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AN ALTERNATE STATISTICAL INTERPRETATION OF THE
STRENGTH OF SNOW

By H. GusLer
(Eidg. Institut fir Schnee- und Lawinenforschung, 7260 Weissfluhjoch/Davos, Switzerland)

ABsTRACT. The basic features of the statistical models to describe brittle and ductile strength of snow are
outlined and discussed. The concept of the “fundamental unit’’ is introduced. The models are applied to
estimate the development of slab stability during heavy snowfalls and to simulate measurements of the tensile
strength of snow using the centrifugal method as a function of the load rate. The models developed in this
paper are compared with Sommerfeld’s applications of statistical methods to estimate the strength of snow
in the starting zone of a slab avalanche,

Resume. Modéles statistiques pour caractériser la résistance é la rupture de la neige. Les propriétés fondamentales
de quelques modéles statistiques qui caractérisent la résistance ductile et cassante a la rupture de la neige sont
décrites et discutées. L’idée des unités élémentaires est introduite. A partir de ces modéles on estime le
développement de la stabilité dans la zone de décrochement d’une plaque de neige pendant une importante
chute de neige. De méme, la résistance de la neige i la traction qui est mesurée avec une centrifugeuse est
simulée en fonction de la vitesse d’application de la charge. Les modeéles décrits sont comparés 4 ceux que
Sommerfeld a utilisés pour déterminer la résistance dans la zone de décrochement de plaques de neige.

ZUSAMMENFASSUNG.  Statistische Interpretation der Festigeit von Schnee. Die grundlegenden Eigenschaften von
statistischen Modellen zur Beschreibung der Sprisd- und Zihbruchfestigkeit von Schnee werden beschrieben
und diskutiert. Das Konzept der Elementareinheit wird cingefithrt. Aufgrund der Modelle werden die
Stabilititsentwicklung im Anrissgebiet einer Schneebrettlawine wiihrend eines Grosschneefalles sowie die
Messung der Zugfestigkeit von Schnee mittels einer Zentrifuge als Funktion der Spannungsgeschwindigkeit
simuliert. Die beschriebenen Modelle werden mit Sommerfeld’s Anwendung statistischer Methoder zur
Bestimmung der Festigkeit in Anrissgebieten von Schnecbrettlawinen verglichen

INTRODUCTION

In different papers Sommerfeld (1973, 1974, 1976) proposes statistical methods to extra-
polate from sampled tensile and shear strengths to the tensile strength at the crown and the
shear strength in the bed of a slab avalanche. In this paper the influence of the type of
distribution used to describe the sample strength on the extrapolation to the snow strength is
discussed. The concept of “fundamental units” instead of the macroscopic samples is intro-
duced. The statistical models are modified considering the fundamental units instead of the
macroscopic samples. The results are compared with Sommerfeld’s conclusions. The
stability development of a snow slab during a heavy snowfall and the measurement of tensile
strength using the centrifugal method are simulated on the basis of the models introduced.

DeFinITION OF THE FUNDAMENTAL UNIT

Snow can be considered as a network of grains connected by ice bonds. At least in low-
density snow, there does not exist any structural order of periodicity. Nevertheless the models
discussed in this paper propose that the mechanical properties of snow can be traced back to
the features of fundamental units. The viscoelastic properties of snow have been described
on the basis of a similar model by Kry (1975[al, [b]).

The basic features of the fundamental units are: (a) The snow may be subdivided in
fundamental units. (b) Each fundamental unit acts as a force-conducting element in the
snow. (c) Asregards their positions, the properties of the fundamental units are distributed at
random. (d) The properties (e.g. strength) of the fundamental units are defined by a distribu-
tion. (e) The properties of a distinct snow type may be calculated as a function of the density
distribution of the corresponding features among the fundamental units, of the number density
of the fundamental units, and the stress- or strain-rate.
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The basic elements of the fundamental units are proposed to be chains of grains. A chain
is defined as a series of connected grains, transmitting a single force, terminated either by a
structural element of higher connectivity or by a branch to other chains. The fundamental
unit may be reinforced by additional parallel structural elements of higher connectivity (Kry,
1975[a]; Gubler, 1978).

DESCRIPTION OF BRITTLE STRENGTH BY EXTREME-VALUE STATISTICS

The following concept holds for macroscopic samples defined as elementary force-
conducting links (Sommerfeld, 1973) as well as for the fundamental units as defined above.

(a) If the body is loaded, the initial fracture of one link propagates elastically through the
whole body and leads immediately to its fracture. The load rate has to be high enough
to avoid mechanical relaxation or a rearrangement of the forces between the surviving
links.

(b) Crack healing is impossible.

(¢c) The applied stress field is homogeneous; all weak links are equally stressed.

In general assumption (c) will not be fulfilled. Knowing the stress distribution among the
links, proposition (c) may be replaced by a modification of the integral probability for the
fracture of a single link F(s). With the strength distribution £(s) of the separated links of the
specimen under consideration, the integral probability F(g) that any separated link fractures
as the load increases to o (proposition (c) fulfilled) results in

Fo) = [ 1) ds (1)

If condition (c) is replaced by a density distribution g(s, x) of the link stresses (where o is the
mean stress and x an independent variable) F(s) is modified to

F(o) = J:f(s) ( fg(c, x) dx) ds. (2)

For the following calculations proposition (c) is considered to be fulfilled. This implies that
the function g is the Dirac 8-function

g(o, x) = 8(c—x).
1 —F(c) is the probability that a separated link survives a load increase to . The probability
that the n weak links of a body survive a load & is given by

P(s) = (1—F(a))™ (3)
The corresponding probability density for the strength is:
d
plo) = 3 [1—(1—F())"]. (4
The most probable strength om of a body with n weak links results from the maximum
condition:
dp(om)
S (5)
From Equations (1), (3), (4), and (5) it follows that
df(om) .
S (Cn) 1, _F(om)]—/*om)1—1) = o. (6)
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The variance p of the body-strength distribution is given by the second moment of p(s)
relative to the mean value 6, of & (first moment) :

oo

g = f (o—ag ol e

o

= f (6—64)2nf (5) (1 —F(s)) "1 dg, (7

where 6, is given by

w0

o = J op(s) do

~ [y da ®

The lower limits of all integrals with respect to ¢ have to be set equal to o and not as usual — oo
to avoid integration of negative strength values. This condition is very important for link
strength distribution functions which are not zero for negative strengths as, e.g. the normal
distribution would be.,

To be able to calculate p(5) and the ratio of the most probable body fracture strength oy,
to the most probable link fracture strength sy, as a function of n for any distribution function
S (s), a desk-calculator program was written which solves the equations by numerical methods
and plots the results: f(s), p(c, #), [om/sm](n).

DEeFINITION AND FEATURES OF THE INVESTIGATED LINK STRENGTH DISTRIBUTIONSf(J‘)

1. Weibull distribution
i g S—su |’
#lE = [ A “] exp —[ X "] for 5 = 5y,
fls) =0 for 5 < sy
Apparently Weibull (Weibull, 1939[a], [b]) chose this distribution for mathematical tracta-
bility. This distribution proposes the existence of a minimal link strength. There are no links

with zero or almost zero strength. 7, sy, A are the distribution parameters. The most probable
link strength is given by the relation

Sm = A [u:ll/r+yu. (10)

~

(9)

r
The most probable value of p(5) decreases as n=1/7, the variance as n-—2/ (Epstein, 1948).

2. Normal distribution

, i I [5s—s,]2 P ~
f(J)zmexpkE[ A ] or s == o, (1)
fls)=o0 for s < o.

To avoid finite probabilities for negative strength, f(s) is set equal zero for s < o. But it
retains a finite probability for zero link strength.
om decreases as (In n)!, the variance of p(s) is given by m??/12 log n (Epstein, 1948).
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3. Log-normal distribution

I 1 [In s—Ins,]2
f6} = G & P _E[ In A ] ' (2a)

This type of distribution is known to be typical for stereological parameters such as, e.g.
particle-size distributions. The probability for zero strength is zero, but is finite for any
s > 0.

DiIscUSSION OF THE NUMERICAL COMPUTATIONS

p(5) and the ratio om/sm were calculated as functions of n. s and A were normalized to
sm (the most probable value of 5). The range of nis 1 to 105, the range of s/sy 0 to 2, the rela-
tive deviation A/sy is 0.2. Using the Weibull distribution, A/sm is multiplied by about 1.7
to get similar widths as for the normal distributions. For the Weibull distributions, r is set
equal to 1.6, sm = 1. In Figures 1-3 the weak-link strength distributions f(s) are plotted with
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Fig. 1. Brittle strength model : Ratio of brittle strength of snow om lo the mean strength of the separated fundamental units :
for a Weibull type of distribution of strength, — - ——— as a_function of the number of fundamental units of the

test volume. Alsm — 0.2, p(o) is plotted for n = 10*.

broken curves, the body strength distributions p(s) and the ratio om/sm (starting at 1.0) with
full curves. Only the Weibull distribution (Fig. 1) shows an almost constant ratio of body
to link strength for high » whose limiting value is determined by the parameters r and sy.
This result implies the existence of a critical volume of a specimen, above which the body
strength would be almost independent of further volume increase. This behaviour follows
directly from the definition of a minimum strength. For small r (~ 1) the distributions are
very asymetric (steep rises from sy to sm). For constant Afsm the asymptotic value of om/sm
decreases with increasing .

For the log-normal distributions (Fig. 2) with comparable deviations om/sm never reaches
a constant value =o independent of n (for n — 0, 6m/sm —>0), but the decrease for high n is
quite slow. For the normal distribution (Fig. 3) om/sm already equals zero for finite n.
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Fig. 2. Brittle strength model : Equivalent conditions as for Figure 1 but for log-normal distribution of strength of the separated
Jundamental units.
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Fig. 3. Brittle strength model: Equivalent conditions as _for Figure r but Jor a normal distribution for the strength.
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APPLICATION OF SMALLEST-VALUE STATISTICS TO SNOW

The magnitude of the minimal strain-rate in medium-density snow to initiate a brittle
fracture may be estimated from different investigations (Salm, 1971, Gubler, 1976). It turns
out that dissipative processes are negligible only for strain rates & = 157 The strain-rates
involved in natural releases of slab avalanches are smaller by at least five orders of magnitude.
Therefore the natural initiation of primary fractures in starting zones of slab avalanches
cannot be described with the model under consideration. Even pressure waves originating
from detonations (¢ & 107357) do not initiate perfectly brittle fractures. Only the secondary
fracture spreading out from the primary fracture volume is of the brittle type. The propaga-
tion velocity of the secondary fracture is of the same order of magnitude as the propagation
velocity of the stress wave (approximately the velocity of sound), therefore relaxation processes
at the crack front seem to be impossible. The highly stressed volume of snow at the front of
the crack which has to be considered for an estimation of the number of stressed fundamental
units » will be quite small ( & 10* to 105, corresponding to a small number of rows of funda-
mental units in front of the propagating crack). Estimates of the relative width of the density
distribution f(s) of the strengths of the fundamental units result in values of (10-30) 9%, (Kry,
1975). Various reasons favour a log-normal type for the strength distribution (which is the
type of distribution of bond and grain diameters in sintered materials). These propositions
lead to ratios of the most probable brittle strength of snow at the front of the propagating
secondary fracture to the mean strength of the separated fundamental units of 0.35 to 0.8.

A STATISTICAL MODEL TO ESTIMATE DUCTILE STRENGTH
Basic features of the model

Daniels (1945) developed a model to describe the strength of a bundle of threads. The
main performance of this model is given by the fact that during loading a stress rearrange-
ment from fractured threads to the surviving stronger threads is possible. A small generaliza-
tion leads to the following concept:

(a) If a load is applied slowly, mechanical relaxation causes equal stress for every link.
If the load is increased further, the weakest of the equally stressed links fractures and
the total load is redistributed among the remaining links. The load increase has to be
slow enough to allow a uniform stress distribution between all surviving links at any
time.

(b) Body strength is reached when a redistribution of the stresses is no longer possible.

(c) The healing of fractured links is not possible.

Condition (a) may be slightly modified by requiring a defined stress distribution among
the surviving links instead of equal stress for every link. As regards condition (c), in low-
density snow, crack healing or the healing of broken bonds between the ice grains is not an
important mechanism. In most cases the separation of the fracture surfaces impedes the
healing of the broken bond. The growth of the existing bonds as well as the formation of new
bonds which lead to strength increases of the fundamental units can be included by choosing
a time-dependent strength distribution function for the fundamental units.

STATISTICAL TREATMENT
Knowing the strength distribution function /(s) of the separated elements of the specimen,

the number n, of the surviving links per unit area with strengths larger than ¢ (stress increased
to ) may be calculated. For equally stressed links it follows that
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ne =n fmf (s) ds, (13)

where 7 is the total number of links per unit area before any fracture occurred.
The introduction of a density distribution &(s, x) for the link stresses (s is the mean stress,
x the independent variable) modifies n, to

oo (0 o9 05) . »

With g(s, x) = 8(s—x), Equation (14) results again in Equation (13)

= =] w0

w1 {HJ (f(x) f}S(U—x) dx) ds} = nﬁf(s) ds.

For the following calculations proposition (a) is considered to be fulfilled.
If the load per link is increased to s, the (n—n,) links with strength less than ¢ are broken
and the load X per unit area is redistributed among the remaining n, links:

E:n,cr=cnff(s) ds. (15)

The maximum possible load X, that is the strength of the specimen per unit area results
from the condition:

T — (16)

To be able to compare the resulting specimen strength Xp, with the most probable link
strength sm the quotient Xp/nsy is calculated for different link strength distributions and
widths:

Z‘-m Om .
—— =2 | f5)dn (17)

where oy is the maximum mean link stress given by Equation (16). This gives Xy /nsy as a
function of the distribution width and type. The distribution (s) and the development of
the quotient X/n during the loading process are plotted with the help of a desk-calculator
program.

DiscussioN oF THE NUMERICAL COMPUTATION

s and A were normalized to sy, (the most probable value of s). All distribution integral
functions are normalized to one in the range from o to (10A/s,) +1. The range of s/syy is 0 to 3.
The relative deviations A/gy, vary from o.1 to 0.5 in steps of 0.1. For the Weibull distribution
Afem is multiplied by ¢. 1.7 to get similar widths as for the log-normal distributions. For
the Weibull distribution m is set equal to 1.6, sy, equals 1. In Figures 4 to 6 the link strength
distributions f7(s5) are plotted with dashed lines, the functions Z(s) and the ratio Xy /sy with
full lines. The ratios X /sy for the normal and the log-normal link-strength distribution
show a similar dependence on A/sy,. They decrease from 1 (normal distribution) to a mini-
mum value for Afsy & 0.5 and increase afterwards again. For the normal distribution this
increase is caused by the zero assumed for JS(s) for s < 0. For the log-normal distribution the
increase results from its asymmetric behaviour. For the Weibull distribution the decrease of
Zm/sm as a function of A/sy, is slower and in the interesting range of A/sp, there is no re-increase.
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Fig. 5. Ductile strength model : Equivalent conditions as for Figure 4 but for log-normal type of distribution for the strength f (s).
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APPLICATION OF THE STATISTICAL TREATMENT OF DUCTILE STRENGTH TO SNOW

The ductile type of strength is responsible for most natural and artificially-induced
fractures in snow (Salm, 1971; Gubler, 1976). The smaller the strain-rate € the better the
redistribution of the loads among the surviving links, the smaller the remaining internal
forces. The ductile strength depends only on the relative width of the link strength distribu-
tion and is independent of the macroscopic test volume. The density of the fundamental units
for low-density snow is of the order of 1071¢ m~3. The brittle strength of 1 m3 of snow under
these conditions amounts to one-fifth of the mean strength of the fundamental units
(A/sm = 0.3, log-normal type of strength distribution), whereas the corresponding ratio for
the ductile strength is 0.7. From this estimate a ratio of ductile to brittle strength of 3.5
follows. For the above calculation the strength of the fundamental units was considered to be
independent of strain-rate.

SIMULATION OF THE PRIMARY FRACTURE PROCESS OF A SLAB AVALANCHE USING A TIME-DEPENDENT
DISTRIBUTION FUNCTION FOR THE STRENGTHS OF THE FUNDAMENTAL UNITS f (s, 1)

The snow cover of a potential fracture zone of a slab avalanche is composed of sections of
different stress states, stress magnitudes, and stabilities. The initial fracture will occur in the
section with lowest stability relative to a ductile fracture. The section has to be small enough
so that its macroscopic stress field can be considered to be homogeneous. We define this
section as the primary fracture volume of the slab avalanche. Strength and stress in this primary
fracture volume change continuously with time. The ductile fracture of this volume may
propagate to the neighbouring sections of the snow cover (brittle fracture) and release the
slab. The stability development in the primary fracture volume will now be investigated
using a time-dependent strength distribution function f (s, ).

To simulate a strength increase of the unbroken elements by sintering (constant tempera-
ture metamorphism) and by the formation of new bonds, the density distribution of the

4
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strengths of the fundamental units may be modified. For the following estimates the strength
development in the slab bed is considered to be mainly responsible for the natural release of
slab avalanches (Sommerfeld, 1976).

To describe the strength increase as a function of time the following time dependences may
be involved:

Sintering: s oc t2/5 (theoretical growth of bond cross-sections).

Settling: Probably has no effect on the thin lubricating layers. Density dependence of
shear strength for low-density snow seems to be low.

Increase of normal pressure: For low shear strength and normal pressures in the range
from zero to a maximum pressure less than the shear strength (new snow). A. Roch
(Sommerfeld, 1976) found an almost linear dependence of shear strength on normal
pressure.

Figure 7 shows an example of the development of Zp/n as a function of a time-dependent
log-normal link-strength distribution function. In the examples the relative deviation is kept
constant. The most probable element strength sy, is increased from 1 to 2 either proportional
to t/s or ¢ within a time f = o to 1.

Assuming a linear stress increase in time (such as provided by continuous snowfall for
24 h (t = 1) starting at zero for ¢ = o, avalanche (1) (Table I) starts after 5.1 h, avalanche
(2) after 11.8 h, avalanche (3) after 14.1 h, avalanche (4) after 18 h, avalanches (5) and (6)
will not occur if precipitation stops after 24 h.
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Fig. 7. Theoretical development of the reciprocal stability (ratio of stress to strength) for a linear increase of the mean strength
of the fundamental units as a _function of time and constant precipitation (example r in Table I).

TasLE I. TIME OF FAILURE AS A FUNCTION OF THE TIME DEPENDENCE

or £ (s, 1)
__A_ sm ot L Sm OC {04
Sm time of failure Strength time of failure Strength
0.3 0.22 (1) 1.22 0.49 (2) 1.49
0.5 0.59 (3) 1.59 0.75 (4) L.75
0.7 >2.00 (5) >3.00 1.28 (6) 2.28
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These very theoretical estimates should show how important the exact determination of the
relative deviation of the link-strength distribution and of the time dependence of the strength
increase are.

If the conditions of the models described in this paper can be proved definitely by experi-
ments, some additional conclusions may be drawn from the model calculations.

1. The higher the relative width of the strength distribution of the fundamental units, the
higher the ratio of ductile to brittle strength, and the easier the spreading of the
secondary fracture from a natural induced primary fracture.

2. The higher the relative width of the strength distribution of the fundamental units, the
lower the probability of a natural avalanche release. But if a natural or artificially
induced primary fracture occurs, the resulting low stability to secondary fracture may
lead to enlarged slabs.

SIMULATION OF BRITTLE AND DUCTILE STRENGTH TESTS USING THE CENTRIFUGAL METHOD

The brittle and ductile strength measurements of samples using the centrifugal method
can be simulated on a desk calculator.

Because of the lack of exact information, the strength distributions of the fundamental
units are considered to be independent of the stress rate. The integral probability of the
sample strength is plotted as a function of the spinning frequency for brittle strength. The
ductile strength is marked by a vertical line (Figs 8 and g).

The calculation of the brittle strength of the sample is based on Equation (3):

P(s) = (1—F(a))"

(for equally stressed fundamental units). P(q) is the probability that a unit volume of the snow
sample has a strength equal to 6. n is defined as the number density of the fundamental units.

For the calculation of the sample strength in the stress field of a spinning cylinder, the
sample cylinder is thought of as cut into equally thick slices. The probability that a slice of

plo)
m
o = = & & s & 8 = 8 =
™ LJ L L L L L W | ") L Lt
m ] ¥ o ] F 5 r~ ~ m 0 [Pa
& E & |B\F & £ B § Hol™
. ~ m ™ m (V] m - —. o N
~N
=
L[!. = £ w
e = o
" £ |5 5
4 Vs = o
7] 1]
T (Da, 2
= <
m 5 =
N
[ 2 3 Y g B 7 2 3  Yspinning

Fig. 8. Simulation of centrifugal tensile strength as a function of link density for two types of similar ductile strength and density.
Iin=10"m3, s;m = 6xX105N; 2: n= 1083m3, sm = 6xX 103 N,

https://doi.org/10.3189/50022143000013897 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013897

354 JOURNAL OF GLACIOLOGY

p (0)
m
] = n ~ (] E m m m m
m = = = = = = = =
-4 L L L [N L [N} L
- =8 8B B # & Hwpsl
™ o i o o . o M L .
- m - I ~ =g = - ~N m
N ™
LH = =
o [N} l.r:l
7] ® B &
« M m
it @
mM & & M gl B B ® g
W [ w w W W w wa [Pa]
& B g & £ b E HF
n m ~ m - - = N
| 2 | H N =} 7 8 = Yspinning
brittle ductile

Fig. 9. Simulation of centrifugal lensile strength tests as a function of sample size. The ratio of the cross-sectional areas of
sample 1 to sample 2 amounts to 4. The corresponding ratios of ductile to brittle strength are: for the larger sample 2.9,
Jor the smaller sample 2.6,

thickness AL at a mean distance / from the spinning axis survives an increase of the spinning
frequency to v is given by
all, v)

2o = 11— [ 109 ds}ws, (18)

where nV; is the number of links in the slice (= }wd2nAL). P(v); for the whole sample results
as the product of all P(v, {)g

% all, v)
i nVs]2
Pv) = [l I{I—ff(s) ds} ] . (19)
l=o0 o
The result has to be squared to take both ends of the sample cylinder into account:
L ofl, v) .
_ 2n
Pe) = | HI— f £8) ds} p (20)
=0 o

For the calculation of the ductile strength, only the fundamental units in the mid-plane of the
cylinder have to be considered (the number of the fundamental units in the cross-section has
to be high enough to allow a statistical description). The resulting strength is well defined and
the failure occurs in the mid-plane of the sample cylinder.

Figure 8 shows the dependence of the brittle strength on the number density of the
fundamental units for two snow types of equivalent ductile strength. Figure g shows the
dependence of the ratio of ductile to brittle strength on the sample size. In Figure 10 measured
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data of the tensile strength are plotted as a function of the load rate. These experimental
results show a significant increase of strength with decreasing stress-rate. The estimate of
brittle and ductile strength on the base of the statistical models furnish only extreme values
for the strengths.

A 05 [10¢ N/m?]

SO S -
S
2 | [ |
) 100 © 200 300 00 f[%)

Fig. 1o, Tensile strength measured by the centrifugal method as a Sunction of the time between the start of the centrifuge and
Satlure of the sample for different types of snow.

Discussion oF SOMMERFELD’S ESTIMATE ON THE BASIS OF STATISTICAL MODELS FOR THE STRENGTHS

There are two very important differences in the application of the statistical models to
snow in this paper and the estimate given by Sommerfeld (1973, 1974, 1976)

(a) Sommerfeld considers the measured sample strengths to be the link strengths.

(b) Sommerfeld uses the Weibull distribution fitted to the strength distribution of his
tensile-strength measurements as the basis for the brittle model, and the normal
distribution fitted to the strength distribution of the shear-strength measurements as
the base for the ductile strength model.

Sommerfeld performed centrifugal tensile tests on o. 51073 m3 and 2.3 X 1073 m3 samples
of cylindrical shape with diameters of 6 X 10-2 and 12 % 10-2 m. From the strength distribution
of these samples he wanted to estimate the brittle tensile strength at the crown of a slab
avalanche.

In the natural snow cover there may be large flaws produced by wind action during
precipitation, by rocks, gliding, and settling. These large flaws led to zero or almost zero
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strength measurements. To eliminate the effect of large flaws Sommerfeld designed the larger
2.9 % 10-3 m’ sample tube. Nevertheless, to reduce systematic errors further, the three lowest
strengths of each measured distribution were not used in the Weibull determination
(Sommerfeld, 1974). In some cases the Weibull parameters were significantly changed by this
data reduction but at the same time the fits were improved. Sommerfelds’ calculations result
in a snow strength (for volumes larger than 1 m?3) with an integral fracture probability of
0.999 of about 1.1 times the minimum sample strength. This strength ratio corresponds to a
volume or link-number ratio of about g to 4 orders of magnitudes (Sommerfelds’ critical
volume being about 1 m? and the effective sample volume some 104 m?). His Weibull
parameter r changed from 0.9 to 1.6. Different problems arise from Sommerfeld’s sampling
method: The natural strain-rate differs by some orders of magnitude from the test strain-rate.
The samples have to be small enough to guarantee a homogeneous natural stress distribution
over the sample size. It is likely that brittle tensile strength is only involved in the propaga-
tion of the secondary fracture. The additionally stressed volume at the front of the crack is
probably of a comparable size to the sample volumes mentioned. The weak flaws defined
above may occasionally act as primary fracture volumes. They cannot be considered to be
distributed at random even relative to critical volumes of 1 m3. From the strong dependence
of the strength distribution on the sample size, it follows that the link definition of Sommerfeld
is very critical. Sommerfeld found that brittle strength has to be volume independent for
volumes larger than about 1mi. This volume independence characterizes the Weibull
distribution. But because of the necessarily high strain-rates to produce brittle failure the
volume to be considered in front of a brittle crack is limited by the propagating stress front
and the stress distribution and will be much smaller than 1 ms3. If the sample strength of
Sommerfeld is thought to be log-normally distributed, the resulting brittle strength will be
significantly changed. Also the knowledge of the strong dependence of the sample strengths
on the stress-rate shows that the more or less accidental definition of the link unit by
Sommerfeld is not optimal. It seems to us that the arbitrary size of the test samples has to be
replaced by some kind of fundamental units as defined at the beginning of this paper in order
to obtain consistent results.

Sommerfeld proposes an application of the ductile strength model to describe the shear
strength in the bed of a slab avalanche. He mentioned the following points to justify the
application of the thread model: “During shear failure, the failing parts are in contact and
friction and crack healing due to new bond formation impedes crack growth. For these
reasons a quasi-failure is the likely initiating event. There is a strong possibility that a failure
in a small part of the bed surface would not propagate elastically, and that the whole bed
surface would not fail.”

Sommerfeld considered the shear-frame area as the link unit. Shear-strength data
measured by Perla were fitted to a normal distribution with a relative standard deviation of
about 0.5. On the basis of the ductile strength model he arrived at a shear strength in the slab
bed reduced by a factor 0.53 compared with the mean shear-frame strength. He thought of
this result as an explanation of the stability factor defined by Roch (Sommerfeld, 1976). The
stability factor is defined as the ratio of the mean sample shear strength corrected for normal
pressure to the shear stress component parallel to the slope at a distinct point of the slope at
the moment of a natural avalanche release. The shear strength was also measured with a shear
frame. The stability factor given by Roch is about 2. This is indeed a very good agreement.
But what happens if the measurements are performed with a different shear-frame size? Perla
found a dependence of the measured shear strength of the sample volume or sample area:
The larger the volume the lower the mean measured shear strength. This fact sustains the
proposition that Perla measured brittle shear strength and at the same time that the shear-
frame area cannot be considered as a link unit. Besides this fact it has been shown in this paper
that the ductile strength of snow depends strongly on the type of distribution of the strength of
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the links independent of the distribution width. The normal distribution applied by
Sommerfeld for the link strength presumes a considerable probability for links of zero strength.
"This again sustains the conclusion that the chosen link size is not in agreement with the model
rules. Therefore it seems that the above-mentioned agreement is accidental. The stability
factor measured by Roch and its high relative standard deviation is likely to be at least in part
a consequence of the method of sampling shear strength with the shear frame. Even if the
shear strength of a thin lubricating layer could be determined correctly and simultaneously
with the avalanche release, we do not know if we have really sampled the shear strength in the
primary fracture volume.

CoONCLUSIONS

Statistical models to estimate the strength of snow together with consistent definitions of
the fundamental unit may lead to a better understanding of brittle and ductile strength of
snow in terms of structural or stereological parameters.
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