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ABSTRACT. The old problem of erosion by temperate glaciers is reviewed. We 
restrict ourselves to a monolithologic erosion of hard beds where chemical weathering 
is almost negligible. Rock fracture, either subglacial or otherwise, may have occurred 
during a previous cold episode, allowing long-lasting quarrying by the temperate 
glacier, but, once all the loosened material had been dragged away, grooving 
becomes the main erosional process. The theory of locally stress-controlled 
temperatures leads to the idea that very small particles found in the bottom ice 
cannot reach the bed. Therefore, abrasion and polishing come from rock chips due to 
grooving, or sand grains freed by suglacial chemical weathering. In the steady 
regime, clasts that are able to groove come from the surrounding rock walls. Most of 
them do not enter the bergschrund, but are embedded in a bottom layer, which melts 
progressively over several kilometres. After being in contact with the bed over some 
distance, they are sufficiently blunted to become unable to groove. This distance. A, 
increases with the boulder size, and the largest ones are not yet worn out at the 
glacier terminus. The mechanics of grooving is roughly modelled to estimate, for any 
stone size, the grooved volume per unit time and the grooving distance .A. From these 
estimations, and the size distribution, the erosion rate without quarrying, as a 
function of the distance from the head wall, is calculated. It goes through a maximum 
when all the debris-laden bottom layer has just melted, and thus an overdeepening 
might form in a steady way. However, two unknown parameters enter the theory: the 
probability IT for a stone able to groove which is in contact with the bed to groove, 
and the ratio k of the volume of grooved rock before the stone is worn out to the 
volume of the stone. Experiments that may allow us to determine them are indicated 
below. 

.1. BASIC PROCESSES AND METHODOLOGY 

1.1. Historical background 

The study of glacial erosion and drift is almost two 
centuries old. Around 1900, the processes of glacial 
erosion by temperate glaciers and the importance of 
glacial relative to hydraulic erosion were fiercely debated, 
appealing to field observations, not to theoretical models. 
At that time, all the processes that are known today had 
already been put forward. They are: 

accepted idea at that time. Consequently, dislodging 
by regelation ice was conceivable. Nevertheless, 
continuous loosening of boulders under a temperate 
glacier was difficult to explain, as it is today. 
Therefore, J ohnson (1899) emphasized frost-shatter­
ing in bergschrunds and marginal crevasses. 

1. Subglacial chemical weathering, mainly of lime­
stone. 

2. Erosion by turbulent subglacial streams, which 
carry sand (Chaix, 1902). 

3. Abrasion by rock debris that is present at the glacier 
sole, and provides glacial polish, striae and grooves. 
(The boundary between striae and grooves is 
conventional. A cross-sectional area of 10 mm2 may 
be adopted.) 

4. Quarrying, also termed plucking, i.e. successive 
loosening, dislodging and dragging of boulders from 
the bedrock (Baltzer, 1898; Salomon, 1900) . The 
possibility of melting or refreezing at the glacier sole 
according to the location had already been an 

In the Alps, the amount of rock debris in the bottom 
ice is generally insignificant. For instance, bottom debris­
laden ice is not found in the tongues of the three largest 
French glaciers: Mer de Glace, Glacier d'Argentiere and 
Glacier Blanc. Therefore, Geikie (1884), Drygalski (1892) 
and Vallot (1898) maintained that glacial erosion occurs 
only when a glacier has formed (or advances) on frost­
shattered and loose ground, and that it becomes 
negligible several centuries later, once all the loose 
material has been removed as a bottom moraine. After 
the first French expeditions to Greenland, Boye (1950) 
presented strong field arguments against steady subglacial 
erosion, although his idea that loose material had been 
pushed by the advancing ice was simplistic. More recent 
references and arguments are to be found in Lindstrom 
(1988) . 

While this point of view has always prevailed in 
Europe, American Quaternary geologists, impressed by 
the enormous overdeepenings and sheets of drift that are 
found in North America, think that glacial erosion, 
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including quarrying that provides new abrasive material, 
always remains strong and can be considered as steady. 

1.2. Scope of this study 

I shall consider only monoli thologic erosion, l.e. clasts 
eroding a bedrock with a similar petrographic compos­
ition and strength, because it raises the main conceptual 
difficulties. This case is the most general in local mountain 
glaciers. Among the many glaciers that I have visited in 
the Alps and in the Andes, a single one lies on a bed with 
contrasted lithology: Glacier de Saint-Sorlin. (Its sub­
glacial topography reflects this contrast. At the north­
western part, in soft dolomite, there is a longitudinal 
valley, whereas elsewhere, in metamorphic rock, the bed 
is flat.) Bedrock where chemical dissolution is essential, 
such as limestones or sandstones with a calcareous 
cement, will also be excluded. 

Moreover, erosion by cold ice sheets will not be 
considered. In this case, there may be areas where, going 
downstream, freezing at the lower limit of the ice sheet 
replaces melting, a situation that favours soft sediments or 
lumps of permafrost to be caught up by the moving ice. 
Therefore, the key problem of discovering sources of 
abrading and grooving material becomes quite different 
and seems far easier to solve (cr. Sugden, 1978). 

In this first part of this paper, assessments of erosion 
rates were reviewed, and the possibility of subglacial 
loosening of stones was examined. Since it will appear 
that no known process can operate in a steady way, 
Occam's razor will be used. The methodology will be to 
estimate erosion rates without plucking. Only if these 
rates were insignificant, the hypothesis of continuous 
loosening by some unknown process would be necessary, 
but this will not be the case. 

In the second part, sources of abrading and grooving 
material, and how they may reach the bed, will be 
examined. For a boulder to groove the bed, contact is not 
sufficient. In particular, it must have sharp corners and 
not be totally worn. The concentration of grooving 
boulders near the bed and their size distribution will be 
modelled. The concept of a "wearing distance" A, over 
which a clast is totally worn, will yield a limiting value of 
the erosion rate. 

Lastly, in the third part of this paper, the grooving 
process will be modelled, to estimate very roughly the 
influence of the sliding velocity, and how erosion rate 
varies with distance from the bergschrund. Although the 
mathematics will be more difficult, I do not claim to 
reach an accurate predictive formula. My aim is only to 
assess whether the "European" point of view appears to 
be acceptable. This is also to set out a methodology and to 
indicate to future investigators the observations, measure­
ments and experiments that ought to be made. 

1.3. Speculated formulae for erosion rates 

To tackle large erosional forms as overdeepenings, some 
unwarranted formulae for erosion rates have been 
suggested, that assume implicitly this rate to be a 
constant during the life-time of a glacier. 

De Martonne (1920) assumed an erosion rate 
proportional to abU A, where ab is the basal normal stress 
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(ab = pgh cos a, with h denoting the glacier thickness 
and tana the surface slope), U is the sliding velocity and 
A is an "adhesion factor", i.e. the relative area of true 
contact between ice and bed. (Ice-bedrock separation 
was already known in Europe, although sliding was 
poorly understood.) De Martonne assumed A to be 
proportional to hi tan a. Therefore, the- erosion rate 
would be proportional to U pgh sin a. But he was unaware 
that pgh sin a = 'Tb is the bottom shear stress. 

Andrews (1972) suggested directly an erosion rate 
proportional to 'TbU, a point of view that might be valid if 
most of the bottom drag were due to the solid friction of 
the clasts, as suggested later by Hallet (1981). 

Mazo (1989) assumed an erosion rate proportional to 
'Tb and independent of U. (In his further calculations 
about glacier flow, he assumed explicitly that this sliding 
velocity is negligible.) With ice viscosity (that may be 
expressed in Pas) and rock strength (that may be 
expressed in Pa) as only dimensional quantities at hand, 
it is impossible to obtain a coefficient of proportionality 
with a dimension ms-I Pa-I. This casts a doubt about the 
soundness of his model. 

No progress can be made in this way - by speculating 
some relationship at the start. Even if some large-scale 
features could be explained by such relationships, many 
others might also explain them, maybe better. First, a 
physical model must be set up. It must take into account 
field observations but it must be sufficiently simple to 
allow reduction to a well-posed problem in mechanics. 

This has been done by Boulton (1979), and more 
convincingly by Hallet (1979) and Shoemaker (1988). 
Nevertheless, at the beginning of his papers Boulton 
(1974, 1979) suggested the same erosion rate abUA as De 
Martonne, subtracting from ab "any water pressure Pw 
that might exist between the glacier and the bed". It 
seems that he has mixed two different space scales, since 
ab and Pw have been defined (or, at least, are calculated) 
at the scale of the glacier. 

Anyway, Hallett's or Shoemaker's treatments are only 
one-half of the story. Another theory must deal with the 
processes that provide abrading clasts at the ice-bed 
interface. 

1.4. Assessment of erosion rates 

Measured abrasion rates have been reviewed by Reheis 
(1975), by Vivian (1975, p.394) and by Drewry (1986, 
p.84, 87). Of course, I neglect measurements of erosion 
on a marble platen by a glacier that carries grains of 
quartz which are harder than calcite. 

As quoted by Vivian, some field measurements have 
been made during temporary glacier advances. At 
Obergrindelwaldgletscher, in limestone, the erosion at 
14 points during the 4 years 1921-24 of glacier coverage 
ranged between 0 and 39 mm, with 4.5 mm as the mean 
value. -At Allalingletscher, during the 6 years 1919-25, 
30 mm of somewhat weathered gneiss were eroded. 
Unfortunately, neither the amount of loose material 
dragged by the advancing glacier tongue, nor the sliding 
velocity, were measured. Obviously, these abrasion rates 
(1-5 mm a-I) cannot be extrapolated to the whole glacier 
or to a steady-state situation. 

Many estimates of glacial erosion have been inferred 
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from sediment transport in glacial streams. For instance, 
according to Kjeldsen (quoted by Drewry (1986)), five 
glacier basins in Norway lead to mean erosion rates in the 
range 0.073-0.610 mm a-I, with 0.276 mm a-I as the 
mean value. The best assessments come from hydro­
electric agencies tapping subglacial streams. According to 
Bezinge and others (1989), the load transport of tapped 
subglacial streams in the central Alps during 10years 
corresponds to an erosion rate of 0.97-1.13 mma-I. 

The flaw in this method is that most of the load may 
come from the surrounding uncovered slopes and lateral 
moraines, and not from the bed. Subaerial erosion rates in 
rock cliffs above glaciers are in the order of 3 mm a-I: 
about 2.4 mm a- I at the head of Glaciar Hatunraju, in 
Cordillera Blanca, Peru (Lliboutry, 1986); 2.9-
3.5 mm a-I at the head of Laurichard rock glacier, just 
south of Col du Lautaret, French Alps (Francou and 
Reynaud, unpublished). Of course, the extent of rock 
cliffs differs considerably from the head of one glacier to 
that of another. This topographic factor explains readily 
why larger values of load transport are found in the Alps 
than in Norway. 

To circumvent this difficulty, Lanser (1958) compared 
the sediment transports of Venter Ache at Vent (Oetztal) 
and Lech at Steeg (Tirol) . Both watersheds are said to be 
similar, but the former is glaciated over 45.7% of its 
surface, whereas the latter has no glaciers. The erosion 
rate thus obtained is 0.6 mm a-I in the former and 
0.014 mm a-I in the latter. This comparison is mislead­
ing. There is no reason for the amount of weathered 
debris in a watershed to remain in balance, especially 
when there are no glaciers. Then, weathered rocks form 
debris cones and screes at the foot of the cliffs, which 
increase with time and may deliver no load to the river. 
(Springs at the foot of the debris cones are quite clear.) 

In conclusion, erosion rates of temperate glaciers on 
hard beds can be several millimetres per year during a 
glacier advance, but are one order of magnitude less when 
averaged over a long period. 

Another way of assessing erosion rates, when the 
bedrock is not soluble, is to measure the corresponding 
drift. Larsen and Mangerud (1981) have estimated the 
drift produced in 700 years, during the Younger Dryas, 
by a glacier that existed in southern Norway, at 60km 
from the Scandinavian ice sheet. They have found a mean 
erosion rate of 0.5-0.6 mm a- I. Nothing compels us to 
assume a constant erosion rate during seven centuries. 
Reheis (1975) suggested that at Arapaho Glacier (Front 
Range, Colorado) it is today 0.14-0.235 mm a-I, but has 
been 1.26-2.04 mm a-I during a period of glacier 
advance, three centuries ago. 

The maximum amount of glacial erosion is found in 
overdeepened piedmont lakes, fjords or continental 
shelves ahead of fjords. In the Alps, the largest over­
deepenings are found in the lakes of Geneva (255 m), of 
Garda (281 m) and infilled with sediments below the 
town of Grenoble (,,400 m). They reach 1210 m in 
Sognefjord (Norway), 1460 m in Scoresby Sound (East 
Greenland), 1288 m in Messier Channel (Chilean 
Patagonia) and 2200 m in Lambert Fjord (East Antarc­
tica) (Grosval'd and Glazovskiy, 1982) . These areas were 
repeatedly covered and uncovered by outlets of large ice 
sheets. In the Alps there should have been 13 glaciations 
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during the last million years (Ma) (Kukla, 1977) . Calving 
glaciers appeared in Greenland 2.7 Ma ago (it is the age 
of the first glacial drift on Rockall Plateau), in Patagonia 
4.8 Ma ago and in East Antarctica 30 Ma ago. These 
figures may explain why overdeepenings in fjords are 
larger than in Alpine lakes. 

In all these cases, frost-shattering of the area during 
interglacials can be ruled out, because the area was below 
water. Nevertheless, an advancing glacier should have 
transported ablation moraine that deposited when it 
receded. Moreover, most ice sheets were cold, a 
circumstance that favours the formation of a debris­
laden bottom layer. Therefore, these large overdeepen­
ings can be explained, but they are not pertinent to this 
study. 

1.5. Rock fracture 

Loosening of boulders involves joints that always exist in 
rocks. Joints are sometimes due to thermal contraction 
during cooling, after a magma chamber solidified. More 
frequently, they are attributed to tectonic stresses, either 
global (linked with plate tectonics) or local (linked with 
folding) . Anyway, joints form at depth before denudation. 
New joints ought not to form at the surface, where the 
very existence of joints prevents horizontal tensile stresses 
and limits compressive stresses to a few MPa Oamison 
and Cook 1980). When concentration of tectonic stresses 
near the foot of a rock wall, by a factor that may reach 4 
(Gerber and Scheidegger, 1969) is accounted for, the 
differential stress 10"3 - 0"11 always remains smaller than 
10 MPa. It might be sufficient for sub-critical crack 
growth leading to rock fracture (Atkinson, 1984), but this 
process should operate at the geological time-scale only. 
Otherwise, all Roman aqueducts and medieval cathed­
rals, whose pillars withstand differential stresses of 
10 MPa or more, would have collapsed by today. 

In fact, in mountains, the main deviatoric stresses at 
shallow depths are due to topography. A computation by 
McTigue and Mei (1981) is not pertinent here, because 
they assumed very small slopes (",0.1) . Orders of 
magnitude may be obtained by using the following very 
crude model. Consider the plane-strain problem and a 
crenellated cross-sectional profile: parallel ranges of 
height H and width a, separated by flat valleys of width 
b. Without solving exactly the elastic problem, we can 
assert that at the base of a range there is a vertical 
compressive stress in the order of P = pgH (where p is the 
rock density and g is gravity) and a transverse, horizontal 
normal stress close to zero. Since pg =27000 Pa m-I, 
when H = 1 000 m and P = 27 MPa. 

With E denoting Young's modulus and l/ Poisson's 
ratio, the transverse elastic strain at the base of the ranges 
is P(I/ + 1/2)/ E. In the valleys there is a transverse 
compressive stress O"Y' which provides an elastic strain 
-O"y(1 - 1/2) / E. Since the total transverse displacement 
must be zero, we have: 

(1) 
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Without confining pressure, v vanishes because of rock 
porosity Oaeger and Cook, 1979, p. 193). The conclusion 
is that topographic stresses are sufficient to cause sub­
critical fracture, i.e. new joints, in steep slopes, on a very 
long time-scale, and probably never in glacier beds. 

Therefore, once all loose rock has been plucked off by 
freezing of water infilling the joints, the formation of new 
joints in the bedrock at the time-scale of several centuries can 
hardly result from tectonic or topographic stresses. There 
must be another process. Walder and Hallet (1985) by 
theory, and Hallet and others (1991) by experimentation 
have proved that sustained sub-zero temperatures lead to 
segregation ice growth in micro-cracks, propagation of these 
micro-cracks and final fracture. The micro-crack develop­
ment is at a maximum between _3° and -6°C. Repeated 
cycles of freezing and thawing are not necessary for frost­
shattering, contrary to what has been thought previously. 

1.6. Subglacial rock fracture and overdeepenings 

Beneath a temperate glacier, freezing within micro-cracks 
is totally excluded, although in bumps some heat flux goes 
steadily from the lee sides to the stoss sides. The reason is 
that water in micro-cracks is not free water. It freezes at 
about -1.5°C below the normal melting point and 
releases very little latent heat (Melior, 1970). Therefore, 
subglacial rock fracture by freezing is only possible when 
the bottom of the glacier is well below O°C. 

Many cirques that are actually covered by small 
temperate glaciers are strongly overdeepened in their 
lower parts, below the ablation zone. For instance, in the 
French Alps, Glacier du Cui du Nant (Massif de 
Bellecote) has an overdeepening of 20 m, whereas the 
glacier thickness is 85 m when it is about 45 m elsewhere 
(Lliboutry, 1976). Glacier Blanc (Massif des Ecrins) has 
an overdeepening of about 40 m, where the ice thickness is 
230 m instead of about 250 m (Gluck, 1969). Rock 
fracture, allowing further quarrying and an enhanced 
erosion rate, could not occur when the actually over­
deepened area had not been glaciated, because a small 
lake would then occur there. But it might have happened 
subglacially with a more arid and much colder climate, 
when the cirque glacier was cold down to its bottom. 
Next, when the glacier became temperate and slid, 
plucking of loosened rock was possible. However, 
another explanation, with neither a cold episode nor 
quarrying, will be offered at the end of this paper. 

An interesting case is Mer de Glace, whose bed all 
along the classical ski run "la Vallee Blanche" has been 
determined by Laboratoire de Glaciologie du CNRS 
between 1960 and 1974, with seismic exploration and 
boring. The upper part, within a cirque, has a gentle 
slope of 10%, without overdeepening. It is covered by a 
glacier of uniform thickness (145 m of ice and 33 m offirn) 
(Lliboutry and Vivet, 1961 ). The surface stands at 3550-
3450 m. After a steep section (crevasses up to 45 m deep 
are found at its beginning), the slope decreases to 13% at 
La Bediere. Borings gave thicknesses ranging from 43 to 
184 m over short distances, but the largest ones are very 
questionable since the velocity gradient and the crevasse 
pattern are very regular. After a major glacier fall (Seracs 
du Geant), where the velocity reaches 1000ma-l

, the 
valley has a parabolic cross-section over 3.5 km. The 
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glacier, now a valley glacier, has its surface at 2350-
2000 m, a width of about 800 m and a maximum thickness 
of 400 m. Five successive overdeepenings are found in this 
3.5 km long section. Lastly, from 2000 m to the terminus 
at 1500 m, over 3.5 km, the cross-section of the valley has 
a V shape (Lliboutry, 1978b) . 

Lithological factors cannot explain this contrasted bed 
topography; all the area is entirely granitic. The highest 
part has been evenly eroded and in the lowest one the V 
shape due to pre-Pleistocene fluvial erosion has not been 
destroyed. I suggest that the five overdeepenings that are 
found at about 2000 m correspond to at least five episodes 
of subglacial or periglacial rock fracture under colder 
and, above all, drier climates, when Mer de Glace was 
shorter and thinner than today. (Today, the area is very 
wet. During the period 1954-71 the mean precipitation at 
3500 m, practically always snow, has been equivalent to 
3.4ma-1 and the summer melting to 0.2-D.4ma-I

.) 

Before Walder and Hallet's discovery of rock fracture 
by mere freezing, since repeated freezing and thawing at 
the same point cannot occur beneath temperate glaciers, 
other fracture processes had been suggested. 

Several authors have put forward repeated high­
punching contact forces by clasts squeezed against the 
bed, which consequently should be either scratching or 
grooving it (see Drewry (1986) for references) . The 
corresponding contact force will be estimated below. It 
may be very large. Nevertheless, it vanishes on the lee 
sides of bumps, because stream lines of flow in the ice 
diverge there, and it is precisely on the lee sides of bumps 
that quarrying is suspected. Moreover, known fatigue 
failure in rock has been obtained using boring tools, with 
cogs that impinge on the rock at the same point thousands 
of times. There is a vanishing probability of a similar 
repetition at a point on the glacier bed. 

I have suggested another fatigue process (Lliboutry, 
1962), which has been taken up again by others. When 
there is a cavity at the lee of a bump that communicates 
with a subglacial stream, there are repeated variations in 
the water pressure in the cavity. This effect has been 
theoretically investigated by Iverson (1991), assuming an 
instantaneous decrease in the water pressure by 0.6 MPa. 
Such variations have been subsequently measured (Hantz 
and Lliboutry, 1983) without making first an artificial 
large link between the cavity and the stream as other 
investigators did. Pressure variations may reach 5 bar 
(0.5 MPa) but they are not at all instantaneous; they span 
several days. This rate seems too low to cause significant 
effects and fatigue failure in this way remains to be 
proved. 

My conclusion is that subglacial rock fracture has 
been possible where today there exists a temperate 
glacier, but under a different climate, when the glacier 
bottom was well below the melting point. Periglacial rock 
fracture by freezing has also been possible. Anyway, 
quarrying by a temperate glacier should cease when all 
loosened rock has been removed. The new point, which 
Walder and Hallet's discovery has cleared up, is that the 
loosening process can reach important depths because it is 
caused by mere frost penetration, not by daily cycles of 
freeze-and-thaw. Therefore, small overdeepenings might 
be carved out after a single fracturing episode. We may 
speculate that, when actual plucking is observed, it is due 
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to some rock fracture that occurred during the Younger 
Dryas, down to a depth of 30 m. 

It has been argued in favour of rock fracture, after the 
onset of sliding and bed abrasion, that many roches 
moutonnees have rough lee faces. A simpler interpreta­
tion is that these lee faces are the original ones and were 
never abraded, because a cavity had been present there 
since the onset of sliding and abrasion (Lindstrom, 1988) . 

I t remains to ascertain whether mere abrasion, 
scratching and grooving could provide a minimum 
glacial erosion rate in the order of 0.1-0.3 mm a-I . 

2. AVAILABILITY OF ABRADING AND 
GROOVING MATERIAL 

The presence of clasts at the sole of an advancing glacier 
tongue is easy to understand, although many cases are 
possible. The glacier terminus may have encountered on 
its way bare rock, rock with moraine above it, ice-cored 
moraine, wet or frozen sediments, a snow cover or not, 
etc. Therefore, no general model, predicting how much 
material will be covered and carried by an advancing 
glacier, could be suggested. Let us now examine how 
many clasts can reach the sole of a steady-state glacier. 
Since subglacial plucking is assumed to have ended, such 
clasts must come from subaerial weathering. Secondly, 
sand may have been freed at the bed by chemical 
weathering. 

2.1. Chemical weathering 

In granite and granodiorite, hydration of feldspars causes 
the rock to decay into sand and silt. There is no reason for 
ruling out chemical weathering, which requires only 
water to operate. If weathering remains unnoticed, it is 
because the altered minerals are immediately abraded 
away by the hard angular quartz grains that have been 
freed . Contrary to frost-shattering, or to the speculated 
shattering by absorbed water (White, 1976), chemical 
weathering attacks even polished rocks without micro­
cracks at the surface. 

Although this weathering has been described in many 
textbooks of geology, its rate has seldom been estimated. 
Old cathedrals not damaged by actual air pollution 
provide constraints on such rates. One century ago, 
VeIain (1892) noted that the north side of the cathedral of 
Limoges, built of granite and then 400 years old, had lost 
nearly 1 cm by chemical weathering. This rate of about 
0.02 mm a-I should be pertinent to subglacial weathering 
of granite, since it concerns a wall never exposed to the 
sun, facing the dominant winds and hence plentifully 
watered. This rate is at least one order of magnitude 
lower than erosion rates reported above, and thus may be 
neglected for estimating them. Nevertheless, chemical 
processes might be the main source of polishing sand 
grams. 

2.2. Marginal crevasses 

In summer, at the sides of a glacier, scree may fall 
between ice and rock, or into marginal crevasses, which 
are the only ones that reach the bed. 
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In general, the accumulation zone of a glacier is 
concave, and stream lines veer towards the centre of the 
glacier, whereas the tongue is often convex and . stream 
lines veer away from the centre. Therefore, in the 
accumulation area, the debris that may fall into margin­
al crevasses should migrate progressively towards the 
centre. Nevertheless, the only source of debris for the 
central part of a glacier must be sought at the 
bergschrund. 

Also, frost-shattering of the bedrock in marginal 
crevasses is possible, as observed by Allix (1922) at 
Glacier Blanc (Massif des Ecrins, French Alps) . In August 
1920, at 2470 m, the temperature at the bottom of 
marginal crevasses oscillated daily between 6.8°C and 
-2.7°C. AlIix estimated the local frost-shattering of gneiss 
on these days was 1 cm d-I. Even if crevasses cover only 
1/100 of the glacier side and frost-shattering occurs only a 
few weeks per year, Allix's estimate yields a conspicuous 
mean erosion rate, in the order of 2 mm a- I, which would 
operate only at a shallow depth. Such a high value needs 
to be confirmed. 

2.3. Bergschrunds 

Many authors since Johnson have discussed the impor­
tance of frost-shattering within bergschrunds. Von 
Klebelsberg (1948) made strong arguments against its 
importance. Anyway, there is no doubt that frost­
shattering is more important at the rock walls above the 
bergschrund, where watering and frost are more intense, 
and these walls are far larger than the rocky wall of a 
bergschrund. 

In normal years, above the bergschrund, an ice apron 
of cold ice stuck to the rock creates an overhang and, even 
when the bergschrund is open, most falling stones bounce 
over it. Nevertheless, there are from time to time very hot 
and dry summers, with gaping bergschrunds and melted 
ice aprons, such that c1asts and boulders become free and 
can rush down the couloirs. (I remember such a summer 
in the Mon t-Blanc massif in 1947, when I was an alpinist, 
not yet a glaciologist. ) Moreover, when c1asts do not enter 
the bergschrund, they may reach the glacier sole anyway, 
thanks to ice melting at this sole. 

It is shown in Appendix I that a stone embedded in 
temperate glacier ice sinks through it, because of its 
buoyant weight, only by about 1 mm a-I, whatever its 
size. This very small effect may be ignored and we may 
consider that embedded stones follow the stream lines of 
the ice. There are stream lines that terminate at the bed, 
because there are sources of heat that melt ice. They are 
the geothermal flux <Pg, and the Newtonian energy 
dissipated in sliding 7bU (U denoting the sliding velocity 
and 7b the basal drag). The melting heat per unit volume 
of ice is M = 306.4 MPa. The melting rate at the glacier 
sole is: 

<pg + 'TbU 
m= M . (2) 

The melting rate due to the geothermal flux, <pgj M, is 
in the order of 0.01 ma- I. The term 7bUjM yields the 
same value for U = 30 m a-I and 'Tb = 0.1 MPa. Let c be 
the volume fraction of debris in the bottom ice. There is at 
the glacier sole a volume accumulation rate of debris 
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equal to me. In a steady state, the only state that is 
considered, assuming that the debris at the bed does not 
form lodged till, the volumetric discharge of debris per 
unit width is: 

Q = Qo +mcx. (3) 

The term Qo is due to the clasts entering directly the 
bergschrund. It will be shown that clasts of any size move 
approximately at the sliding velocity U. Their volume per 
unit area of bed is then Q/U. 

To obtain orders of magnitude for Qo and e, assume 
that subaerial weathering destroys the relief at rate W, 
and that a slope of mean length D nourishes the upper 
end of the glacier with clasts, such that a part a falls into 
the bergschrund, and a part (I-a) within a distance Xo 
from it, with an even distribution. Near the bergschrund 
(x = 0), the surface mass balance of the glacier, in 
equivalent ice volume per unit area and unit time, is boo 
Then: 

(1- a)WD 
e--'-------'---

- boxo . Qo = aWD, (4) 

Realistic values for an Alpine glacier might be 
W,....,3 X 10-3 m a-I, D ,...., 300 m, a ,....,0.1, bo """ 3ma-1 and 
Xo ,...., 27 m. In this case, Qo ,...., 0.1 m2 a-I and e,...., 0.01. This 
concentration is found only within ice coming from snow 
deposited at a distance less than Xo downstream from the 
bergschrund. This debris-laden bottom ice layer has 
melted entirely at a distance downstream Xf, such that: 

boxo = 1xr 

mdx . (5) 

With the above values, and m = 0.02 m a-I, Xf = 4 km. 
After this distance, Q maintains a maximum and constant 
value. Nevertheless, the glacier may not be sufficiently 
long for this stage to be reached and some debris-laden 
bottom layer may still exist at the terminus. 

2.4. Internal melting and external refreezing at the 
glacier sole 

When a clast comes very close to the bed, we must 
consider other processes, which involve the micro-relief of 
the bedrock and the singular properties of temperate ice. 
They have been studied in detail in another paper 
(Lliboutry, 1993), with the following results: 

When the state of stress is not hydrostatic, most of the 
water present in temperate ice should be found as 
intergranular water lenses more or less perpendicular 
to the maximum compressive stress. They govern the 
temperature, which is then locally controlled by the 
stress. After a change in stress, it should take about I h 
for a new local thermodynamic equilibrium, hence a 
new temperature, to be reached. This concept of 
locally stress-controlled temperatures is valid only at 
space scales larger than the ice grain-size. 

Given the stresses, and the corresponding temper­
atures, heat fluxes ensue according to Fourier's law. 
They provide internal melting in a bottom layer, 
which is thinner on the lee sides of bumps but is never 
absent. Therefore, the water content first rises to its 
maximum value, which, from field evidence, is about 
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2%. Next, it exudes at the interface via the net of 
capillary veins. These veins can remain liquid even in 
domains of internal freezing, because of capillary 
effects. 

On the stoss sides of bumps there is melting, with heat 
coming from the lee sides through the bedrock. On the 
lee sides, there is freezing, with heat beginning both 
through the ice and through the bedrock. (There are 
some changes in the precise areas of melting and 
freezing when the finite amplitude of the micro-reliefis 
accounted for but they are of secondary importance.) 
Consequently, melting and refreezing at the very 
interface do not balance. Even when geothermal heat 
is taken into account, there is an important freezing 
trend made possible due to the water exuding from the 
Ice. 

Water moves from areas of melting to those of freezing 
through the ice and not as a continuous water film at 
the interface. This fact does not impede the possibility 
of cavitation. (The precise effects of cavitation on 
glacial erosion will not be attempted here.) 

Internal melting and external freezing make the ice 
near the interface ascend to some distance hi from the 
bed. The order of magnitude of hi should be 3 cm. 
That geothermal heat and Newtonian energy dis­
sipated by sliding melt over time, a large amount of ice 
does not contradict this result. Geothermal heat has 
been accounted for in the theory. Energy dissipation 
provides extra internal melting. Therefore, glacier 
stream lines do not reach the bed; they end as a single 
stream line, at a distance Iq from it. Below, other 
stream lines begin from the bed and reach the singular 
stream line at a distance hi. (This is possible because 
ice permeability allows the continuity condition, that 
expresses mass conservation, to be violated.) 

It follows from this last result that very small particles, 
say sand grains, of subaerial origin, embedded in the 
glacier, cannot reach the bottom interface. At most, they 
reach the singular stream line. Abrasion of the bed by 
sand grains and rock chips can occur only if they appear 
at the bed. Nevertheless, a question arises. Why should 
these small particles not be caught immediately by 
regelation ice and therefore could not leave the ice-bed 
interface? 

These particles are smaller than ice crystals, and the 
theory summarized above (Lliboutry, 1993) does not 
work at this minute space scale. When there is refreezing 
at the interface, water exudes via capillary veins and 
migrates between ice and rock over distances smaller than 
the ice crystals, before refreezing. When there is a particle 
between ice and rock, it should produce a very local over­
pressure that impedes refreezing. Even if the particle is 
caught on its sides by regelation ice, the strong contact 
forces linked with the abrasional process should often free 
it. It is only when small particles at the base are very 
abundant that they should rise and form the debris-rich 
layer of regelation ice that is often observed. (For 
instance, see Lewis (1960) for such observations.) Of 
course, all these speculations have to be checked by field 
observations, together with the internal melting and 
bottom freezing that theory predicts. 

https://doi.org/10.3189/S0022143000012314 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000012314


Therefore, the primary process of steady erosion 
appears to be grooving by large stones, decimetric or 
metric in size. This point of view allows us to ignore the 
complex processes occurring within the bottom regelation 
layer some centimetres thick, because the stone size is at 
least one order of magnitude larger. 

2.5. Behaviour of a large clast at the glacier sole 

The motion of a stone of decimetric size that approaches 
the bed, but does not touch it, would be extremely 
difficult to predict accurately. An interesting attempt, 
with rigorous mathematics, has been made by Morris 
(1979), in the case of a cylindrical stone near a piece-wise 
rough plane bed. She assumed the ice was dry and 
impermeable, and the pressure-melting point was reached 
at all the ice boundaries. This problem, in general, has no 
solution. The assumption of Newtonian viscosity cannot 
be the reason. Therefore, she suggested that in reality 
either the ice must be below the melting point at some 
places or that the ice is wet, but that there exists some 
additional "internal temperature". This fuzzy "internal 
temperature" is precisely my locally stress-controlled 
temperature, but why it should be added to instead of 
replacing her calculated value is not at all clear. Another 
reason why the problem that she posed was too 
constrained to yield a solution is that she did not take 
into account ice permeability. Ifwater fluxes are allowed, 
ever-growing water pockets might form. 

Given these difficulties, I shall limit myself to 
qualitative considerations. Consider the stress field with­
in the ice on the lee side of a bump. The pressure (i.e. the 
normal stress, sign apart) perpendicular to the bed 
increases with distance from the bed, tending towards 
the mean lithostatic pressure. When a rigid stone is 
introduced, this pressure must become equal on the upper 
and lower sides of the stone. This change demands a 
downward velocity of the stone with respect to ice. On the 
stoss side of a bump, it is the reverse. Thus, the centre of 
the stone oscillates about a stream line (as it exists without 
a stone). Without the melting trend m due to geothermal 
heat and energy dissipation, this effect may allow the 
stone to avoid the bumps of the bed. It may be 
insufficient, however, because the streamline about 
which the centre of the stone oscillates becomes 
progressively straight when the distance from the bed 
increases. With increasing stone size, the vertical 
oscillations due to pressure differences tend towards a 
maximum and the vertical oscillations due to the shape of 
the stream line tend towards zero. Thus, for a given 
distance between the lower side of a stone and a flat bed, 
the larger the stone is the more chance it has of hitting the 
stoss side of a bump downstream. 

When a stone is close to the bed, if it is equant, it 
rotates more or less as the surrounding ice, at an angular 
velocity: 

n -lB 3 
HO - 2 Tb (6) 

where Tb is the bottom drag (Tb rv 0.1 MPa) and B is a 
rheological factor, whose recommended value is 
B = 440 MPa-3 a-I (Lliboutry, 1987, p.124 and 451). 
Flat clasts tend to become parallel to the bed and then 
their rotational velocity vanishes. 

Lliboutry: Monolithologic erosion of hard beds by temperate glaciers 

When a clast touches the bed, it may polish it by 
breaking off minute asperities that interlock with minute 
asperities of the clast, or it may scratch it making a glacial 
stria, or it may groove it. These three erosional forms have 
been well described by Tricart and Cailleux (1957). 
Striae have cross-sections in the order of I mm 2

, whereas 
grooves have cross-sections larger than 1 cm2

. Obviously, 
grooves can be made by those large clasts that we are now 
considering but the reverse is not true; a large stone may 
rub the bed without grooving it. 

This point will be considered in sections 2.7 (blunting 
of grooving corners) and 3.4 (probability IT for a stone 
with sharp corners to start a groove). This probability 
lowers progressively with wear but, to simplify the 
calculations, a piece-wise constant probability will be 
adopted in the model. Grooving rates will be calculated as 
though the stone was not worn at all during some time 
and next suddenly worn out. 

When a clast slides on the bed, polishing or scratching 
it, small debris (rock chips) and gouge may infill more or 
less the interstices between the clast and the bed, as once 
observed by Boulton (1974). A clast of basalt 30 cm long 
was rubbing against a basaltic bed at three contact points, 
with one of them having become "a heavily striated and 
smoothed facet". Between the three contact points, the 
gap between clast and bedrock was infilled with crushed 
debris. The clast velocity was 8.2 m a -\ and the ice 
velocity was 9.9 m a-I. (This differential velocity prod­
uced a 30 cm long cavity at the lee of the clast. However, 
since the clast was observed at the wall of a tunnel, this 
last feature may not be representative of subglacial 
conditions.) Probably, in such cases, the wear by small 
debris is considerably enhanced. The cushion of debris 
pressed by a clast should act as a rigid rasp, that rasps 
more as the normal pressure increases. 

When plucking does not occur, grooving should be the 
essential process of glacial erosion, and I shall try to 
model it in section 3 of this paper. This modelling will 
yield the volume of bedrock that is carved per unit time 
by a single grooving clast, say v. Obviously, v is a function 
of the sliding velocity U and of the size of the clast L. The 
latter will be defined as the cube root of the clast volume. 
To obtain a global erosion rate, the volume of debris per 
unit area of bedrock, Q/U, is not sufficient. We need the 
size distribution. 

2.6. Size distribution 

The size distribution of rock debris at a temperate glacier 
sole up to metric sizes is almost unknown. From the few 
data about morainic material found in textbooks on 
sedimentology it seems that, V(L) denoting the cumul­
ative volume of debris with sizes inferior to Land Lo the 
minimum size allowed to sediment during analysis 
(Lo rv 1 /-Lm), a logarithmic size distribution holds up to 
L rv8mm: 

V(L) = Klog(L/ Lo)· (7) 

There is no reason for subglacial debris to fit the same 
distribution, especially for large sizes. At the glacier sole 
we may distinguish: 

(a) Large clasts due to fracture along joints and frost­
shattering. 
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(b) Minute rock debris, either chips produced by 
scratching and grooving or sand made free by 
chemical weathering. 

(c) Very fine sand (finer than the grain-size of the 
rock) and rock flour due to abrasion. 

Materials (b) and (c) might have a logarithmic 
distribution but we need to know the distribution of 
material (a), the only one able to groove the bed. Its 
distribution in glaciers has never been studied. 

Bull (1964) has measured size distributions in debris 
flows and O'Keefe and Ahrens (1985) in fragmented 
material resulting from explosions. V(L) appears to be 
proportional to L'Y, with 'Y = 0.41 in the former case and 
'Y = 0.55 ± 0.03 in the latter. Since, for large sizes, their 
distribution is mainly due to the distribution of the 
distances between joints in the rock, this power-law 
distribution will be adopted in our quite different context, 
with 'Y = 0.48 ± 0.07. 

Of course, this distribution cannot be valid up to 
infinite size. There must be a maximum size LM, 
corresponding to the distance between major joints. A 
minimum size Lm , either centimetric or decimetric, will 
be introduced to remove all small clasts unable to groove 
in any circumstance. Consequently, given clasts with sizes 
ranging from Lm to LM, whose total volume is V, the 
number of clasts with sizes in the interval (L, L + dL) is 
V df, with df such that: 

'YP - 4 

df = L L dL . 
M'Y - m 'Y 

(8) 

2.7. Blunting of grooving corners 

Monolithologic grooving, i.e. grooving by a stone with 
the same lithology as the bedrock, may seem paradoxical. 
Why should the grooving corner not have the same 
probability of breaking off as the bed? The reason must be 
sought in the geometry. The contact force increases very 
much the mean normal stress within the corner of the tool 
and the bottom of the groove, bu t less so on the rims of the 
groove. Since the shear stress needed for brittle fracture 
increases with the mean normal stress, it is a section of the 
rim, before the corner, that breaks off first. Thus, in 
general, before the grooving corner, the bedrock breaks 
off repeatedly, releasing each time a chip of 1-1000 cm 3, 

whereas the corner only blunts progressively, with 
detachment of gouge smaller than the grain-size, as in 
frictional sliding (Logan and Teufel, 1986). A progressive 
blunting of the grooving corner explains why some 
grooves become broader and more shallow downstream 
(Tricart and Cailleux, 1957). 

It may happen that successive rotations of a boulder 
allow all its corners to blunt one after another, until it is 
completely worn out and unable to erode any more. This 
concept has been introduced by Rothlisberger (1968) . He 
reported that in medial moraines only some boulders are 
so worn out, testifying that they have been in contact with 
the bed for a long time. 

In the same paper, Rothlisberger gave the following 
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argument in favour of subglacial plucking: "If the content 
of abrasive is a very important factor in the total rate of 
erosion, one would expect that a long compound glacier 
should carve as many parallel (furrows) as there are 
medial moraines. One does not find this in Nature." The 
argument loses its strength, however, either if boulders are 
worn out very fast or if glacial erosion is very low. In the 
latter case, since at depth lateral moraines spread 
progressively, no deep furrow will appear. 

The case of worn clasts that are broken into smaller 
fragments with fresh angularities is assumed to be very 
marginal. 

When a clast grooves the bed, its blunting removes a 
volume that should be more or less proportional to the 
volume of rock that it has grooved. When it is worn out, it 
has lost part of its volume. We may assume that both 
coefficients of proportionality are independent of the 
initial volume L3 of the clast (or, if they are mild functions 
of L, that their ratio is independent of L) . Therefore, to 
take into account blunting in the model, the following 
assumption will be made: 

"When a clast is worn out, it has grooved a volume 
kL3 of rock, the coefficient k being independent of L ." 

A two-dimensional problem is assumed. (Thus, all 
clasts are assumed to come from the head wall.) A stone 
that appears at the bed at an abscissa x becomes worn out 
at abscissa x if: 

1
x 

v(L, U) dx' - kL3 
X-A U(x') - . 

(9) 

It will be shown that v increases with size L much slower 
than L3. Therefore, for given sliding velocities U(x'), the 
"wearing distance" A is an increasing function of L. At 
distance x from the bergschrund, all clasts larger than 
some value L1 are not yet worn out. This limiting value is 
obtained by putting A = x in Equation (9): 

r V(Ll' U) d ' = kL 3 
la U(x') Xl· 

(10) 

Clasts smaller than L1 can groove only if they have 
appeared at the bed at a shorter distance upstream than 
A. According to Equation (3), their volume per unit area 
is meA/U. Therefore, the mean erosion rate by grooving 
at abscissa x, for clasts of any size, is: 

(11) 

This formula demands Lm < L < LM, to which 
corresponds, from Equation (10), Xm < x < XM. Also, 
we must have x < Xf, with Xf as given by Equation (5) , 
because downstream of this limit no new clasts reach the 
bed. IfxM < Xf (we shall see that it is not the case), in the 
range XM < X < Xf all the grooving clasts would have 
reached the bed at some distance downstream from the 
bergschrund. The volume of clasts that reach the bed per 
unit time and unit area is me and the volume of grooved 
rock is k times this value. It would follow the very simple 
formula: 

egr = mek. (12) 

https://doi.org/10.3189/S0022143000012314 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000012314


Although this formula is not obeyed, because Xf < XM, 

it allows us to understand why blunting makes the 
grooving rate much less dependent on the sliding velocity 
and the rock strength than might be expected. 

3. ESTIMATION OF EROSION RATES WITHOUT 
QUARRYING 

3.1. Observed grooves 

Grooves are furrows 2-5 times wider than deep, several 
metres long, with cross-sectional areas in the range 
1-100 cm2 and even sometimes larger. They are observed 
mainly on side walls of glaciers (not necessarily large and 
fast ones), probably because large boulders are much 
more frequent there, but this case is put aside in our two­
dimensional model. 

Boulton (1974) mentioned boulders 3 m in size 
"having produced grooves up to 40 cm wide and 10 cm 
deep, having a very irregular floor and showing 
transverse fracturing" . This transverse fracturing is akin 
to chattermarks observed on quartzites without grooving. 
In the case of grooving, this fracturing shows that there is 
some overbreak, i.e. the cross-section of the groove is 
larger than the cross-section of the "tool". The irregular 
floor contradicts the classical description of glacial 
grooves by geologists. Boulton (1974) suggested that 
grooves are subsequently polished, by streaming of the 
subglacial debris into the grooves. 

The theory below yields important erosion rates only if 
grooving is much more ubiquitous than reported in the 
upper part of glaciers, for x < Xf. (In the lower part, all 
small clasts are worn out and only large boulders can 
groove, making large grooves.) This point deserves 
unbiased statistics and not only reports on the most 
striking forms . 

3.2. Equations for the motion of a rolling stone in 
ice 

To model scratching or grooving, we must establish two 
sets of equations: a set that links the contact force with the 
motion of the stone relative to ice and another set that 
links the contact force with the strength of the bedrock 
and the geometry of the groove. Both problems will be 
examined in due course. 

We consider only stones that are not too flat and are in 
contact with the bed at a single corner, because in this 
case their velocities relative to ice and their angular 
velocities are easy to estimate. The former may be 
calculated by taking a spherical stone as a model, and 
the latter, with less accuracy, with a cubic stone as a 
model. When a spherical stone embedded in temperate 
ice is subjected to a resultant force F, its velocity relative 
to the surrounding ice is .du, as calculated in Appendix I. 
The angular velocity of a cubic stone subjected to a 
resultant moment r is calculated in Appendix II. 
Defining, in both cases, a size £ of the stone such that 
its volume is £3, the results are: 

Lliboutry: Monolithologic erosion of hard beds by temperate glaciers 

The terms in A l , A2 correspond to the melting­
refreezing process and the terms in B l , B2 to a viscous 
deformation of ice. These formulae are obtained assuming 
that at a large distance from the stone the ice is 
motionless. We assume that they still give correct orders 
of magnitude for any stone in contact with the bed over 
an area much smaller than £2, although the bed modifies 
the flow of ice around the stone. This is permissible 
because we assume £ > 3hi , i.e. the stone is of decimetric 
or metric size. Nevertheless, there is a general shear strain 
rate within the ice, that provides an additional angular 
velocity no, as given by Equation (6). Therefore, the 
angular velocity of the stone is n + no. 

The resultant force on the stone is the sum of the 
contact force and of the buoyant weight of the stone. In 
Appendix I , it is shown that, when £ < 5 m, the buoyant 
weight acting alone provides only a downward velocity of 
1 mm a- I. This is much less than the mere vertical velocity 
due to bottom melting (which, in turn, is generally much 
less than the vertical velocities due to the micro-relief of 
the bed) and thus the buoyant weight will be neglected. 
Contrary to Hallet (1979), rolling will be considered. It 
causes the velocity of the grooving corner A to differ from 
the velocity of the centre of the stone C (Fig. 1), especially 
during the sticking phases leading to repeated fractures of 
the rim of the groove. 

Fig. 1. A grooving stone is modelled as a cube. Notations 
as used in the text. In this case 'lj; and d'I/J/dt are positive. 

The contact force applies at point A. With the x axis 
along the local bed, pointing in the direction of glacier 
motion, and the z axis pointing upwards and, assuming a 
plane problem, the resultant force has two components: 
-Ft = -Fsincp (tangential ) and Fn = Fcoscp (normal). 
Let (uc, wc) be the components of the velocity of the 
centre of the stone. Let (u, w) be the velocity at the same 
point C in the ice, in the absence of stone. We assume 
that: 

(a) Relation (13) gives the "relative velocity" .du, 
defined by its components (uc - u ) and (wc - w). 
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(b) This relative veloci ty has the same direction as the 
resultant force (which has been confused with the 
contact force): 

U c - U Wc - W A F B F3 
---=---= 1-+ 1- · 
- sin cp cos cp £3 L5 

(15) 

(c) The angular velocity about C is (il + Do), obeying 
Equations (14) and (6), with r denoting the moment 
of the eccentric contact force about C. Taking again as 
a model a cube of size L, with its corner A in contact 
with the bed, the length CA = L../3/2. Assuming that 
the x - z plane is a plane of symmetry for the cube, its 
orientation is defined by a single angle, the angle 1/; of 
the contact radius CA with the z axis, as shown on 
Figure 1. Its sign is chosen in order that, t denoting 
time: 

The velocity of A is (UA, 0). From geometry: 

{ 

Uc = UA + L-/3 cos 1/; . d1/; 
2 dt 

LV3 d1/; 
Wc = - 2 sin 'I/J . ill 

LV3 r = F--sin(cp + 1/;). 
2 

Comparing Equations (15) and (17) 

A1!-. + B1 F3 = _1_ [U _ UA _ L../3 cos 'I/J . d1/;] 
£3 L5 sincp 2 dt 

= _1_ [-W _ L../3 sin 1/; . d1/;] 
coscp 2 dt 

where, from Equations (14) and (18): 

d1/; B 3 V3 F. 
dt =ilo +il="2'Tb +TA2 L4 sm(CP+'I/J) 

3-/3 p3. 3 + -S-B2 L6 sm (cp + 1/;). 

It follows that: 

(u-uA)sin1/;+wcos'I/J -A F B F3 
-'-----'--:---'----,---'- - 1 - + 1 -

cos(cp + 1/;) £3 £5 

(16) 

(17) 

(IS) 

(19) 

(20) 

(u - UA) cos cp + wsin cp _ L../3 n 3A2F . ( .,,) 
cos( cp + 1/;) - 2 HO + 4£3 sm cp + 'I' 

9B2 F3 . 3 ) 
+ 16L5 sm (cp+'I/J . 

(21) 

Given the ice velocity without rock debris (u, w) and 
the tilt of the contact radius 'I/J, we have two equations for 
the three unknowns UA, F and cp. To solve the problem, a 
third relation, either empirical or theoretical, is required. 

3.3. Closure equations drawn from rock nlechanics 

Because of the lack of experiments on monolithologic 
grooving, we might call on engineering knowledge about 
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drilling tools. A good review of rock drilling has been 
given by Mellor (1977). Many values of the ratio Ft! Fn 
= tan cp as a function of the rake angle (the tilt of the 
working face of the tool from the vertical) may be drawn 
from the figures reproduced in the paper, to which the 
following numbers refer. 

In very weak rocks such as chalk tan cp is very 
dependent on the rake angle (fig. 54) but in hard rocks it 
is much less sensitive. It is always larger than 1. In 
limestone (figs 11 and 19), tancp = l.l0-1.18; in andesite 
(figs 22 and 31), tancp = 1.56- 1.89; in sandstone (figs 14, 
21 and 31), tancp = 1.59-1.92; in quartzite (fig. 27), tan 
cp = 1.79-2.27. These data, however, are for sharp very 
hard steel tools, and when they are considered to be worn 
out tancp decreases well below 1, as shown in figure 76 of 
the quoted paper. (Anyone who has drilled a hole with a 
worn bit is well aware of this fact .) In the hardest rock, 
quartzite, tools are rapidly worn and tan tan cp = 0.68 
(figs 38 and 56) or even tan cp = 0.20 (figs 57 and 58). 
Only these last results are pertinent to monolithologic 
grooving. Clearly, some important factor has been 
overlooked, and the required equation cannot be 
obtained from this approach. At most we may assert 
that tan cp < 1 but this value is a mean during drilling. 
We shall see that, on very short time-scales, tan cp should 
oscillate strongly. 

Kenny and Johnson (1976) have investigated the wear 
of drilling tools . The worn volume of the tools was found 
to be independent of the rake angle and very quickly to 
become proportional to the distance travelled. If we 
assume that the worn volume of a dast is proportional to 
the grooved volume of bedrock, the latter also should very 
quickly become proportional to the travelled distance 
uAt. In other words, the cross-sectional area of the groove, 
say s, very rapidly becomes a constant. 

From the so-called "triaxial" tests, a uniaxial 
compressive strength is defined. It will be denoted Co, 
as in J aeger and Cook (1979). Although at the head of a 
groove the state of stress is not uniaxial, it will be assumed 
that fracture occurs when the tangential force Ft equals 
sCo. This assumption might be argued. 

Note that rock strength is a macroscopic concept, 
which ignores individual grains. It cannot be used for 
modelling abrasion and scratching. In this case, the rock 
should not be considered as homogeneous. In mono­
lithologic abrasion, harder grains can indent softer ones, 
with subsequent interlocking of hard grains. In Drewry 
(1986), both size scales are unduly confused. 

At the sole of a temperate glacier, the confining pressure 
due to the overburden of ice is some MPa. It is transmitted 
to the water that infills the micro-cracks and pores of the 
bedrock. Therefore, this confining pressure should not 
modify the strength of the bedrock, the difference between 
the two extreme principal stresses, 0"1 - 0"3, that allows 
brittle fracture (Paterson, 1978, p. 77,80). According to the 
data reviewed by Jaeger and Cook (1979) or Goodman 
(1980), the strength so defined is Co = 200 ± 40 MPa for 
granite or gneiss, 250 ± 100 MPa for basalt and 400 
± 70 MPa for quartzite. (However, in quartzite grooves 
are not observed.) The value Co = 200 MPa will be 
adopted in our calculations. 

During grooving, fractures occur repeatedly, and the 
contact force oscillates on a very short time-scale. The 
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elasticity of the whole system intervenes, and on this time­
scale there is stick-slip motion. The two phases, stick and 
slip, must be considered separately. 

During the stick phase, Equations (21) should be 
modified to take elasticity into account. When elasticity is 
ignored, putting UA = 0, Equations (21) yield a particular 
solution, say F = FM and <P = CPM. Intuitively, when 
elasticity is introduced, the contact force increases with 
time and tends towards FM, and its tangential component 
Ft = Fsin<p increases faster, tending towards FM sin CPM. 
It will be assumed that, when brittle fracture occurs, F 
and cP are approximately equal to the asymptotic values F 
and CPM. Therefore, the cross-sectional area of the groove, 
s, is given by the following set of equations: 

During the slip phase, Ft is the standard friction force 
for a corner sliding on a rough groove. I t is given by 
Coulomb's law: tan cP has a fixed value f. For a plane 
rubbing on another plane, f::::: 0.7, but for a corner 
sliding in a rough groove f::::: 1. Since the con tact force 
during the slip phase is constant, Equations (21), which 
ignore elasticity, hold. They yield F = Fm (so denoted 
because it is the minimum value of F during the entire 
process) and UA: 

_ (u - UA) sin'lj;+ wcos7/J = Al Fm + Bl Fm3 

cos(CPm + 'Ij;) L3 £5 

(u - UA) coscpm + wsin<pm _ LV3 no 
cos(CPm + 'Ij;) 2 

3A2 . 9B2 3· 3 
= 4L3 Fm Slll(CPm + 'Ij;) + 16L5 Fm sm (<Pm + 'Ij;) 

CPm = arctan f. (23) 

Nevertheless, what we need is the mean value of UA 

during the whole stick- slip process. Thus, the relative 
duration of the stick and slip phases must be estimated. 

The elastic displacement at the end of the sticking 
phase, when a contact force sCo acts on a stone of size L, 
is mainly due to the elasticity of ice, whose Young's 
modulus is E = 9210 MPa. As a very rough estimation, 
this displacement is of the same order as for a rod of ice 
with a cross-section L2 and length 3L: 

8 rv 3sCo . 
LE 

(24) 

It will be shown that realistic values of s are 
s = 1.5 cm2 for L = 20 cm, and s = 25 cm2 for L = 1 m. 
In the former case, 8 '" 0.05 mm, when the length of the 
chip (of the same order as the displacement of the 
grooving corner before it sticks again) is in the order of 
I cm. In the latter case, 8 rv 0.16 mm, when the slipping 
length is in the order of 5 cm. Thus, the slip phase should 
be longer than the stick one by two orders of magnitude: 

Lliboutry: Monolithologic erosion of hard beds by temperate glaciers 

several hours of slipping for several minutes of sticking. 
Consequently, UA as given by Equations (23) may be 
confused with its mean value. 

3.4. Rolling velocity and grooving probability 

The simplification above, ignoring the stick phase, is not 
valid when d<p/dt is calculated by using Equation (20). 
Although the stick phase is very short, the instantaneous 
value of dcp/dt is then very large. For this reason, the 
evolution of <p with time will not be calculated. We limit 
ourselves to the following qualitative considerations. 

Intuitively, with the cubic model of Figure 1, grooving 
by a corner demands that the facet acting as a tool make 
an angle with the vertical (henceforth called the rake 
angle, with a sign opposite to that in engineering use) 
smaller than some value. Otherwise, the stone would slip 
up out of the groove instead of breaking its rim. The 
calculation of this maximum value of the rake angle 
would need a thorough treatment of the fracture process, 
which has not been done. For clarity, assume that it is 
60°. Since the angle of this facet with AC is arctan 
(1/V2) = 35.3°, the bounds of <p are: 

-35.3° < 'Ij; < 60° - 35.3° = 24.7° . (25a) 

If the cube moved in the opposite direction to that of 
the one displayed in Figure 1, the bounds would be: 

(25b) 

Given that the model is highly idealized, we may 
assume the mean values as bounds in any case: 

(25) 

Since 0 < <p < 90°, it follows -45° < cP + 'Ij; < 105°, 
and: 

1/V2 < sin(cp + 7/J) < 1. (26) 

Therefore, according to Equation (20), d7/J/dt is 
always positive. A grooving stone must always roll. 

When a stone hits the bed for the first time, ifit is equi­
sized, no particular value of 7/J is favoured. With the 
assumed value of the maximum rake angle, there are two 
chances out of three that 'Ij; is between the bounds that 
make grooving possible. As 'Ij; increases with time, sooner 
or later the upper bound is reached. Then the "tool" slips 
out from the groove and grooving is interrupted. 
According to some values of d'lj;/dt calculated below for 
particular cases, the mean value of d7/J/dt should be about 
1 rad a-I, and thus the duration of uninterrupted 
grooving should be in the order of 1 year. 

However, when an equi-sized stone slides on the bed 
without grooving, it abrades and maybe scratches it. The 
corresponding contact forces favour rolling, as well as no. 
The calculations presented above are not valid in the case 
of several contact points but, intuitively, rolling goes on. 
Therefore, another corner may start a groove. The groove 
may begin as a stria that depends progressively or, more 
probably, it should start abruptly at some step, joint or 
hole in the bedrock. 

All the processes considered in this section may be 
accounted for by introducing a "grooving probability" IT. 
lt is defined as the probability that a stone, with sharp 
corners and able to groove, which is in contact with the 
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bed, indeed grooves. Since for a given size L this 
probability depends on the precise shape of the stone, a 
mean value is considered. We assume that, for a given 
lithology IT is independent of L . Although IT is an 
essential parameter of the theory, its value can only be 
guessed. 

3.5. Estitnations obtained with a particular value 
'I/J = 0 

When the contact radius is normal to the bed ('IjJ = 0), the 
equations of motion become simpler. Moreover, one may 
ignore the local perturbations of u due to the micro-relief 
and put u = U, the sliding velocity at the scale of the 
glacier. Also, since no '" 0.22 a-I, LV3no/2 is negligible 
compared with U and will be neglected. Then, Equations 
(22) and (23) read: 

Slip phase: 

Al F, + BI F, 3 = -wVl + f2 
L3 m L5 m 

U - - 3A2 F, f 9B2 F, 3 P f 
UA - 4L3 m VI + f + 16L3 m (1 + f)3/2 - w 

(27) 

End of the stick phase: 

3A2 . 9B2 • 3 
U + wtanipM = 4L3 (FMsmipM) + 16L5 (FM sm ipM) 

-w 
COSipM = - AIFM/L3 + BIFM3/L5 

S = ~o (FMsinipM). (28) 

Recall that terms in Al or A2 correspond to the 
melting-refreezing process, and terms in B1 or B2 
correspond to the viscous deformation of ice. 

Two examples will be given, assuming U = 10 m a-I 
and -w = m, as given by Equation (2) when ipg/ M = 

1 cm a-I and 'Tb = 0.1 MPa. It yields -w = 0.0133ma- l
. 

The values f = 1 and Co = 200 MPa have been adopted; 
the Ai and Bi are given in Equations (13) and (14). 

First example: L = O.2m 
Fm = 2.35 kN and FM = 29.44 kN; ipm = 45° and 
ipM = 87.0°. During the stick phase, Ft increases from 
1.66 to 29.4 kN, whereas Fn decreases insignificantly from 
1.66 to 1.54 kN. (The neglected buoyant weight is 
0.13kN.) 

U -- UA = 0.167 m a-I, entirely due to melting-refreezing. 

d'IjJ/dt = 1.12 rad a-I during the slip phase (0.22 due to 
the general shear of bottom ice, 0.89 by melting­
refreezing and 0.01 by ice viscosity). 

d'IjJ/dt = 56.4rada-1 at the end of the stick phase, the 
contribution of the three processes being respectively 0.22, 
15.7 and 40.5 rad a-I. 

On the lefthand side of the first Equation (28), which 
gives the maximum tangential force, hence the cross­
sectional area, the contribution of melting-refreezing is 
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2.72 m a-I and the contribution of ice deformation is 
7.04ma- l

. 

The cross-sectional area of the groove is S = 1.47 cm2
• 

Second example: L = 1 m 

Fm = 241 kN and FM = 489 kN; ipm = 45° and ipM = 
77.1 0. During the stick phase, Ft increases from 170 to 
477kN, whereas Fn decreases from 170 to 109kN. (The 
neglected buoyant weight is 16kN.) 

U-uA=0.576ma- 1 (0.137 by melting-refreezing 
+ 0.439 by ice deformation). 

d'ljJfdt = 0.22 + 0.146 + 0.505 = 0.871 rada-I during 
the slip phase. 

d'l/J/dt = 0.22 + 0.41 + 11.07 = 11. 7 rad a-I at the 
end of the stick phase. 

On the lefthand side of Equation (28), the melting­
refreezing term is 0.353 m a-I and the viscous term is 
9.584 m a-I . Lastly, s = 23.8 cm2• 

An objection to the present theory might be that it 
yields a mean value of Ft which is somewhat larger than 
the mean value of Fn, when engineering practice indicates 
that this happens only with sharp steel tools. My answer is 
that once grooving has started because of a very local 
favourable geometry of the bed, its continuation is quite a 
different problem from that of rock drilling, which must 
be continuous. In rock drilling, IT = 1, and this certainty 
can be obtained only by continuous prodding of the rock. 

Given the simplifications made by the model and the 
rough approximations made to solve the mechanical 
problem, for an admittedly rather heuristic treatment of 
glacial erosion, Equations (27) and (28) will be retained 
even when 1/J is not zero and evolves with time. Moreover, 
since in the first Equation (28), from which s is drawn, 
the viscous term is larger, or much larger, than the 
melting-refreezing term, the latter will be dropped. Also, 
it appears that U » Iw tan ipMI (even in the first example, 
with tanipM = 19.1, -wtanipM = 0.25ma-1 only). 
Therefore, the cross-sectional area of the groove will be 
approximated by the simple formula: 

s =2- ( 16L5U) 1/3= 0.225 (L5U)I/3 (29) 
Co 9B2 Co 

with the metre, the year and the MPa as units. 
The two examples given show that U - UA « U. 

Thus, the grooved volume per unit time is SUA ::::l sU. 
Taking into account that a stone, in contact with the bed 
and not worn out, does not necessarily groove and not all 
the time because it rolls, the volume of bedrock per unit 
time grooved by a stone that is not worn out is, as a mean: 

v = ITsU = .!!. (16L5U) 1/3 U . 
Co 9B

2 
(30) 

3.6. Rough estim.ation of erosion rates by grooving 

With v as given by Equation (30), the grooving rate by all 
the stones, as given by Equation (11), might be 
computed, once the sliding velocity U(x) is known. To 
obtain orders of magnitude, it may be assumed that U is 
constant because only the cube root of U enters Equation 
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(11). With this assumption, all the integrals can be 
expressed analytically. From Equation (9), it is derived: 

(31) 

and, comparing Equations (10) and (30): 

L 4/3 Lm 4/3 L1
4/ 3 LM 4/3 G 

= = = = (32) >. Xm X XM k 

where G denotes the following mild function of U: 

G = ~ (16U) 1/3 

Co 9B2 
(33) 

For x < Xm there are no worn-out clasts at the glacier 
sole. Therefore, Equation (11) has to be modified. The 
grooving rate is: 

with J denoting the integral: 

J = rLM 
L5/ 3df = 'Y rLM 

p-7/3 dL 
} Lm LM'" - Lm"l } Lm 

_ 'Y(Lm "1-4/ 3 - LM "1-4/ 3 ) 

- (~-'Y)(LM"'-Lm"')' 

(34) 

(35) 

Adopting Lm = 0.1 m, LM and 'Y = 0.48 ± 0.07, this 
integral is J = 3,48 ± 0.22 m-4/3 a-1/3 . It is found, with 
the metre and the year as units: 

(0 < X < xm). 

(36) 

S· Q 0 1 2 -I d UI /3 2 1/3 -1/3 !nce 0 '" . m a an '" m a , a groov-
ing probability IT in the order of 0.1 is favoured but this 
value may be questioned. 

0.8 m 

L 
0.6 

0.4 
of 

0.2 
Lm 

.' ., 
.' , 

o.~mmla 

egr 

, 

0-2 
L,= Lm 

2 4 6 
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For X> X m , the smallest clasts, up to size L1. may be 
worn out. Then, as long as x < XM and X < Xr, Equation 
(11) holds. It yields: 

'Y [L ..,-4/3 - L "1-4
/ 3] 

egr(x) =(Qo + mcx)G (~_ 'Y) 1 LM"I _ L:'" 

[
L1"1 - L "I] 

+ mck LM"I - L: .., (37) 

where L1 is the function U and x defined by Equation 
(32). This grooving rate is still an increasing function of x 
but it is no longer linear in x. It is displayed in Figure 2 
for the following values of the parameters: m = 0.02 m a-I, 
c = 0.01, k = 3, LM = 2 m, Lm = 0.1 m, 'Y = 0.48, Qo 
= 0.lm2 a- l

, II = 0.1, Co = 200MPa and U = 8ma-l
• 

Then Xm = 620 m and XM = 33700 m. Recall that an 
estimate of Xr is 4000 m (cf. Equation (5)). Equations (32) 
and (37) read: 

L1 =0.143(x/1000)0.75 

egr =1.187 x 10-4 (0.1 + 5;00) (L1 -0.853 - 0.5535) 

+5.64 x 10-4 (L 1°.48 - 0.3311) (620 < x < 4000). 

(38) 

For x = XM = 33700 m the second term of Equation 
(37) vanishes and egr = mck = 0.6 mm a-I. Nevertheless, 
Equation (38) is not valid for such a value of x, which is 
larger than Xl, because no new stones appear at the bed 
by bottom melting. 

For x > Xr, the reasoning is as follows. 
Since, up to x = Xf, per unit width, over a distance 

dx, within a size interval (L, L + dL), mcdx df /U stones 
reach the bed and can groove over a distance >., the 
number of grooving stones per unit area is: 

a 

Cl3StS 

L2 

All worn out 

b 

8 10 km 20 30XM 40 

Fig. 2. a. Bounds of the integrals contributing to the erosion rate by grooving, as functions of x. The highest bound 
LM = 2 m is not represented. b. Erosion rates by grooving as a function of the distance x from the bergschrund (assuming 
that the glacier is sufficiently long). Note the change of scale for the abscissae at x = 10 km . No more new stones appear 
at the bed after x = Xf . The model makes this limit very sharp. The assumed values of the parameters are given in the 
text. 
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me U [A - (x - xr)] df if x - xr < oX < x 

Qo + mcxr df if x < oX . 
U 

(39.1) 

(39.2) 

From Equation (32), the condition oX < x is equivalent 
to L < L1 and the condition A > x - Xf is equivalent to 
L> L2, with: 

(40) 

Therefore, only stones larger than L2 groove. (If L2 is 
smaller than Lm, a circumstance that occurs for x - Xr 
< x m , then we must take L2 = Lm .) The grooving rate 
by stones of every size is: 

. iLl vme lLM v 
egr = u(xr+A-x)df+ u(Qo+mcxr)df. 

L2 L1 

(41) 

Comparing with Equations (30) and (31), it follows: 

=mek[L1"(-L2"(] + G, 
LM"( - Lm "( (~ - ,) (LM"( - Lm "() 

. [mcxf ( L2 "(-4/3 - LM "(-4/3) - mcx ( L2 "(-4/3 - L1 "(-4/3) 

+Qo ( L1 "(-4/3 - LM "(-4/3) ]. (42) 

With the same values of the parameters as above: 

egr =5.64 x 10-4 [L1 0.48 - L20.48 ] 

+ 1.187 X 10-4 [(0.1 + _X_) L -0.853 
5000 1 

_ (x - 4000) L -0.853 - 0.49815] 
5000 2 

(
X )0.75 

L1 =0.143 1000 ' 

L =0.143 (x - 4000) 0.75 4620 < x < 33700. 
2 1000' 

(43) 

This rate is displayed on Figure 2. Downstream of Xf, 

where the number of grooving clasts is a maximum, no 
new clasts appear at the glacier sole and consequently the 
erosion rate diminishes. Between x = 4 km and x = 6 km 
it is halved. This fact produces, on the time-scale of 
100 000 years, an over-deepening of the bed around 
x = Xf (however, if the rock walls at the head that 
provide grooving clasts have not disappeared meanwhile 
by subaerial weathering). Note that the model is two­
dimensional. If the convergence of streamlines from the 
bergschrunds around a cirque towards its centre was 
accounted for, this effect would be enhanced. · 
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3.7. Total steady erosion rates (ignoring quarrying) 

Glacial erosion also includes wear by the rock chips and 
gouge that grooving provides, and by sand grains freed by 
chemical weathering. The rate of chemical weathering is 
ecr '" 0.02 mm a-I and one may assume that the rate at 
which sand grains are freed is one-half this value. Let {3 be 
the ratio of the volume that a clast loses by blunting to the 
volume of bedrock that it grooves, a ratio that should be 
in the order of 0.1. Since we are dealing with 
monolithologic erosion, the wear of the bedrock by small 
particles should be at most equal to the volume of these 
particles. Therefore, the total erosion rate by particles, 
stones and boulders of any size should be at most (when 
quarrying is excluded): 

e = egr(1 + (3) + ~eCh. (44) 

Ironically, these corrections to the erosion rate are 
insignificant but it is this wear that gives beds recently 
uncovered by glaciers their most peculiar appearance. 

The erosion rates that have been suggested, as 
displayed in Figure 2, depend above all on the parameter 
k, which indicates how many times a stone has grooved its 
own volume before being worn out. This unknown 
parameter may be related to two other coefficients that 
are easier to guess. Let 8 be the relative volume that has 
been lost by blunting when a clast is worn out. 
Considering that, when a cube becomes a perfect 
sphere, it has lost 47.6% of its volume, one may guess 
8 ",0.3. We have: 

k = 8/{3. (45) 

For this reason, k = 3 has been assumed in the 
calculations. The corresponding erosional rates are some 
tenths of a millimetre per year and some hundreds of 
metres during the whole of the Pleistocene. This agrees 
with the fact that, in general, glacial erosion cannot keep 
pace with the orogenic uplift of young mountain ranges, 
known to be in the order of I mm a-I. 

4. CONCLUSION 

The behaviour of rock debris at the glacier sole, in spite of 
its complexity, may be tackled with simple physical 
models and approximate mathematics. However, in the 
absence of detailed pertinent field observations and ad 
hoc experiments, the models remain conjectural and the 
required parameters can only be assessed crudely. For this 
reason, numerical computations to determine exactly the 
evolution of'1f; with time, or for calculating egr when U 
depends on x, are premature. 

Let us summarize the provisional, rather qualitative 
results that have. been obtained. 

Quarrying requires a previous cold episode during 
which rock was fractured by frost, maybe subglacially. 
Ignoring this process, glacial erosion of hard bedrock is 
important (several mm a-I at least) when a glacier 
advances and drags loose material at its sole. Otherwise, 
in a steady-state situation, the primary erosion process is 
grooving by stones that have fallen into the bergschrund 
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or in its vicinity, and into marginal crevasses. The theory 
of locally stress-controlled temperatures leads to the 
prediction that very near the bottom of a temperate 
glacier there is important internal melting, whereas at the 
very ice-bed interface there is a freezing trend. Therefore, 
in the lowest centimetres of the glacier, ice ascends and 
the minute particles that wear and polish the bedrock 
must be derived from the bed itself. In addition to sand 
grains freed by subglacial chemical weathering, they are 
mainly rock chips created by grooving and the gouge due 
to the wear itself. Thus, abrasion appears to be a 
secondary process, governed by prior grooving. 

Stones that have fallen near the bergschrund reach the 
glacier sole wi thin a distance Xf of some kilometres, thanks 
to bottom melting due to geothermal heat and to the 
Newtonian energy that glacier sliding dissipates. There­
fore, erosion should be much greater beneath temperate 
mountain glaciers that are surrounded by rock walls than 
beneath temperate ice caps from which only rare 
nunataks emerge. For x > Xf, bottom ice is free of clasts 
and those already present at the bed lose progressively 
their ability to groove, because of blunting. (However, the 
largest boulders can still groove at some tens ofkilometres 
downstream. Therefore, grooving is a maximum at 
x = Xf . An over-deepening may form there very slowly, 
without the necessity of an episode offrost and subsequent 
quarrying. 

The rock strength Co and the sliding velocity U have 
less influence on the erosion rate than commonly thought. 
The harder the rock, the less easily stones can groove the 
bed but the longer they groove before being worn out. 
The faster the velocity, the more intense is grooving but 
also the more intense is blunting. 

Unfortunately, the probability for a stone at the bed 
to groove when it is not worn out (IT) and the blunting 
parameter ({3) are totally unknown. If k = 8/{3 IV 10, 
grooving rates in the order of I mm a-I would be found. 
My guess is k = 3 but it must be confirmed. 

The theory has some limitations, besides dealing only 
with temperate glaciers. It does not consider the case of 
very high debris content in bottom ice, as in many 
glaciers fed mainly by avalanches (e.g. Khumbu Glacier). 
In this case, the clasts that appear at the glacier sole are so 
abundant that they should interact with each other. At 
the limit, the theory does not deal with bedrock erosion 
by rock glaciers, a topic that has never been investigated. 

The effect of subglacial ice-bed separation (cavit­
ation) has not been considered, nor has the possibility of 
almost horizontal faults at the bed, as found at some 
glacier tongues. The latter might allow the formation of 
stratified debris-laden bottom ice, which is sometimes 
found in temperate glaciers. (It is quite common in cold 
glaciers.) Today, any attempt to model erosion in all 
these complex cases would be highly speculative. 

Clearly, more subglacial observations on temperate 
glaciers are needed. Not only in large natural cavities as 
those found beneath glacier d' Argentiere, on a verrou 
where sliding velocities are very high, but in tunnels dug 
along the glacier sole where sliding velocities are small. 
When abrading clasts or grooving boulders are found, 
their shape and size, differential velocity, angular 
velocity, the dragged debris below, etc. should be 
measured and published. If stratified ice is found, it 
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must be described in detail and information should be 
given about the glacier dynamics upstream from the site. 
(Seasonal variations of the surface velocity, that indicate 
the existence of ice-bed separation, are particularly 
relevant.) 

The pushing, dragging as ground moraine, or capture 
of rock debris into bottom stratified ice by an advancing 
glacier should be examined, together with the abrasion, 
grooving and quarrying at the temporarily covered 
bedrock. This might be done in as little as two successive 
years, taking advantage of the temporary advance of any 
steady-state glacier during winter. 

To estimate erosion rates, we need statistics about 
clasts that fall into a bergschrund and nearby. We need to 
know the size distribution of clasts and boulders in 
moraines up to the largest sizes. 

Nevertheless, the most important data that are lacking 
could be obtained by experiments in rock mechanics 
which are remote from actual glaciers. It suffices that bare 
rock, polished during the Ice Age, be easily accessible. A 
stone having the same lithology might be plucked at a 
fixed velocity U over this past bed, with a superimposed 
load (Le. with Fn fixed). No ice is needed but the bedrock 
must be fully watered. The onset of grooving could be 
observed. The cross-section of the groove for different 
values of the variables and the blunting coefficient could 
be measured. After many tests, the grooving probability 
IT might be estimated. These key factors would be easy 
and cheap to investigate. It is too late for the author to do 
it himself but he hopes that some younger scientists will 
hear and appreciate his suggestions. 

After such field measurements and experimental 
investigations only, accurate calculations will become 
fruitful. 

DEDICATION 

I dedicate this article to the memory of Andre de Cayeux 
de Senarpont, alias Andre Cailleux (1907- 87). With 
continuing enthusiasm and youthfulness of mind, he 
fostered in France and Quebec quantitative field studies 
on sedimentology and geomorphology. His enormous and 
diverse scientific production (he wrote as a single author 
about 500 papers and notes) is listed in a special issue of 
Cahiers Giologiques, No. 112 (1988). 

In particular, he measured "indices of blunting" to 
distinguish pebbles of diverse origins. The present study 
has shown that, in the case of boulders of glacial origin, 
these indices may differ widely; only the blunting of very 
small pebbles and sand grains makes sense. 
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APPENDIX I 

VELOCITY OF A SPHERE EMBEDDED IN 
TEMPERATE ICE 

Ice is assumed to be motionless at an infinite distance. It 
provides against the sphere normal forces, which can be 
accounted for by replacing the weight of the sphere with 
the buoyant weight and shear forces. The latter are 
assumed to be negligible, because ice can easily overcome 
the minute asperities on the surface by a melting­
refreezing process. 

Other forces may act on the sphere but it is assumed 
that the way they are applied does not modify the flow 
around the sphere. For instance, the sphere may be pulled 
with a wire or pushed with a perfectly smooth thin rod. 
(Of course, this is not the case for a contact force; the 
calculation below then becomes only approximate.) The 
resultant of all the forces, buoyant weight included, is 
denoted by F. 

Deforming temperate ice is assumed to have an 
isotropic, non-linear viscous behavior, with Glen's 
coefficient n = 3 (transient creep is ignored). It means 
that Tij and fij, denoting the deviatoric stresses and the 
strain rates, respectively: 

2fij = BT2Tij , with 2T2 = :2: Ti~. (Ll) 
i,j 

The viscosity B is dependent on water content. The 
value that I recommend for the bulk of a temperate 
glacier is B = 440MPa-3 a- J (Lliboutry, 1987, p.451). 

The velocity permitted by the viscous deformation of 
ice, say Uy , may be bounded by the variational method 
(Lliboutry, 1978a, p. 359-67). The result is: 

Uy = ! (;) 3 with 8.564 < /-L < 8.666. (1.2) 

By comparison with the volume of the sphere 
V = ~R3, Equation (1.2) reads: 

Uv = B IF 3V- 5/ 3 

BI = 5.49 X 1O-4B = 0.242 MPa-3 a-I. 
(1.3) 

When temperate ice slides over a sinusoidal profile, the 
sliding velocity Urn due to melting-refreezing processes is 
about the same with locally stress-controlled temperatures 
as with the standard theory, which assumes ice to be dry 
and impermeable (Lliboutry, 1993). It will be assumed 
that it is also the case with the present problem. The 
calculation of Urn using the standard theory is much 
simpler. 

Define a pressure 0' by F = 27rR2O'. The first 
harmonic of the normal pressure on the surface of the 
sphere has to be, from the equilibrium condition: 

Pn = Pi + ~O'cos e (1.4) 

where Pi denotes the hydrostatic pressure at a large 
distance and () is the angle of the considered radius with 
the direction of motion. (With this approximate value of 
Pn, the problem in mechanics and the problem in 
thermics are decoupled, as it is rigorously the case with 
a Newtonian viscous fluid.) 

Lliboutry: Monolithologic erosion of hard beds by temperate glaciers 

Since ice is assumed to be dry, the temperature is a 
harmonic function outside the sphere, as it is inside. It will 
be denoted Text and 7lnt, respectively. At the interface, 
Text = Tint = -CmPn and at infinity Text = -CmPi. With 
the approximate value ofpn as given by Equation (1.4), 
the solution is: 

Text = -CmPi + Crn(~r ~cos() (r ~ R) 

Tint = -CmPi + Cm (i)~ cos () (R ~ r). 
(1.5) 

Let Kb and Ki denote the thermal conductivities of 
the spheric material and of ice, respectively, and let M 
denote the latent heat of fusion per unit volume. The 
melting rate at the interface (the freezing rate when 
negative) is, in thickness of ice melted per unit time: 

3Cm(2Ki +Kb) 
2RM 0' cos e = Urn cos e. (1.6) 

As in Lliboutry (1993 ) , the following thermal 
parameter is introduced: 

A = KiCml M = 0.0214 m 2 MPa-1 a-I. (1.7) 

The normal velocity at the surface, given by Equation 
(1.6), corresponds to a velocity U m of the rigid sphere. 
Thus, melting and refreezing yield an additional velocity: 

U m = (2 + Kb) A 30' = Al ~ 
Ki 2R V 

Al = (2+ ~~)A. 
(1.8) 

In the following, Kb = Ki will be assumed. The total 
velocity is U = Uy + Urn. 

SINKING OF A SPHERE SUBJECT ONLY TO ITS 
BUOYANT WEIGHT 

In particular, assume that F is only the buoyant weight, 
and that the sphere has a density p = 2700 kg m-3

. Then, 
where, 9 = 10 m S- 2 is the gravity, 

F IV = (p - Pi)g = 0.016 MPa m-I. (1.9) 

It follows: 

Urn ~ 1mma-l , Uv ~ (1:
3

) 4/ 3 /-Lma-l . (1.10) 

Unless boulders larger than 100 m3 are considered, 
Uv« Urn· 

APPENDIX 11 

ROTATION OF A CUBE EMBEDDED IN 
TEMPERATE ICE SUBJECT TO A TORQUE 

The angular velocity of a cube subject to a torque with 
moment r can be roughly estimated, assuming that this 
driving moment is parallel to four ridges of the cube (with 
length L) and that the relation between r I L and the 
angular velocity [} is the same as for a very long square 
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prism rotating about its long axis. In this case, only two 
dimensions need to be considered. With the notations in 
Figure 3, the radius r is a periodic function of angle a. Its 
mean value and its first harmonic only will be kept, say: 

r = l' - a cos 4a . (ILl) 

This approximation will allow us to estimate the drag 
force along the periphery by using the formula for glacier 
sliding without cavitation on a sinusoidal profile. 

First, l' and a must be determined . Fourier analysis 
yields: 

1,,/4 L 1"/4 
--da = (1' - a cos 4a) da 

o 2cosa 0 

1,,/4 L 1"/4 
--cos4ada = (1' - a cos 4a) cos4ada. 

o 2cosa 0 

By using the formulae: 

1
,,/4 da 

-=In(v2+1), 
o cos a 

cos 4a = 1 - 8 cos2 a sin2 a , 

it is found that: 

l' = 2L ln(v2 + 1) = 0.5611L 
7r 

a = 4: [v;: -In( h + 1)] = 0.07822L . 

(H.2) 

(H.3) 

(H.4) 

Glacier sliding, without cavitation, on a sinusoidal 
profile z = a cos wx with finite amplitude a, when ice 
obeys the rheological law in Equation (1.1), has been 
calculated in Lliboutry (1987, p. 149, 157 and 356-59). 
The relationship between sliding velocity U and the mean 
bottom drag 'Tb reads (assuming Kb = K i ) : 

r 

Fig. 3. Approximation of a square by r = l' - a cos 4a. 

'Tb B'Tb3a 
[ 2] U = 4A- + 0.321--5 1 + 7.5(aw) . 

a (aw) 
(11.5 ) 

The standard theory of melting-refreezing has been 
used. The result is about the same, assuming locally stress­
controlled temperatures (Lliboutry, 1993). In the present 
case: 

w = 27r/,\ = 4/1' = 7.129/ L 

aw = 0.5576 

U=1'[} 

r 
'Tb = 27rf2L . 

(11.6) 

Comparing Equations (II.5) and (11.6), it is found: 

r r 
[} = A2 L5 + B2 L9 

A2 = 46.1A = 0.987m2 MPa- i a- i (11.7) 

B2 = 0.357B = 157 MPa-i a-i. 

MS received 9 April 1992 and in revised form 9 March 1993 
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