno, 2016; Aulbach et al., 2017; Stagno and
Fei, 2020; O’Neill and Aulbach, 2022).

First hints of locally oxidised surface environments around 3.0
Ga: implications from stable isotopes

The first geochemical evidence for locally oxidised conditions in
marginal marine basins comes from measurements of stable iso-
topes (e.g. chromium, molybdenum, uranium) of marine black
shales (e.g. Anbar et al., 2007; Scott et al., 2008; Lyons et al., 2014;
Planavsky et al., 2014; Kendall et al, 2015; Ossa Ossa et al., 2016,
2018; Wang et al., 2018, 2020; Briiske ef al., 2020; Kendall, 2021).
Earth’s mantle and crustal rocks contain chromium in a trivalent
state. In modern surface environments, Cr(III) is oxidised to soluble
Cr(VI), which is preferentially enriched in heavy isotopes
(8°Cr > 0). The oxidation occurs by the reaction of Cr(III) with
Mn(IV) oxides, which require free O, exceeding 0.1-1% of the
present atmospheric level (PAL) (Planavsky et al., 2014); therefore
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heavy chromium isotopes are a proxy for the presence of free O, in
the surface environment. Molybdenum isotopes are another tracer
for the presence of free O,. Molybdenum adsorbs on Mn(IV) oxide
surfaces, a reaction with strong mass-dependent fractionation
toward lighter isotopes, therefore low 5°*°*Mo values hint towards
the existence of Mn(IV) oxides, which require free O, to form.

No chromium isotope fractionation has been observed in 3.8 Ga
banded iron formations (BIFs) from Isua (Frei et al., 2009), which is
taken as evidence for atmospheric O, pressures below 0.02-0.2 bar
(i.e. 0.1-1% PAL) (Fig. 4b). This can be regarded as an indication
that oxygenation of the surface reservoir had not yet initiated at 3.8
Ga. The earliest hints of locally oxidised conditions are currently
recorded in the 3.0 Ga Singeni Formation of the Mozaan Group in
South Africa (Planavsky et al., 2014; Ossa Ossa et al., 2016, 2018;
Smith and Beukes, 2023) (Fig. 4c). Contemporaneous oxidative
weathering in soils was suggested based on the extensive mobilisa-
tion of redox-sensitive elements and fractionation of the redox-
sensitive 3”°Cr value. Crowe et al. (2013) reported marked negative
8 Cr from the 3.0 Ga Nsuze paleosol and small positive §°>Cr from
contemporaneous Ijzermyn iron formation (both from the Pongola
Supergroup, South Africa). They concluded that free O, exceeding
0.1% PAL existed in the Mesoarchean, some 600 m.y. before the
GOE. However, modern weathering was identified at this site and
may have altered the chromium isotope ratios (Albut et al., 2018,
2019). Post-depositional alteration as the cause for the measured
chromium isotope fractionation was supported by Heard et al.
(2021). They could not confirm the fractionation of chromium
isotopes in the Pongola Supergroup paleosol and concluded that
the Mesoarchean was anoxic. Irrespective of these arguments,
Smith and Beukes (2023) combined evidence from detailed stratig-
raphy, mineralogy, petrography and carbonate mineral chemistry
with isotopic evidence from 8'°C to conclude that the local surface
ocean within this basin was oxidised supporting previous §°°Fe and
8’*Mo data. They suggest microaerophilic chemolithoautotrophs
were responsible for iron and manganese oxidation, which would
require the presence of free oxygen in the water column, but not the
atmosphere. Thus, at least concerning O,, the chemical exchange
between the hydrosphere and atmosphere can be suppressed. In the
following, evidence for a persistently anoxic Archean atmosphere is
summarised.

Atmospheric O, content remains low between 3.25 and 2.75 Ga:
implications from mineral archives

In addition to stable isotopes, indirect proxies such as certain
mineral deposits can be used as oxygen barometers. Many minerals
that are stable in the subsurface environment become oxidised
when exposed to the O,-rich modern atmosphere. Notable among
these minerals are sulfides like pyrite (FeS,), uraninite (UO,]) or
siderite (FeCOs3). In the presence of O,, pyrite is oxidised to Fe(III)
(oxyhydr)oxides (rust), uraninite to soluble hexavalent species and
siderite to Fe(IIT) (oxyhydr)oxides. Fluvial uraninite and pyrite
detritus were described, e.g. by Ramdohr (1958) and Schidlowski
(1981), in Archean sedimentary rocks from the Witwatersrand
basin (South Africa). The rounded shape of the mineral grains
and absence of oxidation rims suggest that they once occurred as
river sand in an O,-free Archean environment. Detrital pyrite,
gersdorffite [NiAsS], uraninite and siderite were described by Ras-
mussen and Buick (1999) from Archean (3.25-2.75 Ga) fluvial
sediments from Pilbara (Australia) and later by Hofmann et al.,
(2009) from South Africa (3.2-2.7 Ga; Fig. 4c). These minerals can
be used as oxygen barometers. For instance, the stability of
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uraninite in the surface environment is limited to atmospheric O,
levels below 107 times the PAL (Grandstaff, 1980). Detailed
thermodynamic modelling resulted in an upper p(O,) limit of 3.2
x 107 bar (1.4 x 10™* times the PAL) (Johnson ef al., 2014). The
presence of detrital siderite puts an upper limit not only on free O,
but also on H,S. Abundant H,S would lead to the pyritisation of
siderite, which is not observed in the Archean sediments studied by
Rasmussen and Buick (1999). They concluded that the Archean
atmosphere was poor in H,S, with levels below 10~ bar.

Hexavalent sulfur S(VI), as present in sulfate (SO,%*), should not
exist in the reduced Archean environment. Instead, S(IV), S(0), or S
(-1I) should be the dominating sulfur oxidation states in equilib-
rium with the lithosphere and atmosphere. However, sedimentary
and hydrothermal barite (BaSO,) exists in Paleo- and Mesoarchean
rocks from Australia (e.g. Dresser Formation) and South Africa
(Barberton Greenstone Belt) (Heinrichs and Reimer, 1977; Thorpe,
1979; Walter et al., 1980; Lowe et al., 2019) (Fig. 4c). The presence of
oxidised sulfate within at least some surface waters is regarded as
disequilibrium sulfate, i.e. it is produced by local processes but is not
in thermodynamic equilibrium with the entire reduced environ-
ment (Olson ef al., 2022). Thus, the presence of sulfate minerals
(such as barite) in the geological record is generally not regarded as
representative of the redox state of the Archean ocean (Huston and
Logan, 2004).

One process to obtain the S(VI) to form barite is the UV-
induced photodissociation and disproportionation of SO, from
volcanic degassing into reduced elemental sulfur S(0) and oxidised
sulfate S(VI). Indeed, the Paleo- and Mesoarchean sulfate com-
prises sulfur isotope signatures revealing at least a partial origin
from the atmosphere (Bao et al, 2007; Ueno et al., 2008). Triple
oxygen isotope data reveal at least two distinct sources of oxygen in
sulfate. Apart from an atmospheric endmember, photooxidation of
dissolved Fe** to Fe’* could have acted as a sulfur oxidiser and
microbial sulfur cycling may also have been significant (Olson et al.,
2022). Further suggestions include sulfate formation through the
reaction between reduced S(IV, 0, —II) components and water at
high temperatures of igneous systems and the disproportionation of
SO, in hydrothermal systems (Halevy, 2013). Thus, sulfate does not
require an oxidised environment but may result from very particu-
lar reactions involving SO, from volcanic emissions. All these
processes form sulfate, which is in thermodynamic disequilibrium
with the atmo-, hydro- and lithosphere and hence contains little
information about the redox state of the Archean Earth.

Large-scale oxidation begins around 2.7 Ga: insights from iron
formations

Iron formations (IFs) are iron- and silica-rich marine chemical
sediments that commonly display a distinct banding (i.e. banded
iron formations, BIFs) (e.g. Bekker et al, 2010; Konhauser et al.,
2017; Mand et al., 2021; Aftabi et al., 2021; Dreher et al., 2021). Two
main endmember types are distinguished. Algoma-type IFs are
generally associated with volcanic provinces and comprise large
positive europium anomalies inherited from anoxic vent fluids.
These comparably small-scale deposits appear throughout the
Archean and early Proterozoic (Barrett et al., 1988; Bolhar et al.,
2005; Ohmoto et al., 2006b; Bekker ef al., 2010; Pirajno and Yu,
2021). Superior-type IFs form on continental shelves covering
extensive areas between 2.7 and 1.8 Ga (Fig. 4c), with a few
occurrences already around 3.0 Ga (Huston and Logan, 2004; Smith
and Beukes, 2023). Especially after 2.4 Ga, some of these formed
above the storm wave base, destroying the banding and generating
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granular iron formations (GIFs). The depositional depth seems to
be related to the depth of the photic zone (Herwartz and Viehmann,
2024). Superior-type IFs exhibit smaller europium anomalies,
pointing to dominant contributions of rare earth elements derived
from continental weathering or low-temperature alteration of
oceanic crust rather than hydrothermal vents. The direct precipi-
tation from open seawater makes superior-type IFs the prime target
for reconstructing ambient seawater conditions (Bekker et al., 2010;
Konhauser et al, 2017; Ménd et al., 2021). Today, IFs comprise
iron-rich phases, including hematite, magnetite, siderite and iron
silicates with variable redox states (mean oxidation state of ~Fe>*")
and low (<<0.5 wt.%) organic carbon content (Klein and Beukes,
1992; Trendall, 2002). However, the mineralogy observed today
does not represent the primary precipitates from an ancient ocean
(Konhauser et al., 2017; Muhling and Rasmussen, 2020). Most
candidates for primary precipitates comprise Fe(III) (but see Muhl-
ing and Rasmussen, 2020). Hence, large-scale oxidation of soluble
Fe(II) to insoluble Fe(III) is required to form IFs. Several abiotic and
biotic mechanisms have been suggested, most of which are pro-
posed to occur within the photic zone of ocean water.

In the absence of an ozone layer, UV irradiation reaches the
Earth’s surface, which induces photochemical oxidation of dis-
solved Fe** to Fe*™ (Cairns-Smith, 1978; Braterman ef al., 1983;
Anbar and Holland, 1992). It is suggested that this process occurs at
a sufficient rate to form IF deposits (Francois, 1986). In contrast,
Konhauser et al. (2007a) argue that the photochemical contribution
to solid-phase precipitation is negligible, as most of the Fe*" quickly
forms poorly crystalline precursor phases to Fe(II) silicates and/or
Fe(II) carbonates. The rate of indirect photochemical oxidation via
atmospheric H,O, is found to be too low to account for depos-
itional rates of IF (Pecoits et al., 2015). Another source of H,O, is
the decay of primordial radioactive isotopes dissolved in seawater.
Ershov (2021) estimates that the decay of highly soluble *°K alone
may account for the oxidation of 10°' g of iron within a period
between 4.3 and 2.5 Ga. The aqueous oxidation of Fe** to Fe’" is
favourable at high pH because this reaction generates protons
(2Fe** + 4H,0 — 2FeOOH + H, + 4H"). Shibuya et al. (2010)
argue that high-temperature hydrothermal vent fluids, which are
acidic today, had elevated pH in the Archean and comprised Fe’".
Experimental results by Dodd et al. (2022) show that the decom-
position of Fe(OH), in Archean seawater analogues produces Fe*
species. The Fe(OH), compound is stable at elevated pH.

The spontaneous conversion of green rust (Fe,*"Fe,”
"(OH)1,804+8H,0) to magnetite (Fe**Fe’*,0,) goes along with a
net increase in Fe®* (Tamaura et al., 1984; Li et al., 2017). Green rust
is commonly considered a primary iron precipitate in Archean
oceans (e.g. Sun et al., 2022) which are, however, considered to be
sulfate-poor, at least between 3.2 and 2.4 Ga (Huston and Logan,
2004). Archean seawater chemistry (including pH and ion concen-
trations) considerably affects the efficiency of abiotic iron oxidation
pathways (e.g. Konhauser et al., 2007a; Shibuya et al., 2010). There-
fore, the respective net contribution to individual BIF deposits
remains unclear and may vary spatially and over time for each
abiotic oxidation mechanism.

The proposed biotic iron oxidation mechanisms can be subdiv-
ided into indirect oxidation by free O, from oxygenic photosyn-
thesis (Cloud, 1973; Klein and Beukes, 1992) and direct oxidation
either by chemolithoautotrophic or anoxygenic photoautotrophic
iron-oxidising bacteria (Konhauser et al., 2002; Kappler and New-
man, 2004; Kappler et al., 2005). The relative proportions of these
pathways can be approximated from reactive transport modelling
(Ozaki et al., 2019). This approach shows how variations between
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individual settings with variable nutrient and Fe*" supply and the
available light intensity within a given water mass control the
dominating oxidation pathway (Ozaki et al., 2019; Herwartz and
Viehmann, 2024).

Manganese in IFs is a main tracer for the oxygenation of Earth’s
hydrosphere (Robbins et al., 2023). Tetravalent Mn(IV) oxides
form at redoxclines via consumption of dissolved molecular O,
and are thus direct evidence for oxygenic photosynthesis (see
Robbins et al., 2023 for a review). Oxidised Mn**, Fe’* and organic
matter form particles that sink towards the seafloor. This process is
observed in anoxic basins today and is known as the Fe—Mn shuttle
(Dellwig et al., 2010). While respective particles slowly sink below
the chemocline into the anoxic water body, the Mn*" is reduced
again by dissolved Fe*" (Dellwig et al., 2010; Kurzweil et al.,
2016; Ossa Ossa et al., 2018). Deposition of such Mn** particles
in the sediment is only viable at low Fe**, e.g. distal to the iron
source (Smith and Beukes, 2023), or when oxygenic photosyn-
thesis is so active that the flux of sinking Mn** particles out-
competes the upwelling flux of Fe**. During and in the aftermath
of the GOE, enormous amounts of Mn** particles have been
deposited on the seafloor, forming the world’s largest manganese
deposits (Gutzmer and Beukes, 1996; Tsikos et al., 2003; Sekine
et al., 2011), reflecting the high productivity around that time.
Elevated manganese contents are a prime indicator for “whiffs of
oxygen” (Planavsky et al., 2014; Ossa Ossa et al., 2016; Smith and
Beukes, 2023) and a general increase in manganese contents in
IFs is observed at the onset of the GOE, e.g. in the Transvaal
Supergroup of South Africa (Tsikos et al., 2003; Schroder et al.,
2011; Kurzweil et al., 2016; Smith, 2018).

Subsequent oxidation of organic matter in the sediment partially
reduced Fe’* and Mn*" back to soluble Fe** and Mn**. Hence,
diagenetic processes can be responsible for the variable mineralogy
observed in IFs today. For instance, the Fe and Mn in siderite and
rhodochrosite can be derived from the oxidation of organic matter
by Fe** and Mn*", which precludes the use of IF mineralogy to
reconstruct paleo-atmospheric gas concentrations (Reinhard and
Planavsky, 2011). Identifying primary mineral phases and other
features, such as the banding of BIFs, has been the main challenge in
using these rocks as reliable archives (Mand et al., 2021; Mundl-
Petermeier et al., 2022; Bau et al., 2022).

Abundant whiffs of oxygen between 2.6 and 2.5 Ga: implications
from stable isotopes and black shales

Whiffs of oxygen in marine sediments become more abundant in
the Neoarchean (2.6-2.5 Ga) towards the GOE (Anbar et al., 2007;
Scott et al., 2008; Lyons et al., 2014; Kendall et al., 2015; Ostrander
et al., 2019; Briiske et al., 2020) (Fig. 4c). Frei et al. (2009) reported
on sedimentary rocks with marked positive 5°>Cr, suggesting that
O, rich oases existed before the GOE. These oases probably
occurred near the shore, and rivers washed heavy Cr(VI) into the
oceans, where chemical sediments preserved the isotope signature.

Significant volumes of black shales started forming at 2.7 Ga
(Fig. 4c), indicating a substantial burial of organic carbon that
was probably a response to increasing primary productivity via
oxygenic photosynthesis (Condie, 2001; Lyons et al., 2014). Oxy-
genic photosynthesis is assumed to be one of the primary mech-
anisms leading to the significant accumulation of O, in the oceans
and the atmosphere. Additionally, O, accumulation is favoured
by organic carbon burial (Lee et al., 2016). Thus, black shales
indirectly record the enhanced oxidation of the hydrosphere-
atmosphere system.
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Significant enrichment of free O, in the surface reservoir
recorded by sediments and sulfur isotopes starting at 2.5 Ga

Widespread release of O, from an oxygenated surface ocean is
evident after around 2.3 Ga when red beds emerge (Konhauser
etal.,2017) (Fig. 4c). Iron loss is observed during paleosol weather-
ing (Rye and Holland, 1998) and detrital pyrite and uraninite
disappearance, just like the MIF-S (mass-independent sulfur iso-
tope fractionation) anomaly disappears with the rise of O, in the
atmosphere (Bekker, 2001). The MIF-S signal is assumed to occur
due to photolysis and/or photoexcitation of volcanogenic SO, by
ultraviolet light in a reduced, anoxic atmosphere. Reduced sulfur
species displaying a positive A>S signature result from this photo-
lytic process (e.g. Farquhar, 2000; Farquhar et al, 2001; Ono et al.,
2003; Whitehill and Ono, 2012; Whitehill et al., 2013). The sudden
disappearance of the MIF-S signal at ca. 2.3 Ga is one of the most
well-known and solid evidence for the accumulation of free O,
above 107> PAL and thus marks the onset of the GOE (Fig. 4c)
(e.g. Pavlov and Kasting, 2002; Ono ef al., 2003; Bekker et al., 2004;
Zahnle et al., 2006; Domagal-Goldman et al., 2008; Guo et al., 2009;
Luo et al, 2016; Warke et al.,, 2020; Poulton et al., 2021). The
positive A*S signal in Archaean sedimentary sulfides is recognis-
able but comparatively low between 3.9 and 2.7 Ga (except for a
peak between ca. 3.2 and 3.2 Ga). Between about 2.7 and 2.5 Ga a
pronounced MIF-S spike is observed coinciding with the GOE
(Farquhar, 2000; Mojzsis et al., 2003; Ono et al, 2003; Hu et al,
2003; Bekker et al., 2004; Whitehouse et al., 2005; Papineau et al.,
2005; Jamieson et al., 2006; Ohmoto et al., 2006a; Ono et al., 2006;
Cates and Mojzsis, 2006; Johnston et al., 2006; Kamber and White-
house, 2007; Papineau et al., 2007; Philippot et al., 2007; Kaufman
et al., 2007; Bao et al., 2007; Farquhar et al, 2007; Domagal-
Goldman et al., 2008; Partridge et al., 2008; Johnston et al., 2008;
Ueno et al., 2008; Ono et al., 2009; Thomazo et al., 2009a; Shen et al.,
2009; Guo et al., 2009; Gaillard et al., 2011; Lyons et al., 2014; Ono,
2017; Kendall, 2021).

While the atmosphere, surface oceans and marginal basins are
oxidised after the GOE (Lyons et al., 2014), the deep ocean remains
anoxic until 1.8 Ga (Huston and Logan, 2004). Deep ocean oxy-
genation requires Phanerozoic-like atmospheric O, levels and deep
ocean convection (Reinhard and Planavsky, 2022). Therefore, fully
oxidised oceans as we know them today do not appear until
atmospheric O, levels approach modern levels in the late Protero-
zoic oxidation event (Reinhard and Planavsky, 2022; but see Xu
et al., 2023), and even then bottom-water anoxia seem to have been
the rule rather than the exception until the mid-Paleozoic era
(Stockey et al. 2024).

0, sources vs. sinks: balancing atmospheric oxygenation

Upper mantle oxidation to near modern fO, probably occurred
between 3.0 and 2.0 Ga (Fig. 4). The first geochemical evidence for
localised O, appears ca. 3.0 Ga, consistent with paleontological and
phylogenetic evidence for the emergence of oxygenic photosyn-
thesis (Anbar et al., 2007; Planavsky et al., 2014; Schirrmeister et al.,
2015; Sanchez-Baracaldo, 2015; Cardona et al., 2019; Garcia-Pichel
et al., 2019; Jabloniska and Tawfik, 2021, 2021; Fournier et al., 2021;
Boden et al., 2024) (Fig. 4d). Despite the constant chemical
exchange between atmosphere and hydrosphere, mineralogical
and geochemical evidence in the Earth’s sedimentary rock records
contrasting timelines for their respective oxygenation. Irrespective
of this problem, atmospheric oxygenation only occurs at 2.5-2.3 Ga
(e.g. Holland, 2002, 2006; Bekker et al, 2004; Canfield, 2005;
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Kasting et al., 2006; Guo et al., 2009; Luo et al., 2016; Gumsley et al.,
2017; Warke et al., 2020; Ossa Ossa et al., 2022). This indicates a
delay between upper mantle oxidation, the emergence of oxygenic
photosynthesis and the GOE by several hundred m.y. (Fig. 4). Thus,
the onset of microbial O, production alone cannot satisfactorily
explain the timing of the GOE.

Constraining the O, source-limited oxygenic photosynthesis?

One explanation for this delayed oxygenation of the Earth’s surface
environments is that the productivity of oxygenic photosynthesis in
early cyanobacteria was limited, decreasing the microbial O, flux
(see Dick et al., 2018 for a detailed review). Cyanobacteria depend
on bioavailable nitrogen and are major agents for nitrogen fixation
in today’s surface oceans (Field et al., 1998; Zehr and Kudela, 2011).
Nitrogen fixation is catalysed by the enzyme nitrogenase, which
contains molybdenum (Postgate, 1998). Molybdenum may have
been scarce in the reducing environments of the early Archean
Earth, where it was poorly soluble (Williams and Fratsto Da Silva,
2003). Thus, it was suggested that nitrogen fixation in cyanobacteria
was inhibited (Zerkle et al, 2006). At the same time, O, output by
oxygenic photosynthesis could have inhibited other nitrogen-fixing
microorganisms, ultimately starving cyanobacteria of bioavailable
nitrogen (Shi and Falkowski, 2008; Kasting and Canfield, 2012).
Nitrogen fixation could have occurred via lightning-driven atmos-
pheric reactions (Navarro-Gonzalez et al., 1998; Wong et al., 2017).
Still, the isotopic composition of most Archean sedimentary nitro-
gen isotope records suggests this process was not quantitatively
important for sustaining primary production (Barth et al., 2023).
Instead, nitrogen isotope evidence is consistent with biological
nitrogen fixation by at least 3.2 Ga (Stiieken et al., 2015a, 2016).
This is consistent with phylogenetic studies suggesting an early
emergence of nitrogen fixation in cyanobacteria (Latysheva et al,
2012). Hydrothermal sources may have sufficiently compensated
the low supply of molybdenum for nitrogenase from oxidative
weathering in the Archean (Evans et al, 2023). Moreover, hydro-
thermal systems probably played a role in recycling sedimentary
ammonium (Stiieken et al., 2021; Martin et al., 2024). Therefore,
nitrogen may not have been a limiting factor for cyanobacterial
productivity in the late Archean.

Bioavailable phosphorous, in the form of phosphate, is widely
considered another limiting factor for primary productivity in the
Archean and early Proterozoic ocean (Derry, 2015; Reinhard et al.,
2017; Ossa Ossa et al., 2019; Walton et al., 2023). This is despite its
supply from continental weathering (Hao et al., 2020; Watanabe
and Tajika, 2021) and possible hydrothermal sources (Rasmussen
etal.,2021,2023). For example, Ozaki et al. (2019) provide a model
for open ocean settings and investigate the competition between
O,-producing cyanobacteria and photoferrotrophs, the latter being
adapted to lower light levels, allowing them to thrive deeper in the
water column. Accordingly, nutrients such as phosphate and Fe**
from upwelling water masses are consumed by photoferrotrophs,
leaving surface water starved in either phosphate or Fe** (Kappler
et al., 2005; Ozaki et al., 2019). If oceanic iron/phosphate ratios are
high, oxygenic photosynthesis in the upper water column is effi-
ciently suppressed (Ozaki et al., 2019). In coastal settings, where the
water column is shallow and more nutrients are supplied from the
continent, benthic microbial mats are observed that probably prod-
uce O, (Homann et al., 2015; Homann, 2019), therefore the prod-
uctivity of cyanobacteria probably varied spatially and over time
(Konhauser et al., 2018). Moreover, the bioavailability of phosphor-
ous may have been limited due to inefficient remineralisation of
organic matter (Kipp and Stiieken, 2017) or phosphate scavenging
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by Fe’" and adsorption on or co-precipitation with (biogenic)
Fe(III) minerals in ferruginous oceans (Bjerrum and Canfield,
2002; Laakso and Schrag, 2014; Derry, 2015). The efficiency of
phosphate scavenging by Fe (III) minerals is debated (Konhauser
et al., 2007b; Jones et al, 2015). Recent analyses of carbonate-
associated phosphate in Archean rocks also challenge severe phos-
phate limitation in coeval waters (Ingalls et al., 2022; Crockford and
Halevy, 2022). Hence, the possible phosphate limitation of Archean
cyanobacteria remains an open question.

Phylogenetic evidence suggests the earliest cyanobacteria were
benthic freshwater strains that only diversified into brackish and
marine habitats in the late Archean (Blank and Sdnchez-Baracaldo,
2010; Schirrmeister et al., 2016; Sanchez-Baracaldo et al., 2017;
Grettenberger et al., 2025). Planktonic cyanobacteria may have
only appeared in the Neoproterozoic, expanding their habitat to
the open ocean (Sdnchez-Baracaldo et al, 2014, 2019; Sanchez-
Baracaldo, 2015; Schirrmeister et al., 2016). A benthic lifestyle, on
the other hand, would have constrained the spatial extent of
Archean cyanobacterial habitats to terrestrial or coastal areas,
limiting their overall O, production (Sanchez-Baracaldo et al.,
2014, 2017; Lalonde and Konhauser, 2015; Sanchez-Baracaldo,
2015). Once cyanobacteria expanded to marine environments, they
may have suffered from iron toxicity in the Archean oceans
(Swanner et al., 2015a, 2015b; Dreher et al., 2021). If true, this
was most probably due to reactive oxygen species produced during
Fe(II) oxidation by photosynthetic O, (Rush and Bielski, 1985).
However, more recent experiments did not observe such effects in
open bottle cultures that allowed for gas exchange, limiting the
accumulation of photosynthetic O, to concentrations assumed for
Archean oxygen oases (<10 pM; Herrmann et al., 2021). In these
sunlit environments, early cyanobacteria would have also been
exposed to high levels of UV radiation due to the absence of an
ozone shield (Mloszewska et al., 2018). Recently, it has also been
suggested that the net O, production in Archean cyanobacterial
mats was lower than previously thought due to shorter day lengths
(Klatt et al., 2021) or an inefficient photosystem in early cyano-
bacteria (Grettenberger and Sumner, 2024). One or more of these
factors could have limited the productivity of cyanobacteria in the
late Archean. The increasing abundance of continental crust
through the Archean (Fig. 4a) (Kemp and Hawkesworth, 2014;
Smit and Mezger, 2017; Korenaga, 2018) may have helped over-
come some of these limitations by supplying weathering-derived
phosphate and creating shallow marine habitats, increasing the
biological O, source. However, reliable primary productivity esti-
mates depend on the magnitudes of these effects, which remain to
be determined.

Critical O, sinks: reduced gases and solutes in Archean surface
environments

Apart from limited biological O, production, low ambient O, levels
could also be due to large fluxes into O, sinks. The most prominent
O, sinks are reduced gases and aqueous solutes in the Archean
atmosphere and oceans (e.g. Fe**, Mn>*, H,S, Corg) (Holland, 2002;
Claire et al., 2006; Gaillard et al., 2011; Lyons et al., 2014, 2024; Lee
et al., 2016; Catling and Zahnle, 2020). The sizes and capacities of
these sinks are partly controlled by fluid-rock interactions and
volcanic outgassing in chemical equilibrium with the redox state
of the Earth’s mantle and crust (Gaillard et al., 2021). As discussed
above, Earth supposedly accreted from relatively reduced material.
However, the mantle subsequently experienced oxidation
between 3.0 and 2.0 Ga (Fig. 4), shifting the redox state of volcanic
gases toward more oxidised species (Claire et al., 2006; Aulbach and


https://doi.org/10.1180/gbi.2025.10003

10

Stagno, 2016; O’Neill and Aulbach, 2022). When the abundance of
continental crust rose, magmatic outgassing was increasingly shal-
low and subaerial and, thus, more oxidised due to the pressure
dependence of volatile speciation in magmatic systems (Holland,
2002; Kump and Barley, 2007; Gaillard et al., 2011). Less mafic and
ultramafic rocks at the surface meant fewer reduced solutes (e.g. Fe”
*, Mn®") in seawater (Kump et al., 2001; Lee et al., 2016) and fewer
reduced species from serpentinisation (e.g. H,) (Hoffmann, 2017;
Smit and Mezger, 2017). More continental landmass increased the
accommodation space for the burial of reduced sediments, remov-
ing these critical O, sinks from the surface environment (Canfield,
2005; Lee et al., 2016; Zhao et al., 2023).

Biotic processes like microbial methanogenesis also control the
abundance of gaseous sinks in surface environments. Methanogens
are strictly anaerobic archaea that form CH, either by reduction of a
carbon substrate (e.g. hydrogenotrophic methanogenesis, CO,
reduction with H, as the electron donor) or by disproportionation
(i.e. fermentation) of organic compounds (e.g. acetoclastic meth-
anogenesis, acetate disproportionation) (Head, 2016) (Table 1).
Methane can contribute to O, consumption via photochemically
generated CH; and OH radicals in the atmosphere (Pavlov et al.,
2001; Kasting and Siefert, 2002; Claire et al., 2006; Daines and
Lenton, 2016). A study on the ferruginous and sulfate-poor Lake
Matano, an Archean ocean analogue site, showed a limitation of
dissimilatory sulfate reduction in favour of methanogenesis (Crowe
et al., 2011). Methanogens could, therefore, also have been import-
ant agents for the remineralisation of organic matter from Archean
primary production (e.g. Thompson et al, 2019). Highly °C
depleted CH, (8"C down to —56%o) from fluid inclusions in
hydrothermal quartz of the 3.48 Ga Dresser Formation may rep-
resent the oldest direct evidence for methanogenesis (Ueno et al,
2006). However, this CH, may originate from abiotic organic
synthesis (Sherwood Lollar and McCollom, 2006). Carbon isotopic
evidence for methanogenesis is also found in ca. 3.0 Ga fluvio-
lacustrine Lalla Rokh Sandstone (513COrg —30 to —38%o; Stiieken and
Buick, 2018), and in the shallow marine or lacustrine 2.72 Ga
Tumbiana Formation in Western Australia (513COrg down to —
56%o; Thomazo et al., 2011), which are probably unaffected by
hydrothermal CH,. Indeed, recent molecular clock studies place the
emergence of methanogenesis even >3.5 Ga (Wolfe and Fournier,
2018; but see Roger and Susko, 2018 for an alternative viewpoint).
Assuming biogenic CH, fluxes similar to today, the Archean atmos-
phere could have maintained CH, concentrations of thousands of
ppm (Pavlov et al., 2001; Kasting and Siefert, 2002; Kharecha et al.,
2005). The CH, flux probably decreased when sufficient seawater
sulfate was available and sulfate-reducing bacteria overtook meth-
anogens in organic carbon mineralisation (Zahnle et al., 2006).
Declining oceanic nickel concentrations may have further inhibited
methanogens (Konhauser et al., 2009). It seems plausible that the
late Archean decline of the atmospheric CH, pool was crucial for
the subsequent rise of atmospheric O,, rendering biogenic CH, an
important O, sink in the Archean. Together with an increasing flux
of biogenic O,, these processes exhausted the capacity of Earth’s
gaseous and aqueous O, sinks throughout the Archean, paving the
way for the GOE.

The Archean aerobic O, sink: insights from recent environments,
ancient rocks and modern genomes

Another potential O, sink in the Archean is its reduction coupled to
the oxidation of various electron donors (organic matter, CHy,
NH,*, NO,, Mn(ll), Fe(ll), sulfide) for conserving energy
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(i.e. aerobic respiration) by microorganisms (Table 1). Aerobic
respiration is associated with a greater energy yield compared to
anaerobic (i.e. O,-free) respiration, making it highly competitive in
environments where O, is available. Indeed, it is the most competi-
tive pathway for organic carbon remineralisation to CO, on mod-
ern Earth and a critical buffer against further atmospheric O,
accumulation (Berner, 1989). Microbial oxidation of CH, to CO,
using O, as the terminal electron acceptor (i.e. aerobic methano-
trophy) is a critical CH, sink (Table 1). Ammonium oxidation to
nitrite and nitrate by O, (i.e. nitrification; Table 1) is dominantly
controlled by aerobic microorganisms like Nitrosomonas and
Nitrobacter sp. in modern oceans (Falkowski, 1997; Stiieken ef al.,
2024). Microbial manganese oxidation by O, (Table 1) is the main
mechanism for Mn(IV) oxide production in modern oceans (Tebo
et al., 2005). This is because the microbially mediated oxidation of
Mn(II) by O, is up to five orders of magnitude faster than its
abiotic counterpart in seawater-like conditions (Nealson et al.,
1988; Tebo, 1991; Hansel, 2017; Yu and Leadbetter, 2020). There-
fore, Mn(II) oxidation in the presence of O, is generally mediated
by Mn-oxidising microorganisms, even at sub-micromolar O,
concentrations (Tebo et al., 2004, 2005; Schippers et al., 2005;
Clement et al, 2009; Learman et al, 2011). Microaerophilic
Fe(II)-oxidising bacteria (e.g. Gallionella, Leptothrix, Mariprofun-
dus sp) couple the oxidation of Fe(II) to the reduction of O,
(Table 1). At neutral pH, the oxidation of reduced sulfur com-
pounds (e.g. H,S) to S° or sulfate can occur at micromolar O,
concentrations using O, or nitrate as an electron acceptor
(e.g. Beggiatoa; Hentschel and Felbeck, 1993; Jorgensen and Gal-
lardo, 1999; Girguis et al., 2000; Dahl et al., 2008) (Table 1). In
acidic environments (e.g. hydrothermal sulfide systems, acid rock
drainage sites), microorganisms can exploit the aerobic oxidation
of S° or sulfide minerals, such as pyrite (e.g. Acidothiobacillus;
Segerer et al., 1986; Dahl et al., 2008). Microbial sulfide oxidation
is orders of magnitude faster than abiotic sulfide oxidation in most
sedimentary environments, particularly at low O, concentrations,
highlighting its role in consuming O, in the environment (Luther
etal,2011).

Despite the significance and diversity of microbial O, sinks in
recent environments and previous suggestions for the antiquity
of aerobic respiration (‘respiration early hypothesis’; Castresana
and Saraste, 1995), the role of biological O, consumption in the
Archean is poorly explored. The proliferation of aerobic micro-
organisms is traditionally assumed to postdate the GOE due to
the canonical lower limit for aerobic respiration (the ‘Pasteur
Point’) of 2.2 uM O, in seawater at 25°C (Devol, 1978). However,
the discovery of ‘nanaerobic’ life (Baughn and Malamy, 2004),
respiring aerobically at nanomolar O, concentrations, challenges
this paradigm. For instance, Escherichia coli, a well-studied model
organism, grows aerobically at O, concentrations as low as 3 nM
(Stolper et al., 2010). Moreover, it is increasingly recognised that
many microorganisms typically considered strict anaerobes can
also respire aerobically at low O, concentrations (Cypionka,
2000; Lee et al, 2019; Berg et al, 2019). It was cautioned that
aerobic growth rates under nanomolar O, concentrations are
strongly muted, suggesting that anaerobic respiration
(e.g. Fe(III) reducers) could outcompete aerobic microorganisms
in the Archean (Ducluzeau et al, 2014). However, advances in
O, microsensing and metatranscriptomic analysis demonstrate
that aerobic respiration is widespread in recent environments,
even under apparent anoxia, where aerobic microorganisms may
consume O, faster than it can accumulate (Berg et al., 2022 and
references therein).
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Recent oxygen minimum zones and stratified lakes parallel late
Archean environments by their low O, concentrations within or
below the photic zone, shedding light on the possible role of
microbial communities and biogeochemical processes before the
GOE. Aerobic methanotrophy (Table 1) has been identified as an
efficient CH, sink coupled to cryptic O, from oxygenic photosyn-
thesis in the photic zone of lakes (Oswald et al., 2015; Milucka et al.,
2015). These conditions could have been widespread in Archean
lakes and oceans, supporting the suggested role of aerobic metha-
notrophy in buffering atmospheric O, accumulation (Daines
and Lenton, 2016). Nitrification is efficient in oxygen minimum
zones, even at nanomolar O, concentrations (Kalvelage et al.,
2011, 2015; Fissel et al, 2012; Thamdrup et al, 2012; Beman
et al., 2013; Bristow et al., 2016). Optimal rates of microaerophilic
Fe(II) oxidation by Sideroxydans were observed at 5-20 uM O,
(Maisch et al., 2019), but the marine strain Mariprofundus can still
grow at sub-micromolar O, concentrations (Chiu et al., 2017;
McAllister et al., 2019). Most importantly, however, because the
abiotic oxidation of Fe(II) is slow at neutral pH and low O, (Segaard
et al., 2000), microaerophilic Fe(IT) oxidation outcompetes abiotic
oxidation at or below 50 pM O, (Druschel et al., 2008). Aerobic
sulfide oxidation also occurs in apparently anoxic environments of
modern lakes and oxygen minimum zones when the influx and
microbial consumption of O, are balanced, resulting in a cryptic O,
cycle (Sommer et al., 2017; Callbeck et al., 2018; Berg et al, 2019).
The micromolar O, concentrations inferred for late Archean
oxygen oases satisfy even conservative lower limits for aerobic
respiration, demonstrating that aerobic respiration was viable in
Neoarchean and, perhaps transiently, in Mesoarchean surface
waters. Cryptic O, consumption in recent environments, resulting
in O, concentrations below the detection limits of modern micro-
sensors, suggests the downwelling and downward diffusion of
oxygenated surface waters may have even allowed for aerobic
metabolism in apparently anoxic deeper Archean settings.

Early studies suggested that aerobic respiration is required to
mass-balance the preserved organic carbon in Archean black shales
(Towe, 1990). It is difficult to verify this by investigating the rock
record because isotope fractionation involved in heterotrophy is
much less than during the initial autotrophic carbon fixation
(Hayes, 2001). The resulting carbon species of aerobic methano-
trophy are strongly depleted in '>C and can be bound in carbonates
or assimilated in microbial biomass, enabling the reconstruction of
CH, oxidation in the geological record (Hayes, 2001; Eigenbrode
and Freeman, 2006). The 8"°C values in sedimentary carbonaceous
matter of down to —60%o were interpreted as evidence for aerobic
methanotrophs in the late Archean (Hayes, 1983, 1994; Hayes and
Waldbauer, 2006). Eigenbrode and Freeman (2006) present indir-
ect evidence for aerobic respiration based on &' Corg analysis of
<2.7 Ga sedimentary rocks. They conclude that the more consist-
ently 13C-depleted deep versus shallow facies (E‘)IZ’Corg =40 to —
45%0 and —57 to —28%o, respectively) demonstrate a more prom-
inent role of CH, cycling in anoxic deep water versus (aerobic)
respiration of photosynthetic organic matter in oxic surface water.
The presence of 3B-methylhopane biomarkers in the 2.7-2.5 Ga
Transvaal Supergroup and Hamersley Group supports this (Brocks
et al., 2003; Eigenbrode et al., 2008; Waldbauer et al., 2009), but the
syngeneity of biomarkers in these localities to their host rocks was
contested (Brocks, 2011). Highly depleted 3" °C signatures in
Archean carbonaceous matter could also be explained by anaerobic
oxidation of methane (AOM) (Hinrichs, 2002; Thomazo et al.,
2009b; Guy et al., 2012; Stiieken et al., 2017; Flannery et al., 2018;
Lepot et al., 2019), which is a major CH, sink on modern Earth
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(Knittel and Boetius, 2009). The quantitative importance of AOM
may have been limited in the Archean due to low marine sulfate
levels before the GOE (Catling et al., 2007) but alternative electron
acceptors like Fe(IIT) seem plausible (Knittel and Boetius, 2009;
Stiieken and Buick, 2018).

Nitrification produces ’N-enriched residual ammonium (5'°N
up to +35%o) that can be assimilated and recorded in sedimentary
organic matter (Mariotti et al., 1981; Casciotti, 2009; Mandernack
et al., 2009). Nitrite can be used to oxidise ammonium in the
absence of excess O, (anaerobic ammonium oxidation, ‘anammox’;
Mulder et al., 1995; Van De Graaf et al., 1995; Lam et al., 2009)
(Table 1). However, the anammox reaction also requires O, because
nitrite cannot be produced anaerobically (Stiieken et al., 2016).
Ammonium oxidation may also be coupled to the reduction of
sulfate (i.e. sulfammox) or Fe(III) (i.e. feammox) (Clement et al.,
2005; Yang et al., 2012; Rios-Del Toro et al., 2018). The latter was
suggested as the possibly dominant ammonium oxidation pathway
in the early Archean when O, scarcity prevented nitrite and sulfate
accumulation (Pellerin et al., 2023). Both denitrification to N,O or
N, and anammox produce 15N -enriched residual nitrate (Stiieken
etal.,2024). Notably, the §'°N record in metasedimentary rocks can
be further shifted to more positive values with increasing meta-
morphic grade due to the release of isotopically light ammonium or
N, (Ader et al., 2016). Ample nitrogen isotope evidence from low-
grade metasedimentary rocks (greenschist facies and below) shows
highly variable §'°N signatures (ca. —11 to +50%o) and a secular
increase of 8'°N of approximately 2%o at ca. 2.8-2.6 Ga (Garvin
et al., 2009; Godfrey and Falkowski, 2009; Thomazo et al., 2011;
Busigny et al., 2013; Stiieken et al., 2015b, 2016; Koehler et al., 2018;
Pellerin et al., 2024). The overall increase in sedimentary §'°N
values strongly suggests an increasing role of ammonium oxidation
in marine environments. Sulfate was virtually unavailable as an
electron acceptor during this time (e.g. Crowe et al., 2014) and 8'°N
values of up to +37.5%o from marine sediments are inconsistent
with feammox (Pellerin et al., 2024). Therefore, this trend is best
explained by the rise of nitrification, denitrification and/or ana-
mmox in the Meso- to Neoarchean (Garvin et al, 2009; Godfrey
and Falkowski, 2009; Thomazo et al., 2011; Busigny et al., 2013;
Stiieken et al., 2015b, 2016; Koehler et al., 2018; Pellerin et al., 2024),
consistent with phylogenetic reconstructions (Parsons et al., 2021).
These processes, including the presence of nitrate, were probably
transient and limited to settings with oxygenated surface waters.

Microaerophilic Fe(II)-oxidising bacteria commonly form char-
acteristic mineral-organic structures that consist of Fe(III) (oxydr)
oxide-encrusted stalks (Chan et al., 2016), which show good poten-
tial for fossilisation (Picard et al., 2015). The fossil record of these
stalks in hydrothermal jaspers, where preservation of such delicate
structures is most probable, extends back to at least 1.74 Ga (Little
et al.,2021). The oldest putative findings of such fossils are reported
in 3.77 Ga hydrothermal vent deposits (Dodd et al., 2017; Papineau
et al., 2022), although the biogenicity of these features would
require free O, in Eoarchean seafloor hydrothermal systems or a
different metabolic affinity. On modern Earth, microaerophilic
Fe(II) oxidisers inhabit a limited niche at opposing gradients of
0, and Fe*" in marine and terrestrial environments like hydrother-
mal vents, sediment-water interfaces and soils (Kappler et al.,
2021). However, in Archean oxygen oases where O, was produced
in the photic zone and Fe** was supplied from below, this niche
could have been much larger (Holm, 1989; Konhauser et al., 2002;
Dreher et al., 2021).

The presence of abundant Mn oxides in late Archean sediment-
ary rocks is another signature of aerobic metabolism. In the absence
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of O,, Mn(II) may also be oxidised by a range of abiotic and other
biotic mechanisms, including photooxidation by UV radiation,
Mn-dependent anoxygenic photosynthesis and Mn oxidation
coupled to alternative electron acceptors like nitrate (Luther et al.,
1997; Johnson et al., 2013; Daye et al., 2019; Liu et al, 2020).
However, the transfer of Mn oxides from the water column to the
sediments and their preservation required an oxygenated depos-
itional environment devoid of Fe(II) and H,S, in which aerobic
microorganisms dominate Mn(II) oxidation today (Jones et al.,
2011; Smith and Beukes, 2023; Robbins et al, 2023; Mhlanga
et al., 2023).

Fossil evidence for the antiquity of aerobic sulfur oxidation is
scarce, probably due to the metastable nature of the product S°, the
poor preservation potential of sulfur oxidiser cells upon silicifi-
cation and a lack of distinct sulfur isotope signatures (Canfield,
2001; Cosmidis et al,, 2019; Nims et al., 2021). Nevertheless,
morphological characteristics (size, cell wall structure) combined
with paleoecological considerations were used to interpret car-
bonaceous microstructures in the 2.52 Ga Gamohaan Formation
(South Africa) as sulfur-oxidising bacteria similar to Thiomargar-
ita (Czaja et al., 2016). Microbial sulfur oxidation is also sup-
ported by multiple sulfur isotope compositions of 3.22 Ga sulfates
(Nabhan et al., 2020) and possible microbially induced corrosion
features on ca. 3.4 Ga detrital pyrite (Wacey et al., 2011). If true,
this does not necessarily indicate an aerobic metabolism due to the
potential coupling of sulfur oxidation with nitrate reduction.
Chromium isotopes in Archean BIFs trace chromium mobilisa-
tion during the oxidative weathering of pyrite exposed on contin-
ents by 2.48 Ga (Konhauser et al., 2011). It was suggested that this
was due to the activity of acidophilic sulfide-oxidising bacteria
(Konhauser et al, 2011) or pyrite oxidation by photochemically
generated Fe>* (Hao et al., 2022). In marine environments, aer-
obic sulfur oxidisers may have been limited to microbial mats,
oxidising sulfide generated in underlying sediments (Konhauser,
2007). In the open ocean, sulfide was dominantly sourced from
hydrothermal systems and probably scavenged by Fe** before it
reached oxygenated surface waters (Canfield et al, 2006),
although euxinic conditions possibly prevailed locally in the late
Archean (Reinhard et al., 2009; Scott et al., 2011). These examples
highlight the fragmented nature of direct evidence for aerobic
metabolism from the geological record.

Such biosignatures can be used as calibration points in phylo-
genetic studies exploring the emergence and diversification of
aerobic microorganisms on early Earth. A Mesoarchean origin of
aerobic respiration is supported by the emergence of enzymes
involved in oxygen cycling to 22.9 Ga, i.e. atleast ca. 500 m.y. before
the GOE (David and Alm, 2011; Wang et al., 2011; Kim et al., 2012;
Jabtoniska and Tawfik, 2021; Boden et al, 2021). Possibly, early
enzymes catalysing O, reduction might be a detoxification mech-
anism for coping with oxidative stress (‘aerotolerance’) rather than
aerobic respiration (Brochier-Armanet et al., 2009; Gribaldo et al.,
2009; Jabloniska and Tawfik, 2021, 2022). Aerotolerance could be an
adaptation to abiotic sources of reactive oxygen species and O, on
early Earth (Haqq-Misra et al., 2011; He et al., 2021, 2023; Stone
et al., 2022). Nevertheless, the early origin of these enzymes is
consistent with geochemical proxies suggesting locally or transi-
ently sufficient O, for aerobic respiration (Anbar et al, 2007;
Ostrander et al., 2021), current reconstructions of the emergence
of oxygenic photosynthesis at ca. 3.0 Ga (Schirrmeister et al., 2015;
Sanchez-Baracaldo, 2015; Cardona et al., 2019; Garcia-Pichel et al.,
2019; Jabloniska and Tawfik, 2021; Fournier et al., 2021; Boden et al.,
2024) and the recent discovery of ancestral high redox potential
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quinones predating the emergence of cyanobacteria (Elling ef al.,
2025). Notably, for O, to leave a proxy record, it must degas into the
atmosphere (in the case of MIF-S) or affect the solubility of redox-
sensitive elements (e.g. chromium, molybdenum). However,
released O, may not reach concentrations reflected in O, proxies
due to its consumption by various O, sinks, including aerobic
microorganisms. Conversely, oxidative weathering within benthic
microbial mats can produce O, proxy signals, even if O, does not
accumulate in the environment due to microbial consumption
(Lalonde and Konhauser, 2015). Therefore, aerobic microorgan-
isms are a plausible O, sink after the emergence of oxygenic
photosynthesis, even when seawater or atmospheric O, concentra-
tions were too low to leave a proxy record. Aerobic microorganisms
may thus have consumed O, produced by cyanobacteria, even if the
O, flux was small due to the possible inhibition of oxygenic photo-
synthesis. Thus, as soon as oxygenic photosynthesis emerged ca. 3.0
Ga, an aerobic niche appeared for microorganisms to exploit. In
concert, the current evidence renders it probable that the Archean
aerobic biosphere represented an O, sink that helped delay
the GOE.

Synthesis and future research directions

Earth presumably accreted from reduced material but the mantle
oxidised early in its history due to core formation, late accretion of
relatively oxidised material, Fe(III) transfer from the lower to the
upper mantle and H, outgassing (e.g. Wade and Wood, 2001; Frost
et al., 2004; Rubie et al., 2011; Sharp et al., 2013; Pahlevan et al.,
2019). Between 3.0 and 2.0 Ga, the upper mantle probably evolved
to near-modern fO, (e.g. Aulbach and Stagno, 2016; Stagno and
Fei, 2020; O’Neill and Aulbach, 2022) (Figs 2, 3). The earliest
putative evidence for localised and/or transient O, in Earth’s sur-
face environments appears at 3.0 Ga (Planavsky ef al., 2014; Ossa
Ossa et al., 2016, 2018; Smith and Beukes, 2023), coinciding with
phylogenetic studies on the emergence of oxygenic photosynthesis
(e.g. Schirrmeister et al., 2015; Sanchez-Baracaldo, 2015; Fournier
et al., 2021) (Fig. 4). ‘Whiffs of oxygen’ inferred from manganese
enrichments and stable isotopes become more abundant at 2.6-2.5
Ga, suggesting an expansion of oxygenated surface waters
(e.g. Anbar et al, 2007; Kendall et al., 2015; Smith and Beukes,
2023). Atmospheric oxygenation is recorded by the disappearance
of the MIF-S signal at ca. 2.3 Ga (e.g. Farquhar, 2000; Pavlov and
Kasting, 2002; Bekker et al., 2004; Poulton et al., 2021) (Fig. 4). This
timeline demonstrates a delay of several hundred million years
between the first appearance of O, in Earth’s surface environments
and its atmospheric accumulation. Thus, the emergence of oxygenic
photosynthesis alone cannot satisfactorily explain the timing of
the GOE.

Various models were put forward to explain this delay. One set
of ideas centres around a suppressed biological O, source due to
phosphorous limitation, iron toxicity or ecological factors affecting
the productivity of oxygenic photosynthesis in the Archean
(e.g. Swanner et al, 2015a; Sanchez-Baracaldo, 2015; Reinhard
et al., 2017). Other models focus on O, sinks, like reduced gases
and aqueous solutes in surface environments, which acted as effect-
ive buffers against atmospheric oxygenation before their capacity
diminished over time (e.g. Holland, 2002; Gaillard et al., 2011; Lee
et al., 2016; O’Neill and Aulbach, 2022). However, the role of
aerobic respiration, a critical O, sink today, seems less constrained
for the Archean. Studies on recent environments and microbial
incubation experiments increasingly show that aerobic growth
occurs at O, concentrations inferred for late Archean oases or even
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under apparently anoxic conditions (e.g. Stolper et al, 2010;
Milucka et al., 2015; Berg et al., 2019). Combined evidence from
biosignatures and phylogenetic reconstructions suggests the pres-
ence of an aerobic biosphere at least since the emergence of oxy-
genic photosynthesis (e.g. Godfrey and Falkowski, 2009; David and
Alm, 2011; Jablonska and Tawfik, 2021). These aerobic micro-
organisms could have lived closely associated with early cyanobac-
teria, helping to prevent environmental oxygenation since 3.0 Ga
(Berg et al, 2022). Microbial O, consumption was probably
coupled to the oxidation of organic matter, CH,, iron, manganese
and sulfur before the end of the Archean (Fig. 5). The importance of
this sink must have increased over time as a direct response to
progressive oxygenation of Earth’s surface environments. This, in
turn, was facilitated by the solid Earth’s redox evolution, shifting
volcanic gases and aqueous solutes to more oxidised species.
Viewed this way, the expansion of the aerobic biosphere represents
geobiological feedback to solid Earth and surface oxidation, helping
to delay the GOE for several hundred M.y. after the emergence of
oxygenic photosynthesis.

Still, several questions remain concerning the efficacy of the
aerobic biosphere as an O, sink. It was previously noted that the
advent of aerobic metabolisms under Archean Earth conditions
does not necessarily demonstrate their environmental impact
(Lyons et al., 2024). Indeed, the degree to which aerobic respiration
could buffer O, production by oxygenic photosynthesis is currently
unknown. This highlights the need for an improved mechanistic
and quantitative assessment of the aerobic biosphere as an O, sink
in the Archean. When and in what sequence did the various aerobic
metabolisms emerge? What was the environmental distribution of
aerobic microorganisms and how much O, could they consume
under conditions in Archean aquatic settings? How did competi-
tion between aerobic microorganisms for resources impact their
activity and what are the relative roles of microbial versus abiotic O,
consumption in the environment?

A critical prerequisite for quantifying the role of the aerobic O,
sink is constraining the O, flux. Despite significant advances, the
productivity of cyanobacteria before the GOE and the spatial
distribution of oxygenated environments remain open questions.
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Figure 5. Schematic of microbial O, sources and
sinks on the late Archean Earth. Oxygenic
photosynthesis is the major O, source.
Biomass from primary productivity, anaerobic
respiration (i.e. dissimilatory reduction of NO3,
Mn(IV), Fe(lll), SO,*), methanogenesis and
abiotic sources (not indicated) yield diverse O,
sinks (i.e. Corg, NH,", Mn(ll), Fe(ll), H,S, CH,).
Aerobic microorganisms couple the oxidation
of these sinks to the reduction of O,, forming
the microbial O, sink. The geochemical zonation
on the left was redrawn from Canfield and
Thamdrup (2009). Note that this zonation
reflects the decreasing energy vyield of the
corresponding respiration process and may
strongly overlap in natural environments,
therefore it does not necessarily match the
depth profile of the indicated chemical species.

Reconstructing whether the earliest molecular mechanisms for O,
reduction were coupled to energy conservation rather than just
detoxification would help identify when the biosphere became a
more efficient O, sink. Protocols for biosignature detection must
improve to pinpoint the earliest evidence of the various aerobic
metabolisms in the geological record and serve as calibration points
for phylogenetic studies on the genomes of modern (nan)aerobic
microorganisms. This will help refine the evolutionary history of
Earth’s aerobic biosphere. Moreover, the environmental prevalence
of aerobic growth at nanomolar O, concentrations is poorly con-
strained on modern Earth but may have been larger in the Archean
(Berg et al., 2022). Broad surveys of modern apparently anoxic
environments, integrating geochemical and genomic evidence, will
be crucial in constraining the prevalence of nanaerobic life.
Co-culturing experiments of cyanobacteria and different aerobic
microorganisms under Archean ocean conditions, including
reduced species like Fe**, may better constrain the past activity of
aerobic respiration. These data are critical for quantitative models
on Archean microbial O, consumption, which previously did not
account for the metabolic diversity of the aerobic biosphere
(Goldblatt et al., 2006; Claire et al., 2006; Catling et al., 2007; Daines
and Lenton, 2016), possibly underestimating the capacity of the
microbial O, sink. Addressing these issues will help answer which
aerobic microorganisms consumed how much O,, when and where
in Archean environments and improve our understanding of why
the GOE happened when it did.
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