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FLAT SUBMODULES OF FREE MODULES OVER
COMMUTATIVE BEZOUT RINGS

K. SAMEI

A ring is called Bezout if every finitely generated ideal is principal. We show that
every ideal of a commutative Bezout ring R is flat if and only if every submodule of
a free .R-module is flat. Using this theorem we obtain Neville's theorem.

1. INTRODUCTION

Neville has proved that the topological space X is an F space if and only if every
ideal of C(X) is fiat, or if and only if every submodule of a free C(AT)-module is flat. This
theorem is the main result in [4]. In this paper we define quasi-torsion-free modules, and
when R is a commutative Bezout ring we show an .R-module is quasi-torsion-free if and
only if it is flat. We also show that every ideal of R is flat if and only if every submodule
of a free .R-module is flat. In Section 3, we prove Neville's theorem using these theorems.

We need to review briefly some standard terminology. In this paper R is always a
commutative ring with identity and modules are unital. An .R-module is flat if the tensor
product is an exact functor. An ideal / of a ring R is called pure if for every a € I, there
exists b £ / , such that a = ab.

We denote by Max(i?) the spectrum of maximal ideals of R. We say R is semiprim-
itive if nMax(fi) = (0). For any ideal / of R and a € R, we set

M(a) = {M e Max(R) : a € M} and M(/) = {M € Max(i?) : / C M}.

Then the sets M(7) = f] M(a), where / is an ideal of R, satisfy the axioms for the closed

sets of a topology on Max(i?), called the Stone topology, see [3, 7M].

Throughout, X will denote a completely regular and Hausdorff space and C(X) de-
notes the ring of continuous real-valued functions on X. Two sets E and F are completely
separated if there exists some / e C(X) such that / = 0 on E and / = 1 on F. The
cozero set of a function / e C(X) is the set coz(/) = {x € X : f(x) ^ 0}. A space X
is an F space if disjoint cozero sets are always completely separated. Several equivalent
conditions for F spaces are given in [3, Theorem 14.25]; in particular X is an F space if
and only if C(X) is a Bezout ring. The reader is referred to [3] for undefined terms and
notations.
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2. SUBMODULES OF FREE MODULES

The following lemma is proved in [1].

LEMMA 2 . 1 . In a ring R, every principal ideal is Bat if and only if for each
a € R, Ann (a) is a pure ideai.

REMARK. Let R be a ring. Suppose

0 — • K —¥ F -U A —> 0

is an exact sequence of /^-modules, where F is flat. If A is flat, then for every principal
ideal / = (r) of R we have: K n FI = KI, see [5, Theorem 3.55]. It is easy to see that
for any x € F, xr € K n FI implies that xr — kr, for some k e K.

By redefining the concept of torsion, we can say something interesting about flat
modules.

DEFINITION: Consider the exact sequence of iZ-modules

(1) 0—•»# —>F-^A-^Q

where F is a flat submodule of a free module. A .ft-module A is quasi-torsion-free relative
to the exact sequence (1), if the following is true: whenever r € R, x € A and rx — 0,
there are x' € F and k e K such that <p(x') = x and rx' = rk.

The independence of the notion of quasi-torsion-free from the exact sequence (1)
follows from the following lemma.

LEMMA 2 . 2 . Let R be a ring. If an R-module is quasi-torsion-free relative to
one exact sequence, it is quasi-torsion-free relative to every exact sequence.

P R O O F : Suppose that A is quasi-torsion-free relative to the exact sequence

0—->AT2—>F2-?h A—>0

where F2 is a flat submodule of a free module. Use the fact that every module is a
quotient of a free module to find a free module F\ and an onto map V"i : F\ —> F2.
Define the following diagram of exact sequences

0 —> Ki —> Fi -**> A —+ 0

4- 4V>i II
0 —> K2 —> F2 -^ A —> 0

by letting fa — fa o fa and .ft̂  = K e r ^ ) . Consider the exact sequence

0 —> tf3 —•* Fi -*1» F 2 —> 0

Suppose r x = 0, where r € R and i e A Then there exist 12 S F2 and A;2 G i^2 such

tha t fa(x2) = x and rx2 = rk2. Let x\ € Fi and fci € K\ be such t h a t T/>I(ZI) = 12 and
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= k2- Therefore r(xx — k\) £ K3. Therefore by the above remark, r(x\ — fci) = rk3,
some k3 £ K3. Now K3 C K\, so k\ + k3 £ K\. Thus we have <j>i{x\) — fa o ipi(xi) = x
and rx\ = r(k\ + k3). Hence A is quasi-torsion-free relative to the top exact sequence.
We note that the middle term of the top exact sequence is free. Now suppose that

(2) 0 —» if —> F A A —>0

is an arbitrary exact sequence of it-modules, where F is a flat submodule of a free module.
By the projectivity of free modules, there exists the following commutative diagram:

0 —> K —• F -U A —• 0

As in the above proof, it follows that A is quasi-torsion-free relative to (2). This means
that A is quasi-torsion-free relative to every exact sequence. u

THEOREM 2 . 3 . Let Rbe a ring. Then every flat R-module is quasi-torsion-free.
If R is Bezout, every quasi-torsion-free R-module is Eat.

PROOF: Suppose that A is a it-module and consider the exact sequence

0 —•¥ K —-> F -U A—>0

where F is a submodule of a free module. First we claim that A is quasi-torsion-free
if and only if K n FJ = KJ, for all principal ideals J. Let K n FJ = KJ, for all
principal ideals J and let r £ R, x £ A and rx = 0, then there exists x' £ F such that
4>{x') — x. So rx' £ K n FJ, where J — (r). Hence by the remark, there exists k £ K
such that rx' = rk and this implies that / is quasi-torsion-free. Conversely, let A be
quasi-torsion-free and rx £ K n FJ, where r £ R and x £ F. Then r0(x) = 0, so there
are x' £ F and k £ K such that (j>(x') = <£(x) and rx' = rk. Since x — x1 + k', for some
k' £ K, then rx = r(k + k'). Therefore rx £ KJ and this proves the claim. Now the
proof follows from [5, Theorem 3.55]. D

We come now to the main result of this section. But we first need the following
lemma.

LEMMA 2 . 4 . Let R be a ring and let A be a submodule of Jj R. Let TT, be the

canonicai projection map onto the jth coordinate, and assume the ideal Kn(A) = /„ is
principal with generator an. Then the exact sequence

splits if and only if there exists xn £ A with nn(xn) — an and Ann(an) C Ann(xn).

PROOF: Assume that the above exact sequence splits. Let ipn : In —>• A be
the splitting homomorphism and let xn = ^n(on). If a 6 /„, then ipn(d) = ipn(ban)
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= fa/>n(an) = bxn, for any b such that ban = a. In other words, ban = 0 implies that
bxn = 0, for any b £ R. Consequently, Ann(an) C Ann(in).

Conversely, suppose that there exists xn £ A such that 7rn(a;n) = an and Ann(on)
C Ann(in). Define the splitting homomorphism ipn : In —y A by ipn{ban) = bxn. Now
if ban = can, then b — c £ Ann(an) C Ann(:rn), so ipn is well defined. Clearly, tpn is a
module homomorphism. Finally, vrn o ipn(ban) = bnn o tpn(an) = bnn(xn) = ban, so Vn is
indeed a splitting homomorphism. D

THEOREM 2 . 5 . Let R be a Bezout ring. Then every principal ideal ofR is Bat
if and only if every finitely generated submodule of a free R-module is Bat.

PROOF: Suppose that every principal ideal of R is flat. Let A be a finitely generated
submodule of a free module. Then A can be embedded in a finitely generated free module.

n
So without loss of generality A C JJ R. The proof is by induction on n. If n = 1 then

l
A is principal ideal, and so is flat by the hypothesis. Suppose n > 1 and the theorem

n - l
has been proof for all finitely generated modules contained in JJ R. Let Fn be the free

n 1
module ]JR. Let TTJ and /„ be as in the lemma. Since R is Bezout and /„ is finitely

I
generated, /„ = (an), for some an € R. Consider the homomorphism <j>: Fn —> Fn defined
by (j>{b\,..., 6n_i, 6n) = (b\,..., bn-i,bnan). We want to consider a suitable submodule
B of Fn (or rather <j>~l{A)), so that we can apply Lemma 2.4 with 7rn(a:n) = 1. Since
A is finitely generated, there exists a finitely generated submodule B of Fn such that
<j>(B) — A. Since an £ ftn(A), we may assume without loss of generality that there exists
x'n e B such that nn{x'n) = 1 (If no such x'n exists, consider any x' = {b\,..., bn_i,bn) € B

such that 7rn o <p(x') = an, that is, anbn = an. Let x'n = (b\,. • •, 6n-i, 1) and enlarge B to
include x'n). Clearly, 7rn(fi) = R. Consider the exact sequence

0 — > L n — > B ^>R—•» 0.

Trivially, the hypothesis of Lemma 2.4 is satisfied, and so B = Ln © R. Clearly
n- l

Ln = {(&i,... ,6n_i,0) £ B} is embedable in JJ R, so that Ln is flat by the inductive
l

hypothesis. Thus B is flat. Now consider the exact sequence

(3) 0 —>K —>B -UA-^0

We shall prove that A is flat by proving that A is quasi-torsion-free relative to the
exact sequence (3). First note that the middle term B is a flat submodule of the free
module Fn. Now assume that x £ A, r € R and rx = 0. We must find x' £ B and
k e K such that <f>{x') = x and rx' = rk. Let x' = (&i,..., 6n-i, bn) £ B be such that
<j>{x') = (6i , . . . , &„_!, bnan) = x. Therefore (r&i,..., r6n_i, 7-6nan) = 0, that is,

r £ Ann(6i) D • • • D Ann(6n_x) n Ann(6nan).
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Since R is Bezout, then

Ann(6i) n • • • n Ann(6n_!) ("I Ann(6nan) = Ann(6),

for some b € R. According to Lemma 2.1, Ann(b) is pure, hence there exists
c € Ann(6) such that r = re. Set k = ex'. Clearly k € B, rx' — rk and
4>{k) = <j)(cbi,... ,c6n_i,c6nan) = 0, that is, k € K. Thus A is quasi-torsion-free rel-
ative to the exact sequence (3). Hence A is flat, by Theorem 2.3. D

It is well-known that a i?-module A is flat if and only if every finitely generated
submodule of A is flat. Thus we have:

COROLLARY 2 . 6 . Let R be a Bezout ring. Then every ideal ofR is Bat if and

only if every submodule of a free R-module is flat.

3. GELFAND RINGS

The purpose of this section is to prove Neville's theorem, by the theorems of the
previous section. We first give some results about semiprimitive Gelfand rings.

A ring R is called Gelfand (pm-ring) if every prime ideal of R is contained in a
unique maximal ideal. When the Jacobson radical and the nilradical of ring R coincide,
DeMarco and Orsatti [2] show that R is Gelfand if and only if Max(i?) is Hausdorff; and
if and only if Spec(R) is normal (in general, not Hausdorff). This class of rings contains
the classes of regular ring, local rings, zero-dimension rings and C(X).

DEFINITION. TWO subsets E and F of Max(i?) are said to be almost separated
in Max(ft) if there exists a 6 R such that E C M(a) and F C M(a - 1).

PROPOSITION 3 . 1 . Let R be a ^miprimitive ring, then every principal ideal
in R is flat if and only if for any non-zero a,b 6 R, Max(R) - M(a) and Max(R) — M(6)
are almost separated whenever ab = 0.

PROOF. Suppose every principal ideal is flat and a,b e R such that ab = 0. By
Lemma 2.1, Ann(a) is pure, so there exists c e Ann(a) such that be = b. Hence
ac = 0, b(c - 1) = 0. Thus

Max(R) - M(a) C M(c), Max(fl) - M(b) C M(c - 1).

Conversely, let a G R. We want to show that Ann(a) is pure. Let b € Ann(a). If b = 0,
then there exists b = 0 £ Ann(a) such that b2 = b — 0. So we can assume 6 ^ 0 . Because
ab = 0, Max(/?) — M(a) and Max(i?) - M(b) are almost separated. Hence there exists
c S R such that

Max(fl) - M(a) C M(c) and Max(i?) - M(&) C M(c - 1)

Thus ac — 0 and be = b. Hence Ann (a) is pure. D
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LEMMA 3 . 2 . Let R be a Gelfand ring, then the subsets E and F ofMax.(R) are

completely separated if and only if they are almost separated in Max(R).

PROOF: Assume E and F are completely separated in M.ax(R). So cl-ETlclF = 0.
Hence there exists the ideals / and J such that c\E — M(/) and c lF = M(J). We
claim that I + J = R. Otherwise there exists M G Max(i?) such that I + J C. M. So
M G M(/) n M( J), and this is a contradiction. Therefore a + 6 = 1, for some a G / and
be J. Thus

M(/) C M(a) and M(J) C M(a - 1).

Conversely, Assume E and F are almost separated in Max(iZ). Then there exists a e R
such that

E C M(a) and F C M(a - 1).

Thus by Urysohn's Lemma there exists the function / : Max(i?) —> R such that

/ ( M ( a ) ) = 0 and / ( M ( o - l ) ) = l.

This shows that E and F are completely separated. D
The following result is a generalisation of [1, Theorem 4].

THEOREM 3 . 3 . Let R be a semiprimitive Gelfand ring. Then every principal
ideal in R is flat if and only if for any non-zero a,b G R, Max(i?) — M(a) and Max(iZ)
— M(b) are completely separated whenever ab = 0.

PROOF: It is obvious from Proposition 3.1 and Lemma 3.2. D

LEMMA 3 . 4 . X is an F space if and only if for any non-zero f,g G C(X),

MSLX(C(X)) - M(/) and Max(C(X)) - M(g) are completely separated whenever fg = 0.

PROOF: We consider the map ip : @X -> Max(C(A:)) such that Vi € @X, tp{x)

= Mx, where 0X is the stone-Cech compactification of X. It is well-known that ip is
a homeomorphism, and hence Max(C(X)) = /?X, see [3, Section 6]. Therefore by [3,
Theorem 7.3], for any / G C(X), we have:

V(cl Z(/)) = {M* G Max(C(X)) : f e Mx} = M(/).

Consequently, X is an F space if and only if for any non-zero / , g G C(X), X — Z(/) and

X — Z(g) are completely separated whenever fg = O (see [3, 14N.4]); if and only if for

any non-zero

f,geC(X), d{X-Z(f))=0X-clZ(f)
pX pX

and

are completely separated in /3X, whenever fg = 0; and if and only if for any non-zero

f,geC(X),
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and
- M(g)

are completely separated whenever fg = O- 0

THEOREM 3 . 5 . The following are equivalent:

(1) X is an F space.

(2) every submodule of a free C(X)-module is Bat.

(3) every ideal ofC(X) is Bat.

P R O O F : TO prove (1) ==> (2) suppose X is an F space, then C(X) is a Bezout ring,
by [3, Theorem 14.25]. Thus (2) follows from Corollary 2.6, Theorem 3.3 and Lemma
3.4. It is trivial to show (1) =>• (2). Finally (3) => (1) follows from Theorem 3.3 and
Lemma 3.4. D
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