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Abstract

We consider the Egyptian fraction equation 1 = vaz /g +1/ (]'[,.N=l n;) and discuss techniques for
generating solutions. By examining a quadratic recurrence relation modulo a family of primes we have
found some 500 new infinite sequences of solutions. We also initiate an investigation of the randomness
of the distribution of solutions, and show that there are infinitely many solutions not generated by the
aforementioned technique.

1991 Mathematics subject classification (Amer. Math. Soc.): 11D68, 11N45, 11B50, 11Y50.

In [2] the first author, in joint work with Richard Hill, presented a natural corres-
pondence between certain homeomorphism classes of complex surface singularities
with perfect local fundamental group, and solutions in positive integers n; to the
Diophantine equation

1 1
(1) 1=ZZ+HN_1n.'

i=l "¢

Equation (1), moreover, is of interest in its own right as a special case of the problem
of expressing 1 as the sum of distinct unit fractions (cf. [1, 3], for example). The
best-known solutions to (1) are the initial terms of the sequence

)] 2,3,7,43,1807,3263443, . ..,
first investigated rigorously by Sylvester [10], whose (n 4 1)* term is defined recurs-
ively by
(3) Xnt1 = x: — X, + 1,
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or, equivalently, by

€) Xpyl = (]_Ixi) + 1.
i=1

Indeed, for each N the first N terms of (2) are known to give the smallest positive
value of 1 — Z,N:l (1/n;) among all choices of positive integers ny, ..., ny ([5,7]). In
this paper we will exploit properties of sequences defined by (3) or (4) modulo certain
primes P to obtain new solutions to (1), and thus to generate new families of isolated
singular points of complex surfaces with interesting topological properties. The reader
is referred to [2] for a discussion of the relevant complex geometry and for the list of
all solutions to (1) of length N < 7. (We take this opportunity to correct a misprint
in the list on page 65 of [2]: in the last line 6020772531 should be 6020372531.) We
thank the referee for suggesting several corrections and improvements to the original
manuscript.

Minimal Solutions

We seek all solutions to the equation (1), which hereafter we will write as 1 =
vazl (1/n;) + I'If"=1 (1/n;), a form which is more symmetric in appearance and easier
to set in type. As a first reduction we note that if (n,,...,ny) is a solution of
length N, then we immediately obtain a new solution (ny, ..., ny, ny4;) of length
N + 1 by putting ny,; = (I1Y,n;) + 1. Thus every solution to (1) leads to an
infinite sequence of solutions by iterations of this recursive formula. The sequence
2,3,7,43,1807, ... is generated in this way, starting with the trivial solution 1 =
empty sum + (1/empty product). To find all solutions, then, it is enough to find all
solutions which are minimal in the following sense.

DEFINITION 1. A solution (n;,...,ny),1 < ny < --- < ny, to equation (1) is
called minimal if (ny, ..., ny_;) is not a solution to (1).

Minimal solutions of equation (1) are of independent interest in number theory
because they provide solutions to Zndm’s problem: find positive integers 7, ..., ny
such that each n; is a proper divisor of n; - - - n;_n;4, - - - ny + 1 (see [4], for example).
The following lemma gives a construction for a large number of minimal solutions.

LEMMA 2. Let (ni,...,ny) be a solution to (1) and put T1 = TI}_ n;. Then
(ny, ..., 0y, ANy1, Byeo) Bs a solution to (1) ifand only if nyyy =TT+ F, iy =
M+ G,and 1+ 1 = FG. The new solution is minimal if and only if the factorization
of 1% + 1 is proper.

The proof is a straightforward calculation (cf. [2, Proposition 12]).
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COROLLARY 3. Let (n,, ..., ny) be a solution to (1). Then the number of distinct
solutions of the form (n,, ..., AN, Ny, Anga), BNt < Bnio, 1S equal to half the
number of divisors of (T1V_n;)* + 1.

EXAMPLE. Let us apply this result to the sequence 2,3, 7, ..., xf_, — X1+ 1, .
For 1 < N < 5 the numbers (ITY x;)? + 1 are small and easily factored. For N = 6
and N = 7 we have

(ME_,x;)* + 1 = 113423713055411194304049637
= 841349 - 2721250733 - 49540355461, and
(IT_,x;)* + 1 = 12864938683278671740537145884937248491231415124195365
=5.223681 - 227693 - 457822213
- 110347393976070230424272620959937.

By applying Lemma 2 to all non-trivial factorizations of these numbers we obtain
three new minimal solutions of length 8 and 15 of length 9. Taking the factorization
F = 223681227693 -457822213, G = 5-110347393976070230424272620959937
of (IT/_,x;)* + 1, for instance, gives the solution

2,3,7,43, 1807, 3263443, 10650056950807,
113423736372580899460286171, 551737083304064207543207465800127

of length 9, where the last two numbers are (IT7_,x;) + F and (IT_,x;) + G.

For N > 7 the task of finding the divisors of (I'I{"= 1x,A)2 + 1 brings us quickly to
the limits of computability. For N = 8 we must factor a 105-digit composite. For
N =9, 10, ..., the orders of magnitude of the numbers to be factored are 1078, 10*1,
etc., which put them beyond present computational reach. Thus we need a different
approach to obtain additional minimal solutions by Lemma 2. The following idea
belongs to the class of ‘p methods’ (terminology due to Pollard).

Forn =1,2,..., define A, = x,; — 1 = II"_,x;, where {x,} is the sequence
2,3,7,...,x2_, — x,_1 + 1,.... Notice, then, that we have the recursive formula
A = Aﬁ + A,, with Ag = 1. Fix an odd prime P, and consider the sequence
{A,}mod P. Since A,,, is determined by a function of A, alone, there exist unique
smallest indices ny < no + A < P such that A,;, = A,,mod P, and then A, , =

A, mod P for all n > ng. The positive integer A is the period of {A,} mod P.

PROPOSITION 4. Let P be an odd prime. Then A% +1 = Omod P for some N if and
only if the sequence {A,} has period 2mod P. This can occur only if P = 1 mod 4.
Except for P = 5, which divides A% + 1 for all odd n, A2 + 1 = Omod P for at most
onen.
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PROOF. If A% + 1 = Omod P, then —1 is a square mod P, so P = 1 mod4. If

P = 1mod4, let i denote a square root of —1 mod P. Then Ay +i implies
that AN+1 = Ai, + AN =-1=% i, AN+2 = A?V+1 + AN+1 = -1 F i, and AN+3 =
Ay, + Any2 = —1 +i = Ayy. Thus {A,} has period 2mod P (for clearly

Any3 # Apnyo in this case).

Conversely, if {A,} has period 2 we have two cases. If 6 = A; = Ap = 1 mod P,
then P = 5. Itis easy to check by induction that for all N, Ay = 2mod 5 if N is odd
and Ay = 1modS5S if N is even. Hence 5 divides A,ZV + 1 forallodd N. If P # 5,
let N > 0 be the smallest of the indices n for which A,,3 = A,.;mod P. Then Ay
satisfies

[(A% + Ap)? + AL + AnT + (A% + An)® + AL + Ay = A% + Ay,

or (A2 + Ax)[(A% + Ay + 1)> + 1] = 0. Since A% + Ay = Ay # 0 (lest
Any2 = Ay, + Ay =0and {A,} have period 1 mod P), we have

0= (A2 + Ay + 1P + 1= (Ay — )(Ay + D)(Ay + 1 — i)(Ay + 1 +1),

where i is a square root of —1. Since Z, is a field we conclude that Ay = =i or
Ay = —1%i. But Ay cannot be congruent to —1 £ lest Ay,> = Ay, contradicting
minimality of N. Thus A% = —1mod P and P divides A% + 1.

For uniqueness, suppose again that P # 5, that P divides A% + 1, and that N > Ois
the smallest index with this property. Then forallm > N, A,,,; = A,, and so as above
A, = —1 %, which are not congruent to +i when P # 5. Thus A2 + 1 3 Omod P,
so Ay is the unique term of the sequence {A,} for which P divides Ai + 1.

We now have an easy method for checking whether or not a given prime P is a
factor of A% + 1 for any N, and hence for finding many minimal solutions to our
equation (1) by applying Lemma 2. That is, we compute the sequence {A,} mod P
by the recursion formula A, = Ai + A, n =12, ..., until we get a repetition
Anti11a = Aygy. If A = 2 then P divides A% + 1 and we obtain the solution

)] (1, oo xy, MY x4+ P, T % + (T x7 + 1/ P).

This solution is minimal except when P actually equals (ITY x;)* + 1, as is the case
for P =5=x?+1and P = 37 = (x;x,)* + 1, for instance. On the other hand,
for the special prime P = 5, (5) provides a solution for every odd index N, and the
solution is minimal except for N = 1. This result alone guarantees that equation (1)
has infinitely many minimal solutions, a fact exploited by Sun [9] in connection with
Znam’s problem.

We have carried out the required recursion calculations for all primes P < 46340.
(The upper bound 46340 ~ /23! was chosen because it was a convenient word size
for the hardware and software available when we began our investigations. We have
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since run extended precision versions of our programs for some larger primes, with
similar results.) In this range there are 53 primes P giving rise to minimal solutions of
this type. The lengths N = N +2 of the solutions range from N = 5 for P = 353 (that
is, 353 divides (IT}_,x;)> + 1 = 1765, giving the solution (2, 3, 7, 42 + 353,42 + 5))
to N = 476 for the prime 45737. Since the numbers X are between 22" and 22",
this last mentioned minimal solution involves numbers which are very large indeed.
The list of primes P for which {A,} has period 2 mod P are available from the authors
on request, as are printouts of all of the calculations reported in this paper.

REMARK. The numbers x, = (H;’z'l‘x,») + 1 of the sequence 2, 3, 7, . . ., are candid-
ates for large primes, since they are of the form ‘the product of many small numbers,
plus 1’. The same techniques as in Proposition 4 can be used to determined whether a
given prime P is a factor of any x,. Indeed, these methods are in the spirit of certain
standard primality tests, such as the Lucas-Lehmer test for primality of the Mersenne
numbers 2° — 1.

PROPOSITION 5. (Sylvester) A prime P divides xy for some N if and only if the
sequence {A,} has period 1. Except for P = 2 and P = 3, this can occur only for
P = 1mod 3. Each P divides at most one xy.

PROOF. If P divides xy, then surely P divides Ay = IIY x;. Then Ayy =
A% + Ay =0 = Aymod P, and {A,} has period 1. Conversely, if {A,} has period
1 mod P, suppose that N is the smallest of the indices n for which A,,; = A, mod P.
That is, A2, + Ay = Ay, whence A2 = (ITY | x;)*> = 0, and P divides some x,,.

Now Ay = 1and A, = 2,s0if P > 3 and N is as above, then N is not O or 1.
Thus Ay_; and Ay_, are well-defined and P does not divide either of them. But then

0= Ay = Ay_1(An_i + 1) = Ay (AN, + Ava + D).

Since Ay_; #% Omod P we have Aﬁ,_z + Ay_; + 1 = 0. This equation has solutions
mod P if and only if P = 1 mod 3. (The solutions are (—1 & +/=3)/2, and —3 is a
square mod P exactly when P = 1 mod 3 by quadratic reciprocity.)

Finally, it is clear from the relation x,, = (IT'_,x;) + 1 that P can divide at most
one x,.

Again, we have compiled the list of all primes P < 46340 which properly divide
some member of the sequence {x,} (there are 47 of them). As a curiosity we discovered
that all of the factors of x; = 10650056950807 happen to be smaller than this bound,
and thus we obtained the complete factorization x; = 547 - 607 - 1033 - 31051.
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Generalizations

From the proofs of the foregoing theorems it is clear that if instead of the sequence
2,3,7,43,... wechoose any sequence ny, ..., hg, gy, ... With 1 = Zf:,(l/n,-) +
X, (1/n;) and with n,, = (I175'n;) + 1 for all m > K, then the same analysis goes
through, and further minimal solutions to (1) are obtained. To make this precise,
consider again the recursive formula X, = X 3 + X, with given initial value X,. For
any positive integer P we have a relation ‘succeeds’ which is defined on the set Zp of
congruence classes mod P by ‘y succeeds x if y = x? + x ’. This relation induces the
structure of a directed graph, denoted L p, on the ring Z. Each connected component
of Lp terminates in a cycle of some period A, which we will call a A-loop. For fixed
A we use the symbol L (A) to denote the union of the connected components of Lp
whose terminal loops have length A. For instance, for P = 13 the directed graph L,
is as follows:

11 10 9 5 8
! \: 2 l 2
1 - 2 - 6 = 3 —> 12 50« 4 o 7

Thus L5 has only 2 components, L;3(1) and L;3(2). Note that exactly (P + 1)/2 of
the elements y of Zp are successors, and that if y succeeds x then y also succeeds
X = —(x + 1) (and y succeeds only x and x). This reflects the fact that for exactly
(P 4+ 1)/2 elements y the equation X? + X = y admits a solution in Zp. If a solution
x exists, then there are exactly two solutions, x and x. (The double arrow x = y
means that x is a double root of the polynomial X2+ X — y; that is, that x = £ in Zp.)
If P is not prime, then of course the directed graph L » may be more complicated.
Some of the elementary properties of L, for general primes P are as follows.

REMARK 1. For every prime P, L, contains a unique 1-loop, namely 0 <. If
P = 1 mod 3, then the 1-component contains at least 4 elements, namely

wz

+

wo—> -1 -0+«

where w is a primitive cube root of 1. If P = 2mod 3 then L (1) contains only the
two elements —1 — 0 <.

REMARK 2. If P = 3mod4, then Lp has no 2-loop. If P = 1 mod4 (but P # 5),
then the 2-component contains at least the 4 elements

i=>14+ie —1—i—i
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where i is a square root of —1. This subset comprises the entire 2-component if and
only if neither 1 +4i nor 1 —4i isasquare mod P. If P = +3, £5, +6, or +7mod 17,
then exactly one of these two numbers is a square, and in this case the 2-component
has at least 6 elements.

The proofs of Remark 1 and the first two assertions of Remark 2 are identical to the
proofs of Propositions 5 and 4 above. As for the last two claims of Remark 2, if the
2-component contains more than the 4 elements pictured, then (and only then) there is
an element x in Z for which x?> +x = +i. (Note that the equations X?>+ X = —14/
have only the solutions x = +i, x = —1 F i already accounted for.) In any field of
characteristic # 2 the solutions to this quadratic equation are

©) x=(-1x+1x4i)/2,

provided this makes sense, and there are no other solutions. Thus the 2-loop contains
a fifth element x if and only if either 1 + 4i or 1 — 4 is a square mod P.

Let P > 5 be a prime = 1 mod4, and fix a square root i of —1mod P. Let ( )
denote the Legendre symbol. We have by quadratic reciprocity

1+4i 1-4i 17 P
() () -()-(5)

whichisequalto 1 if P = +1, +2, +4, or £8 mod 17, and to —1 if P = £3, 15, £6,
or £7 mod 17. In the second case we must have that exactly one of 1 +4i,1 —4iisa
square mod P, and so the 4-component has at least two more elements of the form (6).
(The two roots are distinct for all P # 17).

If (£) = 1 then we can conclude only that either both or neither of 1 + 4i and
1 — 4i is a square mod P. We do not know a nice criterion for distinguishing the two
cases, that is, for deciding when the fourth degree polynomial (X? + X)2 + 1 has 0
roots or 4 roots mod P. For instance, both 13 and 149 are congruent to 1 mod 4 and to
—4mod 17, but this polynomial has 0 roots in Z,3 and 4 roots (18, 23, 125, and 130)

in 2149.

REMARK 3. In general, for given A the A-loops consist precisely of those elements x
in Zp for which f*(x) —x = 0, where f (X) = X2+ X, but for which f*(x) —x # 0
for all i dividing A. For fixed A the polynomial f*(X) can be calculated explicitly.
For instance, taking A = 3 we have that x is in the 3-loop mod P if and only if

g3(0) = (FPx) —x) /x> =x°+4x° +8x* + 10> + x> + 6x +3 =0
mod P. For given P, g1(X) will have either 0, 3, or 6 roots. Consequently, Lp(3)

will either be empty, have 1 component, or have 2 components.
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For example, take P = 41. Then g;(X) admits the irreducible factors X — 1,
X —2,X —6,and X + 13X* — 18X + 10. Thus L, has only one 3-loop, namely
1 > 2 —» 6 — 1. Indeed, the entire 3-component L, (3) is

34 —» 1

N
39 > 2 — 6 <« 38

and every other element of Z, is either in L, (1), L4, (2), or Ly (5). By Remark 1
(since 41 = 2mod 3), L4 (1) has only two elements, 40 — 0 <. By Remark 2
(since 41 = 1mod 4 and = 7mod 17), L4;(2) contains at least 6 elements, including
i > 1+i e —1—i <« —i. Infact, the entire 2-component is

23 21 29 32

N2 { ¥ {
17 - 19 - 11 - 9 —> 8 <« 31

and all other elements of Z,, are in the (single) 5-component.

REMARK 4. In general, for any integer x and any period A we can in principle
determine the primes P for which x is in the A-loop mod P. That is, we compute the
integers f*(x) — x and f#(x) — x for all  dividing A. Then x is in the A-loop mod P
exactly when P divides f*(x) — x but P does not divide f*(x) — x for any u.

For example, for g3(X) = X® + 4X° + 8X* 4+ 10X> + 9X2 + 6X + 3 as above,
g3(2) = 451 = 11 - 41, so 2 is in the 3-loop mod 11 and mod 41, and for no other
primes P. Therefore also 6, the unique successor of 2 mod any prime P > 6, must
also be in the 3-loop mod 11 and mod 41. But g;(6) = 90651 = 11-41-3-67,506
is in the 3-loop mod 67 as well.

We have now the following generalizations of the results of the first section.

PROPOSITION 6. Let P be an odd prime, let Xy be a positive integer, and define a
sequence {X,} of integers by X1 = X>+ X,,n=0,1,.... Then P divides Xy for
some N if and only if Xy € Lp(1). If P # 5 then P divides (Xy)* + 1 for some N if
and only if Xq € Lp(2), but Xy is not in the 2-loop mod P. (For P = 5, P divides
some (Xy)* + 1 ifand only if Xo # 0 or —1mod 5.)

The proof is the same as for Propositions 5 and 4 above.

COROLLARY 7. Let ny, ..., ng satisfy | = YK (1/n;) + K, (1/n;). Put X, =
X ni, X411 = X*+X,. Let P be an odd prime such that X is in L p(2) but not in the
2-loop mod P, and let N > 0 be the smallest integer for which Xy, = Xy,3mod P.
Then {ny,...,ng, Xo+ 1,..., Xn_1+ 1, Xy + P, Xy + (X3 + 1)/ P} is a solution
to (1) of length K + N + 2, minimal except when P = X% + 1.
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We have examined, by computer, all primes P < 46340 for all choices of initial
solution (n,,...,ng) with K < 6. The lists of the primes for which l'I,.K=1n,- €
L p(2) are available from the authors. To pick an example at random to illustrate the
technique, take P = 10289, Xo = 2 -3 - 1123 .31 = 47058. Then the sequence
Xo—=> X;—> ---modPis

47058 = 5902 — 952 — 1824 — 5453 — 5452 <> 4835.

Thus P divides X3 + 1 and we obtain a minimal solution of length 5 + 3 + 2 = 10,
namely

2,3,11,23,31, 47059, 2214502423, 4904020979258368507,
24049421765006207593444550012151050831,
56212915466143871444337380046644874917011343721508007586404418434773427,

where the last two numbers are X; + 10289 and X; + (X§ + 1)/10289. In all, we
achieved a total of 522 new minimal solutions to (1) of length > 8 for primes in this
range. To each such solution there corresponds a unique (up to homeomorphism)
complex surface singularity whose dual intersection graph is a star and which is
locally the cone on a homology 3-sphere, as described in [2, part 1]. For the sake of
completeness of this article we have adjoined (see Appendix below) a brief outline of
the construction.

On the randomness of the sequence X,,, = X + X,

Lacking a parameterization of the solutions to the equation 1 = Zf": (/) +
MY (1/n;), we can at least seek an asymptotic formula for the number S(N) of
solutions for fixed N. For instance, the results of [2] show that S(1) = S(2) =
S3)=8@)=1,5(05) =3, 56) =8, and S(7) = 26. The techniques of the present
paper give the recursive lower bound

1
SIN+2) > Y, Er(l'li=1nf +1),

where I'y is the set of all solutions of length N and where t counts the number
of divisors. By Corollary 7 this is related to the behavior of the sequence X, =
X? + X, mod various primes P. If for many primes the sequence behaves, in an
appropriate sense, ‘randomly’, we might thus be able to apply probabilistic methods
to predict the number of solutions for large N. In this section we offer some empirical
results bearing on this question.

Apart from these considerations, the question of recursive generation of random
numbers is an important theme in the application of computer technology to problems
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of interest in number theory. Since the phrase ‘computer generated random numbers’
seems almost oxymoronic, much effort has gone into the development of satisfactory
statistical tests for apparent randomness, the most elementary being the x? test for
relative frequencies. A standard ‘random number’ generating device is a recursive
relation X,,; = f(X,) mod alarge prime P. Forinstance, if P is taken to be the largest
prime which a computer word can hold, then the linear relation X, = AX, + B,
for appropriate choice of A near /P and for suitable B, is often quite successful in
satisfying various randomness criteria.

The next most obvious class of functions to try are the quadratic functions. In
particular, the relation X,,; = X? + X, was first investigated for randomness by
Coveyou, using, among other methods, the technique of the finite Fourier transform.
(This sequence is also related to the ‘middle square’ method of von Neumann. See [8,
Chapter 3] for an extended discussion of these ideas.) A very simple randomness test
that is appropriate to the problems under view in this paper is as follows. Choose an
initial value X, and define X, recursively as above. For each prime P in some fixed
range M, to M,, calculate the length /(P) of the sequence X,, X, ... mod P before a
repetition occurs. Then /(P) is compared to the median of the probability distribution
fr(k) = kP!/(P — k)! P¥*1, which is the probability that /(P) would equal k if the
sequence were chosen randomly. Finally, a non-parametric one sample sign test based
on the Gaussian statistic z = (2Q — R)/+/R is applied, where R is the number of
primes P, M, < P < M,, Q is the number of times that /( P) exceeds the median, and
z is the parameter of the standard normal approximation to the binomial distribution
with probability (1/2). (For large P the median m = m(P) of the distribution fr can
be estimated by the formula m ~ /2P Tog P, but for these tests we actually calculated
the median separately for each P by summing values of fr(k).)

Omitting the first few primes, which might have peculiar features, we have made
the calculations required to carry out this test for all primes between 1000 and 46340,
starting with various initial values X,. There are 4624 such primes, so we expect that
{(P) will be greater than m(P) about 2312 times, plus or minus about 1/4624/2 = 34.
For the initial values X, we chose the 8 values of l'If"= ,n; for the minimal solutions
of (1) of length < 6, these being the initial values that we are especially interested in.
Since this choice compromises the randomness of the results, we also ran 200 values of
X chosen randomly from 1 to 100,000. The data also lend themselves to randomness
tests based on the statistic U = ‘number of runs above or below the median’, which
for large randomly ordered samples of size N is approximately normally distributed
with mean (N/2) + 1 and with standard deviation approximately v/N /2.

The results of these tests are summarized in Table 2 below. First we note that
for the 8 special values of X, 13 of the 16 values of z are within a 68% confidence
interval and 15 are within a 95% confidence interval for random normal variation.
For the larger sample of 200 randomly chosen values of X, the distribution shows
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a clear bias toward negative values of z. On the average, then, over many values of
(P, X,), the sequence X, shows a tendency to repeat somewhat sooner than expected,
in comparison with random sequences. Presumably, this reflects the fact that in the
directed graphs Lp each element with antecedents has precisely two antecedents,
thus shortening the probable lengths of non-repeating chains. (We have run these
tests several times, with different sets of 200 initial values, and achieved a similar
distribution each time.)

Randomness tests of greater sophistication are possible, but because of Proposi-
tion 4 above the most interesting feature of the sequence X, = X f + X, for our
purposes is the frequency of primes P for which it has period 2 mod P. For arandomly
chosen sequence modulo a fixed prime P the probability that the first repetition gives
a loop of size A is

P
hp () = kZ(p k)lpk+1

Taking A = 2 and summing over a large set £ of primes, we expect to find a loop of

length 2 in about
Z Z (P — k)' P+

PeP k=2

cases. For & the collection of primes between 1000 and 46340 this sum is approx-
imately T ~ 48.7. In practice, for the sequence under view and the initial values X,
given by minimal solutions to the equation (1) for N < 6 the numbers T of 2-loops
for primes in this range are 43, 63, 58, 62, 55, 51, 58, and 56 (listed in the order in
which the numbers X, appear in Table 2 below). We see that except for Xy = 1,
T = 43, these numbers tend in general to be somewhat higher than the expected
value T, possibly reflecting the fact that many primes P = 1 mod 4 have fairly large
2-components. These results, the tendency for our sequence to repeat sooner than
expected, and the tendency for 2-loops to appear more frequently than expected, give
some empirical support for our hope that it may be possible to use probabilistic tech-
niques to achieve lower bounds for the growth of the number of solutions to (1) for
large N. The next section shows, however, that much work remains to be done before
we can give a good estimate of the total number of solutions.

Further minimal solutions

So far we have discovered many new solutions to our equation (1) by finding factors
of (In;)? + 1 for given initial solutions (n, ..., ny). In this section we show that
there are also infinitely many solutions that are not derived in this way.
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PROPOSITION 8. Let P, Q be integers greater than 2 such that (—Q) is a square
mod P, (—P) is a square mod Q, and for some choice of /—P mod Q, P? — 4./—P

is also a square mod Q. Let (n,, ...,ny) be a solutionto 1 =Y _(1/n;) + I1(1/n;).
PutYy =T n, Y, =Yy+ l,andforn > 1,put Y, = Y2, — Y, , + 1. Suppose
that

(@) Yo=./—0modP,and

(b) 2Yy = —P + (P2 — 4/—P)">mod Q for some choice of roots. Suppose also
that for the directed graphs Lp and L generated by the formula X — X* + X,

(c) Yoisinthe Ay-loop mod P and the )-loop mod Q, for some Ay, A,.

Then for each non-negative integer k, we have the solution (n,, ..., ny, Yy, ..., Y,
Z,, Z,, Z) to equation (1), where p is the least common multiple of A, and X\,, and
where Zy = (IN4Y,) + P, Z, = (IL4Y) + ((IT4Y)2 + Q)/P, Zy = (IT4,Y) +
((TT#)Y)? + R)/ P, with R = [((TT}4,Y)? + (IT4.Y,) P)? + P1/ Q. This solution will
be minimal except possibly for k = 0, and will not be equivalent to any solution of the
type discussed in Corollary 7 above, except possibly for k = 0.

PROOF. It is an elementary exercise in algebra to confirm that in any case the ra-
tional numbers (ny, ..., 0n, Y1, ..., Yau, Z1, Z,, Z3) so defined satisfy Zfil(l/n,») +
Zfil(l/Y,-) + Z:Z:l(l/Zg) + 1/TIn;IY;T1Z, = 1. The various conditions on roots
and congruences guarantee that these rational numbers are in fact positive integers.

EXAMPLE. Take P = 5, Q = 89. Then (a) +/—89 = 1modS5, and 1 is in the
2-loop 1 — 2 — 1 of the sequence X,y = X2+ X, mod 5. (b) +/—5 = 23 mod 89,
V25 —4-23 = 17mod 89, (—5+17)/2 = 6 mod 89, and 6 is inthe 6-loop 6 — 42 —
26 > 79 - 1 — 2 — 6mod 89. (c) For the initial solution 1 = (1/2)+(1/3)+(1/2-
3), Xo = M2 ,n; = 6 is congruent to 1 mod 5 and to 6 mod 89. Thus Proposition 8
says that for any integer N = 2mod 6 we get a new solution (n,, ..., ny,3), where
(ny, ..., ny) are the first N terms of the sequence 2, 3,7, 43, 1807, ..., and where
nyy = Z;,1 = 1,2,3, are as defined in the proposition. The first such example
(N=2isn  =2,n, =3,n,=6+5 =11, n, = 6 + (6> +89)/5 = 31,
ns = 6+ (62 +49)/5 = 23, where R = 49 is computed by R = [(6* +6-5)* +5]/89.
The second such example (N = 8) is

2,3,7,43, 1807, 3263443, 10650056950807, 113423713055421844361000443,

12864938683278671740537145998360961546653259485195811,

3310132946490399283969363908888783600350263054127550—
9860321224376244566157631280050551634948955117193751,

6155606810922029533350614447567345231729070644400209—
3622045671868376697641681034122987466926832652377344—
3691384989226339714126570196838605889872443504398382—

37950420595282498245553927085949852337268774573103.
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2,3,7,43,1807, 3263443, 10650057792155, 134811739261383753719
10652778201539, 41691378583707695
10699597306267, 2300171639909623

2,3,7,43, 1823, 193667, 637617223459, 31273517203328870463055

2,3,7,47,395,779731, 60797965264, 21743485766025360000683
6079796526837, 6974325623477705424647
60797953531, 410254449012081168631
607979655287, 139119028839856004123
607979697799, 8183472856913555659
607979793451, 2624887933109395111
607982046587, 154405744751990423

2,3,7,47,403, 19403, 15435513395, 8215692183434294399
15435513463, 2456237880094942747
15435516179, 84697872837562655

2,3,7,47,415, 8111, 6644612339, 1522443894582665279
6644613463, 38292177286592827
6644645747, 1320426321921983

2,3,7,47,583, 1223, 1407479807, 48317057302587443
1468268915, 33995520959
2202310039, 3899834875

2,3,7,55,179, 24323, 10057317287, 5949978284730273323
10057317311, 2467064172726591731
10057317467, 513449911932648503
10057317967, 145121431390804003
10057320619, 30202945461748519
10057325347, 12523178395739983
10057454579, 736667018400959

2,3,11,23,31,47059, 2214502427, 980804197623275639
2214502475, 92528699894575367
2214502687, 18505741750517011
2214502831, 11990273552017987
2214504467, 2398056482005535
2214524099, 226233749172527
2214610807, 45248521436443
2215070383, 8636647107907
2217342227, 1729101023519
2244604355, 165128325167
2294166883, 63772955407
2365012087, 34797266971
2446798471, 23325584587
2612824727, 14526193019
3375982667, 6436718855

TABLE 1. A partial list of minimal solutions to 1 = Y"1 (1/n;) + TT¥_ (1/n;) for N = 8.

https://doi.org/10.1017/51446788700037745 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037745

354 Lawrence Brenton and Robert R. Bruner [14]

I(P) above % above Number

Xo median median z of runs z

1 2303 498% -0.26 2304 -0.26
2.3.7-47-395 2324 50.3 0.35 2346 0.97
2-3-11-23-31 2294 49.6 -0.53 2228 -2.50
2-3-7-43.1823.193667 2370 51.3 1.71 2333 0.59
2-3.7-47-403-19403 2318 50.1 0.18 2326 0.38
2.3.7-47-415-8111 2299 49.7 -0.38 2248 -1.91
2.3.7-47.583-1223 2326 50.3 041 2330 0.50
2.3-7-55-179.24323 2292 49.6 -0.59 2338 0.74

TABLE 2. Randomness tests for the sequence X, = X,z, + X, mod P, 1000 < P < 46340 (4624
primes)

The third in this infinite sequence of minimal solutions involves numbers up to the
order 10'33%7, Other values of P, Q and X, for which this construction can be carried
out are as follows (note that P, Q need not be prime): 25, 89, 6(u = 6); 41, 5, 6(u =
6); 5,41,42(n = 6); 361,41,42(n = 12); and 1457, 9329, 1806( = 36). We do
not know whether there are such triples P, Q, X, for infinitely many distinct P and Q.

Finally, it must be remarked that there are many solutions to (1) which still do not
fall within the compass of our present techniques. For instance the solution (2, 5, 7,
11, 17, 157,961, 4398619) of length 8 does not seem to be related in an obvious way
to any solution of smaller length.

The list in Table 1 is obtained by applying Lemma 2 to all factorizations of
(T18_,n;)* + 1, for all solutions (ny, ..., ne) of length 6. In each block of the table
the initial solution n, ..., ng is listed first, followed by the possible choices for n;
and ng. As of this writing, only one other minimal solution of length 8 is known:
(2, 5,7, 11, 17, 157, 961, 4398619). There are 26 solutions of length 8 which are
not minimal, namely those of the form (n,,...,n,, 1+ l'I,7=1n,») for each of the 26

solutions of length 7 recorded in [2].

Appendix

Construction of complex surface singularities from solutions to the equation 1 =
YL 1/ + T (1 my).

Let(n,, ..., ny)beasolution to this Diophantine equation, and fori =0, 1, ..., N,
let C; C L; denote the Riemann sphere contained as the zero section of the unique
complex line bundle L; on P!(C) with Chern class —n;. Choose points P,, ..., Py
on Cy, and a point Q; on C; for alli > 1. Let Dy, ..., Dy be disks on Cy, centered
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z number percent

—o00to-3 0 .000
-3to-2 2 .010
-2t0-1 27 135
-1to 0 86 430
Oto1l 65 325
1to2 19 095
2t03 1 .005
31000 0 .000

TABLE 3. Distribution of z’s for /(P) above median for 200 random X,’s

at Py, ..., P, respectively and with mutually disjoint closures, and let D, ..., D, be
diskson Cy, ..., C, respectively centered at O, ..., Q,. Plumb these spaces together
by identifying the cross sections of Ly over D; with the fibers of the unit disk bundle
B; C L, over D;. The result is a two-dimensional complex manifold X with the curve
C = UY,,C; embedded as the support of a negative Cartier divisor. By a theorem
of Grauert [6], the topological space X obtained by collapsing C to a point x € X
admits (uniquely) the structure of a normal complex space whose only singular point
is x and is such that the quotient map 7 : X — X is a biholomorphism of X — C onto
X — x. The singular point x admits a neighborhood U whose boundary is a compact
connected 3-manifold M and is such that U is homeomorphic to the cone on M>.

For this construction, the equation (1) implies that M? is a homology sphere
— that is, that H;(M?, Z) = H,(M3, Z) = 0 (equivalently, that the fundamental
group m, of M3 is a perfect group). Indeed, in general, if n;, ..., ny are positive
integers satisfying 1 = Z.I-V=1(1 /n;) + D/TIY n; for some positive integer D, then
this construction produces a singular point for which H,;(M, Z) is a finite Abelian
group of order D. The complex space X is unique up to homeomorphism, but admits
an (N — 3)-parameter family of complex structures, depending on choice of the points
Py, ..., Py.

ADDED IN PROOF. Since the writing of this paper we have discovered an additional
20 minimal solutions of length 8, making a total of 89 known solutions of this length.
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