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Abstract

We derive and analyse well-posed boundary conditions for the linear shallow water
wave equation. The analysis is based on the energy method and it identifies the number,
location and form of the boundary conditions so that the initial boundary value problem
is well-posed. A finite-volume method is developed based on the summation-by-parts
framework with the boundary conditions implemented weakly using penalties. Stability
is proven by deriving a discrete energy estimate analogous to the continuous estimate.
The continuous and discrete analysis covers all flow regimes. Numerical experiments
are presented verifying the analysis.

2020 Mathematics subject classification: 65M12.

Keywords and phrases: numerical analysis, finite volume, boundary condition, energy
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1. Introduction

Numerical models that solve the shallow water wave equations (SWWEs) have become
a common tool for modelling environmental problems. This system of nonlinear
hyperbolic partial differential equations (PDEs) represent the conservation of mass and
momentum of unsteady free surface flow subject to gravitational forces. The SWWEs
assume that the fluid is inviscid, incompressible and the wavelength of the wave is
much greater than its height. Typically, these waves are associated with flows caused,
for example, by tsunamis, storm surges and floods in riverine systems. The SWWEs are
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also a fundamental component for predicting a range of aquatic processes, including
sediment transport and the transport of pollutants. All these processes can have a
significant impact on the environment, vulnerable communities and infrastructure.
Therefore, making accurate predictions using the SWWEs is crucial for urban, rural
and environmental planners.

For practical problems, the SWWEs have been solved numerically using
finite-difference methods [9], finite-volume methods [14], discontinuous Galerkin
method [13] and the method of characteristics [2]. Although, the SWWEs are in
common use, a rigorous theoretical investigation of boundary conditions necessary for
their solution is still an area of active research [4].

In this paper, we investigate well-posed boundary conditions for the linearized
SWWEs using the energy method [5, 6] and develop a provably stable numerical
method for the model. The SWWEs that we use are written in conservative form,
where the mass h and momentum uh are conserved, and energy is lost through shocks.
This is physically reasonable and validated by experimental data. We wish to extended
this work to the nonlinear form of the equations in the future. Since, the nonlinear
equations admit shocks, addressing the shock speed appropriately is necessary and,
therefore, involve the conservative quantities not the primitive variables.

Following Ghader and Nordström [4], our analysis identifies the type, location and
number of boundary conditions that are required to yield a well-posed initial boundary
value problem (IBVP). More importantly, we formulate the boundary conditions so
that they can be readily implemented in a stable manner for numerical approximations
that obey the summation-by-parts (SBP) principle [7]. We demonstrate this by deriving
a stable finite-volume method using the SBP framework and impose the boundary
conditions weakly using the simultaneous approximation term (SAT) method [1]. This
SBP-SAT approach enables us to prove that the numerical scheme satisfies the discrete
counterparts of energy estimates required for well-posedness of the IBVP, resulting in
a provably stable and conservative numerical scheme.

The continuous and discrete analysis covers all flow regimes, namely sub-critical,
critical and super-critical flows. Numerical experiments are performed to verify the
theoretical analysis of the continuous and discrete models.

In the following section, we derive stable boundary conditions for the linearised
SWWE in the continuous level and in Section 3, in the discrete level. In Section 4,
we verify the stability of the numerical model using numerical tests. We conclude that
the SBP-SAT finite-volume scheme is stable for a variety of boundary conditions in
Section 5.

2. Continuous analysis

The one-dimensional (1D) SWWEs are

∂h
∂t
+
∂(uh)
∂x
= 0,

∂(uh)
∂t
+
∂(u2h + gh2/2)

∂x
= 0, (2.1)
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where x ∈ R is a spatial variable, t ≥ 0 is time, h(x, t) > 0 and u(x, t) are the water
depth and the depth averaged fluid velocity, respectively, and g > 0 is the gravitational
acceleration.

To make our analysis tractable, we linearise the SWWEs by substituting h = H + h̃
and u = U + ũ into (2.1), where h̃ and ũ denote perturbations of the constant water
depth H > 0 and fluid velocity U, respectively.

After simplifying, the linearised SWWEs are

∂h̃
∂t
+ U
∂h̃
∂x
+ H
∂ũ
∂x
= 0,

∂ũ
∂t
+ g
∂h̃
∂x
+ U
∂ũ
∂x
= 0. (2.2)

Introducing the unknown vector field p =
[̃
h ũ
]�

, the linear equation (2.2) can be
rewritten in a more compact form as

∂p
∂t
= Dp, D = −M ∂

∂x
, p =

[̃
h ũ
]�

, M =
[
U H
g U

]
. (2.3)

To avoid inconsistencies in the units of the matrix entries, we rescale the variables
as follows:

q =

⎡⎢⎢⎢⎢⎢⎣̃̃h˜̃u
⎤⎥⎥⎥⎥⎥⎦ =
[̃
h/H
ũ/c

]
= Wp, W =

[
1/H 0

0 1/c

]
. (2.4)

First, we multiply (2.3) by W, and introduce the dimensionless variable q and the
symmetric matrix M = WMW−1. After simplifying and dropping the double-tilde, for
simplicity, the dimensionless equation can be written as

∂q
∂t
= Dq, D = −M

∂

∂x
, q =

[
h u
]�

, M =
[
U c
c U

]
. (2.5)

Note that in (2.5), the constant coefficient matrix M is symmetric. This will simplify
the following analysis.

We will consider (2.5) in a bounded domain, and augment it with initial and
boundary conditions. Let our domain be Ω = [0, 1] and Γ = {0, 1} be the boundary
points. We consider the IBVP

∂q
∂t
= Dq, x ∈ Ω, t ≥ 0, (2.6a)

q(x, 0) = f(x), x ∈ Ω, (2.6b)

Bq = b(t), x ∈ Γ, t ≥ 0, (2.6c)

where B is a linear boundary operator, b is the boundary data and f ∈ L2(Ω) is the
initial condition. One objective of this study is to investigate the choice of the boundary
operator B which ensures that the IBVP (2.6) is well-posed. To simplify the coming
analysis, we will consider zero boundary data b = 0, but the results can be extended to
nontrivial boundary data b � 0. Furthermore, numerical experiments performed later
in this paper confirm that the analysis is valid for nonzero boundary data.
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Let p and q be real-valued vector functions, and define the standard L2(Ω) scalar
product and the norm

(p, q) =
∫
Ω

p�q dx, ‖q‖2 = (q, q) > 0, (2.7)

for all nonzero q ∈ R2.

DEFINITION 2.1. The IBVP (2.6) is well-posed if a unique solution q satisfies

‖q(·, t)‖ ≤ κeνt‖f‖, ‖f‖ < ∞

for some constants κ > 0 and ν ∈ R independent of f.

The well-posedness of the IBVP (2.6) can be related to the boundedness of the
differential operator D. We introduce the function space

V = {p| p(x) ∈ R2, ‖p‖ < ∞, 0 ≤ x ≤ 1, {Bp = 0, x ∈ Γ}}.

The following two definitions are useful.

DEFINITION 2.2. The operator D is said to be semi-bounded in the function space V
if it satisfies

(q, Dq) ≤ ν‖q‖2, ν ∈ R.

DEFINITION 2.3. The differential operator D is maximally semi-bounded if it is
semi-bounded in the function space V, but not semi-bounded in any space with fewer
boundary conditions.

It is well known that the maximally semi-boundedness of differential operator D is
a necessary and sufficient condition for the well-posedness of the IBVP (2.6) [6].

Thus, to ensure that the IBVP (2.6) is well-posed, we need: (a) the differential
operator D to be semi-bounded; and (b) the minimal number of boundary conditions
such that D is maximally semi-bounded.

To begin with, we will show that the differential operator D is semi-bounded in
L2(Ω).

LEMMA 2.4. Consider the differential operator D with the constant coefficients and
symmetric matrix M given in (2.5) and the L2 scalar product defined in (2.7), where
q�q > 0 for all nonzero q ∈ R2. If (q�Mq)|10 ≥ 0, then D is semi-bounded.

PROOF. We consider (q, Dq) and use integration-by-parts, then

(q, Dq) = −
∫
Ω

q�M
∂q
∂x

dx = −1
2

∫
Ω

∂

∂x
(q�Mq) dx = −1

2
(q�Mq)|10.

Thus, if the boundary term (q�Mq)|10 ≥ 0, then (q, Dq) ≤ 0. In particular, the upper
bound (q, Dq) = 0 satisfies Definition 2.2 with ν = 0. �
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The next step will be to derive boundary operators {Bp = 0, x ∈ Γ} with minimal
number of boundary conditions such that the boundary term is never negative,
(q�Mq)|10 ≥ 0.

Noting that the norm is related to the dimensionless mechanical energy Ẽ, that is,

1
2
‖q‖2 = E :=

∫
Ω

1
2

(h2 + u2) dx > 0 for all q ∈ R2\{0}.

The mechanical energy in the physical units can be recovered through the scaling
Ẽ = c2HE.

We introduce the boundary term

BT := −(q�Mq)|10.

By using the eigen-decomposition M = SΛST given by

S =
1
√

2

[
1 1
1 −1

]
, Λ =

[
λ1 0
0 λ2

]
, λ1 = U + c, λ2 = U − c, (2.8)

with the linear transformation[
w1
w2

]
= S�q =

1
√

2

[
h + u
h − u

]
, (2.9)

the boundary term can be re-written as

BT = (λ1w2
1 + λ2w2

2)|x=0 − (λ1w2
1 + λ2w2

2)|x=1. (2.10)

The number of boundary conditions will depend on the signs of the eigenvalues λ1,
λ2, which in turn depend on the magnitude of the flow U relative to the characteristic
wave speed c, and are determined by the Froude number Fr = |U|/c. If 0 ≤ Fr < 1,
then λ1 > 0 and λ2 < 0 for any U. In this case, we have one boundary condition each
in the inflow and outflow. For Fr > 1, the sign of the eigenvalues λ1 and λ2 will take
the sign of U. In this case, we have either two boundary conditions on the left if U > 0
(inflow at x = 0) or two boundary conditions on the right if U < 0 (inflow at x = 1).
The case where Fr = 1, we have λ1 > 0 and λ2 = 0 if U > 0, and λ1 = 0 and λ2 < 0 if
U < 0. That is, we only have one boundary condition at the inflow at x = 0 if U > 0 or
at x = 1 if U < 0.

Sub-critical flow. The flow is sub-critical when Fr < 1, which implies λ1 > 0 and
λ2 < 0. We need one boundary condition at x = 0 and another boundary condition at
x = 1. Therefore, for the sub-critical flow regime, we always need an inflow boundary
condition and an outflow boundary condition for any U. We formulate the boundary
conditions by

{Bp = b, x ∈ Γ} ≡ {w1 − γ0w2 = b1(t), x = 0; w2 − γNw1 = b2(t), x = 1}, (2.11)

where γ0, γN ∈ R are boundary reflection coefficients. The following lemma constrains
the parameters γ0, γN .

https://doi.org/10.1017/S1446181124000191 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000191


186 R. Prihandoko, K. Duru, S. Roberts and C. Zoppou [6]

LEMMA 2.5. Consider the boundary term BT defined in (2.10) and the boundary
condition (2.11) with b = 0 for sub-critical flows Fr < 1 with λ1 > 0 and λ2 < 0.
If 0 ≤ γ2

0 ≤ −λ2/λ1 and 0 ≤ γ2
N ≤ −λ1/λ2, then the boundary term is never positive,

that is, BT ≤ 0.

PROOF. Let w1 = γ0w2 at x = 0 and w2 = γNw1 at x = 1, and consider

(λ1w2
1 + λ2w2

2)|0 − (λ1w2
1 + λ2w2

2)|1 = w2
2(λ1γ

2
0 + λ2)|0 − w2

1(λ1 + λ2γ
2
N)|1.

Thus, if 0 ≤ γ2
0 ≤ −λ2/λ1 and 0 ≤ γ2

N ≤ −λ1/λ2, then λ1γ
2
0+λ2 ≤ 0 and λ1+λ2γ

2
N ≥ 0,

and then

BT = w2
2(λ1γ

2
0 + λ2)|0 − w2

1(λ1 + λ2γ
2
N)|1 ≤ 0. �

Super-critical flow. When Fr > 1, the flow is super-critical, then λ1 and λ2 both take
the sign of the average flow velocity U. That is, if U > 0, then λ1 > 0, λ2 > 0, and
if U < 0, then λ1 < 0, λ2 < 0. Thus, when U > 0 and Fr > 1, we need two boundary
conditions at x = 0, and no boundary condition at x = 1. Similarly, when U < 0 and
Fr > 1, we need two boundary conditions at x = 1 and no boundary conditions at x = 0.
Therefore, for super-critical flows, there are no outflow boundary conditions for any U.
We formulate the boundary conditions by

{Bq = b, x ∈ Γ} ≡ {w1 = b1(t), w2 = b2(t), x = 0 if U > 0 and Fr > 1}, (2.12a)
{Bq = b, x ∈ Γ} ≡ {w1 = b1(t), w2 = b2(t), x = 1 if U < 0 and Fr > 1}. (2.12b)

LEMMA 2.6. Consider the boundary term BT defined in (2.10) and the boundary
condition (2.12) with b = 0 for super-critical flows Fr > 1, we have BT ≤ 0.

PROOF. Let U > 0 with λ1 > 0, λ2 > 0 if w1 = 0, w2 = 0, at x = 0, then

BT = (λ1w2
1 + λ2w2

2)|0 − (λ1w2
1 + λ2w2

2)|1 = − 1
2 (λ1w2

1 + λ2w2
2)|1 ≤ 0.

If U < 0 with λ1 < 0, λ2 < 0 and w1 = 0, w2 = 0, at x = 1, then

BT = (λ1w2
1 + λ2w2

2)|0 − (λ1w2
1 + λ2w2

2)|1 = 1
2 (λ1w2 + λ2w2

2)|0 ≤ 0. �

Critical flow. The flow is critical when Fr = 1. Note that this case is degenerate,
since there is only one nonzero eigenvalue, that is, U > 0 implies λ1 > 0, λ2 = 0 and
U < 0 implies λ1 = 0, λ2 < 0. However, it can also be treated by prescribing only one
boundary condition for the system. The location of the boundary condition will be
determined by the sign of U, similar to the super-critical flow regime. We prescribe
the boundary conditions by

{Bq = b, x ∈ Γ} ≡ {w1 = b1(t), x = 0 if U > 0 and Fr = 1}, (2.13a)
{Bq = 0, x ∈ Γ} ≡ {w2 = b2(t), x = 1 if U < 0 and Fr = 1}. (2.13b)
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LEMMA 2.7. Consider the boundary term BT defined in (2.10) and the boundary
condition (2.13) with b = 0 for critical flows U2 = gH, we have BT ≤ 0.

PROOF. Let U > 0 with λ1 > 0, λ2 = 0 if w1 = 0, at x = 0,

BT = (λ1w2
1 + λ2w2

2)|0 − (λ1w2
1 + λ2w2

2)|1 = − 1
2λ1w2

1|1 ≤ 0.

If U < 0 with λ1 = 0, λ2 < 0 and w2 = 0, at x = 1, then also

BT = (λ1w2
1 + λ2w2

2)|0 − (λ1w2
1 + λ2w2

2)|1 = 1
2λ2w2

2|0 ≤ 0.

The proof is complete. �

We will conclude this section with the theorem that proves the well-posedness of
the IBVP (2.6).

THEOREM 2.8. Consider the IBVP (2.6) where the boundary operator Bq = 0 is
defined by (2.11) with γ2

0 ≤ −λ2/λ1 and γ2
N ≤ −λ1/λ2 for sub-critical flows, Fr < 1;

by (2.12) for the super-critical flow regime, Fr > 1; and by (2.13) for critical flows,
Fr = 1; we have the energy estimate

1
2

d
dt
‖q‖2W = BT ≤ 0. (2.14)

PROOF. We use the energy method, that is, from the left, we multiply (2.6a) with q�W
and integrate over the domain. As above, integration-by-parts gives

1
2

d
dt
‖q‖2W =

(
q,
∂q
∂t

)
W
= (q, Dq)W = BT.

Using Lemmas 2.5–2.7 for each flow regime gives BT ≤ 0. Then the proof is
complete. �

This energy estimate (2.14) is what a stable numerical method should emulate.

3. Numerical scheme

We derive a stable finite-volume method for the IBVP (2.6) encapsulated in the
SBP framework. Numerical stability is proved by deriving discrete energy estimates
analogous to Theorem 2.8.

3.1. The finite-volume method To begin, the domain, Ω = [0, 1], is subdivided
into N + 1 computational nodes having xi = xi−1 + Δxi for i = 1, 2, . . .N, with x0 = 0,
Δxi > 0 and

∑N
i=1 Δxi = 1. We consider the control cell Ii = [xi−1/2, xi+1/2] for each

interior node 1 ≤ i ≤ N − 1, and for the boundary nodes {x0, xN}, the control cells
are I0 = [x0, x1/2] and IN = [xN−1/2, xN], see Figure 1. Note that |Ii| = Δxi/2 + Δxi+1/2
for the interior nodes 1 ≤ i ≤ N − 1, and for the boundary nodes i ∈ {0, N}, we have

https://doi.org/10.1017/S1446181124000191 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000191


188 R. Prihandoko, K. Duru, S. Roberts and C. Zoppou [8]

FIGURE 1. Finite-volume nodes xi and control cells Ii.

|I0| = Δx1/2 and |IN | = ΔxN/2. The control cells Ii are connected and do not overlap,
and
∑N

i=0 |Ii| =
∑N

i=1 Δxi = 1.
Consider the integral form of (2.2) over the control cells Ii:

d
dt

∫
I0

p(x, t) dx +Mp(x1/2, t) −Mp(x0, t) = 0,

d
dt

∫
Ii

p(x, t) dx +Mp(xi+1/2, t) −Mp(xi−1/2, t) = 0, 1 ≤ i ≤ N − 1,

d
dt

∫
IN

p(x, t) dx +Mp(xN , t) −Mp(xN−1/2, t) = 0

withM =
[
U H
g U

]
and p =

[
h̃ ũ
]�

.

We introduce the cell-average

p̄i =
1
|Ii|

∫
Ii

p(x, t) dx,

and approximate the PDE fluxMp with the local Lax–Friedrich flux

Mp(xi+1/2, t) ≈
Mp̄i+1 +Mp̄i

2
− α

2
(p̄i+1 − p̄i), α ≥ 0, (3.1)

and

Mp(x0, t) ≈ Mp̄0, Mp(xN , t) ≈ Mp̄N .

The evolution of the cell-average is governed by the semi-discrete system

|I0|
dp̄0

dt
+M

p̄1 − p̄0

2
− α

2
(p̄1 − p̄0) = 0, (3.2a)

|Ii|
dp̄i

dt
+M

p̄i+1 − p̄i−1

2
− α

2
(p̄i+1 − 2p̄i + p̄i−1) = 0, 1 ≤ i ≤ N − 1, (3.2b)

|IN |
dp̄N

dt
+M

p̄N − p̄N−1

2
− α

2
(p̄N−1 − p̄N) = 0. (3.2c)
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Introducing the discrete solution vector p̄ = [p̄0, p̄1, . . . , p̄N]� and rewriting (3.2) in
a more compact form,

(I ⊗ P)
dp̄
dt
+ (M⊗ Q)p̄ − α

2
(I ⊗ A)p̄ = 0, (3.3)

where ⊗ denotes the Kronecker product and

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2

1
2 0 · · · 0 0 0

− 1
2 0 1

2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · − 1
2 0 1

2
0 0 0 · · · 0 − 1

2
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and P = diag([|I0|, |I1|, . . . , |IN |]). The matrix Q is related to the spatial derivative
operator, A is a numerical dissipation operator and α ≥ 0 controls the amount of
numerical dissipation applied. Note that A is symmetric and negative semi-definite,
that is, A = A� and p�Ap ≤ 0 for all p ∈ RN+1. The important stability property of the
semi-discrete approximation (3.3) is that the associated discrete derivative operator
satisfies the SBP property. To see this, we rewrite (3.3) as

dp̄
dt
+ (M⊗ Dx)p̄ − α

2
(I ⊗ P−1A)p̄ = 0,

where I is the 2 × 2 identity matrix and

Dx = P−1Q, Q + Q� = diag([−1, 0, . . . , 0, 1]). (3.4)

Equation (3.4) is the so-called SBP property [5, 7] for the first derivative d/dx, which
can be useful in proving numerical stability of the discrete approximation (3.3). Note
that we have not enforced any boundary condition yet, the boundary condition (2.6c)
will be implemented weakly using penalties.

3.2. Numerical boundary treatment and stability In this section, we will imple-
ment the boundary conditions and prove numerical stability. The boundary conditions
are implemented using the SAT method, similar terms used as in [1]; by appending the
boundary operators (2.11)–(2.13) to the right-hand side of (3.3) with penalty weights,

(I ⊗ P)
dp̄
dt
+ (M⊗ Q)p̄ − α

2
(I ⊗ A)p̄ = SAT. (3.5)

With e0 = [1, 0, . . . 0]T and eN = [0, 0, . . . 1]T , the SAT for sub-critical flow is

SAT = −1
2

(W−1S ⊗ I)

[
τ01e0(w̄1 − γ0w̄2 − b1(t)) + τN1eN(w̄2 − γNw̄1 − b2(t))
τ02e0(w̄1 − γ0w̄2 − b1(t)) + τN2eN(w̄2 − γNw̄1 − b2(t))

]
, (3.6)
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and for critical/super-critical flow regimes,

SAT = −1
2

(W−1S ⊗ I)

[
τ01e0(w̄1 − b1(t))
τ02e0(w̄2 − b2(t))

]
, U > 0, (3.7a)

SAT = −1
2

(W−1S ⊗ I)

[
τN1eN(w̄1 − b1(t))
τN2eN(w̄2 − b2(t))

]
, U < 0. (3.7b)

Here, S is the orthonormal eigenvector matrix given in (2.8) and W is the diagonal
weight matrix given in (2.4). The coefficients τ01, τ02, τN1, τN2 are real penalty
parameters to be determined by requiring stability. Note that (3.5) is a consistent
semi-discrete approximation of the IBVP (2.6) for all nontrivial choices of the penalty
parameters. The semi-discrete approximation (3.5), given that the discrete derivative
operator satisfies the SBP property (3.4), is often referred to as the SBP-SAT scheme
[3, 8]. We introduce the discrete weighted L2-norm

‖q̄‖2 := q̄T (I ⊗ P)q̄ ≥ 0

for some weighted matrix W. The semi-discrete approximation (3.5) is stable if the
discrete energy norm ‖q̄‖2 is nonincreasing with time. We will now prove the stability
of the semi-discrete approximation (3.5) for sub-critical flows.

THEOREM 3.1. Consider the semi-discrete finite-volume approximation (3.5) with
the SAT (3.6) and b = 0 for sub-critical flow regimes, where λ1 > 0, λ2 < 0 and
γ2

0 ≤ −λ2/λ1, γ2
N ≤ −λ1/λ2. If the penalty parameters are chosen such that

τ01 = λ1, τ02 = γ0λ1; τN2 = −λ2, τN1 = −γNλ2,

then

1
2

d
dt
‖q̄‖2 ≤ 0 for all t ≥ 0.

PROOF. We use the energy method, that is, from the left, we multiply (3.5) with
(W ⊗ I), and using identity q̄ = Wp̄ and M = WMW−1,

(I ⊗ P)
dq̄
dt
+ (M ⊗ Q)q̄ − α

2
(I ⊗ A)q̄ = (W ⊗ I)SAT.

We multiply this equation with q�, add its transpose and then simplify further, then:

1
2

d
dt
‖q̄‖2 + 1

2
q̄T (M ⊗ (Q + QT ))q̄ − α

2
q̄T (I ⊗ A)q̄ = q̄T (W ⊗ I)SAT.

Using the SBP property (3.4) and the eigen-decomposition of M,

1
2

d
dt
‖q̄‖2 − α

2
q̄T (I ⊗ A)q̄ =

1
2

BTnum,
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where

BTnum = (λ1w̄2
1 + λ2w̄2

2 − (τ01w̄1(w̄1 − γ0w̄2) + τ02w̄2(w̄1 − γ0w̄2)))|i=0

− (λ1w̄2
1 + λ2w̄2

2 + (τN1w̄1(w̄2 − γNw̄1) + τN2w̄2(w̄2 − γNw̄1)))|i=N .

Thus, if τ01 = λ1, τ02 = γ0λ1; τN2 = −λ2, τN1 = −γNλ2, then

BTnum = (λ2 + λ1γ
2
0)w̄2

2|i=0 − (λ1 + λ2γ
2
N)w̄2

1|i=N .

Since λ1 > 0, λ2 < 0 and

(λ2 + λ1γ
2
0) ≤ 0 ⇐⇒ γ2

0 ≤ −λ2/λ1; (λ1 + λ2γ
2
N) ≥ 0 ⇐⇒ γ2

N ≤ −λ1/λ2,

then it must be true that BTnum ≤ 0. Since A is negative semi-definite, then for α ≥ 0,
we have α/2q̄T (I ⊗ A)q̄ ≤ 0 and

1
2

d
dt
‖q̄‖2 = α

2
q̄T (I ⊗ A)q̄ + BTnum ≤ 0.

This completes the proof. �

The next theorem will prove the stability of the semi-discrete approximation (3.5)
for super-critical flows.

THEOREM 3.2. Consider the semi-discrete finite-volume approximation (3.5) with the
SAT (3.7) and b = 0 for super-critical flows. If the penalty parameters are chosen such
that τ01 ≥ λ1, τ02 ≥ λ2; τN1 ≥ −λ1, τN2 ≥ −λ2, then

1
2

d
dt
‖q̄‖2 ≤ 0 for all t ≥ 0.

PROOF. As above, the energy method with the SBP property (3.4) and the
eigen-decomposition of M yields

1
2

d
dt
‖q̄‖2 − α

2
q̄T (I ⊗ A)q̄ = BTnum,

where

BTnum = ((λ1 − τ01)w̄2
1 + (λ2 − τ02)w̄2

2)|i=0 − (λ1w̄2
1 + λ2w̄2

2)|i=N , U > 0,

BTnum = (λ1w̄2
1 + λ2w̄2

2)|i=0 − ((λ1 + τN1)w̄2
1 + (λ2 + τN2)w̄2

2)|i=N , U < 0.

Therefore, if τ01 ≥ λ1, τ02 ≥ λ2; τN1 ≥ −λ1, τN2 ≥ −λ2, then we have BTnum ≤ 0.
Noting that α ≥ 0 and, as previous, we have α/2q̄T (I ⊗ A)q̄ ≤ 0, which gives us

1
2

d
dt
‖q̄‖2 = α

2
q̄T (I ⊗ A)q̄ + BTnum ≤ 0,

so the proof is complete. �

Finally, we will prove the stability of the semi-discrete approximation (3.5) for
critical flows.
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THEOREM 3.3. Consider the semi-discrete finite-volume approximation (3.5) with the
SAT (3.7) and b = 0 for critical flows. If the penalty parameters are chosen such that
τ01 ≥ λ1, τ02 = 0; τN1 = 0, τN2 ≥ −λ2, then

1
2

d
dt
‖q̄‖2 ≤ 0 for all t ≥ 0.

PROOF. The zero penalties ensure consistency of the SAT, that is, τ02 = 0 and τN1 = 0
give

SAT = −1
2

(W−1S ⊗ I)

[
τ01He0w̄1

0

]
, U > 0,

SAT = −1
2

(W−1S ⊗ I)

[
0

τN2geNw̄2

]
, U < 0.

Again the energy method with the SBP property (3.4) and the eigen-decomposition of
M yield

1
2

d
dt
‖q̄‖2 − α

2
q̄T (I ⊗ A)q̄ = BTnum,

where

BTnum = (λ1 − τ01)w̄2
1|i=0 − λ1w̄2

1|i=N , U > 0, λ1 > 0, λ2 = 0,

BTnum = λ2w̄2
2|i=0 − (λ2 + τN2)w̄2

2|i=N , U < 0, λ1 = 0, λ2 < 0.

Therefore, if τ01 ≥ λ1 and τN2 ≥ −λ2, then we have BTnum ≤ 0. Using the fact that
α ≥ 0 and α/2q̄T (I ⊗ A)q̄ ≤ 0 again gives the result that we wanted:

1
2

d
dt
‖q̄‖2 = α

2
q̄T (I ⊗ A)q̄ + BTnum ≤ 0.

This completes the proof. �

4. Numerical experiments

In this section, we perform numerical experiments to verify the analysis undertaken
in the previous sections. Similar to the theoretical analysis, the numerical experiments
cover the three flow regimes, namely the sub-critical, critical and super-critical flow
regimes. We used H = 1 m, g = 9.8 m/s2, and U ∈ { 12

√
gH,
√

gH, 2
√

gH}, which
correspond to the three different flow regimes. The interval of interest is [0, L] with
L > 0. Note that U > 0 so that x = 0 is the inflow boundary and x = L is the outflow
boundary. The locations and the number of boundary conditions required are given in
Table 1, and the explicit forms of the boundary conditions considered here are given
in Table 2, where g1(t) and g2(t) are the boundary data.
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TABLE 1. The number and location of the boundary condition in all regime. The boundary at x = 0
(x = 1) is inflow (outflow) boundary if U > 0 and outflow (inflow) boundary if U < 0.

Regime Type of boundary Number of boundary conditions

sub-critical inflow 1
outflow 1

critical inflow 1
outflow 0

super-critical inflow 2
outflow 0

TABLE 2. Transmissive boundary conditions in all regimes with U > 0.

Regime U Boundaries Boundary conditions

sub-critical <
√

gH x = 0 1
2 (̃h +

√
H/g ũ) = g1

x = L 1
2 (̃h −

√
H/g ũ) = g2

critical =
√

gH x = 0 1
2 (̃h +

√
H/g ũ) = g1

super-critical >
√

gH x = 0 1
2 (̃h +

√
H/g ũ) = g1

1
2 (̃h −

√
H/g ũ) = g2

The semi-discrete system (3.5) is integrated in time using the classical fourth-order
accurate explicit Runge–Kutta method with the time step

Δt = Cr
Δx

|U| +
√

gH
, Cr = 0.25,

where Cr is the Courant–Friedrichs–Lewy number, Δx = L/N is the uniform cell width
and N is the number of finite-volume cells. We will consider a centred numerical flux
with α = 0 and the local Lax–Friedrich’s numerical flux (3.1) with α > 0, and verify
numerical accuracy. Note that the semi-discrete approximation is energy stable for all
α ≥ 0.

Nonhomogeneous boundary data. We consider zero initial conditions, that is,
u(x, 0) = 0 and h(x, 0) = 0, and send a wave into the domain through the inflow
boundary at x = 0. We will consider specifically g1(t) � 0 and g2(t) = 0 for the
boundary conditions given in Table 2, so that the corresponding IBVP has the exact
solution

h̃(x, t) = g1

(
t − x

U +
√

gH

)
, ũ(x, t) =

1√
H/g

g1

(
t − x

U +
√

gH

)
.
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We will consider a smooth boundary data given by

g1(t) =

⎧⎪⎪⎨⎪⎪⎩(sin(πt))4 if 0 ≤ t ≤ 1,
0 otherwise,

g2(t) = 0 for all t ≥ 0,

and non-smooth boundary data given by

g1(t) =

⎧⎪⎪⎨⎪⎪⎩1 if 0 < t ≤ 1,
0 otherwise,

g2(t) = 0 for all t ≥ 0.

The boundary data for the boundary conditions in Table 2 can be rewritten as b1(t)
and/or b2(t), and in terms of w1 = b1(t) =

√
2/Hg1(t) and w2 = b2(t) =

√
2/Hg2(t)

for the given boundary. In the sub-critical case, by using the linear transformation
(2.9), the boundary condition can be rewritten in the form (2.11) with γ0 = 0 and
γN = 0.

Using the fact that λ1 and λ2 have different signs, we have γ2
0 ≤ −λ2/λ1 and γ2

N ≤
−λ1/λ2 for all Fr < 1, that is, the condition of Lemma 2.5 is satisfied.

For the critical flow regime, we have Fr = 1 and λ2 = 0. Only one boundary
condition is imposed at the inflow, w̄1 = b1(t) = (

√
2/H)g1(t). This condition can be

rewritten to match the condition in Theorem 3.3 by using the linear transformation
(2.9) and the fact that U2 = gH.

For the super-critical flow regime, two boundary conditions are imposed at the
inflow boundary. That is, w̄1 = b1(t) = (

√
2/H)g1(t), w̄2 = b2(t) = (

√
2/H)g2(t) as the

boundary condition at x = 0. These boundary conditions are equivalent to (2.12a).
The boundary data will generate a pulse from the left boundary at x = 0, which will

propagate through the domain and leave the domain through x = L.
Figure 2 shows the snapshot of the sub-critical flow solutions at t = 3.02 s for both

smooth and nonsmooth boundary data, with α = 0 and α = 0.15 × (U +
√

gH) > 0.
In the plots, we have scaled the horizontal axis by the wave speed (U +

√
gH) so

that the solution is spatially invariant for all flow regimes. Note that for the smooth
pulse, the numerical solution matches the exact solution excellently well for α = 0
and α = 0.15 × (U +

√
gH) > 0, although with α = 0.15 × (U +

√
gH) > 0, the peak

of the numerical is slightly dissipated. For the nonsmooth pulse, when α = 0, the
propagation speed of the pulse is well approximated by the numerical solution.
However, there are numerical oscillations generated by the propagating discontinuities.
When α = 0.15 × (U +

√
gH) > 0, the numerical solution is nonoscillatory, but the

discontinuous edges of the solutions are smeared.
The evolution of the numerical solutions and the exact solutions, at all flow regimes,

are shown in Figure 3 for the smooth pulse and in Figure 4 for the nonsmooth
pulse. The pulses enter the domain through the inflow boundary at x = 0 and leave
the domain through the outflow at x = L = (U +

√
gH) × 5. Note that because of the

re-scaling of the x-axis to x/(U +
√

gH), the solutions are invariant for all three flow
regimes.
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FIGURE 2. The snapshots of the numerical and exact solutions with Δx = L × 2−11 m at time
t = 3.02 s for a sub-critical flow regime with smooth and nonsmooth boundary data. For the smooth
boundary data, the numerical solution matches the exact solution well for α = 0 and α = 0.15 ×
(U +

√
gH) > 0. Note, however, with α = 0.15 × (U +

√
gH) > 0, the peak of the numerical solution is

slightly dissipated. For the nonsmooth boundary data, when α = 0, the propagation speed of the pulse is
well approximated by the numerical solution. However, there are numerical oscillations generated by the
propagating discontinuities. When α = 0.15 × (U +

√
gH) > 0, the numerical solution is nonoscillatory,

but propagating discontinuities are smoothed out.

Convergence test. Here, we verify the convergence properties of the numerical
method. We will use the method of the manufactured solution [11]. That is, we force
the system to have the exact smooth solution

h(x, t) = cos(2πt) sin(6πx), u(x, t) = sin(2πt) cos(4πx). (4.1)

The initial conditions h(x, 0), u(x, 0) and the boundary data g1(t) and g2(t) are chosen to
match the analytical solution (4.1). We compute the numerical solution on a sequence
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FIGURE 3. The evolution of the numerical solutions and the exact solutions at all the three flow regimes
with smooth boundary data, Δx = L × 2−11 m and α = 0. The solutions enter the domain through the
inflow boundary at x = 0 and leave the domain through the outflow at x = L = (U +

√
gH) × 5. Note that

because of the re-scaling of the x-axis to x/(U +
√

gH), the solutions are invariant for all three flow
regimes.

of increasing number of finite-volume cells, N = 64, 128, 256, 512, 1024, 2048. The
L2-error and convergence rates of the error are shown in Figure 5 and also presented
in Table 3. We have performed numerical experiments with no dissipation α = 0 and
with numerical dissipation set at α = 0.05. From Table 3, we see that the method is
second-order accurate O(Δx2) when α = 0, and first-order accurate O(Δx) when α > 0.
These are in agreement with the theory.
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FIGURE 4. The evolution of the numerical solutions and the exact solutions at all three flow regimes with
nonsmooth boundary data, Δx = L × 2−11 m and α = 0.15 × (U +

√
gH) > 0. The discontinuous solutions

enter the domain through the inflow boundary at x = 0 and leave the domain through the outflow at
x = L = (U +

√
gH) × 5. Note that because of the re-scaling of the x-axis to x/(U +

√
gH), the solutions

are invariant for all three flow regimes.

5. Conclusion

Well-posed boundary conditions are crucial for accurate numerical solutions of
IBVPs. In this study, we have analysed well-posed boundary conditions for the linear
SWWE in 1D. The analysis is based on the energy method and prescribes the
number, location and form of the boundary conditions so that the IBVP is well-posed.
A summary of the results is shown in Table 1 and covers all flow regimes. We formulate
the boundary conditions such that they can be readily implemented in a stable manner
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FIGURE 5. The error and convergence of the error at final time t = 0.1 using the manufactured solution
for all flow regimes.
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TABLE 3. The error and convergence of the error at final time t = 0.1 using the manufactured solution for
all flow regimes.

(a) Sub-critical, U = 1
2

√
gH

N α = 0.0 α = 0.05
h error rate u error rate h error rate u error rate

64 1.56 × 10−02 1.44 × 10−02 1.60 × 10−02 3.24 × 10−02

128 3.88 × 10−03 2.01 3.49 × 10−03 2.06 4.50 × 10−03 1.77 1.34 × 10−02 1.21
256 9.68 × 10−04 2.00 8.69 × 10−04 2.01 1.51 × 10−03 1.49 6.23 × 10−03 1.08
512 2.42 × 10−04 2.00 2.17 × 10−04 2.01 6.31 × 10−04 1.20 3.02 × 10−03 1.03
1024 6.05 × 10−05 2.00 5.41 × 10−05 2.00 2.98 × 10−04 1.06 1.49 × 10−03 1.01
2048 1.51 × 10−05 2.00 1.35 × 10−05 2.00 1.47 × 10−04 1.01 7.41 × 10−04 1.01

(b) Critical, U =
√

gH

N α = 0.0 α = 0.05
h error rate u error rate h error rate u error rate

64 4.64 × 10−03 1.45 × 10−02 1.41 × 10−02 5.19 × 10−02

128 1.12 × 10−03 2.08 3.50 × 10−03 2.08 8.03 × 10−03 0.88 2.70 × 10−02 0.96
256 2.76 × 10−04 2.03 8.63 × 10−04 2.03 4.44 × 10−03 0.90 1.44 × 10−02 0.94
512 6.88 × 10−05 2.00 2.15 × 10−04 2.00 2.43 × 10−03 0.92 7.72 × 10−03 0.93
1024 1.72 × 10−05 2.00 5.39 × 10−05 2.00 1.33 × 10−03 0.91 4.21 × 10−03 0.92
2048 4.30 × 10−06 2.00 1.35 × 10−05 2.00 7.43 × 10−04 0.90 2.34 × 10−03 0.90

(c) Super-critical, U = 2
√

gH

N α = 0.0 α = 0.05
h error rate u error rate h error rate u error rate

64 6.71 × 10−03 1.40 × 10−02 7.63 × 10−03 1.27 × 10−02

128 1.60 × 10−03 2.10 3.43 × 10−03 2.03 2.12 × 10−03 1.80 3.33 × 10−03 1.90
256 3.93 × 10−04 2.03 8.54 × 10−04 2.01 7.15 × 10−04 1.49 1.11 × 10−03 1.50
512 9.79 × 10−05 2.01 2.13 × 10−04 2.00 2.90 × 10−04 1.23 4.91 × 10−04 1.13
1024 2.45 × 10−05 2.00 5.32 × 10−05 2.00 1.32 × 10−04 1.10 2.45 × 10−04 1.00
2048 6.11 × 10−06 2.00 1.33 × 10−05 2.00 6.35 × 10−05 1.04 1.25 × 10−04 0.98

using the SBP-SAT method. We propose a finite-volume method formulated in the
SBP framework and implement the boundary conditions weakly using SAT. Stable
penalty parameters and proof of numerical stability are derived via discrete energy
estimates analogous to the continuous estimate. Numerical experiments are performed
to verify the analysis. The error rates comply with the methods that we use. Our
continuous and numerical analysis covers all flow regimes and can be extended to the
nonlinear problem. The next step in our study will extend the 1D theory and results
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to two dimensions, and implement our scheme in open source software [10, 12] for
efficient and accurate simulations of the nonlinear shallow water equations.
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